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Abstract. Predicting complications associated with complex disease is a challenging task given imbalanced and
highly correlated disease complications along with unmeasured or latent factors. To analyse the complications
associated with complex disease, this article attempts to deal with complex imbalanced clinical data, whilst de-
termining the influence of latent variables within causal networks generated from the observation. This work
proposes appropriate Intelligent Data Analysis methods for building Dynamic Bayesian networks with latent vari-
ables, applied to small-sized clinical data (a case of Type 2 Diabetes complications). First, it adopts a Time Series
Bootstrapping approach to re-sample the rare complication class with a replacement with respect to the dynamics
of disease progression. Then, a combination of the Induction Causation algorithm and Link Strength metric (which
is called IC*LS approach) is applied on the bootstrapped data for incrementally identifying latent variables. The
most highlighted contribution of this paper gained insight into the disease progression by interpreting the latent
states (with respect to the associated distributions of complications). An exploration of inference methods along
with confidence interval assessed the influences of these latent variables. The obtained results demonstrated an
improvement in the prediction performance.
Keywords: Latent Variable, Diabetes, Dynamic Bayesian Networks, Time Series Bootstrapping, Disease Prediction

1. Introduction

Diabetes UK reported that Type 2 Diabetes Mellitus (T2DM) is the most common form of
diabetes, accounting for at least 90 per cent of all instances. The World Health Organisation
(WHO) reported that in the next 10 years there will be about 550 million people suffering from
this disease [1]. T2DM occurs because of impaired insulin secretion or opposition to insulin action
or both, which is associated with severe long-term morbidities and large health maintenance
costs to providers. In particular, the worsening level of these complications (e.g., retinopathy,
neuropathy, nephropathy and hypertension is known as a significant cause of death [2]. The main
motivation behind this work is to stratify patient groups by means of latent variables to discover
how complications in diabetes interact. An Italian clinical data have been used to create the
T2DM dataset in this study and build predictive model that combine knowledge associated with
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biomedical influences, including physiological, biological, epigenetic modification and behavioural
inputs. The dataset consists of physical examinations such as cholesterol and blood pressure and
laboratory data, including HbA1c measurements and lipid profile. Early prediction of T2DM
complications while discovering the behaviour of associated aggressive risk factors can help to
control the disease and improve a patients quality of life [3]. It also can enhance classification
accuracy and boost user confidence in the classification models [4]. Nevertheless, prediction of
these complications and mining complex clinical data are challenging tasks given the mixture of
clinical test results (such as blood pressure, cholesterol level, etc), complication types (categorical,
numerical, ordinal data types), unequal length of patient visits, highly correlated risk factors,
presence of unmeasured factors, heterogeneity, biased data, etc. The non-stationary characteristic
of clinical data collected as part of the monitoring of T2DM complications, creates a difficult
context for effective forecasting [5]. This is because, in T2DM dataset with each visit, a patient
has a unique profile of symptoms and complications, regardless of the phase of the disease.

Another challenge within complex clinical data, as Elidan and co-authors in [6] emphasised,
is the importance of the presence of latent variables in clinical data. This variables are some
unmeasured factors that clinicians fail to measure them and needed to be discovered at the early
stage of diabetes. The latent variable discovery in causal structures has been introduced in [7].
Pearl in [8] utilise trees of hidden variables in order to render all observable variables independently.
Similarly, Elidan and co-authors in [6] determined a hidden variable that interacts with observed
variables within a Bayesian Network. In addition, they showed that networks without hidden
variables are clearly less useful because of the increased number of edges needed to model all
interactions, which caused overfitting.

One amongst this research objectives is to use Intelligent Data Analysis (IDA) techniques to
help explain the processes driving the complications of diabetes via the study of particular tes-
timonials, time events as well as behavioural influences. Intelligent systems, whether biological
or artificial, require the ability to make decisions under uncertainty using the available evidence.
Several computational models in Artificial Intelligence (AI) and Machine Learning exhibit some
of the required functionality to handle uncertainty. These models are judged by two main crite-
ria: ease of creation and effectiveness in decision making. For example, Neural Networks (NNs)
which represent complex input/output relations using combinations of simple nonlinear process-
ing elements, are a familiar tool in AI and computational neuroscience. Having said that, these
networks could not be suitable in clinical domain (such as the dataset used in this study), where
each parameter was supported by little evidence, hence, the estimation of the parameters might
not be not robust. As it is extremely important to learn a model from the clinical data with a
small amount of training data with many parameters and few patients (samples). Alternatively,
some other computational approaches has employed different methodology to reduce uncertainty
in small-sized datasets. This study claims that Dynamic Bayesian Networks (DBNs) (which was
introduced in [9]) can be incredibly beneficial in modelling T2DM dataset in which non-stationary
risk factor dynamics are widespread and complicated. These networks can provide a topological
description of the conditional independence relationships among variables. With these probabilis-
tic graphical models, it is easy to interpret and provide information regarding the qualitative
structure of the clinical domain. An appropriate non-stationary DBNs model can contribute to
diabetes literature by discovering latent variables, potentially capture unmeasured effects from
clinical data. This research is to incorporate these into existing predictive analytics frameworks
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to improve decision-making in patient practice. A key aim of this study is to bootstrap non-
stationary data to improve our latent variable learning model due to the over representation of
patients with specific comorbidities.

The rest of this article is organised as follows: The first half of the paper is dedicated to explain-
ing how to balance time series clinical data and learn DBNs with and without latent variables. It
begins with a descriptive data analysis while providing data definition and pre-processing meth-
ods. A set of models are learned from the data to evaluate the impact of adding latent variables
and re-balancing the data via bootstrapping. It also involves techniques for analysing the strength
of relationships between clinical and latent variables to better understand the meaning of the la-
tent variables within the complex disease model and explores their effect. The second half of the
paper is dedicated to analysing the results, in terms of classification (predicting two comorbidities
associated with T2DM), validation and the potential for adoption in clinical practice. Finally, the
findings are assessed by using a number of quantitative and qualitative validation strategies.

2. Related Works

There are various methodologies for T2DM prediction, e.g, risk-prediction equations and Markov
models [10]. However, risk-prediction equations suffers from uncertainty as well as only perform-
ing one-step-ahead predictions. The Markov models are also limited to a small number of discrete
risk factors. Among these, much of the existing literature on investigating the prognosis of T2DM
complications, e.g., [11], focuses on logistic regression and Naïve Bayes methods. Moreover, most
of the literature in T2DM prediction has often been restricted to modelling a limited number
of visits. For example, Dagliati et al. in [12] presented a Hierarchical Bayesian Logistic Regres-
sion model to anticipate patients changes when the individual model parameters are estimated.
For predicting comorbidities in [12], external and internal heterogeneity in T2DM patients were
explored in cross-sectional data with just three horizons of time. Whilst, time series modelling
and longitudinal study was not employed in the individual measurements. Similarly in [13], T2DM
data was analysed to understand the influence of H2A1c and other risk factors in the development
of the microvascular complications in 2-year time periods but did not model the data as a time
series. In another work in [14], the authors failed to consider time series analysis, where a Bayes
Network to predict diabetes was proposed on the Pima Indian Diabetes dataset. Marini in [15]
simulated the health state and complications by using Bayesian inferred models, while applied to
type 1 diabetes non-time series data.

Although extensive research has been carried out on the prediction of diabetic progression
[11, 12, 15–17], no single study exists which has attempted to interpret the impact of correct
number of latent variables in the presence of diabetic disorders. In a similar study [18] to the
present paper, the authors provided a factor structure learning method that efficiently utilised
hidden variables. Factor analysis and related methods can be used to position latent variables
and measure their hypothetical effects. However, many do not provide clear means of deciding
whether or not latent variables are present at the first place. Moreover, this method failed to
consider prior belief in the factor structure and therefore, could not rely on the final structure.
Unlike deep learning methods, DBNs can be invaluable where we do not want too much reliance
on the training data which risks overfitting with poor generalisation capabilities. Many diseases
involve structural changes based upon key stages in the progression, but many models do not
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appear to take this into account. Previous work on learning DBNs have inferred both network
structures and parameters from (often incomplete) clinical data sets [9]. There has been some
work in extending DBNs to model underlying processes that are non-stationary [19]. In [19],
clinical features were modelled using a second order time series model but it was assumed that
the temporal dependencies were time-invariant. Markov Chain Monte Carlo (MCMC) sampling
algorithm and non-stationary DBN models in [20] were formalised for learning the structure of the
model from time series biological data. Another work [21] retained the stationary nature of the
structure in favour of parameter flexibility, arguing that structure changes lead almost certainly
to over-flexibility of the model in short time series. Similarly, Talih in [22] estimated the variance
in the data structure parameter with a MCMC approach whilst the search space was limited to a
fixed number of segments and indirect edges only, which is not suitable for T2DM data. Overall,
such studies remained narrow by constraints on one or more degrees of freedom: the segmentation
points of the time series, the parameters of the variables, the dependencies between the variables
and the number of segments.

T2DM dataset is highly imbalanced based on the disease common complications. To address
the imbalance issue, so far many methods from weighting, generating new samples to one class
classifiers have been proposed. Different learning techniques deal with imbalanced data, such
as oversampling, undersampling, boosting, bagging, bootstrapping, and repeated random sub-
sampling [23]. This work introduces a Bootstrapping approach which has been specifically designed
for the longitudinal data to identify and re-balanced targeted complications. Thus, the re-sampling
approach of the data involves a bootstrap process to re-sample observed time series/visits of a
patient with the replacement whereby the original training data is sampled in pairs of consecutive
time points. TS Bootstrapping approach seems appropriate for T2DM dataset as the prediction
in non-stationary models of data was difficult. Moreover, predicting rare cases in clinical data
with an unbalanced distribution of a target complication is challenging, where common statistical
methods such as standard regression is not appropriate. This is because it only models average
score over the different structures throughout the time series. Another method is re-sampling,
which can be applied on the learning data and trigger its distribution based on the bias in the
data [24]. A recent study, in [25], presented slightly similar re-balancing technique to this study
but to analyse a different type of dataset (fisheries data) as well as different structure learning
methodology.

This research expands the previous works to identify latent variables conducted following [26] on
disease progression modelling with latent variables while proposes a bootstrap to both balance the
data and calculate confidence bounds. Although, in [26], similar approaches to the current paper
were employed in the context of the T2DM data, the imbalance issue was dealt using a DBNs model
with only fixed single latent node. Moreover, the latent variable was leaned based on the standard
approaches along with a basic bootstrapping technique, which was able to re-balance only one
complication at time. Later, in [27, 28], an intuitive stepwise method, based upon the constraint
based algorithm, was developed to learn the effects of multiple latent variables on the prediction
performance. In addition to this, the obtained results were demonstrated on the diabetes dataset
where re-sampled using the Pair-Sampling approach. The discovery of the optimum number of
the latent variables was also challenging and often accuracy dropped as more latent variables
were added due to overfitting. To address these issue, this article intends to incrementally identify
the most influential latent variables. Therefore, it propose an enhanced variation on the stepwise
method on bootstrapped data, which is called IC*LS approach.
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3. Descriptive Data Analysis

This section, firstly, describes the clinical data and descriptive analyses used throughout this
research. It then explains our solutions, which are explored in this study to deal with missing data
and class unbalance problems, as well as the model design options.

3.1. Data Description and Data Collection

The data for this study is belonged to “MOdels and Simulation techniques for discovering
diabetes Influence faCtors” (MOSAIC) project. Most of the information presented in the data
section retrieved from MOSAIC website in [29], which were previously reported in [30, 31]. The
MOSAIC project funds the data under the 7th Framework Program of the European Commission,
Theme ICT2011.5.2 Virtual Physiological Human (600914) from 2009 to 2013. It consists of pre-
diagnosed T2DM 1000 patients aged 25 to 65 years (inclusive) that were recruited from clinical
followups at the “IRCCS Instituti Clinic Scientifici” (ICS) Maugeri of Pavia, Italy. This was
extracted from external resources such as: the Hospital Fondazione Salvatore Maugeri (FSM),
that mostly captured epidemiological records relevant to normal healthcare sector, and by the
Local Healthcare Agency (Agenzia Sanitaria Locale, ASL), that accumulated measurements for
institutional and technical transparency.

Since the definition of data varies among researchers, it is important to clarify how the fi-
nal dataset was imputed throughout this research. T2DM data was chosen as a case study for
this work as it suits the characteristic of complex clinical data (small-sized dataset with un-
even number of visits per patient) after performing the centre profiling; a detailed analysis of
the literature reported in [32]. For choosing the predictor variables to be used in the predictive
model, this study mainly focused on the analysis of the diabetes literature mentioned earlier
and found the variables which were usually related and accessible in the data with a significant
risk of T2DM complications. Particularly, certain complications and risk factors (predictors) were
selected based on existing literature on diabetes [33–37] and using recommendations from the clin-
icians at ICS. The selected T2DM complications were Retinopathy (RET), Hypertension (HYP),
Nephropathy (NEP), Neuropathy (NEU) and Liver Disease (LIV). The predictors were identi-
fied and selected from the dataset, including: Body Mass Index (BMI), Systolic Blood Pressure
(SBP), High-Density Lipoprotein (HDL), Glycated haemoglobin -HbA1c- (HBA), Diastolic Blood
Pressure (DBP), Cholesterol (COL), Smoking habit (SMK) and Creatinine (CRT). For example,
Fowler and co-authors in [38] analysed type 2 Diabetic American patients. They utilised T2DM
key risk factors such as HbA1c, SBP, and DBP to investigate relationships among complications
such as HYP, NEP, RET, and NEU. In addition to this, they considered LIV as a severe phe-
notype of diabetes and associated with T2DM complications (especially NEU) [39]. Litwak and
co-authors analysed Russian diabetic patients in [40] referring to the influence of macro-vascular
and micro-vascular disease on one anther. They showed that the most important features in T2DM
dataset included blood pressure, HDL, lipid, BMI, and HbA1c influence diabetes complications.
They also revealed that HDL has a negative effect on HYP, NEP, NEU, and RET, whereas HbA1c
negatively associated with HYP. Another study conducted by Ramachandran [41] referred to the
high prevalence of NEU and RET in Type 2 diabetes in India. Similar research in [35] suggested
that most of the diabetic patients have objective evidence for some variety of NEU, but only a few
of them have identified by symptoms. It also showed that there was a strong association among
NEP, NEU, and RET.
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Tables 1-2 represent the selected T2DM complications (comorbidities), risk factors and their
clinical control values. It is necessary here to clarify exactly what is meant by Control Value and
Discretised Value. T2DM dataset is discretised into qualitative states (binary complications and
non-binary features) of ordinal clinical risk by using statistical parameters such as mean, median,
and Standard Deviation (SD). This work only concentrates on five binary complications as the
predictive target classes in a binary classification problem (with two categories of classes: “high”
or “low” risk). Furthermore, a complication class value of low risk (zero) represents a patient
visit in which the complication is not present; otherwise, it is at high risk (one). For instance,
a complication class value of zero represents a patient visit in which the complication is not
present; otherwise, it is one. Table 1 shows the binariased complications with two clinical level
of High and Low. Alternatively, in Table 2, T2DM risk factors associated with a patient (symp-
toms/clinical tests) are abstracted in the multi-class classification problems with more than two
targets risk patient, according to a diabetes expert definitions [16, 17]. Continuous variables also
were categorised in the discretisation algorithm into three stages as obtained in three percentiles of
numerical series and considered as random effects. Clinical risk factors are consists of three clinical
level of risk, namely low (0), medium (1) and high (2). Node ID column, as seen in Table 2, is
used as the risk factor identifier. For instance, in order to help distinguishing the clinical features
of smoking habit where Node ID equals to 13, discretised into three categories (0,1,2), namely
non-smoker, ex-smoker and smoker. Similarly, smoking status was observed using representative
variables with never-smoker becoming a low-risk group, whereas ex-smoker and current-smoker
also were moderate and high-risk, respectively.

Table 1
The Description of T2DM Target Complications, Clinical Nodes, Control Values, and Discretised States.

Node ID Target Complication Diagnosis Outcome Clinical Risk Class
2 Retinopathy (RET) {Negative,Positive} {low,high}
3 Neuropathy (NEU) {Negative,Positive} {low,high}
4 Nephropathy (NEP) {Negative,Positive} {low,high}
5 Liver Disease (LIV) {Negative,Positive} {low,high}
6 Hypertension (HYP) {Negative,Positive} {low,high}

Table 2
The Description of the T2DM Clinical Features, Risk Factors, Control Values, and Discretised States.

Node ID T2DM Risk Factors Control Value (Mean±SD) Discretised Value
1 HbA1c (HBA) 6.6 ± 1.2 (%) {low,medium,high}
7 Body Mass Index (BMI) 26.4 ± 2.4 (kg/m2) {low,medium,high}
8 Creatinine (CRT) 0.9 ± 0.2 (mg/dL) {low,medium,high}
9 Cholesterol (COL) 0.9 ± 0.2 (mg/dL) {low,medium,high}
10 High-Density Lipoprotein (HDL) 1.1 ± 0.3 (mmol/l) {low,medium,high}
11 Diastolic Blood Pressure (DBP) 91 ± 12 (mmHg) {low,medium,high}
12 Systolic Blood Pressure (SBP) 148 ± 19(mmHg) {low,medium,high}
13 Smoking Habit (SMK) {0,1,2} {low,medium,high}
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Fig. 1. IC*LS methods Diagram: The overall methodology of the proposed predictive model in three stages.

3.2. Pre-processing and Relational Models

In this research, different pre-processing techniques are used before modelling the clinical data
such as: data representation and cleaning or removing all uninteresting and uninformative infor-
mation about patients (e.g., dates of visits). The uninformative and bias records (e.g., a patient
with only one visit) were truncated to filter out unnecessary data and reduce the outliers. In
addition to this, Centre Profiling was employed to assess the hospital characteristics in terms of
population (number of patients with complications, time to diagnosis of the complications) and of
patterns of care (e.g. centres that are used to deal with more complex cases, centres that perform
an initial intensive diagnostic program to discover complication early after the first visit).

In these pre-processing stages, this study employed different tools such as Microsoft Access,
Genie, Weka and SQL Server to manipulate, process and store the collected data at Pavia in the
form of T2DM dataset. These software tools were chosen to interact with the database and ex-
tract the useful information gathered from all preliminary tables by using the Data Manipulation
Language (DML). First, Relational Models in Database Management System (DBMS) were used
to to design a database and ensure that the data is understandable. DBMS was defined to create
and maintain a database by using Data Definition Language (DDL). Then, Relational Algebra
in the DBMS aided to build one single table from integration of primary tables (five tables were
intuitively collected and cleaned based on each complications individually) in the database. Fur-
thermore, Relational Calculus (Structured Query Language (SQL) query) was used to formulate
the definition of the joint table in terms of relationship among the primary tables.
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3.3. Missing Values and Data Imputation

As explained previously, in this small-sized clinical dataset, the missing data is a serious con-
cern. This section clarify the strategies was employed to cope with missing details, issues with
class imbalances and our model development decisions. In order to address the missing data and
imputing the data, the MOSAIC study tested two direct analytical techniques (i.e. the mean and
median of each attribute) and one Random Forest technique to the data imputation strategy.
The entire set of statistics was then changed by deleting value records randomly. To assess effi-
ciency, only cases lacking missing data were taken into account. The rate of missing values in the
initial collected data was in particular determined with each variable, and the same percentage
was omitted arbitrarily again from collected data, thereby generating fictitious missing values to
evaluate the ability of imputation 1.

4. Methods

The methods required to predict and validate the complications associated with T2DM are
divided into three stages, which the overall methodology is represented in Figure 1 as well as a
pseudo code illustrated in Algorithm 1 (Enhanced Stepwise Algorithm). In Figure 1, the first stage
(Stage 1) describes the data and mostly focus on the descriptive data analysis and pre-processing
approaches used in this research. Similarly, lines 1−13 in Algorithm 1, shows the initialisation and
prepossessing stages. The second stage, as was shown in 1-Stage 2 and line 14-18 of Algorithm
1, focuses on the proposed methodology and contributes to a re-balancing approach in a time
series analysis with unequal lengths of patient visits (which was called TS bootstrapping). It
then splits the T2DM data into train and test sets and then the bootstrap approach is applied
to these sets.This stage explains how structure learning within causal networks are utilised to
stratify patients based on the probabilities of latent variables during their visits. To learn the
structure, the IC* algorithm, Fisher’s Z test and the correlation matrix were employed to generate
a Directed Acyclic Graph (DAG), as was illustrated in lines 19− 20 in Algorithm 1. Furthermore,
line 21 trained a latent DBN structure to model the joint distribution of the domain representing
probabilistic relationships between comorbidities and risk factors. Later, links within the DAG
were filtered based upon their strength, as was represented in line 22. Therefore, a combination
of IC* and Link Strength produced a predictive model (IC*LS DBN) by incrementally adding
a latent variable to the observation. This information was used to visualise the identified latent
variables that accounts more for understanding the latent variable.

The last stage, in 1-Stage 3, and lines 23 − 30 in Algorithm 1, aims to increase the reliability
of prediction measures and interpretation of the outcomes to only identifying the correct number
of the latent variables by using the enhanced stepwise approach. Lines 27 in Algorithm 1 tested
the latent DBN model and based on the accuracy of trained DBNs model, to make decision
whether to repeat the learning/adding another latent variable in another step of the enhanced
stepwise approach or not. Stage 3 in Figure 1 also compares the proposed methodology to the
previous methods by introducing quantitative validation strategies, such as visit-based, patient-
based, sensitive analysis, confidence interval. Consequently, it interprets the quantitative results
based on clinician point of view and medical articles. Finally, it summarises and discusses how

1A detailed description of data are reported in the supplementary materials.
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a greater focus on the smaller number of latent variables will be maintained to produce a better
prediction results.

4.1. Prediction and Classification

Predicting the comorbidities has long been a question of great interest in a wide range of
medical fields. As mentioned earlier, the main objective of this work is to predict future T2DM
complications model architecture. Having provided the health state of the patient on the first
visit, there is a need to foresee whether nephropathy, neuropathy or retinopathy will continue to
progress in the long term.

This study attempts to predict the future state of a patient per visit by utilising a set of ob-
served test based on the temporal complication. For each patient, the posterior probability in
predicting a target complication is predicted at time t with the observed evidence (prior knowl-
edge) from t − 1 to estimate the risk of developing complication for the corresponding patient
patient. Therefore, considering how the state of patient during each visit changes can be an im-
portant challenge for physicians preparing for future visits. The outcome of the prediction or
classification (Y ) can be considered as a vector of disease risk factors represents by Y = (X, Ci),
where X is the vector of symptoms, and Ci shows a target complication class selected from
C = {HY P, NEU, NEP, LIV, RET}. In this study, Ci only takes on binary values (Ci = {0 | 1})
as the main focus is to predict only one complication at time.2 For example, if a patient is diag-
nosed negatively (not having the complication), the class value becomes zero (Ci = 0) otherwise
it sets to one (Ci = 1) in which it shows that a patient is diagnosed positively (having a target
complication). A common problem with classifying/predicting complications in longitudinal data
is that there may be many more visits where the complication does not manifest itself compared
to those where it does (due to careful management), which is discussed below.

4.2. Imbalanced Issue In Complex Clinical Data

To predict a target complication, T2DM patients are classified into two categories (cases):
positive and negative cases. In particular, if the overall number of patients in the positive case is
far less than the negative case, the complication class is labelled as an imbalanced class. In this
research, the minority class represents patients visit during which a complication is present and
the patient that are suffering from the target complication. In fact, frequency of samples belonging
to one class is severely different from the other ones. Therefore, binary classifiers bias to a class
which demonstrates the majority of samples.

To re-balance the imbalanced data, it seemed necessary to note the actual incidence at which
the result happened and proportional probability or likelihood ratios are reported (e.g., stating
that one complication generated a certain result twice more probable than another complication).
Thus, an unbalanced ratio is calculated as the ratio of negative to positive cases {number of
negative cases}: {number of positive cases} for a specific complication to ensure a balance. For
instance, the unbalance ratio of the majority to the minority based on the population size of
responding binary class proportions in the dataset for RET, NEU, NEP, and LIV is defined as
{3:1{, {4:1}, {3:1}, and {4:1}, respectively. Whilst this ratio for HYP is {1:5}.

2It is possible to show patterns of complications for each single visit with respect to any combination of
complication co-occurrences, chosen from C as demonstrated in [31].



10 L. Yousefi et al. / Identifying Latent Variables in Dynamic Bayesian Networks with Bootstrapping

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

4.3. Re-balancing Strategy (Time Series Bootstrapping)

This section, in order to deal with the imbalance issue, describes a time series Bootstrapping
methodology, which is called "TS Bootstrapping" and employed a variant on the re-sampling
approaches introduced in [24–26, 42]. Bootstrap approach is adapted to identify the significant
statistics from classifiers learnt from such data where the occurrence of the positive class is far
less than the negative. This re-balancing technique generally have been found to produce more
accurate and reliable statistics [43]. It re-samples observed time series (visits) per patient with
the replacement, and the original training data is re-sampled in pairs of consecutive time points,
t − 1 and t. Having considered the temporal and complex nature of T2DM data, the bootstrap
approach in the longitudinal dataset is extended by re-sampling consecutive time points, thus
enabling the the latent structure to be inferred. It also assumes that patient status at time t− 1
depends on the corresponding hidden variable at a previous time t (Markov properties). As a
result, the bootstrapped data contains an equal number of positive and negative cases for the
target complication at time t. In the next section, the time series bootstrapped data is analysed
within a DBNs model.

4.3.1. Dynamic Bayesian Networks Model
Dynamic Bayesian Networks (DBNs) are probabilistic graphical models for handling uncertain,

noisy clinical time series data. These probabilistic networks are a more explicit representation
of a domain through modelling the joint probability distribution (the probability of all possible
outcomes in a domain). In this study, DBNs were used to compute the probabilities of the presence
of comorbidities over time, given a set of risk factors. DBNs were trained on the bootstrap T2DM
data and tested on their power to predict a complication at the next time point, before the latent
variables were explored.

4.3.2. Latent Structure
The causal discovery of BNs is a critical research area, which depends on looking through

the space of models for those which can best clarify a pattern of probabilistic conditions in the
data [44]. The causal discovery indicates dependencies that are generated by structures with
unmeasured factors, i.e., latent variables. The latent structure is a projection in which every
latent variable is either a root node or a link to observed variables. One advantage of a latent
structure is that they can better encode the actual dependencies and independencies in the data.
In this approach, firstly, the probability of a high clinical level of the nodes and the learned hidden
variables are then inferred using the BN inference. Despite the importance of the latent variable
discovery, there remains a paucity of evidence on understanding of how the discovered latent
variable contributes to explaining the complex patients model. The prior works to understand
latent variable in [26] for learning the structure of the model, the standard structure learning
algorithms e.g., K2 [45] to create the non-temporal links (Intra). REVerse Engineering ALgorithm
(REVEAL) [46] was also utilised to identify the temporal links (Inter).

In the Latent DBN structure (as seen in Figure 2), nodes represent variables at distinct time slots
and there are links between nodes over time, so they can be used to forecast into the future. Data
mining and analysis were performed using MATLAB, Bayes Net toolbox [47], and “Graphviz”
for visualisation. The networks with temporal associations were inferred from T2DM historical
patients time series data whilst represented in two DBNs (t and t-1) under the Markov properties
assumption. In the discrete-space/discrete-time DBNs, two-time steps are considered to show the
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relationship between risk factors. For instance, Figure 2 shows the first complication at time t-1
that affects states of all other comorbidities and risk factors at t. The Expectation-Maximization
(EM) algorithm [48] are used to estimate the BN parameters, within a standard Bayesian network
inference. Then, the resultant CPTs are used to indicate the probability of being in one state given
the states of all associated risk factors from the relationship graphs. The main weakness of these
algorithms was the failure to address how to learn a structure with the correct number of latent
variables.

4.3.3. Induction Causation (IC*)
In order to address the issue discussed above, we used a constraint-based method (which is

know as IC* algorithm) to calculate several conditional independence tests, while learning a latent
variable structure associated with a set of observed variables. The IC* algorithm is similar to the
PC algorithm, except that it can detect the presence of latent variables, which was introduced
in [49]. It returns a partially Directed Acyclic Graph (DAG) to characterise the entire Markov
equivalence class. The IC* relies on statistical significance tests to decide whether an arc exists
between two variables and on its orientation3. In the next part, in order to discover the correct
number of hidden variables, extra checks are conducted on the learnt DAG on the stepwise IC*
algorithm.

4.3.4. Link Strength (LS) Metric
The Link Strength (LS) [50] is a measure to calculate the overall strength of the dependent links

within the DBNs. It focuses on the most powerful dependencies between T2DM risk factors. It also
enables us to observe the specific impact of each discovered edge in a DBN. The percentage points
of uncertainty reduction in a variable were utilised by knowing the state of another variable if the
states of all other parent variables are known. True Average Link Strength (LSTA) calculates LS
based on the average over the parent states using their actual joint probability. For instance, if
there was a link in the IC* adjacent matrix with LSTA greater or equal to some threshold (here 20
percent), a link in the final structure is retained; otherwise, it is deleted. We chose this threshold
to avoid providing overly connected networks and loops in the DAG, as well as to decrease the
risk of edge overfitting4.

4.3.5. Stepwise IC*LS Approach
This paper proposed an extended IC* stepwise approach, which was reported in [28]. This

method attempts to identify the correlation among the latent variable and T2DM risk factors,
which is called Induction Causation Link Strength (IC*LS) methodology (which also is introduced
as "Enhanced latent model"). The proposed IC*LS involves techniques for analysing the strength
of relationships between clinical and hidden variables to better understand the meaning of the
hidden variables within the complex disease model and explore their effect. The key stages of
implementing the enhance stepwise methodology are shown in Figure 1-Stage 2. As a result, the

3A default error rate (α = 0.05) is used to find the correlation of T2DM risk factors using IC* algorithm.
4A detailed description of the LS metric is reported in the Supplementary Materials.
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LS metric is applied to the stepwise IC* to provide a higher chance for DAG to learn optimal
numbers of hidden variables; hence, a better stopping point can be obtained.

Algorithm 1: Enhanced Stepwise Algorithm
Result: LatentDBNs

1 initialisation: DS ← Original T2DM dataset;
2 Disease ← {RET,NEU,NEP,LIV,HYP};
3 Data = Discretise(DS);
4 Size(Data) ← 3959;
5 Count(Patients) ← 356;
6 Latent Variables ← {Hidden1, Hidden2, Hidden3, Hidden4};
7 Threshold = 0.25; alpha = 0.05;
8 n = Count(Observed Variables) = 13;
9 N = n;

10 overallAccurracy ← 0;
11 Accurracy ← 0.001;
12 for Disease in DS do
13 Data ← Cell Arrays of Patients based on their Visits;
14 while Accurracy > Max(overallAccurracy) do
15 Sample a consecutive pair of visits from each cell array;
16 Return the training indices for sampling with replacement;
17 trainSet ← TS Bootstrap(TrainingData, Disease);
18 testSet ← TS Bootstrap(TestingData, Disease);
19 CorrMat ← Correlation Matrix(trainSet);
20 DAG ← Structure Learning (IC∗(Fisher Z test, CorrMat, N, alpha)) ;
21 (DBNtrained, Intra, Inter) ← Train dbn(trainSet, N, Disease);
22 LSTA ← Structure Learning(True Average Link Strength(DBNtrained));
23 if LSTA > Threshold then
24 Accurracy ← Test Model(LSTA, N, Disease, testSet);
25 overallAccurracy ← [overallAccurracy, Accurracy];
26 end
27 Add the discovered latent variable in the previous step to the observed nodes;
28 N = n + Count(Discovered Latent Variables);
29 end
30 end

5. Results

This section assessed the effectiveness of the bootstrap re-balancing method and the latent
variable discovery approach in T2DM dataset. The results were documented for the following
comparative structures:

• UNB-K2-REVEAL: a latent variable and a fully learned structure from unbalanced data by
using the K2 algorithm for Intra links and the REVEAL algorithm for Inter links.
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Fig. 2. Latent DBN Structure: The dynamic links, within time series structure in a DBNs model, observed by
using the REVEAL algorithm (in the left-hand side) and Fully Auto-Regressive approach (in the right-hand side).
The H, C, and O illustrate Hidden node, Complication, and Observed node, respectively.

• B-K2-REVEAL: a latent variable and a fully learned structure from the re-balanced (boot-
strapped) K2 algorithm for Intra links and the REVEAL algorithm for Inter links with the
balanced data using the TS Bootstrapping approach (shown in the left-hand side of Figure 2).
• No-latent: the network is fully learned from the re-balanced data by using PC algorithm

without latent variable for Intra links. The dynamic structure for Inter links is Fully Auto-
Regressive; each node is connected to the corresponding node in the next time slice.
• IC*: Several latent variables and a fully learned structure from the re-balanced data by using

the IC* algorithm from the balanced data for Intra links and Fully Auto-Regressive structure
for the Inter links, which was shown in [27].
• IC*LS: Several latent variables and a fully learned structure from the re-balanced data by

using a combination of the IC* and LS filtering method for Intra links and Fully Auto-
Regressive structure for the Inter links. Figure 3 represented four DAGs were learned in the
stepwise IC*LS algorithm.

The proposed structure has been evaluated by performing the sensitivity analysis on the cohort
based on two different perspectives: a “Visit-based” analysis and a “Patient-based” analysis and
validation tests, as introduced bellow:

5.1. Visit-based Validation

The "Visit-based" analysis was defined with respect to each time point (as a single visit) be-
longed to a patient, which was scored individually as a "zero" or an "one". For example, once a
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Fig. 3. IC*LS DAGs representing four steps in which a latent variable has been incrementally added to the prior
latent structure. Hidden1, Hidden2, Hidden3, Hidden 4 are the first, second, third and fourth latent variables,
which were learned in four steps of the enhanced approach.
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target complication has occurred in a visit of a patient, an appearance of "one" on that specific
visit was analysed regardless of the rest of visits for the corresponding patient. The findings ob-
tained from the Visit-based sensitivity analysis showed that how many visits across all patients
with having a specific complication were also correctly tested positive (comparison between pre-
vious and current values for the given visits). Visit-based specificity results revealed that how
many visits which are equal to zero were also correctly tested negative. Table 3 illustrated that
whether the complications were predicted correctly or not depending on the characteristics of
time series data (based upon the Visit-based analysis). In this Table, the patient time series (cor-
responding to the first four visits of each T2DM patient) were assessed to obtain the classification
accuracy in predicting retinopathy, liver disease and hypertension. The time series were analysed
considering the Area Under Receiver Operator Characteristic Curves (AUCs). The overall results
showed that the proposed TS Bootstrapping method (B-K2-REVEAL) provided more accurate
prediction compared to the unbalanced model (UNB-K2-REVEAL) in Table 3. In addition, the
IC* and IC*LS approaches were compared to a NO-latent method. It was sadistically evident
that IC*LS based predictive model were more precise than the IC* based models, without an LS
filter classification results were dropped considerably. This improvement was potentially achieved
because the LS measure filtered out the less robust links, thus avoided overfitting. While the
IC*LS approach was compared to the IC* approach, these two models were in a higher level of
prediction accuracy over the models with no latent variable, hence, the use of the latent methods
enhanced AUC values significantly.

Table 3
Visit-based performance assessment on the prediction results in percentage.

Performance Measure UNB-K2-REVEAL B-K2-REVEAL NO-latent IC* IC*LS
AUC of Retinopathy 35 50 94 89 99
AUC of Liver Disease 38 51 71 92 99
AUC of Hypertension 60 51 65 83 99

5.2. Patient-based Validation

A "Patient-based" analysis was utilised to identify the appearance of a specific complication
across a patient’s time series. By detecting any "one" in any time point belong to a patient (over
all patient’s visits), it was assumed that that specific complication has occurred for the patient.
Once a complication has been diagnosed in any visit belonging to a patient, where the patient was
directed to join to the positive case, otherwise became a member of the negative case. Similarly,
once a patient has been located in a positive case (Ci = 1), the patient stayed in that case
throughout their time series, so, it was recorded for the rest of the visits (time series) as people
were not recovered once have been diagnosed. As a result, those patients who have been already
at a high risk of developing complications, it was assumed that they would not switch from a
positive case to a negative case.

Table 4 represented the performance measures (sensitivity and specificity) obtained for the pro-
portion of T2DM patients who correctly tested positive/negative in predicting two complications
(retinopathy and liver disease in the Patient-based validation strategy) and then compared to
the Visit-based strategy. Patient-based sensitivity results showed that how many patients that
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actually having a complication were identified correctly with that complication (comparison be-
tween predicted class value for a patient’s complication and actual class value of the compli-
cation). Patient-based specificity validation test represented that how many patients without a
specific complications were also correctly tested negative (not having the complication). Switch-
ing the methodology from B-K2-REVEAL to IC*LS in predicting liver disease showed a massive
enhancement, first in sensitivity Patient-based assessment, from 71% to 90%; second, in Visit-
based specificity experiments from 85% to 99% (as can be seen in Table 4-Liver disease (B-K2-
REVEAL compared to IC*LS). Sensitivity was measured for retinopathy prediction by switching
method from the standard methods (B-K2-REVEAL) to IC*LS increased sharply from 69% to
86% (Patient-based) and 75% to 92% (for Visit-based). Despite this, for retinopathy the total
number of patients, which was predicted correctly without the disease (specificity or true negative
rate) remained almost constant or improved slightly from 89% to 90%. According to these results,
it seemed to be evident that better prediction performance had been generally achieved by using
the IC*LS method5.

Table 4
Comparison of Patient-based and Visit-based prediction accuracy percentage.

Complication Retinopathy Retinopathy Liver disease Liver disease
Method B-K2-REVEAL IC*LS B-K2-REVEAL IC*LS
Sensitivity (Patient-based) 69 86 71 90
Sensitivity (Visit-based) 75 92 94 95
Specificity (Patient-based) 89 90 98 99
Specificity (Visit-based) 89 90 85 99

5.3. Confidence Interval Results

In this section the experimental findings and their significance were tested statistically by using
the confidence interval. Looking at how the different structures were performed within a DBN
for predicting the appearance of complications, which was illustrated in the fourth step of the
enhance stepwise IC*LS seen in Figure 3, to report more precise results, confidence intervals to
manage the uncertainty in the prediction results were derived from a randomly selected subset
of T2DM patients. Here, the uncertainty in the structure and the predictive model was typically
outlined by a confidence interval that has been declared to incorporate the true parameter value
with a pre-defined likelihood. In particular, T2DM patients data were randomly over-sampled for
250 times in predicting a target complication of T2DM (e.g., retinopathy).

Clustered column charts in Figure 4 demonstrated the fluctuations of the average classification
accuracy percentages of the randomly over-sampled cases, for five steps of the enhanced stepwise
method. These results in Figure 4 revealed that the prediction accuracy of retinopathy in step
one had been increased sharply by adding latent variables at step two to four and then dropped
slightly at step five. Additionally, error bars on the top of the bar charts were illustrated. For
example, the error bar in step "NO-Latent" was smaller than the first step, while the firth step
was significantly at lower level comparing to the subsequent steps. The error bar in step two is

5A detailed explanation of the confusion matrix results is reported in the supplementary material.
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Fig. 5. Bootstrap Confidence Interval statistically checks the significance of accuracy, sensitivity, specificity, and
precision to predict liver disease, which is compared to the standard approach as well as the "NO-Latent" models.
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quite large due to a more considerable confidence interval of the successive steps, and in the forth
step is the smallest. Overall, Figure 4 revealed that there could be a general trend to improvement
in accuracy as more latent variables have been added. Surprisingly, this improvement levelled out
after adding the fifth hidden variable.

Figure 5 illustrated the influence of the latent variable on the bootstrapped data in predicting
liver disease. These results showed how the targeted use of latent variables improved prediction
performance over standard approaches as well as aiding the understanding of relationships between
these latent variables and disease complications/risk factors. The 95% confidence interval result
demonstrated with high confidence that the IC*LS methodology resulted in a highly significant
improvement in the classification accuracy, sensitivity and precision compared to the K2 and
REVEAL algorithm as well as no latent variable approaches6

5.4. Latent Variable as Evidence

In this section, we look at the influence of the latent variable as evidence to predict the compli-
cations. As mentioned earlier, the aim of this research was to explore the impact of the targeted
latent variable on prediction of the T2DM complications. Here, we validated the results to uncover
influential factors in the diagnosis with regard to a set of diagnosis targets given the evidence.
This target was possible to achieve relying on the nature of the Bayesian inference, where any of
T2DM comorbidities or risk factors could be queried using a joint probability distribution. There-
fore, any trigger or impact on the probabilities of complications was assessed/monitored once the
clinical class as evidence has shifted or changed (in which the latent variable values were set to
either the highest risk or the lowest risk level).

Figure 6 illustrated how prediction probabilities for retinopathy, liver disease and hypertension
were affected by changing evidence (the fourth latent variable). The red arrows shows the changes
in the evidence (the latent variable value is triggered from zero to one and one to zero). The bar
chart in Figure 6-a showed how the probability of retinopathy being in its high value (the diagnosis
point) changed by setting the evidence on the comorbidity-related risk factor. For instance, the
marginal probability of one or more patients being diagnosed with retinopathy is 0.05 (no evidence
set). According to the DBN model, setting evidence on the latent variable (from the latent variable
= 0 to 1) increased the marginal probability of retinopathy from 0.05 to 0.29. This could be used
to reassure that the latent variable has a significant impact on the target complication posterior
probability. On the other hands, in Figure 6-b setting evidence on the latent variable (from the
latent variable = 0 to 1) changes the posterior probability of liver disease slightly (from 0.99 to
0.97) and in Figure 6-c hypertension (from 0.95 to 0.88). Therefore, the discovered latent variable
in the last (fourth) step of IC*LS could negatively associated to the development rate of liver
disease and hypertension while it had a much stronger positive impact on retinopathy.

5.5. Latent Variable Validation Pattern

Figures 7-9 illustrated a case study to investigate how the latent variables have been inter-
acted with other risk factors for predicting a complication in an individual patient. The early
time prediction probabilities were represented in X-axis. In contrast, the targeted patient’s visits
were shown in the Y-axis. The predicted likelihood of liver disease was established in Figure 7-d

6The detailed findings were reported in the supplementary materials (Confidence Interval Results).
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Fig. 6. The impact of the latent variable as evidence to predict the complications.

seemed to be to very similar to its observed probability shown in Figure 7-a, which indicated
the complication occurrence slightly earlier than the prediction. The IC*LS latent approach, in
Figure 7-c for liver disease, revealed a trigger around the clinician observation time, whereas the
latent K2 process in Figure 7-b remained steady. A less significant predicted probability was also
captured in Figure 8-d. This illustrated a fluctuation just before retinopathy has been monitored
in Figure 8-a. Similarly, a trigger happened in two latent approaches in Figures 8-b-c.

These results revealed that the latent models had been appeared to be predicting the switches
in most patient cases. However, with the small sample size, caution must be applied, as the
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Fig. 7. Latent variable prediction pattern of liver disease over time (a patient follow-ups).
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Fig. 8. Latent variable prediction pattern of retinopathy over time (a patient follow-ups).

findings might not be applicable and there have been a few cases where the model could not
predict a complication earlier than the clinicians. As a result, the expected findings for predicting
hypertension might differ from the conclusions presented here, as it was compared in Figure 9-d
comparing to Figure 9-a. It could be argued that the prediction results might be caused because
of differences between complications. For example, hypertension has been reported as an easily
detected macrovascular disease. In contrast, retinopathy as a chronic microvascular has been
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Fig. 9. Latent variable prediction pattern of hypertension over time (a patient follow-ups).

known very challenging to be caught at the earlier stage of the disease progression.

6. Discussion

This study has claimed that one, some or all of the observed environment components within
the model may be connected to a latent variable. The discovered latent variables may represent
a different type of predictions, such as life expectancy, quality of life, or the spread of specific
disease or comorbidities. They reflect a transition in the relationships between the environmental
factors experienced across time. In this case, the significance for the latent factor is set to refine
the model fit to the data while the model is parameterised by data (such as the log likelihood).
If in the time series e.g., the slope of an association between two components increases the value
of the latent variables correlated with these components will differ as the trends for the observed
ecosystem components change. The latent variable influenced the likelihood of developing a dis-
ease/complication depends on all the risk factors of which it has been related, and a shift in
trends means that process relationships have shifted. According to these hypothesis, Figure 6
showed how the probabilities of retinopathy, liver disease and hypertension were influenced by
adding the fourth latent variable to the DBNs. Surprisingly, in 6-b, a slight change was found in
liver disease values, whilst the latent variable was in its highest value.

It was important to bear in mind the possible bias in the findings could not be extrapolated
to all patients in the small-sized dataset. As a result, there was a significant negative correlation
between the latent variable and hypertension, which was shown in 6-c. The AUC results obtained
in Table 3-UNB-K2-REVEAL predicted hypertension accurately 60% of times comparing to 35%
for retinopathy while data was imbalanced. This Table also revealed the degree of improvement
in the prediction performance from 35% to 51% for retinopathy and 38% to 51% for liver disease,
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whilst 60% to 51% for hypertension. The reason behind this could be argued that hypertension has
been known as a macrovascular complication while retinopathy reported as a typical microvascular
complication. Furthermore, hypertension appeared to be the easiest complication to be detected
by clinicians due to the routine measurement of blood pressure. Alternatively, retinopathy and
liver disease required either ophthalmology consultation or ultrasonography of liver. Although
there was a direct link (correlation) between the latent variable and BMI in Figure 3- Step2,3,4,
these results should be interpreted with caution, as this did not necessarily mean that the latent
variable caused BMI.

As a result of including this latent variable, in Table 4 there was a steep rise in the prediction
accuracy of hypertension from 69% to 86% (as the IC*LS was compared to NO-latent). Similarly,
a positive correlation was found between the latent variable and retinopathy in Figure 6-a. It was
apparent from Table 3 that retinopathy prediction was enhanced considerably from 94% (NO-
latent) to 99% (IC*LS) by adding the forth latent variable. Together these findings have provided
important insights into the latent variable effects, which helped to reduce the uncertainty in the
prediction process by identifying the relationship between T2DM complications and risk factors.
The overall approach in this paper is abstracted in Figure 10. In the left-hand side of Figure 10, first
the patient’s history (including the disease risk factors and complications) was learned and trained
in a DBN model (in the middle). The obtained DAG was learned at each step of the stepwise
IC*LS approach representing the links from a latent variable to other clinical risk factors. Then
the inferred latent variable probabilities were employed to predict a target complication earlier
than the actual occurrence time (in the right-hand side). This figure also revealed that the first
latent variable (at visit t − 1) was closely linked to a small number of clinical factors, while the
second latent variable (at visit t) was connected to a larger number of risk factors.

6.0.1. MOSAIC Tool
The data is belonged to the MOSAIC European Union project retrieved from MOSAIC website

[29]. This work is mainly presented to provide the risk of complications, which will be included
in MOSAIC instrument. Adopting DBNs to learn hidden risk factors and understanding the AI
black box model effectively was the key contribution of this research. It aided to gain insight
into it by understanding the unmeasured factor and discuss their dangers. The mosaic tool is
exploited as an instrument to identify potentially critical behaviours that might need closer control
to be considered in the analysis of clinical data from the FSM hospital dataset (Body Mass
Index, glycated haemoglobin, lipid profile, smoking habit). The MOSAIC instrument, and the
outcomes of the proposed predictive model can be further extracted further to justify the software’s
effectiveness [51].

In terms of values for showing high risk of T2DM complications and risk factors (at a higher
clinical level) which characterises the training results, the probabilities determined by the Bayesian
Statistics is discretised and binariased for the risk factors and complications, respectively. Assess-
ment of performance is based on the sensitivity and specificity. In particular, the model is tested
using the accuracy of prediction as a percentage of the correct prognosis of the specific comorbidi-
ties. Whereas, prognostications were made of the true positive (TP), actual negative (TN), false
positives (FP) and false negatives (FN), models were assessed throughout this thesis.
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Fig. 10. A DBN Latent Model: From the left hand side, in the middle, and the right hand side demonstrate the
patients history, the inferred latent variable probabilities, the prediction, respectively.

7. Conclusion

Diabetes specialists predict disease and comorbidities based on their knowledge of the disease
and an individual patient’s clinical history. This is a complex task because of the existence of un-
measured risk factors in the data, various responses to the disease, and heterogeneity in monitoring
patients. Here, we modelled unmeasured factors by considering an approach to model progression
using latent variables with a focus on trying to understand their behaviour and meaning. We
exploited a DBN model because of the transparent way of modelling data as well as the flexibility
in incorporating latent variables.

This paper contributed in several ways to our understanding of how the latent variable provides a
basis for a better prediction of the T2DM complications. This paper was an extension of this paper
author’s previous works on the same dataset, where an intuitive stepwise method, based upon the
IC* approach was developed to learn the effects of multiple hidden variables on the prediction
performance. The contribution of this paper compared to the previous papers in which time series
bootstrapping was used for re-balancing the data and providing a higher level of confidence in
the prediction results. Analysis of the subset of patients with unequal number of visits is dealt
with using a bootstrap technique that has been specifically designed for the longitudinal data
to identify targeted complications among the trajectories which are key stages in the disease
progression. Our results showed that our re-balancing approach by the use of TS bootstrapping
method for an unequal number of time series visits demonstrated a better improvement in the
prediction performance of the disease compered to the prior works.

Nevertheless, the discovery of the optimum number of the hidden variables was not easy and
sometime accuracy dropped as more were added due to overfitting. To address this issue, this
article adapted the IC*LS approach represented an enhanced variation on the stepwise IC* method
for incrementally identifying hidden variables. We incorporated the IC* algorithm and a Mutual
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Information based scoring metric to identify the strength of relationships between the latent
variable and clinical risk factors. By effectively adding the discovered hidden variables to evidence
has proved contribution in determining the most realistic structure of disease risk factors. The
95% confidence interval result demonstrated with high confidence that the IC*LS methodology
resulted in a highly significant improvement in the classification accuracy, sensitivity and precision
compared to the standard approaches in Bayesian modelling such as K2 and REVEAL algorithm
as well as no latent variable approaches. Thus, the use of the IC*LS approach has provided a
significant improvement on the accuracy of prediction while reducing uncertainty in the disease
management. The most highlighted contribution of this paper gained insight by interpreting the
latent states while the association among the disease complications are taken into consideration.

This work could be also applied to find the most influential latent variable as a temporal
phenotype to identify the overall patterns of risk factors for each patient over time. This could lead
to a better understanding of risk factors and patient-specific interventions. A natural progression
of this work in the future involves extending the latent DBN models with more latent variables
to capture a greater variety of factors to characterise critical changes. Our proposed approach
will be useful for stratifying patients according to their probability of developing complications
and clinician advice. For example, there is room for further progress in determining the optimal
number of latent variables using Partial Least Squares (PLS). In addition, we will seek more
advice from clinicians in interpreting hidden factors and their correlation toward other T2DM
risk factors and complications as well as the disease prediction process. We also intend to look
at more geographical and clinical factors, such as family history, pollution factors, and glucose
levels.
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