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Abstract. Quality indices in clustering are used not only to assess the quality of the partitions but 
also to determine the number of clusters in the final result. When these indices are evaluated in a 
case study, real data conditions or different clustering algorithms are seldom taken into account. 
Here, some of the standard indices used in the literature are compared using more realistic 
databases that include outliers or noisy dimensions, which is more like a real problem-solving 
approach. Besides, three different clustering methods are used in an attempt to identify different 
behaviours. Also, the performance of the quality index-clustering algorithm tandem is compared to 
random grouping, with the aim of running an additional check. The indices are ranked, and index-
based conclusions are drawn for all the scenarios.

1. Introduction

Exploratory problems are one of the big challenges of data mining and are often tackled using
clustering techniques. This type of problems are usually much more dif cult to evaluate than supervised
classi cation problems because there is no “ground truth”. Because of this, the quality of each output
solution is closely related to the domain problem. In spite of this, there are lots of clustering quality
indices (CQIs) that try to assess the quality of the solution. To do this, indices tend to rate compact and
isolated clusters highly. This partition quality is often used as a stopping rule for nding the correct
number of clusters for a data set. Following this guideline, Milligan and Cooper [16] ranked 30 CQIs on
an extensive battery of data sets without impurities (clear cluster structures). However, these data sets
had different con gurations where the number of variables and instance distribution density levels varied,
that is, instances were not equally distributed in each hidden group. Hierarchical clustering was used as
the approach for grouping the data. This comparison is still considered as one of the main references
for clustering validation even though the work was developed 25 years ago. This is exempli ed by
current works dealing with the same issue [19]. These authors used the same type of data sets as [16]



but changed the evaluation approach by introducing another type of CQIs for validation. The problem is
that this kind of data sets are not typical cases of real domains because of the low dimensionality and the
clear separation and cohesion of the clusters. This is an utopian scenario in real problems, since there are
usually irrelevant or noisy features or even no cluster structure in the data set. Throughout this document
we use Milligan and Cooper’s ranking as reference because of the great number of CQIs compared in that
work, but there are some other references in literature that attempt to evaluate some CQIs using different
clustering algorithms and kind of data, like in [22,23]. Another very recent paper comparing internal
cluster validation indices is [6]. This paper attempts to obtain a standard methodology for evaluating
some clustering indices using hierarchical clustering approach. They consider that it is necessary not
only to get the correct number of clusters but also to obtain the partition that best ts the original data.

Regarding the CQIs and based on clustering validation literature, some authors [21] indicated that there
are two groups of CQIs: internal and external. Meanwhile, other authors [7,10] discussed the existence
of a third group, called relative indices. Internal validation does not require knowledge of the ground
truth; the quality of a partition using internal CQIs is assessed by evaluating each individual partition
based on distance or dissimilarity measures. The problem with this approach is how each partition is
built, since the quality is probably measured with different criteria than were used to build the partition,
which can lead to incorrect validations. On the other hand, external validation is more accurate but not
realistic in clustering. In this case, the ground truth must be known and the evaluation is carried out based
on this knowledge. Although there are many CQIs, some of them are equivalent [1]. The relative index
concept varies depending on the above-mentioned authors. It is also interesting to note that, as indicated
in [27], the CQIs suffer from biases not only with regard to the data (shape or number of clusters for
instance), but also to the clustering algorithm used to obtain the partition. For this reason, and as we
list in the following and detail in the next section, ve different CQIs are used and, moreover, different
clustering algorithms are used to partition the different kind of data.

The ve internal CQIs that have been introduced in the comparison are: Silhouette [18], Calinski [3],
C-index [9], DaviesBouldin (DB) [4] and Gamma [2]. Silhouette was the only CQI not compared in [16],
but it is widely used in different elds, like genomics [13] or neuroscience [12] for example. The external
CQI used is adjusted Rand index (ARI) [8]. This index is an improvement on the also very well-known
Rand index [17].

This work focuses on using each CQI as a stopping rule for nding the real number of groups in
clustering using close-to-real domains for the purpose of evaluating the proposed indices. Using the
CQIs in this way is an important and common step in clustering. Thus, we compare here some of the
most used CQIs in different scenarios to output some behaviour patterns that can help decision making
on what index should be used depending on the problem at hand and how it is solved. The scenarios
are created using different databases that aim to simulate real cases, having different percentages of
outliers or noisy dimensions. Besides, data are partitioned using three different clustering approaches
and one random algorithm to check if the behaviours of the indices differ in each case. Finally, and
following [19], an external CQI is used as support for the validation.

The remainder of this paper is organised as follows. Section 2 presents the work method, the databases
used and a brief explanation of each algorithm and index used. The experimental process is commented
in Section 3. In Section 4, the experimental results are presented by the different criteria, whereas
Section 5 explains the conclusions drawn from the results and some discussion.



Table 1
Summary of databases used. d is the number of dimensions, K is the number of clusters, ld are the 
different levels of density and n is the number of instances of each data set. Row names are the types 
of data sets: clear are non-overlapping data sets, out5 and out10 are data sets with 5% and 10% of 
outliers, respectively, nally noi1 and noi2 are data sets with 1 and 2 noisy dimensions, respectively

d K ld n
clear 4,6,8 2,3,4,5 1,2,3 50
out5 4,6,8,10 2,3,4,5 1,2,3 105
out10 4,6,8,10 2,3,4,5 1,2,3 110
noi1 5,7,9,11 2,3,4,5 1,2,3 100
noi2 6,8,10,12 2,3,4,5 1,2,3 100

2. Material and methods

The above ve internal CQIs were compared using different data partitioning methods. Differences in
data are related to impurities, such as noisy dimensions or outliers. All these details are presented in the
following.

2.1. Databases used

The data sets were generated using the original cluster data generator software described in [15]. All
data sets are detailed in the following, where they are divided into three groups. The rst group (clear)
is composed of data sets with strong and distinct clusters. The second group (out5 and out10) has data
sets generated with 5% and 10% outliers (instances that do not belong to any prede ned cluster) and the
last group (noi1 and noi2) has data sets with 1 or 2 added random noisy dimensions (variables that do
not contribute to separating the clusters).

The number of data sets in each group depends on the number of dimensions, clusters and types of
density used. Thus, there are 36 data sets in the rst group, resulting from combining 4 different number
of clusters in the data (from 2 to 5 clusters), each with different dimensions (4, 6 or 8) and 3 different
density levels designed to change the cluster sizes and the instance distributions. At the rst level of
density each cluster has the same number of instances; at the second level one cluster always contains
10% of instances; and at the third level one cluster contains 60% of instances. The size of each data set
in this rst group is 50. The second group is divided into data sets with 5% and 10% outliers. There
are 48 data sets in each subgroup since a new dimensionality (10 variables) is added on top of all the
combinations explained for the rst group. Besides, 105 and 110 instances are used in each data set,
respectively. Finally, the last two data sets have 100 instances each, but one noisy dimension is added
in noi1 and two noisy dimensions are added in noi2, again outputting a total of 48 data sets. Therefore,
228 data sets are used in the comparison here.

2.2. Clustering algorithms

Three clustering algorithms used in different approaches were used to partition each data set: K-
means [14], hierarchical clustering [11] using Ward’s method [20] and model-based clustering using
Gaussian mixtures and the expectation-maximization (EM) algorithm [5]. All three algorithms are the
maximum exponents of different approaches and are well-known in the clustering literature. The rst
two are hard clustering approaches (each instance belongs to only one cluster), whereas the model-based
approach is based on soft clustering (each instance has a certain probability of belonging to each cluster).
Apart from these, data were randomly partitioned as if it were another algorithm. For each data set, this
random strategy was executed for 50000 iterations in an attempt to achieve statistical signi cance for
each case.



2.3. Clustering quality indices

The study compares ve internal CQIs, using one external CQI to check if clustering algorithms
are able to nd the correct cluster structure. All used indices were designed for being used with hard
clustering algorithms, then the partitions built using model-based clustering were adapted for evaluation
with the indices. There are many others CQIs that are not considered in this work, some examples are
the Dunn index [24], Je(2)/Je(1) [26] or the Beale index [25].

2.3.1. Internal indices
2.3.1.1. Silhouette

The Silhouette coef cient [18], s(i), is calculated for each instance i as follows:

s(i) =
b(i) − a(i)

max(b(i), a(i))
, (1)

where a(i) is the average dissimilarity between instance i and all other points in the cluster to which i
belongs (C for instance) and b(i) is the minimum average dissimilarity to the instances of each cluster
that are different to C . The average of all output values is the average Silhouette, which is the nal result
and is in the [−1, 1] range. A high value indicates good quality clusters.

2.3.1.2. Calinski
This index [3] consists of nding well isolated clusters and is based on two measures that evaluate

separation, between-cluster sum of squares (BSS), and cohesion, within-cluster sum of squares (WSS):

CH =
BSSK(K − 1)

WSSK(N − K)
, (2)

where K is the number of clusters and N is the total number of instances. The aim is to nd a value of
K that maximizes the index. This indicates isolated and uni ed clusters.

2.3.1.3. C-index
This index [9] is de ned as:

Cindex =
(

dw − min(dw)
max(dw) − min(dw)

)
, (3)

where dw is the sum of distances over all pairs of instances from the same cluster. If p is the number of
pairs of instances in the same cluster, max(dw) and min(dw) are the sum of the p largest and smallest
distances, respectively, considering all the pairs of instances. Again, this index should be minimized and
is con ned to the interval [0, 1].

2.3.1.4. Davies-bouldin
This index [4] is calculated by averaging each pair of clusters as:

DB =
1
K

K∑
i=1,i�=j

max
(

di + dj

d(ci, cj)

)
, (4)

where K is the total number of clusters, di and dj are the average distances of all instances in each cluster
to their respective cluster center ci and cj . d(ci, cj) is the distance between cluster centers. The target
value for the DB index is small since this corresponds to compact and well-separated clusters.



2.3.1.5. Gamma
This measure is also known as Baker and Huberts index [2] and is de ned as:

G =
(

s(+) − s(−)
s(+) + s(−)

)
, (5)

s(+) being the number of consistent comparisons and s(−) the number of inconsistent comparisons.
Comparisons are made between all clusters pairwise and all between-clusters pairwise dissimilarities. A
comparison is consistent if a within cluster distance is less than a between-clusters distance, otherwise
it is considered as inconsistent. The target value of this index is the maximum value and it is bounded
by 1.

2.3.2. External index
2.3.2.1. Adjusted rand index

The ARI [8] was created as an improvement on the Rand index [17]. The context to de ne these
indices is: given a set of N objects, suppose S and T are two different partitions to be compared (one
partition can be assumed to be the result of clustering and the other one to be the real label and we unify
the name of the classes in the known partition and the clusters in the clustering results as “groups”).
Then, a is the number of pairs of objects that are located in the same group in S and in T , b is the number
of pairs of objects in the same group in S but not in T , c is the number of pairs of objects in the same
group in T but not in S , and d is the number of pairs of objects in different groups in both partitions S
and T . Then, the Rand index is de ned as

Rand =
a + d

a + b + c + d
. (6)

The problem of the Rand index is its value when two random partitions are compared, since it does
not take a zero (minimum) value. The ARI was proposed to overcome this limitation concerning the
random partitions. The ARI, like the Rand index, lies between 0 and 1, the latter being the value output
when two partitions are equal. The ARI is calculated as:

ARI =

(n
2

)
(a + d) − [(a + b)(a + c) + (c + d)(b + d)](
n
2

)2 − [(a + b)(a + c) + (c + d)(b + d)]
. (7)

3. Experimental process

The methodology consisted of creating the partitions, using the three clustering algorithms (K-means,
hierarchical and model-based clustering) and the random grouping algorithm for all the possible number
of clusters (from 2 to 5) for each data set and using the CQIs to evaluate each built partition. Thus, if 4
different algorithms and 4 cluster combinations are used for each data set, 228 ∗ 4 ∗ 4 = 3648 partitions
are evaluated with 5 internal and 1 external CQIs. The external CQI, ARI, is used as external validation
to assess the quality of each built partition against the real partition, which is known beforehand.

For each index evaluation, the best number of clusters for each index is the maximum or the minimum
value depending on the CQI. This choice will be correct if the chosen number of clusters matches the
real number of clusters known beforehand. Otherwise, the choice will be classed as wrong irrespective
of the distance to the real number of clusters. Besides, evaluating the external CQI, it is possible to nd



Table 2
Number and percentage of correct decisions for each CQI, clustering algorithm and number of clusters 
(from 2 to 5) in 228 data sets: 96 with outliers, 96 with noise and 36 with clear cluster structures

2 3 4 5 total %
K-means 31 31 29 33 124 54.386

Silhouette Hierarchical 38 39 35 32 144 63.158
EM based 39 33 31 33 136 59.649

K-means 50 40 28 42 160 70.175
Calinski Hierarchical 51 39 29 40 159 69.737

EM based 50 37 33 36 156 68.421

K-means 22 14 13 31 80 35.088
C-index Hierarchical 9 8 7 35 59 25.877

EM based 6 4 7 39 56 24.561

K-means 27 31 28 31 117 51.316
DB Hierarchical 30 35 31 28 124 54.386

EM based 41 32 25 21 119 52.193

K-means 21 32 29 36 118 51.754
Gamma Hierarchical 23 36 30 36 125 54.825

EM based 22 30 27 41 120 52.632

K-means 55 55 52 46 208 91.228
ARI Hierarchical 57 55 52 47 211 92.544

EM based 55 55 54 49 213 93.421

out if the clustering algorithms were able to nd the real clusters structure for each data set in spite of
correct or incorrect choices by the internal CQIs of the number of clusters.

All these points are evaluated on the above-mentioned data types, outputting results for data with
non-overlapping (clear) clusters. Data with outliers and data with noisy dimensions are then added to
compare the behaviour of the CQIs with these data types.

4. Results

The rst results are presented in Table 2. Table 2 shows the number of correct decisions on the number
of clusters output by each CQI and each clustering algorithm in all the databases used (228 data sets).
Clearly, the number of correct decisions output by the ARI is very high. This means that the clustering
algorithms were able to nd the correct cluster structure in many situations, especially when they had to
nd 2 or 3 clusters. In the case of internal indices, Calinski achieved the best results with around 70%

of correctly identi ed clusters. It was followed by, Silhouette, DB and Gamma, which all achieved very
similar results. C-index was the clear loser in this rst comparison. It was interesting to note however
that this index was at least as competitive as Silhouette, DB or Gamma at nding 5 clusters.

Regarding the clustering algorithms, K-means behaved better when used with Calinski and C-index,
whereas hierarchical clustering outperformed the other algorithms when used with Silhouette, DB or
Gamma. Interestingly, EM was the best algorithm only when used with ARI, which was the most precise
index.

4.1. Index behaviour in data sets with outliers

The results using the 96 data sets with 5% and 10% of outliers are shown in Table 3. They were
different from the general results shown in Table 2. In this case, the biggest differences depended



Table 3
Number and percentage of correct decisions for each CQI, clustering algorithms and number of clusters 
in 96 data sets with 5% and 10% of outliers

2 3 4 5 total %
K-means 3 7 8 16 34 35.417

Silhouette Hierarchical 9 14 14 16 53 55.208
EM based 6 7 10 18 41 42.708

K-means 18 19 11 21 69 71.875
Calinski Hierarchical 18 18 13 20 69 71.875

EM based 17 14 13 17 61 63.542

K-means 12 11 9 17 49 51.042
C-index Hierarchical 3 6 4 21 34 35.417

EM based 0 1 2 22 25 26.042

K-means 2 6 9 16 33 34.375
DB Hierarchical 7 9 13 13 42 43.750

EM based 18 6 9 5 38 39.583

K-means 2 5 5 13 25 26.042
Gamma Hierarchical 3 6 6 15 30 31.250

EM based 1 2 5 18 26 27.083

K-means 22 22 22 20 86 89.583
ARI Hierarchical 24 22 23 23 92 95.833

EM based 22 22 24 24 92 95.833

on the clustering algorithm used. For example, there was a 20% difference in the number of correct
decisions using K-means and hierarchical clustering in Silhouette. This also applies to C-index, where
EM returned around 26% and K-means around 51% correct decisions. In any case, the internal CQI
with the highest percentage of correct decisions was again Calinski, but, taking into account all three
clustering algorithms, Gamma had a worse mean than C-index. This algorithm achieved a better result
than before thanks mainly to the improvement in the K-means output.

The behaviour of clustering algorithms with each CQI was very similar to before, and there were no
signi cant differences. A minor difference was that K-means used with C-index performed much better
than the other clustering algorithms. Proportionately, the other differences among the three clustering
algorithms were unchanged.

With the appearance of outliers, the results for the internal CQIs were very poor. Again, ARI output
high outcomes, which means that the clustering algorithms found the cluster structures. However, the
internal CQIs were not able to nd the structures used as stopping rules to determine the number of
clusters.

4.2. Index behaviour in data sets with noise

The results using the 96 data sets with 1 and 2 dimensions of noise are shown in Table 4. In general,
the results of the internal CQIs improved in data sets with these characteristics compared with outliers.
This applies for Silhouette, DB and Gamma. The difference in Calinski was more balanced, whereas
C-index was the big loser in data sets with noise. The number of correct decisions on the number of
clusters using C-index was very low, mainly when the number of clusters was not 5. Because of these
results, C-index was the lowest ranked internal CQI in this comparison. On the other hand, Gamma,
which was the index with the poorest results in data sets with outliers, achieved the best results in data
sets with noise.



Table 4
Number and percentage of correct decisions for each CQI, clustering algorithms and number of clusters 
in 96 data sets with 1 and 2 noisy dimensions

2 3 4 5 total %
K-means 20 19 13 11 63 65.625

Silhouette Hierarchical 21 19 13 10 63 65.625
EM based 24 20 14 9 67 69.792

K-means 24 15 12 13 64 66.667
Calinski Hierarchical 24 15 11 12 62 64.583

EM based 24 16 15 11 66 68.750

K-means 5 1 3 12 21 21.875
C-index Hierarchical 3 0 2 12 17 17.708

EM based 3 1 3 14 21 21.875

K-means 18 19 12 9 58 60.417
DB Hierarchical 16 19 11 9 55 57.292

EM based 16 19 10 9 54 56.250

K-means 14 22 15 16 67 69.792
Gamma Hierarchical 15 24 15 14 68 70.833

EM based 15 22 14 16 67 69.792

K-means 24 24 21 18 87 90.625
ARI Hierarchical 24 24 20 16 84 87.500

EM based 24 24 22 17 87 90.625

Another interesting feature of these results was the improvement of EM, which outperformed K-means
and hierarchical clustering when used with Silhouette or Calinski and was at least as competitive as the
others when used with C-index or Gamma.

4.3. CQI evolution depending on the data sets

Another important aspect to be examined in this work is how each CQI evolves when data change
from “clean” clusters to data with outliers or noisy dimensions. This could lead to conclusions about
how these new data characteristics affect the behaviour of a CQI and determine when it a particular
combination of CQI and clustering algorithm is better.

The complete evolution is shown in Fig. 1. One of the most interesting ndings was that C-index
performed worse with the clear data sets than with outliers. However, when Calinski was used to nd
the correct number of clusters in data sets with 5% outliers, the outcomes were at least as competitive as
in clear data sets. One important point for examination here was how the introduction of more outliers
or noisy dimensions affected the behaviour of each index. Silhouette performed worse in data sets with
outliers than in data sets with noise, but the introduction of the second noisy dimension had a bigger
effect than the switch 5% to 10% outliers. This situation was even more marked using Calinski, since the
performance decreased substantially compared with the other data sets when the second noisy dimension
was introduced. DB and Gamma behaved similarly: results for data sets with outliers were very poor,
whereas values for one noisy dimension data sets were competitive compared with clear data sets. When
the second noisy dimension was introduced, the performance decreased. The exception was the C-index
discussed above. Performance with this index was generally very low, but the results with K-means and
hierarchical clustering were better when outliers were introduced. This was exception among internal
CQIs, but not compared with ARI, since the external CQI performed better in data sets with outliers than
in data sets with noise.



Fig. 1. Evolution of the percentage of correct decisions in the number of clusters of each CQI depending on the type of data
sets and the clustering algorithms.

Regarding the algorithms, EM and hierarchical clustering achieved the best results compared with
K-means for clear data sets. For data sets with outliers, hierarchical clustering achieved results that
were at least as good as the other clustering algorithms with all the internal CQIs, except for C-index,
where K-means was the winner. In data sets with noisy dimensions, there was not a very clear pattern of
clustering algorithm behaviour. The top cluster algorithms changed depending on the CQI and whether
there was 1 or 2 noisy dimensions.

Besides the number of correct decisions on the number of clusters in a data set, another factor for
evaluation was how the value of each index changed depending on the characteristics of the data. The
mean values of each CQI for each data situation are shown in Fig. 2. Remember that the aim of Silhouette,
Calinski, Gamma and ARI is to maximize the value, whereas the lower the value of C-index and DB
the better. In general, the addition of noisy dimensions affected the values of all the indices more, and



Fig. 2. Mean values of each CQI for each type of data set. Note that the scale is different depending on the index.

performance was worse. C-index was again an exception, because the values for the clear data sets
were worse than for data sets with outliers. Note also that, when outliers were introduced in C-index
previously, this index returned a better percentage of correct decisions, here again, when index value
is observed, the introduction of outliers improved the behaviour of the C-index value. As regards how
the introduction of more outliers or more noisy dimensions affected the output values, the performance
of Calinski and Gamma decreased considerably when the second noisy dimension was introduced. In
general, the addition of 5% of outliers affected the performance of all indices except for C-index and
ARI.

4.4. Random groups and clustering algorithms

After running the studies using different clustering algorithms to partition the data, a different approach
was introduced. Data was randomly partitioned to compare the behaviour of the CQIs with the returned
values previously when clustering algorithms were used. There are 50000 random partitions for each



Table 5
Percentage of cases in which the different internal CQIs output better evaluation scores for random 
partitioning than for the clusterin algorithms

clear out5 out10 noi1 noi2
K-means 0.21 0.39 0.45 0.49 0.66

Silhouette Hierarchical 0.21 0.41 0.47 0.49 0.66
EM based 0.21 0.41 0.44 0.49 0.66

K-means 8.23 6.78 5.77 10.92 0.61
Calinski Hierarchical 7.32 6.28 4.91 11.13 0.66

EM based 8.91 6.32 6.48 9.82 0.64

K-means 8.58 13.17 11.20 9.17 4.58
C-index Hierarchical 6.42 5.25 2.66 7.61 4.27

EM based 7.95 0.59 3.21 7.72 5.41

K-means 0.36 1.21 1.80 3.12 4.10
DB Hierarchical 0.35 2.65 4.69 3.37 4.16

EM based 0.19 5.41 8.85 3.30 4.31

K-means 0.15 0.23 0.22 0.25 0.24
Gamma Hierarchical 0.15 0.23 0.22 0.25 0.24

EM based 0.15 0.23 0.22 0.25 0.24

data set, outputting the same number of quality assessments for each CQI analyzed in the study. As
this was a random approach, we consider the speci ed number of repetitions in an attempt to achieve
statistical signi cance.

In this case, we are not interested in how similar the random partitions are to the original groups, and
the external CQI is not used to assess this aspect. The aim of evaluating random partitions with the
internal CQIs is to compare these assessmentswith evaluations using the clustering algorithms and output
the percentage of random executions that scored better values than clustering algorithm validations.

The results are shown in Table 5. Table 5 shows that Silhouette and Gamma were the two more logical
indices. Logical means indices whose partitioning evaluation results with clustering algorithms were
not usually outperformed (less than 0.66% of times) by random partitioning. On the other hand, random
partitions assessed with Calinski, C-index and DB indices scored different percentages depending on
the data type and the clustering algorithm. In the “Calinski-data type” tandem, when noi2 data sets are
partitioned, clustering algorithms are beaten only by a maximum of 0.66% of executions. In all the other
data sets, this percentage is signi cantly greater, ranging from 4.91% of random partitions, which beat
the score with hierarchical clustering in out10 data sets, to 11.13% using the same algorithm to partition
noi1 data set. In the case of C-index, when this index evaluated partitions output with K-means, the
results were beaten by random partitioning from a 4.58% of cases in noi2 data sets to 13.17% in out5
data sets. When out5 data sets are partitioned with the EM-based clustering algorithm, the percentage of
cases in which random partitioning scored a better value for C-index is 0.59%; in all other cases using
EM or hierarchical clustering, this value increased up to a maximum of 7.95%. Random partitioning
evaluated with the DB index outperformed the clustering algorithms in fewer than 1% of the cases for
clear data sets, but again this value increased up to 8.85% for out10 data sets with EM-based clustering.

Another interesting result was the clear tendency of each internal CQI to choose an “extreme” number
of clusters as correct. In the case of Silhouette and C-index, this number of clusters was 2 (which was
the minimum number of clusters used in this study). On the other hand, Calinski and DB tended to
choose 5 clusters, which was the maximum number of clusters. Gamma was the only index that was not
so biased to a set number of clusters.



Table 6
On a scale of 1–5, where 5 is the best, the different studied parameters are summarized for each 
internal CQI. Note that to determine each value 1–5, numeric results were placed in 5 bins. In case of 
random stability and bias to min/max number of clusters, the value was approximated depending on the 
conclusions

general outliers noise random bias to min/max
behaviour effect effect stability # of clusters

Silhouette 3 3 4 4 2
Calinski 4 4 4 2 2
C-index 2 3 1 2 2
DaviesBouldin 3 2 3 3 2
Gamma 3 2 4 4 4

5. Conclusions

The work of Milligan and Cooper [16] established an interesting ranking presenting a lot of internal
CQIs. A conclusion of that work was that the data set was an important factor in uencing the good or bad
behaviour of internal CQIs. This is a recurrent scenario, and it is very hard to nd a dataset independent
index. In spite of this, it is important to know how the most important indices behave in more complex
databases to be able to choose one or another depending on the characteristics of the problem.

This work throws light on the behaviour of some of the best known index is used to cluster data sets
with outliers or noise. Some conclusions that should be taken wisely were that C-index was the worse
index presented here due to its generally low precision, unchanged even when noisy dimensions were
added to the database. Besides, this index does not behave as expected, because it achieved better results
in data sets with outliers than in data sets without outliers or noisy dimensions. In Milligan and Cooper’s
ranking, C-index was placed third, but this index does not appear to be so interesting if the data set
contains impurities. On the other hand, Calinski achieved the best mean of correct decisions. Note,
however, how the performance dropped considerably using this index when the second noisy dimension
was added to the database. It dropped again when the number of dimensions was incremented.

Another important issue was to nd a stable index. In this respect, Gamma was not outperformed
by random groups, was not biased to a set number of clusters and was not so much affected by the
introduction of the second noisy dimension did as the other indices. Silhouette’s performance was
not bad when noisy dimensions were added, but it was affected by outliers and also by the increased
number of dimensions. A similar thing applies to the DB index, but its quality is generally slightly
lower. Considering the behaviour of each index used with different clustering algorithms, it is dif cult to
nd clear patterns indicating the best algorithm-index combinations. In general, hierarchical clustering

returned more promising results than K-means or the EM algorithm, but this should not be seen as a
categorical conclusion because the differences depended on the characteristics of each data set. Based on
these conclusions, if these indices were to be ranked, Gamma would placed rst, followed by Silhouette
and Calinski, with DB one step below and C-index at the bottom of the ranking. Finally, in an attempt
to clarify the conclusions drawn from the study, Table 6 summarizes the studied parameters for each
internal CQI.

All these conclusions are obtained using data with outliers and with noisy dimensions as indicated.
A possible future line of this work is to include other kinds of data, like data with missing values for
example. Also following this line, other clustering algorithms can be used to partition the data. Assessing
the quality of clustering and nding the correct number of clusters in a partition is a very open eld, but
this work provides new guidelines on for using a speci c index depending on the characteristics of the
data set.
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