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Abstract. Although achieving remarkable progress, it is very difficult to induce a supervised classifier without any labeled data.
Unsupervised domain adaptation is able to overcome this challenge by transferring knowledge from a labeled source domain to
an unlabeled target domain. Transferability and discriminability are two key criteria for characterizing the superiority of feature
representations to enable successful domain adaptation. In this paper, a novel method called learning TransFerable and Dis-
criminative Features for unsupervised domain adaptation (TFDF) is proposed to optimize these two objectives simultaneously.
On the one hand, distribution alignment is performed to reduce domain discrepancy and learn more transferable representations.
Instead of adopting Maximum Mean Discrepancy (MMD) which only captures the first-order statistical information to measure
distribution discrepancy, we adopt a recently proposed statistic called Maximum Mean and Covariance Discrepancy (MMCD),
which can not only capture the first-order statistical information but also capture the second-order statistical information in
the reproducing kernel Hilbert space (RKHS). On the other hand, we propose to explore both local discriminative information
via manifold regularization and global discriminative information via minimizing the proposed class confusion objective to
learn more discriminative features, respectively. We integrate these two objectives into the Structural Risk Minimization (RSM)
framework and learn a domain-invariant classifier. Comprehensive experiments are conducted on five real-world datasets and
the results verify the effectiveness of the proposed method.

Keywords: Transfer learning, Unsupervised domain adaptation, Discriminative feature

1. Introduction

Supervised learning has achieved remarkable progress in many fields with the help of a large number
of labeled training samples [1]. However, when there are few and even no labeled samples, it is difficult
to, if not impossible, induce a supervised classifier. Rather, there is a need for versatile algorithms that
reduce the need for large labeled datasets across multiple domains. Unsupervised domain adaptation
address this need by transferring knowledge from a different but related domain (source domain) with
labeled samples to a target domain with unlabeled samples to improve the performance of the target
domain [2]. For example, an object classification model trained on manually annotated images may not
generalize well to new images obtained under substantial variations in pose, occlusion, or light. Domain
adaptation aims to enable knowledge transfer from the labeled source domain to the unlabeled target
domain by exploring domain-invariant features that bridge different domains [3].
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(a) Source by source-only model (b) Target by source-only model

(c) target by MEDA [4] (d) target by TFDF

Fig. 1. The error matrix of different methods on tasks D→W of Offcie-Caltech dataset. Source-only model means the model
trained with only labled data in the source domain. (a) Source-only model tested in the source domain (b) Source-only model
tested in the target domain, (c) Model trained with MEDA (d) Model trained with TFDF. The results show that TFDF can
effevtively avoid class confusion in the target domain and performs much better than other methods.

Transferability and discriminability are two key criteria that characterize the superiority of feature
representations to enable domain adaptation [3–7]. The transferability indicates the ability of feature
representations to bridge the discrepancy across domains, and we can effectively transfer a learning
model from the source domain to the target domain via the transferable feature representations [3, 4, 7].
Discriminability refers to the ability to separate different categories easily by a supervised classifier
trained on the feature representations, and the model can achieve better classification performance via
the discriminative feature representations [5, 6].

Since the source samples and target samples are drawn from different distributions, it is important
to reduce the distribution discrepancy across domains to learn transferable features. The mostly used
shallow domain adaptation approaches include instance reweighting [8, 9] and distribution alignment
[3, 4, 7]. The former assumes that a certain portion of the samples in the source domain can be reused
for learning in the target domain and the samples from the source domain can be reweighted according
to the relevance to the target domain. While the latter assumes that there exists a common space where
the distributions of two domains are similar and focus on finding a feature transformation that projects
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Fig. 2. An overview of the proposed method. (a) Before adaptation, the source classifier can not perform well in the target
domain. (b)-(c) After learning transferable and discriminative features, the domain discrepancy can be reduced and the samples
can be classified correctly.

features of two domains into another common subspace with less distribution discrepancy [3, 4, 7]. Max-
imum Mean Discrepancy (MMD) [10] based methods are popular methods for distribution alignment,
where the MMD distance is used to evaluate the distribution discrepancy across domains.

While achieving remarkable progress, the experiments in [5] indicate that previous domain adaptation
methods tend to enhance the transferability at the expense of deteriorating the discriminability. Thus,
some methods, including geometrical based methods [11] and manifold regularization based methods
[6, 12], also aim to improve the discriminability of the feature representations. Geometrical based meth-
ods consider the geometric divergence between both domains or the variance information in the target
domain. Manifold regularization based methods are inspired by manifold assumption [13], which can
make the predicted label of a certain sample consistent with its neighbor samples.

However, there are two issues with the existing methods. (1) To learn transferable features, MMD
distance is a widely used statistic to measure the distribution discrepancy by kernel mean embedding of
distributions. However, MMD distance only measures the first-order statistic of different distributions in
reproducing kernel Hilbert space (RKHS). Some recent experiments have revealed that the second-order
statistic (such as CORAL [14]) is also important to capture useful information for evaluating distribution
discrepancy, which is ignored by many methods. (2) To learn discriminative features, previous methods
mainly focus on local discriminative information (i.e., sample-level discriminative information), but
ignore the global discriminative information (i.e., class-level discriminative information). For example,
the classifier trained in the source domain may confuse to distinguish the correct class from a similar
class [15], such as backpack and video-projector. As shown in Fig 1(a)-(b), the probability that a source-
only model (only trained with labeled source data) misclassifies backpacks as video-projectors in the
target domain is over 28%. This phenomenon is named class confusion and it reminds us that the global
discriminative information should also be considered.

To overcome these issues, in this paper, we propose a novel method called learning TransFerable and
Discriminative Features for unsupervised domain adaptation (TFDF), which learns a domain-invariant
classifier under the principle of Structural Risk Minimization (SRM) to solve the above two issues si-
multaneously. An overview of the proposed method is shown in Fig 2. For the first issue, we adopt
the recently proposed statistic called Maximum Mean and Covariance Discrepancy (MMCD) [16] to
measure and decrease the distribution discrepancy across domains. MMCD is comprised of MMD and
Maximum Covariance Discrepancy (MCD). MCD evaluates the Hilbert–Schmidt norm of the differ-
ence between covariance operators and can measure the second-order statistic in the RKHS. Therefore,
MMCD can consider the first-order and the second-order statistics simultaneously in the RKHS and can
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capture more distribution information than MMD. For the second issue, we aim to learn more discrim-
inative features at both local and global levels. At the local level, we use the manifold regularization
to further exploit the similar geometrical property of the nearest points. At the global level, instead of
focusing on the feature space, we concentrate on the label space. We consider the confusion relationship
between different classes which is revealed by the inner product of the classifier predictions between dif-
ferent classes (shown in Fig 1). The goal is that no examples are ambiguously classified into two classes
at the same time. Thus we force the inner product of the same class close to 1 while the different classes
close to 0, which encourages the samples in the same class to be more compact while the samples in the
different classes to be more dispersed. Thus, TFDF can extract discriminative features.

To sum up, besides minimizing the empirical error in the source domain, TFDF also concentrates
on minimizing the distribution discrepancy across domains to learn transferable features and exploring
both global and local discriminative information to learn discriminative features. However, TFDF is
a non-convex problem that is difficult to be solved directly, so we firstly propose a variant of TFDF
named TFDF-V, which is a convex optimization problem that is easy to be solved with a closed-form
solution. Then, taking the solution of TFDF-V as the initial value of TFDF, we use the Adam algorithm
[17] (a variant of stochastic gradient descent) to solve the TFDF optimization problem. Comprehensive
experiments on five different real-world cross-domain visual recognition datasets are conducted, and the
results verify the effectiveness of the proposed algorithm.

2. Related Work

2.1. Transferability in domain adaptation

2.1.1. Shallow domain adaptation
Shallow domain adaptation methods include instance reweighting and distribution alignment. Instance

reweighting based methods assume that the data from the source domain can be reused in the target
domain by reweighting samples. Tradaboost [8] is the most representative method which is inspired by
Adaboost [18]. The strategy of adjusting the weights of the source and target data is just the opposite,
where the source data more conducive to the target data have greater weight in the source domain. LDML
[19] also evaluates each sample, and takes full advantage of the pivotal samples, and filters out outliers.
DMM [9] learns a transfer support vector machine by extracting invariant feature representations and
estimating unbiased instance weights, to jointly minimize the cross-domain distribution discrepancy.
However, the performance by instace reweighting is not satisfying.

Distribution alignment based methods focus on finding a feature transformation that projects fea-
tures of two domains into another common subspace with less distribution discrepancy. The distribution
discrepancy across domains includes marginal distribution discrepancy and conditional distribution dis-
crepancy. TCA [3] tries to align marginal distribution across domains, which learns a domain-invariant
representation during feature mapping. Based on TCA, JDA [7] tries to align both marginal distribution
and conditional distribution simultaneously. Moreover, BDA [20] proposes a balance factor to leverage
the importance of different distributions. MEDA [4] can dynamically evaluate the balance factor and
has achieved promising performance. The above methods are all based on MMD, which only captures
the first-order statistical information across domains. CORAL [14] explores the second-order statistic
covariance of the target distribution. Many previous methods only adopt the first-order statitic informa-
tion while ingore the second-order statistic information. Our method adopts MMCD [16] to evaluate the
distribution discrepancy across domains and can capture more useful information for domain adaptation.
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2.1.2. Deep domain adaptation
Most deep domain adaptation methods are based on statistical discrepancy minimization. DDC [21]

embeds a domain adaptation layer into the Alexnet [22] and minimizes Maximum Mean Discrepancy
(MMD) distance between features of this layer. DAN [23] minimizes the feature discrepancy between the
last three layers of Alexnet [22] and the multiple-kernel MMD is used to measure the discrepancy. Other
measures are also adopted such as Kullback-Leibler (KL) divergence, Correlation Alignment (CORAL)
[24] which measures the second-order statistical information and Central Moment Discrepancy (CMD)
[25] which measures the high-order statistical information. These methods can utilize the deep neural
network to extract more transferable features and also have achieved remarkable performance.

Recently, Inspired by the generative adversarial network [26], adversarial learning is widely used in
domain adaptation. DANN [27] adopts a domain discriminator to distinguish the source domain from
the target domain, while the feature extractor is trained to learn domain-invariant features to confuse
the discriminator. ADDA [28] designs a symmetrical structure where two feature extractors are adopted.
Different from DANN, MCD [29] proposes a method to minimize the H∆H-distance across domains in
an adversarial way.

2.2. Discriminability in domain adaptation

Learning transferable features may harm the discriminability of the features. Therefore, learning dis-
criminative features is another objective for domain adaptation methods. Inspired by Linear discriminant
analysis (LDA) [30], some methods take the geometrical information into consideration. For instance,
the goal of JGSA [31] is to minimize the geometrical divergence across domains to enhance the dis-
criminability in shallow domain adaptation. JJDA [32] extends this idea to deep domain adaptation
and considers the instance-level discriminative information. Besides, LPJT [12] considers the manifold
regularization via fisher criterion. ARTL [6] and MEDA also use the manifold regularization via local
samples. These methods mainly focus on local discriminative information while the global discrimi-
native information is ignored. TFDF can learn both local and global discriminative information, thus
making the features more discriminative.

3. Method

3.1. Problem Definition

In this paper, we focus on unsupervised domain adaptation. There are a source domain Ds =
{(x1s , y

1
s ), ..., (xns

s , y
ns
s )} of ns labeled source samples where xi

s ∈ Xs, yi
s ∈ Ys, and a target domain

Dt = {x1t , ..., x
nt
t } of nt unlabled target samples where xi

t ∈ Xt. We assume the feature space and la-
bel space are the same, i.e., Xs = Xt = Rd and Ys = Yt = {1, 2, ...,C}, while these distributions across
domains are different. Especially, we assume the marginal distribution and conditional distribution are
different across domains, i.e., Ps(xs) 6= Pt(xt) and Qs(ys|xs) 6= Qt(yt|xt). Our goal is to learn a classifier
f : xt → yt to predict yt ∈ Yt for the target domain Dt using samples from both domains.

3.2. Overall Objective

Transferability and discriminability are two key criteria that characterize the superiority of feature rep-
resentations to enable domain adaptation [3–7]. Thus, TFDF aims to learn a domain-invariant classifier
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f based on the principle of Structural Risk Minimization (SRM) to learn transferable and discriminative
features for the distribution adaptation across domains. As mentioned before, we have four complemen-
tary objective functions as follows:

(1) Minimizing the source empirical error of the labeled data in the source domain.
(2) Minimizing the distribution discrepancy across domains to learn transferable features.
(3) Minimizing the manifold regularization to learn local discriminative features.
(4) Minimizing the proposed class confusion loss to learn global discriminative features.

The learning framework of TFDF is then formulated as:

f = arg min
f∈HK

R( f ,Ds) + η|| f ||2K + λD f (Ds,Dt) + ρM f (Ds,Dt) + ξC f (Ds,Dt) (1)

where K is the kernel function induced by φ such that 〈φ(xi), φ(x j)〉 = K(xi, x j) and φ : X → H is the
feature mapping function that projects the original feature vector to a Hilbert space H. R( f ,Ds) is the
empirical error in the source domain, || f ||2K is the squared norm of f . The term D f (Ds,Dt) represents
the distribution discrepancy across domains, M f (Ds,Dt) is a Laplacian regularization and C f (Ds,Dt) is
the class confusion loss. η, λ, ρ and ξ are the corresponding regularization parameters.

In the next subsections, we introduce each objective separately and give the learning method finally.

3.3. Source Error Minimization

The first objective of TFDF is to learn an adaptive classifier that can classify source samples correctly.
To begin with, we can induce a standard classifier f on the labeled source samples. According to the
structural risk minimization principle [33], we minimize the source empirical error as:

R( f ,Ds) + η|| f ||2K =

ns∑
i=1

l( f (xi
s), y

i
s) + η|| f ||2K (2)

where || f ||2K is the squared norm of f inHK and l(, ·, ) is the loss function for classification. In TFDF, the
squared loss l(xi, yi) = (yi − f (xi))

2 is used. According to the Representer Theorem [34], the classifier
in optimization problem (1) can be represented as

f (x) =

ns+nt∑
i=1

βiK(xi, x) (3)

and the equation (2) can be represented as:

ns∑
i=1

l( f (xi
s), y

i
s) + η|| f ||2K =

ns+nt∑
i=1

Aii(yi − f (xi))
2 + η|| f ||2K = ||(Y − βT K)A||2F + ηtr(βT Kβ)

(4)

where A ∈ R(ns+nt)×(ns+nt) is a diagonal label indicator matrix with Aii = 1 if xi ∈ Ds, and Aii = 0
otherwise. Y ∈ RC×(ns+nt) is the label matrix with Yi j = 1 if x j belongs to class i, and Yi j = 0 otherwise.
K ∈ R(ns+nt)(ns+nt) is kernel matrix, and β = (β1, ..., βns+nt) ∈ R(ns+nt)×C are the the parameters of the
classifier.
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3.4. Distribution Alignment

The distribution discrepancy across domains will result in performance degradation when directly ap-
plying the classifier trained in the source domain to the target domain. Thus, TFDF aims to learn trans-
ferable features to reduce the distribution discrepancy, which includes marginal distribution discrepancy
and conditional distribution discrepancy.

Maximum Mean Discrepancy (MMD) is a widely used statistic to measure distribution distance, which
compares different distributions p(x) and q(x) based on the distances between the sample means of two
distributions in a reproducing kernel Hilbert space (RKHS)H, namely

MMD2
H[H, p, q] = ||Epφ(x)− Eqφ(x)||2H (5)

However, MMD only measures the first-order statistic of different distributions. Some experiments
have revealed that the second-order statistic (such as CORAL [14]) is also necessary to capture useful
information for evaluating distribution discrepancy, which is ignored by existing methods. Recently, a
new distribution metric termed Maximum Mean and Covariance Discrepancy (MMCD) is proposed in
[16]. MMCD considers both the first-order and the second-order statistical information in the RKHS,
which is defined as,

MMCD[p, q,H] = (||E[p]− E[q]||2H + γ||C[p]−C[q]||2HS)
1
2 (6)

where C[p] = Ex∼p[φ(x)⊗φ(x)]− Ex∼p[φ(x)]⊗ Ex∼p[φ(x)], || · ||HS denotes the Hilbert-Schmidt norm
of the vectors in HS(H). The empirical estimator of the squared MMCD with classifier f can be given
by [16],

M̂MCD
2
[p, q,H] = tr(βT KMKTβ) + ||βT KZKTβ||2F (7)

where

Mi j =


1
n2s
, xi, x j ∈ Ds

1
n2t
, xi, x j ∈ Dt

− 1
nsnt

, otherwise

, Zi j =



1
ns
− 1

n2s
, i = j, xi ∈ Ds

− 1
n2s
, i 6= j, xi, x j ∈ Ds

1
n2t
− 1

nt
, i = j, xi ∈ Dt

1
n2t

i 6= j, xi, x j ∈ Dt

0, otherwise

(8)

Based on MMCD, the distribution discrepancy across domains can be written as

D f (Ds,Dt) = (1− µ)Dmd(Ds,Dt) + µDcd(Ds,Dt) (9)

where Dmd(Ds,Dt) and Dcd(Ds,Dt) denote the marginal distribution discrepancy and conditional distri-
bution discrepancy, respectively. µ is a balance factor between these two discrepancy. The distance of
marginal distribution discrepancy is defined as the empirical distances across domains and the distance
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of conditional probability distributions is defined as the sum of the empirical distances over the class
labels between the sub-domains of a same label in the source and target domain,

Dmd(Ds,Dt) = M̂MCD
2
[Ds,Dt,H] = tr(βT KM0KTβ) + ||βT KZ0KTβ||2F

Dcd(Ds,Dt) =

C∑
c=1

M̂MCD
2
[Ds,c,Dt,c,H] =

C∑
c=1

(tr(βT KMcKTβ) + ||βT KZcKTβ||2F)
(10)

where

(M0)i j =


1
n2s
, xi, x j ∈ Ds

1
n2t
, xi, x j ∈ Dt

− 1
nsnt

, otherwise

, (Mc)i j =



1
n2s,c
, xi, x j ∈ Ds,c

1
n2t,c
, xi, x j ∈ Dt,c

− 1
ns,cnt,c

,

{
xi ∈ Ds,c, x j ∈ Dt,c

x j ∈ Ds,c, xi ∈ Dt,c

0, otherwise

(11)

(Z0)i j =



1
ns
− 1

n2s
, i = j, xi ∈ Ds

− 1
n2s
, i 6= j, xi, x j ∈ Ds

1
n2t
− 1

nt
, i = j, xi ∈ Dt

1
n2t

i 6= j, xi, x j ∈ Dt

0 otherwise

, (Zc)i j =



1
ns,c
− 1

n2s,c
, i = j, xi ∈ Ds,c

− 1
n2s,c
, i 6= j, xi, x j ∈ Ds,c

1
n2t,c
− 1

nt,c
, i = j, xi ∈ Dt,c

1
n2t,c

i 6= j, xi, x j ∈ Dt,c

0 otherwise

(12)

where Ds,c(Dt,c) = {xi|xi ∈ Ds(Dt), yi(ŷi) = c}, yi(ŷi) is the label (pseudo label) of the sample xi
s(xi

t)
and ns,c(nt,c) = |Ds,c(Dt,c)|. As the term ||βT KZcKTβ||2F is nonconvex, we can approximate the convex
upper bound of the term in (10) by using the following theorem:

Theorem 1. Given the constraint that βT KHKTβ = I, the following inequality holds

||βT KZcKTβ||2F 6 σk||βT KZcKT ||2F (13)

where k is the feature dimensionality and σ = ||(KHK)−
1
2 ||2.

where H = I − 1
(ns+nt)

11T is the centering matrix and the proof is shown in appendix. Note that the
constrain that βT KHKTβ = I is widely used in previous method [3, 7, 16] to avoid yielding a trivial
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solution. According to theorem 1, we relax the objective (9) as

D f (Ds,Dt) = (1− µ)
(
tr(βT KM0KTβ) + ||βT KZ0KT ||2F

)
+

µ

(
C∑

c=1

(tr(βT KMcKTβ) + ||βT KZcKT ||2F)

)
= (1− µ)

(
tr(βT KM0KTβ) + tr(βT KZ0KT KZ0KTβ)

)
+

µ

(
C∑

c=1

(tr(βT KMcKTβ) + tr(βT KZcKT KZcKTβ))

) (14)

3.5. Local Discriminative Information

In domain adaptation, we except to learn discriminative features for better classification and adapta-
tion. In this work, local discriminative information refers to the sample-level discriminative information.
Manifold regularization is a widely used method to extract local discriminative features. According to
the manifold assumption [13], if two points are close in the intrinsic geometry, then the corresponding
labels are similar. Under this assumption, the manifold regularization is computed as

M f (Ds,Dt) =

ns+nt∑
i, j=1

( f (xi)− f (x j))
2Wi j =

ns+nt∑
i, j=1

f (xi)L f (x j) = tr(βT KLKβ) (15)

where Wi, j is the graph affinity matrix between xi and x j. L = I − G−
1
2 WG−

1
2 is the graph Laplacian

matrix, G is a diagonal matrix with Gii =
∑n+m

j=1 Wi j, W is defined as

Wi j =

{
cos(xi, x j), i f xi ∈ Np(x j) ∨ x j ∈ Np(xi)

0, otherwise
(16)

where Np(xi) is the set of p-nearest neighbors of xi.

3.6. Global Discriminative Information

Maximizing manifold regularization can only learn local discriminative information from the nearest
neighbors while the global discriminative information (i.e., class-level discriminative information) is
ignored. As shown in Fig 1(a)-(b), there exists class confusion in domain adaptation methods, which
means that the classifier trained in the source domain may confuse to distinguish the correct class from
a similar class, such as backpack and video-projector. In order to solve this problem, instead of focusing
on the feature space, we concentrate on the label space, where the prediction outputs are able to reveal
the class relationships. we use the prediction outputs of the samples in both domains to minimize the
class confusion. The prediction of the classifier f on both domains is defined as

F̂ = f (X) = βT K (17)
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where F̂ ∈ RC∗(ns+nt), we recall that Fi j reveals the relationship between the j-th example and the i-th
class. We define the pairwise class confusion between two classes i and j as

Bi j = F̂T
i. · F̂ j. (18)

Note that F̂i. denotes the probabilities that the examples in the target domain come from the i-th class.
The class confusion is defined as the inner product between F̂i. and F̂ j.. So it measures the possibilities
of classifying the examples in the target domain into the i-th and the j-th classes simultaneously.

Recall that Bi j well measures the confusion between class i and j. As we need to minimize the cross-
class confusion, so the ideal situation is that no examples are ambiguously classified into two classes at
the same time. In this case, the diagonal elements of B which represent the inner of same classes should
be 1 while the off-diagonal elements which represent the inner of different classes should be 0 (as shown
in Fig 1(a)). Therefore, our goal is to force B to approach the identity matrix. Then, we can define the
class confusion objective as

C f (Ds,Dt) = ||B− I||2F = ||F̂F̂T − I||2F = ||βtK(βtK)T − I||2F
= ||βT KKTβ− I||2F
= tr(βT KKTββT KKTβ− 2βT KKTβ+ I)

(19)

Note that previous methods only learn discriminative features at the instance level (local level). How-
ever, by enforcing different classes to seperate from each other, the proposed method can learn discrim-
inative features at the class level (global level).

3.7. Optimization Algorithm

By substituting equation (4), (14), (15), (19) into equation (1), we can get the optimization problem
as follows,

β = arg min
β

J(β) = ||(Y − βT K)A||2F + ηtr(βT Kβ) + λtr(βT KVKβ)+

ρtr(βT KLKβ) + ξ||βT KKTβ− I||2F
s.t. βT KHKβ = I,

(20)

where V = (1− µ)(M0 + Z0KKZ0) + µ
∑C

c=1(Mc + ZcKKZc).
Equation (20) is an optimization problem with constraints, which is difficult to be solved directly. We

relax the problem as an unconstrained optimization problem, namely

β = arg min
β

J(β) = ||(Y − βT K)A||2F + ηtr(βT Kβ) + λtr(βT KVKβ)+

ρtr(βT KLKβ) + ξ||βT KKTβ− I||2F + δtr(βT KHKβ− I),
(21)

Since the fifth term of equation (21) is a non-convex fourth-order term, the optimization problem
doesn’t have the closed-form solution. Therefore, we adopt the adaptive moment estimation (Adam)
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Algorithm 1 TFDF-V
Input: Input data X = [Xs, Xt], source labels Y s, iterations number T , parameters λ, ρ, η, ξ and neighbor

p.
Output: Initial value βinit.
1: Train a base classifier using Ds and then apply prediction on Dt to get its pseudo labels Ŷt.
2: Construct kernel matrix K, graph Laplacian matrix L by equation (16).
3: for t = 1, 2, ...,T do
4: Calculate the balance factor µ using equation (24) and construct MMCD matrix V by equation

(11),(12) and (20).
5: Calculate βinit by solving equation (23) and obtain adaptive classifier f by equation (3),
6: Update the pseudo labels of Dt : Ŷ t = f (Xt).
7: end for

Algorithm 2 : TFDF
Input: Input data X = [Xs, Xt], source labels Y s, iterations number T , learning rate α, the parameters

λ, ρ, η, ξ, δ and neighbor p.
Initialization: θ1 = 0.9, θ2 = 0.999, ε = 10−8,

Output: Adaptive classifier f : X → Y .
1: Train a base classifier using Ds and then apply prediction on Dt to get its pseudo labels Ŷt.
2: Construct kernel matrix K, graph Laplacian matrix L by equation (16).
3: Calculate β0 = βinit by solving equation (23) for TFDF-V.
4: for t = 1, 2, ...,T do
5: Calculate the balance factor µ using equation (24) and construct MMCD matrix V by equation

(11),(12) and (20).
6: Get gradients gt by equation (22).
7: mt ← θ1mt−1 + (1− θ1)gt, vt ← θ2vt−1 + (1− θ2)g2t , m̂t ← mt

1−θt
1
, v̂t ← vt

1−θt
2
.

8: βt = βt−1 − α m̂t√
v̂t+ε

.
9: Obtain adaptive classifier f by equation (3).

10: Update the pseudo labels of Dt : Ŷ t = f (Xt).
11: end for

algorithm [17] which is a variant of stochastic gradient descent (SGD) to solve β iteratively. Take the
derivative of β and we will get

gt =
∂J(β)

∂β
=− 2KAYT + 2KAKβ+ 2ηKβ+ 2λKVKβ

+ 2ρKLKβ+ 2δKHKβ+ 2ξKKββT KKβ− 2ξKKβ
(22)

We experimentally found that it is important to set a proper initial value. Thus, we propose a variant
of optimization problem (21) which is named as TFDF-V. We let ξ = 0 for optimization problem (21),
and by setting the derivative of objective function to 0, we can get

βinit = ((A + λV + ρL + δH)K + ηI)−1AYT (23)
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Note that TFDF-V can be solved by a closed solution. We firstly run the TFDF-V algorithm to get
βinit. Then βinit is set as the initial value of TFDF algorithm. The detailed pseudo codes of TFDF-V and
TFDF are described in algorithm 1 and algorithm 2, respectively.

4. Experiments and evaluations

In this section, we evaluate the performance of TFDF by extensive experiments on five widely-used
common datasets. Codes will be available online upon publication.

4.1. Data Preparation

We adopt five public image datasets: Office+Caltech, MNIST+USPS, and COIL, which are popular
for domain adaptation methods and have been widely used in previous works. Note that there are no
noise and no missing values in these three datasets.

The Office-Caltech dataset [35] consists of images from 10 overlapping object classes between Of-
fice31 and Caltech-256. Specifically, we have four domains, C (Caltech-256), A (Amazon), W (Web-
cam), and D (DSLR). By randomly selecting two different domains as the source domain and target
domain respectively, we construct 3× 4 = 12 cross-domain object tasks, e.g. C→ A, C→W,..., D→
W. Both 800 SURF [7] and 4,096 DeCaf6 [36] features are used for these datasets.

USPS (U) and MNIST (M) are standard digit recognition datasets containing handwritten digits from
0-9. USPS consists of 7291 training images and 2007 test images of size 16 × 16. MNIST consists of
60000 training images and 10000 test images of size 28 × 28. We construct two tasks: U→M and M→
U. 256 SURF features are used for these datasets.

COIL20 contains 20 objects with 1440 images. When the object rotates on the turntable, the object is
photographed from different angles every 5 degrees, so each object has 72 images. Each image is 32×32
pixels with 256 gray levels per pixel. Two subsets COIL1 and COIL2 are partitioned from the dataset in
[7]. We construct one dataset COIL1 vs COIL2 by selecting all 720 images in COIL1 to form the source
data, and all 720 images in COIL2 to form the target data. We construct two tasks: COIL1 → COIL2
and COIL2→ COIL1.

4.2. Baselines

We compare the performance of TFDF with traditional machine learning approaches, several state-of-
the-art traditional approaches, and deep domain adaptation approaches:

• traditional machine learning approaches: 1-Nearest Neighbor (1NN), Support Vector Machine
(SVM) and Principal Component Analysis (PCA),
• traditional domain adaptation approaches: Transfer Component Analysis (TCA) [3], Geodesic

Flow Kernel (GFK) [35], Joint Distribution Alignment (JDA) [7], Transfer Joint Matching (TJM)
[37], Adaptation Regularization (ARTL) [6], CORrelation ALignment (CORAL) [14], Scatter
Component Analysis (SCA) [38], Joint Geometrical and Statistical Alignment (JGSA) [11], Dis-
tribution Matching Machine (DMM) [9], MMCD based Domain Adaptation(McDA) [16], Mani-
fold Embedded Distribution Alignment (MEDA) [4], and Confidence-Aware Pseudo Label Selec-
tion (CAPLS) [39].
• deep domain adaptation approaches: AlexNet [22], Deep Domain Confusion (DDC) [21], Deep

Adaptation Network (DAN) [23], Deep CORAL (DCORAL) [24], and a compact DNN (DNN)
[40].
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4.3. Experimental Setup

For fair comparison and following [3, 35], 1NN, SVM and PCA are trained on the labeled source data,
and tested on the unlabeled target data; Other traditional domain adaptation methods (e.g. TCA,JDA)
are performed on both the source data and the target data and tested to classify the unlabeled target
data. All the baselines except MEDA are performed in original feature space. While MEDA [4] and
TFDF firstly perform manifold feature learning to project the original feature to a new feature space
with z = g(x) =

√
Gx. G can be computed efficiently by singular value decomposition [35]. RBF kernel

is used in the experiment. We adopt the method in MEDA [4] to estimate the balance factor µ, namely,

µ =
dM

dM +
∑C

c=1 dc
(24)

where dA(Ds,Dt) = 2(1 − 2ε(h)) is A-distance [41], which denotes the error of a linear classi-
fier discriminating the two domains Ds and Dt. We compute the marginal distribution discrepancy as
dM = dA(Ds,Dt) and the conditional distribution discrepancy as

∑C
c=1 dc =

∑C
c=1 dA(Ds,c,Dt,c). Deep

methods can be used to the original images and the results of deep domain adaptation methods are
directly reported from their original papers wherever available.

Under our experimental setup, it is impossible to tune the optimal parameters using cross validation,
since labeled and unlabeled samples are from different distributions. Thus following previous methods
[7], we evaluate all methods by empirically searching the parameter space for the optimal parameter
settings, and report the best results of each method. We set number of nearest numbers by searching
p ∈ {5, 10, 15, 20, 30} and we set adaptation regularization parameter λ, η, ρ, δ by searching λ, η, ρ, δ,∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}.

In the comparative study of TFDF, we set 1) η = 0.1, λ = 10.0, ρ = 0.1, δ = 0.01, p = 10 for
COIL dataset, 2) η = 0.1, λ = 10.0, ρ = 1.0, δ = 0.01, p = 10 for digital and Office-Caltech dataset.
Additionally, we set T = 10 for TFDF-V and T = 100 , α = 0.0005 for TFDF. The experiments on
parameter sensitivity in later experiments (Section 4.6) indicate that TFDF stays robust with a wide range
of parameter choices. We use classification accuracy on the test data as the evaluation metric, which is
widely used in literature [7]:

accuracy =
|x : x ∈ Dt ∧ ŷ(x) = y(x)|

|x : x ∈ Dt|
. (25)

y(x) and ŷ(x) are the ground truth and predicted labels for the target domain samples, respectively.

4.4. Experimental Results and Analysis

The results on five real-world cross-domain (object, digit and object) datasets are shown in Table 1, 2
and 3. From these results, we can draw several observations:

Firstly, TFDF achieves the best performance in most tasks (7/12 tasks) on the Office-Caltech dataset
(SURF features). The average accuracy of TFDF on the Office-Caltech dataset (SURF features) is 54.1%,
while the best baseline is MEDA with 52.7%. Compared with MEDA, the average performance is im-
proved by 1.4%. The observations on the COIL and digital datasets are the same and the average per-
formance improvement is 2.7% on five datasets. Since these results are obtained from a large number
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Table 1
Accuracy (%) on Office-Caltech datasets using SURF features.

Task 1NN SVM PCA TCA GFK JDA TJM CORAL SCA ARTL McDA MEDA TFDF

C→ A 23.7 53.1 39.5 45.6 46.0 43.1 46.8 52.1 45.6 44.1 43.5 56.5 58.0
C→W 25.8 41.7 34.6 39.3 37.0 39.3 39.0 46.4 40.0 31.5 44.4 53.9 52.9
C→ D 25.5 47.8 44.6 45.9 40.8 49.0 44.6 45.9 47.1 39.5 50.1 50.3 59.2
A→ C 26.0 41.7 39.0 42.0 40.7 40.9 39.5 45.1 39.7 36.1 41.0 43.9 44.4
A→W 29.8 31.9 35.9 40.0 37.0 38.0 42.0 44.4 34.9 33.6 44.4 53.2 51.2
A→ D 25.5 44.6 33.8 35.7 40.1 42.0 45.2 39.5 39.5 36.9 42.7 45.9 46.5
W→ C 19.9 28.8 28.2 31.5 24.8 33.0 30.2 33.7 31.1 29.7 35.3 34.0 33.9
W→ A 23.0 27.6 29.1 30.5 27.6 29.8 30.0 36.0 30.0 38.3 37.4 42.7 43.1
W→ D 59.2 78.3 89.2 91.1 85.4 92.4 89.2 86.6 87.3 87.9 89.17 88.5 90.5
D→ C 26.3 26.4 29.7 33.0 29.3 31.2 31.4 33.8 30.7 30.5 34.8 34.9 37.2
D→ A 28.5 26.2 33.2 32.8 28.7 33.4 32.8 37.7 31.6 34.9 36.7 41.2 42.1
D→W 63.4 52.5 86.1 87.5 80.3 89.2 85.4 89.8 84.4 88.5 89.8 87.5 90.2

Average 31.4 41.1 43.6 46.2 43.1 46.8 46.3 48.8 45.2 44.3 49.2 52.7 54.1

Table 2
Accuracy (%) on Office-Caltech datasets using DeCaf6 features.

Task
Traditional Methods Deep Methods

TFDF
SVM PCA TCA GFK JDA SCA ARTL JGSA CORAL DMM CAPLS AlexNet DDC DAN DCORAL DNN

C→ A 91.6 88.1 89.8 88.2 89.6 89.5 92.4 91.4 92.0 92.4 90.8 91.9 91.9 92.0 92.8 93.0 93.5
C→W 80.7 83.4 78.3 77.6 85.1 85.4 87.8 86.8 80.0 87.5 85.4 83.7 85.4 90.6 91.1 93.0 95.6
C→ D 86.0 84.1 85.4 86.6 89.8 87.9 86.6 93.6 84.7 90.4 95.5 87.1 88.8 89.3 91.4 91.5 93.0
A→ C 82.2 79.3 82.6 79.2 83.6 78.8 87.4 84.9 83.2 84.8 86.1 83.0 85.0 84.1 84.7 86.5 87.8
A→W 71.9 70.9 74.2 70.9 78.3 75.9 88.5 81.0 74.6 84.7 87.1 79.5 86.1 91.8 - 94.9 88.1
A→ D 80.9 82.2 81.5 82.2 80.3 85.4 85.4 88.5 84.1 92.4 94.9 87.4 89.0 91.7 - 93.3 94.2
W→ C 67.9 70.3 80.4 69.8 84.8 74.8 88.2 85.0 75.5 81.7 88.2 73.0 78.0 81.2 79.3 85.9 86.5
W→ A 73.4 73.5 84.1 76.8 90.3 86.1 92.3 90.7 81.2 86.5 92.3 83.8 84.9 92.1 - 92.5 93.2
W→ D 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.7 100.0 100.0 100.0 100.0 - 100.0 98.7
D→ C 72.8 71.7 82.3 71.4 85.5 78.1 87.3 86.2 76.8 83.3 88.8 79.0 81.1 80.3 82.8 83.1 87.7
D→ A 78.7 79.2 89.1 76.3 91.7 90.0 92.7 92.0 85.5 90.7 93.0 87.1 89.5 90.0 - 93.3 93.1
D→W 98.3 98.0 99.7 99.3 99.7 98.6 100.0 99.7 99.3 99.3 100.0 97.7 98.2 98.5 - 99.2 98.0

Average 82.0 81.7 85.6 81.5 88.2 85.9 90.7 90.0 84.7 89.4 91.8 86.1 88.2 90.1 - 91.5 92.5

Table 3
Accuracy (%) on USPS+MNIST and COIL datasets.

Task 1NN SVM PCA TCA GFK JDA TJM CORAL SCA ARTL JGSA McDA MEDA TFDF

U→M 44.7 62.2 45.0 51.2 46.5 59.7 52.3 30.5 48.0 67.7 68.2 - 72.1 80.6
M→ U 65.9 68.2 66.2 56.3 61.2 67.3 63.3 49.2 65.1 88.8 80.4 - 89.5 89.9

COIL1→ COIL2 83.6 84.7 84.7 88.5 72.5 89.3 87.6 82.64 - 88.3 - 94.1 90.1 93.6
COIL2→ COIL1 82.8 82.9 84.0 85.8 74.2 88.5 87.4 82.36 - 84.0 - 89.6 87.1 91.8

Average 69.3 74.5 70.0 70.5 63.6 76.2 72.7 61.2 - 82.2 - - 84.7 89.0

of datasets, it can convincingly verify that TFDF can build a robust adaptive classifier while reducing
cross-domain discrepancy.

Secondly, both TFDF and McDA adopt MMCD to measure domain discrepancy, and they perform
better than TCA, JDA, CORAL, and ARTL which either only consider the first-order statistical infor-
mation or only consider the second-order statistical information. This improvement indicates that con-
sidering both the first-order and the second-order statistics simultaneously can capture more information
for reducing cross-domain discrepancy. TFDF outperforms McDA because the proposed methods not
only adopt MMCD to measure and decrease domain discrepancy but also consider the discriminative
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information of features. Compared with MEDA, which also performs manifold regularization to learn
local discriminative features, minimizing class confusion loss is helpful to learn global discriminative
features, thus achieving better performance. Compared with CAPLS, which focus on pesudo label selec-
tion within the distribution alignment process, TFDF also achieves better performance although TFDF
use all the pseudo labels (even with wrong pseudo labels), which shows the robustness of the proposed
method. Moreover, the error matrixes of different algorithms are shown in Fig 1, which shows that TFDF
can learn global discriminative information to avoid class confusion and get better performance.

Thirdly, TFDF also performs better than the deep methods (AlexNet, DDC, DAN, DCORAL, and
DNN) on Office+Caltech10 datasets. Based on the powerful features extracted from deep models, some
traditional methods such as DMM, MDSI-V, and TFDF can achieve better performance than deep meth-
ods. As we can see, TFDF achieves the best performance with a 1% improvement compared to DNN.

4.5. Effectiveness Analysis

4.5.1. Ablation Study
We conduct an ablation study to analyze how different components of our work contribute to the

final performance. When learning the final classifier, TFDF involves four components: Structural Risk
Minimization (SRM), Distribution Alignment (DA), Local Discriminative information (LD), and Global
Discriminative information (GD). We empirically evaluate the importance of each component. To this
end, we investigate different combinations of four components and report average classification accuracy
on five datasets in Table 4. The first setting where only SRM is used is actually the source-only method
where no adaptation is performed and this setting performs the worst. It can be observed that the accuracy
is further improved after performing Distribution Alignment (DA). And the use of both global and local
discriminative information improves the performance significantly on all datasets. Finally, a combination
of all components can achieve the best results.

Table 4
Results of ablation study(accuracy (%))

Method
Office-Caltech (surf features) COIL MNIST-USPS

SRM DA LD GD
X × × × 49.93 82.22 54.83
X X × × 51.92 90.29 74.89
X × X × 51.60 83.26 56.50
X X X × 52.20 91.12 80.86
X X X X 54.10 92.71 85.22

4.5.2. Distribution Distance
We run JDA, MEDA, and TFDF on task C → D (SURF features) using their optimal parameter

settings. Then we compute the aggregate MMD distance and MMCD distance of each method on their
induced embeddings by equation (5) and equation (9), respectively. To compute the true distance in
both the marginal and conditional distributions across domains, we have to use the ground truth labels
instead of the pseudo labels. However, the ground truth target labels are only used for verification, not
for learning procedures.

Fig 3(a) and Fig 3(b) show the MMD distance and MMCD distance computed for each method and
Fig 3(c) shows the prediction accuracy for each method. As we can see, MEDA and JDA can reduce the
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(a) MMD distance w.r.t. #iterations (b) MMCD distance w.r.t. #iterations (c) Accuracy(%) w.r.t. #iterations

Fig. 3. MMD distance, classification accuracy on the task C → D

domain discrepancy which can be measured by either MMD distance or MMCD distance and achieve
good performance in the target domain while TFDF achieves better results. JDA only considers the
first-order statistic, while TFDF adapts both the first-order and the second-order statistics. Besides, by
minimizing class confusion, TFDF can learn more discriminative features and improve performance.

4.5.3. Feature Visualization.
In Fig 4, we visualize the feature representations of task USPS → MNIST (U→M) (10 classes) by

t-SNE[36] using JDA, MEDA and TFDF. Before adaptation, we can see that there is a large distribution
discrepancy across domains. After adaptation, JDA learns invariant features which can reduce distri-
bution discrepancy. MEDA further considers the dynamic factor between a marginal distribution and
conditional distribution and makes a better adaptation. TFDF not only learns transferable features but
also learns local and global discriminative features. Therefore, besides a small distribution discrepancy,
the features in both domains are more discriminative and cab be easily classified by the classifier.

4.5.4. Time Complexity
We run JDA, MEDA, and TFDF on datasets Office-Caltech, COIL, and USPS+MNIST using their

optimal parameter settings. Then we compute the running time of each method and the results are shown
in Table 5. As we can see, JDA and MEDA need less time than TFDF as they are solved by a closed-form
solution. Although TFDF-V can be solved by a closed-form solution, TFDF needs more iterations to get
the final results than these two baselines, which is a shortcoming of the proposed method.

Office-Caltech (surf features) COIL MNIST-USPS

JDA 5.66 min 0.94 min 8.08 min
MEDA 3.51 min 0.73 min 3.27 min
TFDF 33.10 min 7.86 min 52.42 min

Table 5
Runing time on different tasks

4.6. Parameter Sensitivity

In this section, we evaluate TFDF with a wide range of values for regularization parameters ρ, λ, η and
neighbors number p. We only report the results on MNIST→ USPS (M→ U), COIL 1→ COIL2 and



Yuntao Du et al. / Learning transferable and discriminative features for unsupervised domain adaptation 17

(a) t-sne before adaptation (b) t-sne by JDA (c) t-sne by MEDA (d) t-sne by TFDF

Fig. 4. Feature visualization on task U → M

(a) neighbors p (b) ρ (c) λ (d) η

Fig. 5. Parameter sensitivity on three tasks.

C→ D tasks, while similar trends on the other tasks are not shown due to space limitation. The results
are shown in Fig 5. It can be observed that TFDF achieves a robust performance with regard to a wide
range of parameter values. Specifically, p ∈ [8, 16], ρ ∈ [0.1, 1], λ ∈ [1, 10] and η ∈ [0.05, 0.1] are the
optimal parameter values.

5. Conclusion

In this paper, we propose a method called learning TransFerable and Discriminative Features for
unsupervised domain adaptation (TFDF), which could learn both transferable and discriminative fea-
tures simultaneously. On the one hand, we adopt a recently proposed statistic called MMCD to measure
domain discrepancy, which can capture both the first-order and the second-order statistical information
simultaneously, thus more statistical information can be explored than MMD-based methods. On the
other hand, we propose to learn both local and global discriminative features through manifold regular-
ization and proposed class confusion loss respectively. With the principle of empirical risk minimization,
TFDF also integrates the source classification error with the above objectives into a uniform optimiza-
tion problem. Comprehensive experiments are conducted and the results verified the effectiveness of the
proposed method.
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Appendix A. Proof of theorem 1

According to [16], we can approximate the convex upper bound of the second ||βT KZ0KTβ||2F and the
fourth ||βT KZcKTβ||2F terms by using the following theorem:

Theorem 2. given the constraint that βT KHKTβ = I, the following inequality holds

||βT KZcKTβ||2F 6 σk||βT KZcKT ||2F (26)

where k is the feature dimensionality and σ = ||(KHK)−
1
2 ||2.
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Proof.

||βT KZcKTβ||2F = ||βT KZcKT (KHKT )−1/2(KHKT )1/2β||2F
6 ||βT KZcKT (KHKT )−1/2||2F ||(KHKT )1/2β||2F
= k||βT KZcKT (KHKT )−1/2||2F
6 k||βT KZcKT ||2F ||(KHKT )−1/2||2F
= kσ||βT KZcKT ||2F

2

The first equation holds because KHKT is semi-definite positive, while the second and the fourth
inequalities follow the Cauchy-Schwarz inequality. In terms of the constraint of theorem 1, k =
tr(βT KHKTβ) = tr(Ik).
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