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Abstract. This paper reviews research in relation with modelling uncertainty within Decision 

Support Systems (DSS) from 2000 to 2011. It specifically addresses software that has been built 

or prototyped with the purpose of supporting actual decision making, which is able to explicitly 

deal with uncertainty (widely understood) on the corresponding model parameters and/or 

data. The main DSS features analysed are the underlying decision support methodology, the 

type of uncertainty modelling approach used, the DSS type, and the application area. We 

appreciate that there is an increasing interest in dealing with uncertainty in real decision 

support, with prevailing interest in probabilistic approaches and, when linguistic imprecision is 

involved, fuzzy approaches. We have also recognized an increasing variety of perspectives 

adopted. 

 

1. Introduction 

This paper reviews a set of recent Decision Support Systems (DSS) that were built to deal with 

decision making problems in which uncertainty, understood in a broad sense, is a major 

concern. Decision aiding based on DSS requires the input of data (economic, engineering, 

geographical, etc.) that can be difficult to obtain for a number of reasons: some data can be 

missing (e.g., from databases or time series); other data may refer to unknown future 

outcomes (e.g., future oil prices); other data may be subject to variability according to a 
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statistical distribution to be estimated (e.g., the number of nonconforming items in a 

production batch); other data are known to be subject to physical or statistical measurement 

error (e.g., the quantity of oil in a well, or the Gross Domestic Product of a country); other data 

are controversial or contradictory (e.g. data from clinical trials).  

In many cases, there are also modelling choices and parameters to be set that involve the 

subjective judgment of Decision Makers (DMs). For instance, the decision on how to measure 

comfort or how to assess a company’s performance to encompass also environmental or social 

aspects is, to some extent, arbitrary and subjective. Prior distributions model expert 

judgements within a Bayesian setting. Many models incorporate parameters related with the 

DM’s preferences, such as those that define how important each criterion is in a multi-criteria 

evaluation. In purely cognitive terms, some parameters are artefacts whose semantics may be 

difficult to understand for the DM, and there are well-documented biases related with the way 

judgmental questions are posed, e.g., (Schoemaker & Waid 1982). If the DSS is supporting a 

group decision or negotiation process, it must cope also with the potential lack of consensus as 

the opinions and preferences of the DMs about parameter values and data may differ. Note 

that our categorization of nature and sources of uncertainty largely follows that of (Morgan & 

Henrion 1990), who provide a detailed discussion. 

It is not easy to define a set of keywords able to encompass all types of uncertainty mentioned 

in the previous paragraphs. This paper used as keywords the logical expression (“dss” OR 

"decision support system") AND (“uncertainty” OR “robustness”) for a search in the SCOPUS 

bibliographic database. Results were limited to papers published from 2000 to 2011 in a group 

of 50 journals (Table 1), mostly from the areas of Computer Science and Operations Research. 

This search was complemented with another one focusing on the Intelligent Decision 

Technologies journal, as it is not yet indexed in this database, as well as a few other papers the 

authors were aware of. This resulted in a set of over 300 papers, which was then reduced to 

meet a number of a priori defined criteria for inclusion in this review.   

The first criterion was that the paper should describe a DSS in the form of a well-defined 

software implementation, either fully deployed or as a working prototype, usually having a 

name given by its authors. This included not only standalone applications, but also software 

modules that run on other platforms, such as add-ons or plug-ins. Therefore, we have not 

included papers that are of a philosophical nature, or just presenting a framework or method. 

The same applies to papers that present algorithms implementing a method just to perform 

computational experiments, or comparisons with other methods, or to obtain results for an 

illustrative example. We neither include papers with the mere purpose of providing 

suggestions or guidelines for DSS development, or that discuss projects not yet implemented. 

Finally, papers presenting surveys or comparative studies of previously published systems are 

not included either. 

A second criterion for inclusion in this review was that the DSS would require human 

intervention in the actual decision making process. This excluded papers about systems 

supposed to work without, or with very little, human intervention, such as industrial control 

systems, intelligent agents, or autonomous vehicles and robots. Systems that fundamentally 



aim at knowledge discovery, such as pattern recognition, information fusion, data mining, and 

diagnosis tools were also considered out of the scope for our review. 

Finally, we sought to include only DSS that explicitly deal with uncertainty models for decision 

making. This left out several papers concerning neural networks and expert systems without 

any explicit modelling of uncertainty. Other excluded papers used an indicator to measure risk 

or uncertainty as a function of deterministic characteristics (e.g., considering a risk criterion in 

a multi-criteria evaluation). 

Note that, by and large, we conform to the DSS definition in (French et al. 2009, p. 83) , that is 

a “computer-based systems that support the decision-making process, helping DMs to 

understand the problem before them and to form and explore the implication of their 

judgements, and hence to make a decision based upon understanding”  and, more specifically, 

to what are called level 2 and 3 DSS there, thus focusing on actual decision support. 

 

Table 1. Number of selected papers per journal (total = 83) 

Journal No. of 
papers 

Expert Systems with Applications  15 

Decision Support Systems  12 

Environmental Modelling and Software  7 

J. of the Operational Research Society, Knowledge Based Systems, Intelligent Decision 
Technologies 

4 

Computers and Electronics in Agriculture, Int. J. of Computational Intelligence Systems, 
Int. J. of Production Economics  

3 

Advanced Engineering Informatics, Annals of Operations Research, Computers and 
Operations Research, Engineering Applications of Artificial Intelligence, Fuzzy Sets and 
Systems , Int. J. of Geographical Information Science , Omega 

2 

Applied Mathematics and Computation, Artificial Intelligence in Medicine, European J. 
of Operational Research, Expert Systems, Int. J. of Decision Support System 
Technology, Interfaces, Journal of Multi-Criteria Decision Analysis, J. of Optimization 
Theory and Applications, Medical Decision Making, Military Operations Research, 
Operations Research, Stochastic Environmental Research and Risk Assessment, 
Technological Forecasting and Social Change, Trans. in GIS  

1 

Applied Soft Computing J., Cochrane Database of Systematic Reviews Online, Computer 
Methods and Programs in Biomedicine, Computers and Industrial Engineering, IEEE 
Trans. on Neural Networks, IEEE Trans. on Systems Man and Cybernetics (Part A, Part 
B, Part C), Infor J., Information Systems Frontiers, Int. J. of Approximate Reasoning, Int. 
J. of Computer Applications in Technology, Int. J. of Computers Communications and 
Control, Int. J. of Management and Decision Making, Int. J. of Production Research, 
Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), Optimization Methods and Software, 
Reliability Engineering and System Safety, Risk Analysis, Studies in Computational 
Intelligence, Transp. Planning and Technology, Transp. Research (Part A, Part C), 
Transp. Research Record  

0 

 

Even with our possibly narrow notions of DSS and uncertainty models, 83 papers still remained 

in our review, with the journal distribution presented in Table 1. As would be expected, the 



two journals with higher number of papers are devoted to decision support technologies, but 

surprisingly the third journal with more papers is devoted to applications in the environmental 

area. According to Figure 1, the number of papers is comparatively low but has a clear 

increasing trend, suggesting an increasing interest in this topic. The complete list of papers is 

presented in Table 2. 

 

 
Figure 1. Evolution of published DSS papers dealing with uncertainty and robustness 



 

Table 2. List of papers considered in this revision 

Authors Name Uncertainty Underlying models/methods DSS type Application 

Disney et al. 2000  APIOBPCS Parametric optimization (GA), simulation Model inventory control  

Ríos Insua et al. 2000 MOIRA Parametric MCDA (MAVT) Model restoration of radionuclide contaminated 
aquatic ecosystems  

Mackay & Robinson 2000  (not provided) Fuzzy application-specific Geography ecological and hydrological processes  

Karacapilidis & Pappis 2000  HERMES Fuzzy similarity measurement (in 
argumentation) 

Group (none) 

Li 2000 EXSYS Fuzzy neural networks, weighted sum, 
rules 

Knowledge marketing strategy development 

Dias & Clímaco 2000 VIP Analysis Parametric MAUT Group (none) 

Zeng & Zhou 2001 REGIS Fuzzy rules, sensitivity analysis 
(correlation) 

Geography Real state retailing 

Mateos et al. 2001 MOIRA Parametric MCDA (MAVT) Model restoration of radionuclide contaminated 
aquatic ecosystems  

Beynon et al. 2001 DS/AHP Dempster–Shafer theory  AHP Model Real estate appraisal 

Tarantola et al. 2002 (not provided) Probabilistic Fourier Amplitude Sensitivity 
Test 

Geography land depletion assessment 

Ades & Cliffe 2002 WinBUGs Probabilistic Bayesian Markov chain  Monte 
Carlo 

Model medical decision 

Kristensen & Rasmussen 2002 (not provided) Probabilistic Bayesian network, application 
specific 

Model growing malting barley  

Wilby et al. 2002 SDSM Probabilistic application specific, statistical 
analysis 

Data assessment of regional climate change 
impacts 

Völkner & Werners 2002 GEPSIS Fuzzy rules (approximate reasoning), 
simulation 

Model business process planning 

Jiménez et al. 2003 MOIRA Parametric MAUT, Monte Carlo Model selection of a supplier for cleaning 
services  

Lou & Huang 2003 DRACO Fuzzy rule-based, neural networks Knowledge quality control in automotive coating 
operations 

Aerts et al. 2003 (not provided) Probabilistic geostatistical simulation Geography optimal location for a ski run  

Borges & Antunes 2003 Fuzzy MOLP Fuzzy, Parametric multiple objective linear 
programming  

Model (none) 



Dias & Mousseau 2003 IRIS Parametric ELECTRE TRI Model (none) 

Tan et al. 2004 POLCAGE 1.0 Possibility theory possibilistic compromise 
programming  

Model life-cycle assessment of alternative 
transportation fuels 

Kirkwood et al. 2005 (not provided) Probabilistic MAUT Model supply-chain-reconfiguration  

Packham et al. 2005 IGAS Accuracy of algorithm 
(GA) 

Nonlinear optimization (GA), 
Clustering 

Model engineering design problem: rainfall-runoff 
modelling 

Contesse et al. 2005 OBDSS (extension) Probabilistic mixed-integer programming , 
robust optimization 

Model Gas Purchase and Transportation 

Li et al. 2005 (not provided) Probabilistic, Fuzzy application-specific, Rules Geography Typhoon insurance pricing  

Lin et al. 2006 (not provided) Probabilistic, consensus-
based modeling 

rule-based Knowledge lower back pain diagnosis 

Besharati et al. 2006 (not provided) Probabilistic MAUT (multiplicative), Monte 
Carlo 

Model product design selection 

He et al. 2006 PRES Probabilistic Bayesian network , Rules Knowledge selection of remediation technologies for 
petroleum-contaminated sites 

Jiménez et al. 2006 GMAA Probabilistic, Parametric MAUT (additive), Monte Carlo 
simulation  

Model selection of a technology for the 
disposition of surplus weapons-grade 
plutonium 

Xu et al. 2007 Dutch Meuse DSS Probabilistic Monte Carlo simulation, 
application-specific 

Model river basin management 

Gascón et al. 2007 (not provided) Fuzzy rule-based Knowledge demand and supply features of the market 
of pharmaceutical generics 

Salling et al. 2007 CLG-DSS Scenarios, Probabilistic Cost-Benefit Analysis, value 
functions, Monte Carlo 

Model  large transport infrastructure projects 
appraisal 

Jiménez et al. 2007 GMAA Parametric MAUT, Monte Carlo Model selection of a supplier for cleaning 
services  

Zack 2007 QDSS missing information, 
contradictory information 

Rules Knowledge price quoting in a leasing company 

Lourenço & Costa 2007 Public Participation 
Support System 

Probabilistic frequency analysis Group e-participation processes 

Könnölä et al. 2007 RPM Explorer Parametric robust portfolio optimization, 
MAVT 

Group fostering of innovation ideas 

Gijsman et al. 2007 DSSAT Probabilistic Simulation Data Agriculture - crop simulation  

de Kort & Booij 2007 FLOCODS Probabilistic application-specific, Monte Carlo Model water management  (risks of flooding) 

Olson et al. 2007 (not provided) Possibility theory system dynamics Model model the microeconomic environment of 
a Bulgarian winery 



Augusto et al. 2008 RIMER Evidential Reasoning rule-based Knowledge monitoring and diagnosis in a smart home 

Castelletti et al. 2008 (not provided) Probabilistic Stochastic optimal control, Multi-
objective optimization 

Model water resources planning 

Chin et al. 2008 (not provided) Evidential Reasoning AHP Model product project screening 

Lee & Kwon 2008 NSS CAKES-NEGO Fuzzy Fuzzy Cognitive Maps (FCMs)  Knowledge B2B negotiation 

Gomes et al. 2008 THOR Fuzzy MCDA Model Solid waste management  

Yazgı Tütüncü et al. 2008 BEKS Fuzzy, Probabilistic EOQ, simulation Model inventory control  

Guitouni et al. 2008 CASAP Fuzzy, Probabilistic MCDA (PAMSSEM) Group military planning  

Lu et al. 2008 WFGDSS Fuzzy AHP Group Critical situation management 

Kong et al. 2009 IDS Evidential Reasoning rule-base inference  Knowledge Medicine 

Saenz de Ugarte et al. 2009 (not provided) Real-time contingencies genetic algorithm, simulation Data scheduling 

Montmain et al. 2009 SINERGIE Parametric MCDA (MAUT) Model motorway maintenance 

Guezguez et al. 2009 PIDT Possibility theory Influence diagrams Model (none) 

Namen et al. 2008 Robus Scenarios Robustness Analysis PSM Model sustainable community development 

Chou 2009 PILCES Probabilistic Regression, Generalized linear 
models , application-specific 

Model cost estimation in construction 

Li & Li  2009 (not provided) Fuzzy, Probabilistic AHP, Monte-Carlo, approx. 
Reasoning 

Model strategic planning 

Jiménez et al. 2009 MOIRA Probabilistic, missing 
data 

MCDA (MAUT) Model restoration of radionuclide contaminated 
aquatic ecosystems  

Cai et al. 2009 UREM-IDSS Interval, Scenarios optimization (LP) Model regional energy management systems 
planning 

Clímaco et al. 2009 D2VIP-A Parametric MAUT Group (none) 

Weng et al. 2010 HWRDS Scenarios, Fuzzy multi-objective programming , 
Fuzzy aggregation, AHP 

Model water resources management  

Zhou et al. 2010 APIOBPCS  Probabilistic Order-up-To Algorithm Model inventory management 

Louvieris et al. 2010 (not provided) Probabilistic Bayesian belief networks Model military 

Gemici-Ozkan et al. 2010 (not provided) Probabilistic multistage stochastic program  Model portfolio optimization 

Zhang et al. 2010 FMCGDSS Fuzzy Fuzzy MCDM aggregation Model Power distribution system planning  

Ma et al. 2010 Decider Fuzzy multi-criteria group decision  Model (none) 

Pereira & Ramli 2010 ACORDA/P-log Probabilistic Causal Bayes Nets Knowledge (none) 

De Maio et al. 2011 (not provided) Fuzzy Fuzzy Cognitive Maps (FCMs)  Web Emergency management  



Patiniotakis et al. 2011 Fuzzy UTASTAR Fuzzy UTA Model Transportation 

Papadopoulos et al. 2011 (not provided) Fuzzy, Sensitivity 
analysis 

Rules Knowledge agriculture 

Yang et al. 2010 IDS Evidential Reasoning rule-based functions  Knowledge marketing 

Li et al. 2011 WebDigital Fuzzy Rules if-then, Monte Carlo 
simulation  

Knowledge digital marketing  

Mouzakitis et al. 2011 Axios Fuzzy PROMETHEE Web investment 

Qi & Altinakar 2011 (not provided) Probabilistic Monte Carlo Simulation, event 
tree analysis  

Geography flood management  

Beraldi et al. 2011 (not provided) Probabilistic Simulation, Stochastic 
programming 

Model asset allocation 

Rees et al. 2011 (not provided) Fuzzy Genetic algorithm (optimization) Model Cybersecurity risk planning 

Leu & Adi 2011 MDS Probabilistic Hidden Markov Model , 
autoregressive time series 

Model drainage water tunnel  

Noor-E-Alam et al. 2011 (not provided) Fuzzy ME-MCDM Model supplier evaluation 

Chen et al. 2011 CEDSS Probabilistic, Fuzzy, 
Indicator-based 

multi-criteria analysis (additive 
v.f.) 

Geography river catchment management 

Ting et al. 2011 HKSMP Probabilistic Bayesian reasoning, case-based 
reasoning (CBR)  

Knowledge medical prescription  

Zhang et al. 2011 FICMDSS Fuzzy, Interval inexact programming  Model water quality management in agricultural 
systems 

Damghani et al. 2011 (not provided) Fuzzy mathematical programming , 
Rules 

Model investment selection  

Wang et al. 2011 MPVFDSS Vague sets application-specific Model Wafer manufacturing  

Kala et al. 2011 SANE Probabilistic neural networks, sum integration Knowledge medical diagnosis 

Papageorgiou 2011 (not provided) Fuzzy Fuzzy Cognitive Maps (FCMs) , 
DEMATEL (MCDA) 

Knowledge modelling medical knowledge  

Loboda et al. 2010 (not provided) Probabilistic Bayesian network  Knowledge generating real-time suggestions to 
improve users performance 

Chen et al. 2011 CEDSS Probabilistic MCDA (MAVT) Geography river catchment management 

 



We shall analyse the papers reviewed based on four key issues in relation with uncertainty 

within DSSs: how uncertainty is modelled within the incumbent DSS; what is the underlying 

decision aiding methodology used that accommodates uncertainty; what type of DSS is 

actually used from an architectural point of view; and, finally, the application area. Other 

generic relevant features in DSSs are described in (Burstein & Holsapple 2008). 

 

 

2. Strategies to deal with uncertainty 

 

In this section, we provide a brief introduction to various types of strategies and models used 

in the reviewed literature, as far as uncertainty is concerned. The treatment is necessarily brief 

for space reasons, but we shall provide pointers to the literature where further information 

may be seen on various approaches. Clearly, several of the strategies employed are intimately 

related, as outlined below, and indeed may be used in combination. For example, within a 

probabilistic setting it is convenient to undertake a sensitivity analysis to check the impact of 

probabilities and utilities on the DSS recommendation, see (Rios Insua & Ruggeri 2000). 

 Probabilities  

Probabilities constitute the most widely used and best known formalism for 

quantifying uncertainty. Probabilities have well-defined mathematical properties 

based on Kolmogorov’s axioms, with various interpretations, including the frequentist 

and the subjective, the latter being the most general. In this last interpretation, 

probabilities are described as a measure of the degree of belief in the occurrence of an 

event, and have behavioural axiomatic foundations. Such foundations lead to a natural 

way of updating beliefs in the light of new evidence based on Bayes theorem (French 

& Rios Insua 2000). Procedures to elicit beliefs are described, e.g., in (O’Hagan et al. 

2006). 

Complex probability models may be sometimes described through graphical models, 

of which the most popular ones are Bayesian networks, which are also sometimes 

called causal networks, belief nets or probabilistic influence diagrams. If the graphical 

model includes decision and value nodes, they fully describe the decision problem at 

hand. 

 Some of the DSSs reviewed incorporate probabilistic elements to standard 

optimization problems, either on constraints or objective terms, leading to stochastic 

programming problems, which may be solved with various strategies described, e.g. in 

(Birge & Louveaux 2011). 

A frequent criticism to the probabilistic approach lays in the difficulty of building the 

incumbent probability distributions, therefore leading to other uncertainty paradigms. 

 Imprecise probabilities 

A natural extension of the probability model is the imprecise probability model. The 

underlying principle is that, normatively, we should build a unique probability 



modelling the DM’s beliefs. However this requires ultrafine discerning capabilities on 

the DM, who may not be able to provide such precise information. It may be also the 

case that we need to deal with several DMs (precise or not) and imprecise probabilities 

emerge as a way to model the common knowledge grounds of all participants.  

One natural way of thinking about imprecise probabilities is through upper and lower 

probabilities. For a given event, relevant in the decision problem at hand, we are not 

able to provide the precise probability, but rather upper and lower bounds for such 

probability. If this occurs for all relevant events, we have an upper and lower 

probability model, provided that the bounds satisfy certain coherence requirements. A 

well-known model of upper and lower probabilities is Dempster-Shafer evidence 

theory, see (Shafer 1976), which uses belief and necessity measures as bounds. A good 

overview of these theories may be seen in (Miranda 2008). 

We may handle, however, more general constraints on probabilities based on 

inequality constraints and others, which generally lead to the concept of convex sets of 

probabilities, which have an axiomatic behavioural support. Clearly, based on the 

convex set of probabilities, we may define an upper and lower probability model. 

The operationalization of this approach faces two problems. The first one refers to the 

updating of information in the light of new evidence. The natural idea is to consider a 

class of standard models and update each of them through Bayes’ formula. However, 

this may be difficult to implement except under very stringent structural conditions 

and we may need to use approximations and simulation, see (Rios Insua & Ruggeri 

2000) for an overview. Some of the paradigms, like Dempster-Shafer’s approach which 

uses Dempster’s combination rule, lead to their own updating rules. 

The second problem refers to the recommendations to be provided by the DSS. Again, 

it is natural to view the issue as a class of standard decision problems and solve them 

individually and either show the whole set of solutions or try to summarise somehow 

such set of solutions based on their common grounds. By doing this, we are 

performing some kind of sensitivity analysis. This may be too involved computationally 

and we may go for computing solutions which are robust in some sense. Typically, 

these are solutions with a certain guarantee of performing reasonably well under all 

relevant probability models or which perform reasonably well for a sufficiently large 

class of probability models. By reasonably well, we refer to a large number of criteria 

being considered, such as attaining a minimum target expected utility or minimizing 

the entailed regret (of not being the actual best alternative). 

Note that we have focused this discussion on the belief part of the DSS model, but 

similar issues may be mentioned about the preference part, i.e. we might have 

imprecision about preferences, e.g. to be dealt with through classes of utility 

functions. 

Also, some of the methods have been combined to provide somewhat different 

approaches. For example, utility theory, Dempster-Shafer’s theory of evidence, 

http://en.wikipedia.org/wiki/Utility_theory


statistical tools, and information technology are combined in the so-called evidential 

reasoning approach, as in (Xu et al. 2006). 

 Set inclusion 

Several approaches focusing on imprecision (or incompleteness), mainly in 

preferences, deal in reality only with the sets of values that the parameters of interest 

(weights of a utility function, probabilities of events, group member weights, etc.) may 

adopt. The approach in this case is clearly parametric and the ideas outlined above 

concerning sensitivity analysis are relevant here. These include the undertaking of 

what-if analysis (e.g., what is the optimal solution if the parametric setting is a given 

one); the computation of worst outcomes for each alternative to find out the 

alternative with best worst outcome, as a concept of robust solution; or the 

computation of the volume of the parametric set under which a given solution is 

optimal, as a way to ascertain its robustness. 

The idea of set inclusion is used as we consider sets of parameters and the smaller the 

sets, the more precise the information is. Indeed, under the normative ideal, we shall 

typically have a singleton parametric set, e.g. with the corresponding unique utility 

function weights. Moreover, several set inclusion based procedures incorporate 

mechanisms to suggest directions or areas in which the parameter set may be reduced 

to attain higher robustness and increase the DM’s confidence on the results of the 

analysis. Interval numbers may be included within this heading. 

(Vilkkumaa et al., in print) include an overview on approaches in which set inclusion 

ideas are relevant. 

 Scenario development and analysis 

Scenario analysis may be contemplated as well within the set inclusion paradigm. It 

refers mainly to problems of strategic nature and long-term effects, in which we are 

able to identify relevant events or developments for the future, the so-called 

scenarios. However, for reasons such as lack of knowledge or too much uncertainty, 

we are not capable or it does not seem sensible trying to assess the corresponding 

probabilities. Sometimes these are called problems under severe uncertainty, see e.g. 

(Wright & Goodwin 1999). There is a clear resonance of the classical distinction 

between decision making under risk and under uncertainty, see e.g. (French 1986). 

Therefore, the standard solutions from decision making under uncertainty have been 

used in this case, including providing equal weights to various scenarios, minimum 

regret solutions, as well as variants which try to cater for various degrees of pessimism 

and risk aversion.  

 Linguistic imprecision 

Many of the papers reviewed in this area used some kind of fuzzy set based approach. 

Fuzzy set based concepts were introduced to cope with imprecision in language. 

Rather than using standard (crisp) sets, in which we may say that an element belongs 

or not to the set, fuzzy sets are used in which a degree of membership, between 0 and 



1, is given to each element. Based on such ideas, standard set concepts are fuzzified. 

Similarly, standard decision support tools and methodologies have been fuzzified , e.g 

fuzzy cognitive maps, fuzzy aggregation rules or fuzzy MCDM approaches, see (Ross 

2010).  

Possibility theory was introduced as an extension of fuzzy sets and fuzzy logic by 

(Zadeh 1978). The key concept is that of a possibility measure which aims at modelling 

the possibility of an event happening. The distinctive feature of possibility measures is 

that the possibility of the union of two events is the maximum of the possibility of 

both events. Possibility theory uses also the necessity of an event, which is one minus 

the possibility of the complementary set. Recommendations are based on extensions 

of integral concepts (with respect to possibility measures) like Sugeno’s integral. 

Interestingly enough, possibility (and necessity) measures may be seen as particular 

cases of upper and lower probabilities. 

Figure 2 provides a frequency distribution of the various approaches used in dealing with 

uncertainty within DSS. Probabilistic approaches are the most frequent, followed closely by 

those based on fuzzy concepts, including possibility measures. The other approaches appear 

much less frequently. Note that probabilistic approaches, followed by fuzzy approaches have 

prevailed over the years (Figure 3). However, in recent years the variety of uncertainty 

modelling strategies has increased. 

 



 

Figure 2. Frequency of different uncertainty modelling strategies in this review. 

 

 
Figure 3. Evolution of strategies to model uncertainty. 

 

 

3. Underlying decision support methodology 
 

Concerning the underlying decision support methodology within which the treatment of 
uncertainty is considered, we have identified the following categories in this review: 
optimization, multi-criteria decision analysis (MCDA), rules, simulation, cognitive maps, 



artificial neural networks and Bayesian networks. The main features of these approaches are 
briefly described below.  

 Optimization 

Optimization-based DSS generally use an optimization engine for (linear, non-linear, 
integer) mathematical programming models, which may be built upon a commercial solver or 
is specifically tailored, for instance, to make the most of special algorithmic features taking 
advantage of structural properties of the problem at hand. In particular, to deal with complex 
combinatorial or/and strongly non-linear models meta-heuristics are also used, which may be 
hybridized with mathematical programming approaches (generally under the designation 
math-heuristics), such as genetic/evolutionary algorithms, simulated annealing, or tabu search 
(Gendreau & Potvin 2010).   

One of the most important features required for optimization-based DSS, particularly in 
dealing with large-scale optimization models, is the capability of problem generation, in 
general using some kind of algebraic modelling languages. These are high-level programming 
languages offering a similar syntax to the usual mathematical notation for optimization 
problems. This permits a clear separation between the model structure, the data to be 
supplied to the model and the specific solution method. Furthermore, this enables model 
changes and maintenance to be carried out in a gradual manner over the system lifetime. 
However, the use of such algebraic modelling languages has not been reported in the set of 
papers reviewed. 

Moreover, due to the intrinsic complexity of optimization models, optimization-based DSS 
should provide results analysis and reporting capabilities to assist DMs who are knowledgeable 
regarding the application domain but to whom expertise on mathematical models and 
algorithms cannot be required. 

Techniques to cope explicitly with uncertainty in optimization models include stochastic 
programming (in which uncertainty is modelled through discrete or continuous probability 
distributions), fuzzy programming (in which coefficients are modelled through fuzzy numbers, 
and constraints and objective functions for which a goal is specified are dealt with as fuzzy 
sets), interval programming (in which the coefficients are interval numbers, that is, they are 
unknown but bounded with no need to specify probabilistic distributions as in stochastic 
programming or possibilistic distributions as in fuzzy programming). The establishment of 
plausible ranges in which model coefficients and parameters may drift is also considered by 
robust optimization, which seeks to compute solutions compatible with all those values. That 
is, solution robustness is measured in terms of its best performance against all possible 
realizations of the coefficients and parameters values. Min-max and min-max regret are usual 
formulations in the realm of robust programming (Kouvelis & Yu 1987), in which it is also 
possible to establish, for instance, a probability for which the solution is required to satisfy 
specific constraints. 

 Multi-criteria / multi-objective models (MCDA) 

A multi-criteria decision support system (MCDSS) is based on multi-criteria models and 
methods. In general, the label multi-criteria encompasses models in which the set of potential 
solutions are implicitly defined by a set of constraints (multi-objective) or they are explicitly 
known a-priori (multi-attribute). 

In multi-objective models, the multiple axes of evaluation of potential solutions are 
operationalized through objective functions to be optimized, usually conflicting and 
incommensurate, in the feasible region defined by the set of constraints. The aim of the 
decision process may be characterizing as extensively as possible the non-dominated solution 
set in order to learn about the underlying trade-offs in different regions of the search space or 



supporting the DM in recognizing a compromise solution providing an acceptable balance 
between the competing objective functions. This might be accepted as the final outcome. 

Uncertainty in multi-objective models usually concerns the coefficients of the objective 
functions and/or the constraints. It may also concern the decision (control) variables values, 
e.g. assessing the degrading of the objective function values if the decision variables drift from 
their optimal values within a certain range. The approaches mentioned for optimization 
(stochastic programming, fuzzy programming, and interval programming) are also applied for 
multi-objective models. In this case, instead of evaluating the behaviour of the optimal 
solution in face of uncertainty, the behaviour of a non-dominated solution (or a sample of the 
non-dominated solution set or even the entire non-dominated frontier) is assessed.  

In multi-attribute models three types of problems are generally considered: choice (selecting 
the best alternative or a reduced sub-set of alternatives for further screening), sorting 
(assigning the alternatives to pre-defined ordered categories of merit), or ranking (generating 
a complete or partial ranking of the alternatives from the best to the worst, possibly accepting 
ties). Since in these models there is not a prominent solution due to the conflicting nature of 
the criteria, the involvement of the DM in providing information about his/her preferences is 
of paramount importance. MCDSS should be designed to help the DM getting a better 
understanding of complex decision problems, through an interactive process with a 
constructive framework ranging from problem structuring to shaping the decision model and 
alternatives. 

Uncertainty in multi-attribute models usually concerns the performances of the alternatives on 
the different criteria and/or the preference-related parameters (e.g., criterion weights). The 
uncertain performances of the alternatives are usually addressed using scenarios, probability 
distributions, or fuzzy sets. The difficulties of setting parameter values are usually addressed 
performing parametric analyses (sensitivity analysis, robustness analysis) of sets of acceptable 
model versions, scenarios (namely to take into account multiple perspectives), or using 
linguistic quantifiers. 

 Rules 

If-then rules are used to structure information with a semantic content about a specific 
domain, allowing relationships to be defined between the data. Usually, an inference engine 
combines the rules from the knowledge base with new data to provide a recommendation. 
This type of DSS is based on rules elicited from human domain experts that imitate reasoning 
of a human expert in that domain, expectedly at a comparable level. Caution must be taken 
since imitating human thinking and its efficient heuristic principles, which is well described e.g. 
in (Gigerenzer et al 1999), may also lead to imitate its flaws. These systems are generally 
endowed with some explanatory capabilities to justify why a particular recommendation has 
been given.   

The treatment of uncertainty may be made using fuzzy rules, whose membership functions 
are aimed at capturing, for instance, linguistic variables through statement such as: “if control 
variable x is low, then radiation should increase”. Bayesian networks, described below, may be 
viewed as if-then rule-based systems with probabilities. 

 Simulation  

Simulation generally refers to approaches that replicate computationally the behaviour of 
an actual or projected human or physical system. Typically in a simulation-based DSS, several 
simulation runs are executed and their aggregate results lead to recommendations. The 
decision variables in the model are the inputs that are manipulated in the test.  

Simulation-based DSS are mostly used for dynamic analysis of system operations, for 
predicting and exploring the system behaviour (i.e., assessing the effects of specific events and 



actions). Agent-based simulation has recently gained an increasing importance due to the 
availability and affordability of computational power, which makes possible to adopt a bottom-
up system perspective, i.e. focusing on the system components as the essential units (which 
have very simple behaviour) and complexity gradually emerges as the analysis progresses to 
upper system levels. Simulation-based DSS are often coupled with visual tools, which enable 
visual information feedback about the system behaviour.  

Uncertainty may be related with information arising from the random behaviour of 
physical systems (dealt with statistical and probabilistic methods) and from human perception 
and cognition processes (for which fuzzy logic and neural networks are often used). 

Simulation-based DSS have been used to deal with problems in production scheduling, 
manpower planning, for instance in call-centres, inventory planning and control, queuing 
systems, designing overbooking policies, hedging against financial risks, etc.  

 Cognitive maps 

Cognitive maps display a representation of human thinking about a specific domain, by 
graphically mapping concepts and their inter-connections, identifying causes and effects, and 
explaining causal links. Cognitive maps may be used to unveil mental models of DMs, 
particularly shaped by the ways in which they anticipate events. 

Fuzzy cognitive maps have been used to model dynamic systems with uncertain, imprecise and 
incomplete causal information (Kosko 1992; Glykas 2010). A fuzzy cognitive map is a fuzzy 
signed oriented graph, in which nodes represent concepts and directed graphs interconnecting 
nodes represent causal relationships. Each concept has state values, which reflect the degree 
with which the concept is active at a particular time. The state space of nodes is modelled as a 
fuzzy set to represent the concept. The weight associated with the directed arc measures the 
strength of the causal relationship. In general, this weight lies between -1 (strong negative 
causality between the concepts) to 1 (strong positive causality), while 0 indicates there is no 
causal relationship. The inference process in fuzzy cognitive maps is an iterative process 
consisting of updating the state vector values according to a weight matrix and initial 
conditions, in a discrete time mode. The descriptive approach of standard fuzzy cognitive maps 
may be complemented with probabilistic information to consider the impacts of randomness 
(caused by occurrence of random events) besides fuzziness (model of inexactness mostly due 
to human judgment). 

 Artificial neural networks 

Artificial neural networks, the analogy of which is emulating the functioning of human 
brain, consist of neurons - highly distributed interconnected adaptive nonlinear processing 
units - and synapses - structural and functional units that mediate the interactions between 
neurons (Kosko 1992). Knowledge is acquired by means of a learning process and synapse 
weights are used to store it. According to their architecture, neural networks may be classified 
as non-adaptive (no feedback loop exists), unsupervised (network weights are changed 
according to some specified set of rules - self-organization) and supervised (an external 
function provides a measure of the output quality). The hybridization between fuzzy logic and 
neural networks is generally aimed at capturing cognitive uncertainty, in which the latter are 
used to design and tune fuzzy membership functions to produce better output decisions. As 
weights are used in some MCDA methodologies to reflect, up to a certain extent, the DM’s 
preferences, neuron inputs are weighted to represent the relative importance of each input to 
a processing element. Therefore, the ability to learn and generalize can be interesting in 
MCDA-based DSS, for instance, by using former decisions (in similar contexts) to tune a 
network of methods capable of replicating decisions (thus recognizing patterns of decisions) 
(Antunes & Tsoukiàs 1997). 



 Bayesian networks 

Bayesian networks provide a graphical representation of causality relationships between 
random variables using a directed acyclic graph, in which nodes represent variables and arcs 
represent the causality relationship between those variables. Each variable has a finite set of 
mutual exclusive states and a conditional probability table is assigned to each variable and its 
parents in the graph, thus leading to a joint probability distribution over the variables in the 
graph. Bayesian networks enable to integrate uncertainty in DSS, namely those based on 
expert knowledge and/or data measurements, in terms of probability of occurrence of an 
event knowing that some particular event occurred or to derive an a-priori unknown 
relationship between events through an inference and learning process. See (Jensen & Nielsen 
2010) for a full description. 

Algorithms for computing posterior and predictive probabilities include belief propagation and 
junction trees, as well as statistical sampling techniques in large Bayesian networks. Influence 
diagrams may be viewed as an extension of Bayesian networks that can represent and solve 
decision problems under uncertainty by adding utility nodes (holding a table of utility values 
for all value configurations of the parent nodes) and decision nodes. They typically provide a 
more compact description than that provided by decision trees and are solved with a 
combination of probabilistic manipulations and dynamic programming. This allows performing 
decision related tasks, such as computing the expected utility and finding the optimal decision. 
Sometimes handling influence diagrams is too complex and we may need to use Monte Carlo 
simulation, possibly based on Markov chains (MCMC), see (Bielza et al. 1999). 

About two-thirds of the papers included in this review use MCDA, optimization and rule-based 
approaches (see Figure 4). Figure 5 displays a trend revealing the growing importance of multi-
criteria approaches to capture not just the conflicting and incommensurate nature of the axes 
of evaluation of the merits of the courses of action but also to link this aspect to cope with 
uncertainty. It is also noticeable that Bayesian networks and fuzzy cognitive maps have not 
been much used in DSS until the more recent years, because efficient algorithms to perform 
the required computations were developed only lately. 



 

 
Figure 4. Frequency of underlying decision support methodology in this review. 

 

 

 
 

Figure 5. Evolution of underlying decision support methodology used. 

 

 



4. DSS type 

 

As far as the DSS type is concerned, we consider the following categories: group-oriented, 
data-oriented, geography-oriented, knowledge-oriented, model-oriented, and web-oriented. 
Note that our categorization closely follows that of (Power 2004).  

 Group-oriented 

Group Decision Support Systems (GDSS) aim at improving the quality of decision processes 

whenever multiple DMs, often with conflicting goals, are involved generally in a (local or 

distant, synchronous or asynchronous) meeting environment. In these processes, in which 

negotiations and the establishment of compromises are required, GDSS should play a role in 

dealing with avoiding miscommunication, resolution of conflicts and generation of new ideas 

to overcome stalemates. The term Collaborative DSS also appears in the literature mostly 

referring to assist teams of DMs in the solution of ill-structured problems, in which emphasis is 

placed on mutual cooperation (rather than conflict resolution). According to the functionalities 

provided, this type of DSS may range from simple communication schemes to some form of 

more sophisticated collaborative computing, either using synchronous or asynchronous 

communications. Note that in this type of systems a key uncertainty source arises because of 

possible discrepancies among experts and/or stakeholders. 

 Data-oriented 

Data-oriented DSS emphasize access to and manipulation of large amounts of data, in general, 

historical data stored in data warehouse systems. The distinction between data-oriented and 

model-oriented DSS sometimes appears in the literature, although it is practically impossible 

to design data management procedures, especially for large collections of data, without also 

designing data-intensive analytical models and methods in an inter-dependent manner. In 

large companies and the public sector, the policy analysis and design processes largely rely on 

such data-oriented DSS, well beyond simple data-retrieval systems. Data oriented DSS are 

clearly plagued with uncertainty issues, for reasons outlined in our introduction. 

 Geography-oriented 

Spatial DSS are designed to assist users in decision-making processes involving spatial 

problems, such as the location of desirable, semi-desirable or obnoxious infrastructures. 

Modelling and analytical capabilities are coupled with geographic information systems (GIS) 

capabilities using a range of spatial (land use, water reservoirs, etc.) and non-spatial 

information (social or economic indicators, etc.) to analyse plausible scenarios and provide 

decision support in shaping decisions with spatial impact, such as the location of a new airport 

or routing the transportation of hazardous materials. In these problems multiple criteria 

evaluation of the merit of different alternatives (e.g., routes, areas) are generally at stake and 

must be explicitly taken into account in problem structuring, model building and analysis 

phases. For this type of DSS, built in procedures based on spatial statistics are clearly relevant 

for the type of uncertainty typically involved in spatial data, see e.g. (Ripley 2004). 

 Knowledge-oriented 

A knowledge-oriented DSS assists the decision making process using a knowledge base, which 

may be constructed according to different procedures of knowledge extraction, coupled with 



analytical methodologies. Since information resources on which knowledge is built are 

generally very heterogeneous, knowledge management should rely on specific formal 

languages through the entire life-cycle of knowledge generation, codification, sharing, and 

utilization. Ontologies (formal, explicit specifications of a shared conceptualization) are often 

used for knowledge representation in DSS because they facilitate the computational 

representation of background knowledge about complex domains. Due to the lack of ability of 

ontologies to deal explicitly with uncertainty, Bayesian networks have been proposed for 

probabilistic knowledge representation under uncertainty regarding both structure and 

numerical information, as described in Section 3. 

 Model-oriented 

According to (Power & Sharda 2007), model-driven DSS are distinct from decision analysis or 

operations research computer-supported tools in making models accessible to non-technical 

users and being intended for frequent utilization in the same or similar decision situations. In 

model-oriented DSS, quantitative models are the core element of the DSS architecture and the 

level of functionality depends on the type of model - (multi-objective) optimization, (multi-

criteria) decision analysis, simulation, etc. Model-oriented DSS are not, in general, data 

intensive but they usually require sophisticated forms of preference information elicitation to 

be supplied in particular to multi-criteria decision analysis or multi-objective optimization 

models.  

 Web-oriented 

Web-based and web-enabled DSS are aimed at making the most of the web capabilities to 

facilitate decision support to managers, for instance to deal with group decision and 

negotiation problems in which the participants are geographically separated or in spatial 

planning problems using web GIS. Web-based DSS are implemented using web specific 

technologies having a web server as the central component. In web-enabled DSS some 

components are located in a remote legacy system and a browser can be used to access the 

full DSS functionalities. A present trend is DSS designed as stand-alone systems being migrated 

to web-enabled DSS adding the necessary web technology components, which involves lower 

costs and faster redevelopment processes than redesigning and implementing a full web-

based system. This trend is witnessed, for instance, in moving mapping and GIS functionalities 

to the internet, thus profiting from the potential to make distributed geographic information 

and applications widely available using a browser. A popular strand in this respect is the new 

generation of e-participation systems that facilitate in various forms group decision support 

over the web, see (Rios Insua & S. French 2010) for a description. 

 

Model-oriented DSS are by far the most reported in this review, followed by knowledge-
oriented DSS also displaying a growing trend (Figures 6 and 7). This trend recognizes the need 
to use well-structured decision models, and combine them with expert knowledge, to deal 
with several sources of uncertainty and reach robust conclusions. 

 



 
Figure 6. Frequency of different DSS types in this review. 

 

 

 
Figure 7. Evolution of DSS types used. 

 

 

5. Application areas 

 

The scope of applications that emerged in this review is quite diverse, suggesting the wide 

applicability of the methods, strategies and architectures proposed. The most represented 

application areas in this review are marketing/strategy, finance/economics, environment, 

water resources, medical, and operations management, which account for about three-

quarters of the applications reported in the literature reviewed (Figure 8). Somewhat more in 

detail, we may say that: 

 Topics in marketing/strategy include marketing and strategy development, 

business process planning, fostering innovation, supplier selection, real state 



retailing and appraisal and negotiation. Typical uncertainties would include selling 

prices or degree of success of innovation initiatives. 

 Topics in finance/economics include portfolio optimization, asset allocation, 

investment/project evaluation, cost estimation, price quoting, and insurance 

pricing. Typical sources of uncertainty would include market stability and asset 

prices. 

 Topics in environmental management include restoration of contaminated 

ecosystems, land depletion assessment, assessment of regional climate change 

impacts, solid waste management, and life-cycle assessment of alternative 

technologies. Typical uncertainties would stem from changes in local weather 

patterns and evolution of contaminated ecosystems.  

 Topics in water resources include ecological and hydrological processes, flood risk 

assessment and management, evaluation of drainage water tunnels, river basin 

planning and management, and water quality management.  Typical uncertainties 

would include water demand for various purposes or water inflows at relevant 

points of the river basin. 

 Topics in the medical area typically intend to model expert knowledge for medical 

diagnosis and prescription, with uncertainties in relation with the incumbent 

illnesses, their impact for instance in work productivity or retirement age, and the 

relevant risk factors. 

 Topics in operations management include inventory management and control, 

scheduling, and maintenance, with uncertainties such as the product demand, 

availability of production machines, and cost estimates. 

 

The evolution panorama (Figure 9) shows two noteworthy aspects: the range of application 

areas has been steadily growing, especially in connection with water resources management.  

 



 
 

Figure 8. Frequency of application areas in this review. 

 

 

 
 

Figure 9. Evolution of application areas. 

 

 



6. Conclusions 

 

We have provided an overview of how issues in relation with uncertainty, whatever its source 

might be, have been dealt within the applied DSS literature over the last twelve years. The 

variety of strategies to deal with uncertainties has increased in recent years. An interesting 

conclusion is that uncertainty is being increasingly addressed in decision support, with 

probabilistic models and fuzzy based approaches the most frequent strategies. Probabilistic 

models refer mainly to uncertainty issues, whereas fuzzy based models refer mainly to 

imprecision. When both issues arise, one is frequently led to one of the imprecise probability 

approaches, including possibility measures.  

Although other frameworks such as Bayesian networks and fuzzy cognitive maps have been 
increasingly used in the more recent years, the underlying approaches for dealing with 
uncertainties are mostly MCDA, optimization and rule-based approaches, with a strong 
increasing tendency for MCDA. This brings the issue of dealing with uncertainty about 
preference-related parameters, which contributes to having ten cases in which a parametric 
analysis is performed. MCDA is also often associated with probabilistic modelling (ten cases) 
and fuzzy modelling (twelve cases).  

In terms of DSS type, model-oriented DSS prevail, followed by knowledge-oriented DSS also 
displaying a growing trend. As expected, model-oriented DSS tend to be associated with MCDA 
or optimization approaches, whereas knowledge-oriented DSS tend to be associated with 
rules. Geography-oriented DSS are in a distant third position, with similar numbers of MCDA, 
optimization, and simulation approaches. 

Concerning application areas, the areas of management prevail: applications on 

marketing/marketing plus economics/finance represent one third of the total. Next, one can 

identify a group of applications concerned with environmental sustainability: agriculture, 

energy, environment, and water resources account for approximately 30% of the applications. 

Probabilistic and fuzzy strategies to deal with uncertainty are used in all fields. Fuzzy strategies 

are dominant in marketing, whereas probabilistic strategies seem to dominate in medical, 

environment and water resources applications (Table 3). Concerning the underlying approach 

(see Table 4), MCDA dominates in environment and water resources. In finance/economics 

MCDA and optimization share the protagonism. In marketing/strategy, MCDA and rule-based 

approaches prevail. Operations management is an area in which optimization is the most used. 

 

 
Evidential 
Reasoning Fuzzy Interval Parametric 

Possibility 
theory Probabilistic Scenarios 

Agriculture  1    2  

Critical situations/risks  3    1  

Energy  1 1    1 

Environment  2  3 1 5  

Finance/economics 1 3   1 5 1 

Manufacturing  1      

Marketing/strategy 1 8  3  3  

Medical 1 1    4  

Military  1    2  

Operations mgt.  1  2  3  



Water resources  3 1   6 1 

Table 3. Application vs Strategy to deal with uncertainty. 

 

 
Bayesian 
networks FCMs MCDA 

Neural 
networks Optimization Rules Simulation 

Agriculture 1     1 1 

Critical situations/risks  1 1  1  1 

Energy   1  1   

Environment   6   1  

Finance/economics   4  4 2 1 

Manufacturing    1    

Marketing/strategy  1 6 1 1 5  

Medical  1  1  3 1 

Military 1  1     

Operations mgt.   1  4   

Water resources   4  1  2 

Table 4. Application vs Underlying approach 

 

We may, therefore, conclude that uncertainty is of growing concern in actual decision support 

systems, as indeed should be, with an increasing number of DSS addressing issues in 

connection with uncertainty in many application domains. Given this vitality, which is 

witnessed in this review, some issues could be discussed as outlined below. 

Most of the DSSs reviewed are ad-hoc in the sense that they are developed with a specific 

application in mind. It seems there is ground for the development of generic DSSs based on 

given methodologies. Some generic systems include WINBUGS, implementing Markov chain 

Monte Carlo methods in graphical models, or GeNIe to evaluate influence diagrams. 

A methodological area of outmost importance for applications is the elicitation of judgments, 

both as far probabilities and other paradigms are concerned. Much remains to be done in the 

art and science of elicitation procedures. In this respect, an important problem refers to 

multiple experts and multiple models, one example being uncertainty in climate change. In this 

area, there are numerous competing models, most of them predicting global warming, 

differing, however, in the estimates of the extent of such effect and the uncertainty around it. 

We may deal with such issue through model averaging; however, most approaches assume 

independence among models and expert judgments, typically leading to less uncertainty than 

should be acknowledged. 

The example of climate change also points out to another emerging area, that of severe 

uncertainty, which frames much of long-term policy making. This is frequently undertaken via 

scenario analysis and there is an increasing interest in combining this approach with MCDA 

methods. 



Solving these, and other important challenges, will no doubt help in promoting even more the 

incorporation of uncertainty models into actual decision aiding and decision support systems. 

While writing this review, much of Europe is drowning on economic uncertainty amid 

discussions by politicians attempting to steer a continent with their actions (and inactions). We 

do not anticipate any shortage of opportunities to use uncertainty modelling methods and 

software.   
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