
U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

Journal of Intelligent & Fuzzy Systems xx (20xx) x–xx
DOI:10.3233/IFS-141200
IOS Press

1

IDK and ICARO to develop multi-agent
systems in support of Ambient Intelligence

1

2

José M. Gascueñaa, Elena Navarroa,b, Patricia Fernández-Sotosc, Antonio Fernández-Caballeroa,b,∗

and Juan Pavónd
3

4

aInstituto de Investigación en Informática de Albacete (I3A), Albacete, Spain5

bUniversidad de Castilla-La Mancha, Departamento de Sistemas Informáticos, Albacete, Spain6

cUniversidad de Castilla-La Mancha, Facultad de Medicina, Albacete, Spain7

dUniversidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e
Inteligencia Artificial, c/Profesor José García Santesmases, s/n, Madrid, Spain

8

9

Abstract. An important issue in Ambient Intelligence (AmI) is the massive deployment of intelligent agents embedded in the
environment which are adaptive to the users’ profiles, preferences and needs. This is why, the use of agent-oriented methodologies
and frameworks is almost mandatory to easily develop software for AmI scenarios. ICARO is a software framework that promotes
the use of different organizational and behavioral patterns to implement multi-agent systems (MAS). Its extensive use in several
projects demonstrates a substantial increase in software productivity. Also, in order to reduce the coding effort it is usual to design
MAS at a higher level. In this sense, code generation from MAS specifications into ICARO framework has been performed.
INGENIAS Development Kit (IDK) supports both the specification of MAS models, including any feature required to implement
MAS with ICARO, and a set of facilities for code generation. This paper describes the development of AmI applications thanks
to the integration of ICARO and IDK. Two IDK modules have been developed, namely a “code generation” and a “code update
support” module.

10

11

12

13

14

15

16

17

18

19

Keywords: Multi-agent systems, agent-oriented software engineering, code generation, ambient Intelligence, assisted living
systems, ambient assisted systems, smart homes

20

21

1. Introduction22

Ambient Intelligence (AmI) is being a very active23

topic of research in the last decade. Ducatel et al. [14]24

envisioned some of the ideal scenarios that AmI should25

offer to society, community as well as individuals. As26

stated by the authors, AmI promotes the development27

of innovative and intelligent user interfaces “embed-28

ded in an environment that is capable of recognizing29

and responding to the presence of different individuals30

in a seamless, unobtrusive and often invisible way”.31

AmI user interfaces become transparent (people do

∗Corresponding author. Antonio Fernández-Caballero, Instituto
de Investigación en Informática de Albacete (I3A), Albacete, Spain.
E-mail: Antonio.Fdez@uclm.es.

not perceive complexity neither presence) and they are 32

“intelligent” to react in a proactive and sensitive way 33

[1] at the same time. The idea of making technol- 34

ogy transparent but usable to people has opened the 35

door to its exploitation in a wide variety of previously 36

unforeseen ambiences. For instance, it is being widely 37

exploited in the context of smart homes, also called 38

ambient assisted systems and assisted living systems. 39

These are home-like environments that exploit AmI 40

to respond to the behavior of their residents and to 41

provide them with novel services and facilities [13]. 42

Home care is one major category of smart home appli- 43

cation. Some systems have been developed for detecting 44

falls of elders by processing the information of sensor 45

infrastructures [37]. Other interesting systems are being 46

developed to detect health care problems such as heart 47

1064-1246/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

AFC
Cross-Out

AFC
Inserted Text
intelligence

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

2 J.M. Gascueña et al. / IDK and ICARO in support of AmI

Fig. 1. AmI system interacting with its environment.

breaks through processing context information [11].48

These systems target elders to provide independence49

and quality of life.50

AmI systems take advantage of Artificial Intelligence51

(AI) techniques as the means to resemble humans when52

interacting with their environment. For this reason, an53

AmI system perceives the state of the users and/or54

the environment, reasons about the collected data by55

using AI (e.g. intelligent agents), and acts accordingly56

to achieve the expected goals (see Fig. 1). Moreover,57

agents are good in modeling, simulating and represent-58

ing meaningful entities such as rooms and persons in59

AmI systems [34]. The AmI system properties turn the60

development into a challenging work demanding ade-61

quate tools that assist throughout a well established62

software development process. Both tools and process63

should be able to adapt to the diversity of AmI devices64

and communication technologies from an implemen-65

tation point of view. The major contribution of this66

paper is the description of our experience after develop-67

ing a couple of software modules facing the mentioned68

issues. The software consists in a code generator mod-69

ule and module to support code update. The modules70

have not been developed from scratch but INGE-71

NIAS Development Kit (IDK) [20], the tool supporting72

the agent-oriented software engineering methodology73

named INGENIAS [31], has been used. IDK provides74

a template-based proprietary mechanism for develop-75

ing new modules which automatically generate code76

for any target language. As far as we know this func-77

tionality is not provided by any other tool dedicated to78

designing multi-agent systems (MAS) (e.g. Prometheus79

Design Tool (PDT) [30], Tool for Agent Oriented visual80

Modeling for the Eclipse platform (Taom4E) [26] or81

DSML4MAS development environment (DDE) [38]).82

The two aforementioned modules generate code83

for the ICARO framework that provides high-level84

software components to facilitate the development of85

agent-based applications. Moreover, it promotes the use86

of different organizational and behavioral patterns that 87

enable the specification of MAS at a higher level during 88

design phases. With this aim in mind, ICARO provides 89

engineers with concepts and models, together with a 90

customizable MAS design, Java code fully compati- 91

ble with software engineering standards. Also, it can 92

be integrated into the most popular integrated develop- 93

ment environments (IDE). Moreover, it is independent 94

of the agent architecture, this way enabling develop- 95

ers to create new architectures and to integrate them 96

into the framework. This is a clear difference with 97

regard to other agent frameworks, such as JACK [40] 98

or JADE [4], as they provide a middleware instead 99

of an extensible architecture to establish the com- 100

munications among agents. This advantage provides 101

developers with the necessary flexibility to deal with 102

the diversity of AmI devices and communication tech- 103

nologies. An additional advantage is that the framework 104

already implements functionality for automatic com- 105

ponent management, and application initialization and 106

shutdown. This reduces the developers’ workload and 107

ensures that all components are under control. This 108

last functionality is usually not provided under other 109

frameworks. 110

The rest of the article is organized as follows. Section 111

2 describes the related work. Then, Section 3 intro- 112

duces IDK modules developed for ICARO. After that, 113

an AmI oriented case study on personal health monitor- 114

ing illustrates our approach in Section 4. Finally, some 115

conclusions are provided in Section 5. 116

2. Related work 117

As stated by Cook et al. [10] AmI technologies are 118

expected to be sensitive, responsive, adaptive, transpar- 119

ent, ubiquitous, and intelligent. The three first features 120

greatly rely on the context-aware computing field, but 121

transparency and ubiquity depend on the area of ubiq- 122

uitous computing, also called pervasive computing. But 123

it is intelligence which becomes a critical feature as it 124

makes AmI systems more sensitive, responsive, adap- 125

tive, transparent and ubiquitous. The main reason is that 126

intelligence helps in understanding user environments 127

and, consequently, in providing adaptive assistance 128

[9]. This explains why AmI entails contributions from 129

different AI areas, such as machine learning [3], ontolo- 130

gies [24], neural networks [9] and, specially, MAS. 131

Indeed, MAS are specially good at modeling real-world 132

and social systems, where problems are solved in a 133

concurrent and cooperative way without the need of 134

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

J.M. Gascueña et al. / IDK and ICARO in support of AmI 3

reaching optimal solutions [34]. This is why the natu-135

ral relationship between AmI and MAS is being widely136

exploited. Indeed, AmI proposes the development of137

context aware systems equipped with devices that rec-138

ognize context and act accordingly. Agents provide an139

effective way to develop such systems since agents140

are reactive, proactive and exhibit an intelligent and141

autonomous behavior [2]. Agents react to humans based142

on information obtained by sensors and their knowl-143

edge about human behaviors within agent-based AmI144

applications [6].145

As aforementioned, the development of AmI sys-146

tems is not a trivial issue, being necessary the use of147

tools and well-defined processes that guide the stake-148

holders. Taken into account the relevance that MAS149

has to AmI, several alternatives providing the necessary150

support have recently been developed. One of them is151

the methodology defined by Serrano et al. [36], based152

on the use of MAS-oriented simulations for the val-153

idation of AmI-based ubiquitous computing systems.154

This proposal is very interesting as it helps to validate155

AmI applications whose real tests would be imprac-156

tical because of the unavailability of resources, high157

cost, and so on. Unfortunately, the methodology only158

provides guidelines for validation purposes and not159

for the whole development of AmI systems; so it has160

to be used jointly with other proposals. Muñoz et al.161

[28] present an argumentative MAS architecture that162

exploits semantic web ontologies to discover inconsis-163

tent contexts, but the approach does not offer a complete164

support for the development of AmI systems from an165

implementation point of view. Yi-bin et al. [41] have166

also defined a set of models applicable for design and167

development that unfortunately cannot be extended to168

provide the necessary flexibility. Ayala et al. [2] have169

recently developed a platform-neutral framework called170

MalacaTiny. It is a quite powerful framework which171

manages the diversity of communication technologies172

by using aspect-oriented programming. However, it has173

been specifically designed for mobile applications so174

that its capabilities to develop general AmI systems175

remain unexplored. Another framework is JaCaMo [7]176

which encompasses a multi-dimensional concept (orga-177

nization, agent and environment) to develop MAS.178

Unfortunately, the JaCaMo related agent programming179

language uses belief-desire-intention (BDI) [35] con-180

cepts, reducing its reusability in different applications.181

Although these proposals are relevant to the develop-182

ment of AmI systems and provide great advantages,183

all of them experience some serious problems when184

dealing with two challenging issues at the implementa-185

tion level, namely the diversity of AmI devices and the 186

variety of communication technologies. 187

A clear alternative is ICARO which provides pat- 188

terns to build reactive [18] and cognitive [22] agents. 189

The use of component patterns for modeling MAS is 190

a differentiating factor from other agent-oriented pro- 191

gramming frameworks and languages [5]. Moreover, 192

while other agent-based platforms that are FIPA- 193

compliant (e.g. JADE) mainly focus on communication 194

standards, ICARO targets on providing high-level soft- 195

ware components for easy development of complex 196

agent behavior, agent coordination, and MAS organiza- 197

tion. Regrettably, to date there are no tools for modeling 198

MAS applications and generating code for this frame- 199

work. So, there is a need for code generation from 200

design specifications to ICARO framework. 201

Code generators are useful tools for software devel- 202

opment due to the evident benefits provided by their 203

exploitation [15, 29]. One of these benefits is an 204

improved productivity since the time necessary to 205

perform coding tasks is reduced. Another important 206

benefit is that the quality of the developed systems is 207

also improved, as the generated code (usually) does 208

not contain bugs. MAS are not an exception to this 209

rule. Several tools for developing MAS applications 210

[33] already provide functionality to generate code for 211

a given agent programming language or framework. 212

For example, the supporting tool of the Prometheus 213

methodology [30] offers a code generation facility to 214

automatically produce JACK agent language code [40]. 215

Taom4E [27], a tool for the development of software 216

following the TROPOS methodology [26], includes 217

functionality to generate code for Jadex language 218

[8]. DDE [38] is an environment for the develop- 219

ment of MAS that is based on a Domain Specific 220

Modeling Language for MAS and supports code gen- 221

eration for JACK and JADE languages [4]. Another 222

proposal develops a code generator with MOFScript 223

(see http://marketplace.eclipse.org/content/mofscript- 224

model-transformation-tool) that transforms agent mod- 225

els, compliant to its meta-model PIM4Agents, to code 226

for the MalacaTiny platform-neutral framework [2]. 227

Finally, our code generator was developed with IDK 228

[20]. Several reasons led us to this decision. First, it 229

offers a graphical editor for modeling MAS applications 230

and functionality for developing new modules able to 231

automatically generate code for any target language. 232

This graphical editor, generated from the INGENIAS 233

meta-model [31], can be extended by introducing new 234

concepts and relations needed to build new MAS appli- 235

cations. Afterwards, the IDK is again regenerated from 236

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

4 J.M. Gascueña et al. / IDK and ICARO in support of AmI

Fig. 2. Modeling an agent using resource’s services.

the new meta-model specification. An advantage of237

this approach is that changes in the definition of the238

meta-model are easily applied to generate personalized239

editors, facilitating the needed flexibility for handling240

the inherent diversity of AmI systems. Second, the241

development of the modules follow a general process242

based on both the definition of specific templates for243

each target platform and procedures to retrieve infor-244

mation from INGENIAS models [19]. Currently, IDK245

incorporates modules to generate code for JADE lan-246

guage from design artifacts as well as documentation in247

HTML format. Finally, a module named code uploader,248

which is used to keep the code components design arti-249

facts updated with changes made in the implementation,250

is also available.251

3. IDK Modules for ICARO252

The development of IDK modules has followed a253

“bottom-up” approach to support ICARO as the target254

platform chosen for the final implementation of a MAS255

application. In first place, the INGENIAS structures for256

specifying all concepts and their relations which are257

necessary to implement an application in ICARO are258

identified. Then, a module which automates the task259

of ICARO code generation from INGENIAS specifica-260

tions, in line with the identified conceptual relations, is261

gradually developed. Finally, a new module upgrades262

the specification of a model when there are changes in263

the implementation. A detailed description of the gen-264

eral process for developing IDK modules can be found265

in [31]. The next subsections provide a description266

about the relations between INGENIAS and ICARO267

concepts, as well as the development of the modules to268

generate code for ICARO and to support the update of269

code, respectively.270

3.1. Conceptual relation between INGENIAS and271

ICARO272

First, it is worth explaining some details of the fig-273

ures that describe the relationship between INGENIAS274

and ICARO. The right side of the figures correspond to275

the notation chosen to express a fragment of a model276

using ICARO concepts and the left side is the notation 277

used to express the same fragment but in terms of the 278

INGENIAS language. 279

Any communication between the components imple- 280

mented to develop a new executable ICARO application 281

can be summarized as follows. First, an event is an 282

entity for exchanging information between the producer 283

of the event and the potential receivers. An event is 284

used for communication and information delivery from 285

a resource to its agent or among agents. Thus, agents 286

send events through their use interfaces and, in the same 287

way, a resource also employs the use interface of an 288

agent to send it an event. Second, an agent utilizes 289

the resource use interface to request the offered ser- 290

vices (methods). From our point of view, the concepts 291

of reactive application agent and application resource 292

used in ICARO can be modeled in INGENIAS by using 293

the concepts of agent and application, respectively. For 294

example, when establishing an ApplicationBelongsTo 295

relationship between an agent and an application, it 296

is understood that the agent uses the services offered 297

by the resource (see Fig. 2). In particular, the actions 298

that agents execute on the environment are represented 299

by this structure. Services are modeled as application 300

methods. 301

Sending information from a resource to an agent is 302

modeled in INGENIAS by establishing an EPerceives 303

relationship between the agent and the application 304

which represents the resource (see Fig. 3). In INGE- 305

NIAS, this information falls within the EPerceives 306

relationship that is modeled with an event of type Appli- 307

cationEvent when a resource simply sends a signal to 308

the agent. But, it is modeled with an event of type Appli- 309

cationEventSlots when more information has to be sent. 310

In the latter case, the information and its type is modeled 311

with slots entities. 312

Now, sending information among reactive agents 313

is modeled in INGENIAS by specifying an entity of 314

type InteractionUnit and relating it to the producer 315

and consumer agents by means of the UInitiates and 316

UICollaborates relationships, respectively (see Fig. 4). 317

If the producer sends information, then it is included in 318

the interaction unit through an entity of type Frame- 319

Fact containing the necessary slots to transport it. 320

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

J.M. Gascueña et al. / IDK and ICARO in support of AmI 5

Fig. 3. Modeling an agent’s perception.

Fig. 4. Modeling a communication among agents.

Conversely, if it only needs to send a signal, then Frame-321

Fact is not included in the interaction unit. Visually, it322

is possible to know that an interaction unit includes a323

FrameFact because it shows the “Info” attribute (the324

value shown is the identifier of the FrameFact).325

Whenever an ICARO user wants to implement the326

behavior of a reactive agent, he/she has to create an327

automaton modeled with a state diagram. In particular,328

five structures available in INGENIAS “state diagram”329

and a criterion to name agents are needed to specify any330

automaton (see Fig. 5):331

� A relationship is established between an “InitialN-332

ode” entity and the state to represent the initial state.

� A relationship is established between an 333

“EndNode” entity and the state to represent a final 334

state. 335
� A “WFollowGuarded” relationship is established 336

between two different states to represent a transi- 337

tion; and a transition is specified using the syntax 338

event / semantic action in its “Condition” attribute. 339

The event represented in the state diagram is related 340

to an ApplicationEvent or an ApplicationEventSlots 341

entity when the event is sent by a resource (see Fig. 342

3). It is related to an InteractionUnit entity if the 343

event is sent by an agent (see Fig. 4). The semantic 344

action takes the same name as the task created in the 345

components diagram.

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 J.M. Gascueña et al. / IDK and ICARO in support of AmI

Fig. 5. Modeling an agent’s automaton.

� The IDK tool does not enable to explicitly represent346

relationships that cycle over the same entity, so that347

a fourth structure has been considered. In order to348

represent a transition that comes back to the same349

state, first a copy of the state is made, afterwards350

a “WFollowGuarded” relation is established from351

the copied state to the original state, and finally the352

transition is specified following the syntax described353

in the previous third structure.354
� Universal transitions of an automaton of an ICARO355

reactive agent are valid for any state of an automa-356

ton. That is to say, when the event arrives, actions357

are executed and the next state is reached, regard-358

less of the automaton current state. The solution for359

graphically representing them in INGENIAS is the360

“UniversalState” that represents any state and takes361

the role of the “source” state of the universal transi-362

tion. Obviously, “UniversalState” has not to be used363

with a different meaning.364
� Finally, notice that the agent’s name is assigned to365

the state diagram as a criterion to identify the agent’s366

behavior.367

The XML file that describes the organization of an368

ICARO application represents its deployment. The IDK369

tool offers the possibility of creating deployment dia-370

grams. The number of instances of each type of agent371

is specified using entities such as DeploymentPackage372

and/or DeploymentUnitByType. However, the existence373

of an application instance is conditioned by the exis-374

tence of the instance of an agent. For this reason, it is 375

necessary to find an alternative way of independently 376

expressing the number of instances of agents and appli- 377

cations, such as in ICARO. The solution is to create an 378

environment model and to follow the following steps: 379

(1) to copy all the agents and applications, (2) to relate 380

them with entities of type UMLComment, and (3) to set 381

the number of instances to be deployed in the attribute 382

Text of UMLComment. Obviously, this process can be 383

repeated over and over to create different deployment 384

configurations. 385

3.2. Code Generation Module 386

The IDK module named (INGENIAS ICARO 387

Framework generator) IIF has been developed to gen- 388

erate code for the ICARO framework. For this aim, the 389

IIFGenerator class is extended so that its constructors 390

possesses the templates that the IIF module uses in a 391

similar way to any other IDK code generator. Moreover, 392

the extended IIFGenerator class also implements the 393

abstract methods defined in BasicCodeGeneratorImp. 394

It is worth noting that the development of the IIF mod- 395

ule has been simplified by defining a template for each 396

artifact that an ICARO user has to implement (see 397

Table 1). 398

The IDK templates for code generation contain 399

source code written in the programming language of the 400

target platform and tags to establish where the model 401

information is used during the code generation. The 402

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

J.M. Gascueña et al. / IDK and ICARO in support of AmI 7

Table 1
Description of the templates

Template Description

Automaton Used to generate an XML file with the automata agents’ code.
SemanticAction Employed to generate code for the classes that implement the agents’ semantic action.
ResourceGeneratorClass Used to generate code for the classes that implement the resource use interfaces. The code for both methods and the

parameters of the classes are automatically generated as well.
ResourceUseItf Used to generate code for the resource use interfaces.
Deployment Employed to generate an XML file with the organization of the ICARO application under development.

kind of tags in an IDK template is limited [19]: pro-403

gram is the main tag of the document, repeat means404

that the text enclosed by this tag has to be copied and405

pasted in order to be duplicated, v represents a variable,406

and saveto is used to save the enclosed text into a file.407

Therefore, it can be stated that the IDK code gener-408

ation technology is more straightforward and easy to409

learn than other technologies for code generation, such410

as XSLT [39] or XPAND [21]. However, IDK exhibits411

a disadvantage as it does not enable developers to reuse412

templates. They have to copy and paste the fragments413

to be reused, this way hindering the code generator414

maintainability.415

Next, the elements used by the IIF module to gen-416

erate code for the intermediate states of an ICARO417

reactive agent automaton are shown. With this aim,418

the automaton template specifies the following pattern:419

for each (first repeat) intermediate state defined by the420

intermediateState variable, generate code for each (sec-421

ond repeat) transition that starts with such intermediate422

state.423

@@@repeat id="intermediateStates"@@@424

<state intermediateId=425

"@@@v@@@intermediateState@@@/v@@@">426

@@@repeat id="isTransitions"@@@427

<transition input="@@@v@@@event@@@/v@@@"428

action="@@@v@@@action@@@/v@@@"429

nextState="@@@v@@@nextState@@@/v@@@"/>430

@@@/repeat@@@431

</state>432

@@@/repeat@@@433

When the IIF module is executed using a model cre-434

ated with IDK, a sequence of data is generated. For435

instance, a sketch of the sequence of an agent automaton436

is shown next.437

<repeat id="intermediateStates">438

<v id="intermediateState" entityID=""439

attID="" >IS1</v>440

<repeat id="isTransitions">441

<v id="event" entityID="" attID="" >EV1</v>442

<v id="action" entityID="" attID="" >A1</v>443

<v id="nextState" entityID="" attID="" >NSA</v>444

</repeat>445

<repeat id="isTransitions"> 446

<v id="event" entityID="" attID="" >EV2</v> 447

<v id="action" entityID="" attID="" >A2</v> 448

<v id="nextState" entityID="" attID="" >NSB</v> 449

</repeat> 450

</repeat> 451

Finally, it is worth noting that the IIF module per- 452

forms a matching between the templates and the data 453

retrieved from the model. Next, following our example, 454

the code generated by the IIF module it is shown for an 455

intermediate state and two transitions that start from it. 456

<state intermediateId="IS1"> 457

<transition input="EV1" action="A1" 458

nextState="NSA"/> 459

<transition input="EV2" action="A2" 460

nextState="NSB"/> 461

</state> 462

3.3. Code Update Support Module 463

Another important aspect when developing a code 464

generator is to provide developers with facilities that 465

prevent manually written code from being overridden 466

by subsequent generator runs. The solution in IIF has 467

been to integrate a facility for marking protected regions 468

where the developers can manually write code. The start 469

and end of a protected region is marked by means of 470

comments. A file contains as many protected regions as 471

necessary, each one labeled with a unique identifier. For 472

instance, the class implementing the agents’ semantic 473

actions has a protected region for each semantic action 474

established in the state diagram that specifies the agent 475

automaton. The following fragment of code shows an 476

example of this type of region, where ACTIONID has 477

to be replaced with the identifier of the related semantic 478

action. 479

//#start_nodeIDACCION:ACTIONID <--ACTIONID-- 480

//#end_nodeIDACCION:ACTIONID <--ACTIONID-- 481

The IIF module uses the specification of the model to 482

generate code. Therefore, it is necessary to store a copy 483

of the code manually written in the protected regions. In 484

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

8 J.M. Gascueña et al. / IDK and ICARO in support of AmI

this way, each time the IIF module is run, each protected485

region is overridden with the code manually written by486

the developer.487

Another module in charge of synchronizing code488

and design, named ICAROTCodeUploader, has been489

developed. When it is executed, the design specifica-490

tion is updated with the regions of the code generated.491

This module, unlike the IIF module, does not require492

templates for its definition.493

4. Case study: AmI personal health monitoring494

system495

A case study consisting in an AmI scenario for496

personal health monitoring is introduced to show the497

effectiveness of our approach. Personal health moni-498

toring refers to any electronic device or system that499

monitors a health-related aspect of a person’s life on500

a constant basis outside a hospital setting [25]. Some501

details related to the monitoring scenario are described502

next. There are several electronic devices used to mon-503

itor the vital signs of a patient (see Fig. 6):504

� A heart rate monitor (HRM) enables to measure505

a person’s heart rate in real time.506
� A pulse oximeter (PO) enables the monitoring of507

the saturation of a patient’s hemoglobin.508
� A continuous respiratory monitor (CRM) is used509

for monitoring of respiratory problems.510
� Ambulatory blood pressure monitoring (ABPM)511

is carried out to measure blood pressure at regular512

intervals.513
� A continuous glucose monitoring system (CGM)514

measures glucose levels.515
� A body temperature sensor measures human body516

temperature.517

Fig. 6. Excerpt of the health monitoring system.

� A localization sensor allows to know where a 518

human is. 519

The patient is described through the following 520

parameters: man; 60 years old; 172 cm tall; 90 kg 521

weight; smoker. The patient is constantly monitored by 522

the previously mentioned devices. Let us assume that at 523

a given moment the monitors show the following values 524

about his/her vital signs: 525

� The heart rate ranges from 80 to 90 heartbeats per 526

minute. 527
� The level of oxygen saturation (SpO2) measured 528

by the pulse oximeter is equal to 91%, which 529

reveals that the human presents a mild desatura- 530

tion. 531
� The respiratory rate is 24 breaths per minute. 532
� The clinical systolic and diastolic blood pressures 533

are equal to 150 and 100 mm Hg, respectively. 534

This suggests hypertension. 535
� The concentration of glucose in blood is 70 mg/dl. 536
� The body temperature is 37.6 degrees (Celsius). 537

Although the heart rate is normal, there are some 538

alterations in other vital signs that may infer an acute 539

myocardial infarction (AMI). Moreover, it is known that 540

two family members died of AMI. Therefore, a mobile 541

intensive care unit (MICU) is immediately called to take 542

care of him. It is supposed that there are ten MICUs 543

available in the health care system. 544

The scenario describes an example of execution of 545

an AmI personal health monitoring system. Once each 546

type of sensor needed for monitoring the patients has 547

been identified, it can be easily modeled as a software 548

agent [32]. For instance, Fig. 6 shows that agent “TAg” 549

in charge of manipulating the “Body Temperature Sen- 550

sor” is modeled. The scenario introduces two additional 551

requirements, autonomy and communication, for which 552

MAS are especially appropriate [23]. The patients live 553

at their homes, usually suffering mobility problems, so 554

that the AmI personal health monitoring system has to 555

communicate with them to monitor their state and to 556

autonomously reason whether an anomalous situation 557

happens in order to act properly. 558

The AmI personal health monitoring system has 559

to deal with the described scenario. For this, firstly 560

the entities responsible for coordination are modeled 561

as agents, whereas entities responsible for manag- 562

ing persistent information are modeled as applications 563

(see Fig. 7). Moreover, two applications are identi- 564

fied to denote the graphical user interfaces that interact 565

with humans and medical professionals. Then, the 566

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

J.M. Gascueña et al. / IDK and ICARO in support of AmI 9

Fig. 7. Environment model.

communications among agents are modeled. In INGE-567

NIAS these communications are specified as interaction568

units that contain a framefact which stores the trans-569

ported information in the communication (see Fig. 8).570

So, similar structures to those depicted in Fig. 4 are571

specified with IDK to represent the communications572

among agents.573

Next, the different scenarios have to be specified574

for the personal AmI personal health monitoring sys-575

tem. For instance, the interaction protocol illustrated in576

Fig. 9 is specified to deal with the scenario described577

above integrating the information collected by the578

different devices. These agents communicate with a579

personal health agent which is responsible for integrat-580

ing the information obtained from the devices and to581

evaluate if the symptoms are related to some health582

problem. Moreover, the personal health agent queries583

a user database to request additional information about584

the monitored human (e.g. age, gender, previous dis-585

eases and family health history). A UserDB application586

entity models the management of this database, that is,587

to get, delete and update user persistent information.588

The personal health agent behavior concludes that an589

AMI might be happening and communicates this fact590

to a medical resource manager agent. The last agent591

selects the best MICU according to the geographical592

location of the human.593

As aforementioned, AmI systems have to monitor,594

reason and react. Monitoring of the health system as595

well as its reactions can be specified through INGE-596

Fig. 8. Partial view of the Interaction model.

NIAS. Moreover, INGENIAS can also be used to model 597

the behavior of the reactive agents through automata 598

(state diagrams). For example, the personal health agent 599

reacts to the information related to the devices as sent by 600

other agents. Moreover, it is responsible for reasoning 601

if any health problem is happening through the human 602

health state by using different rules, such as: 603

If heart rate > 100 Then Tachycardia; 604

If heart rate < 60 Then Bradycardia; 605

If breaths per minute > 20 Then Tachypnea; 606

If breaths per minute < 12 Then Bradypnea; 607

... 608

So, a particular health problem is detected when an 609

individual rule is satisfied. However, the interest of its 610

function increases when several conditions are simul- 611

taneously satisfied, because the integration of different 612

information sources allows the diagnosis of more com- 613

plex problems (as an AMI in the described scenario). 614

The personal health agent holds an initial state, a final 615

state and remains in an intermediate state to receive 616

information sent by the agents related to the devices 617

(see Fig. 10). Each certain time a diagnosis is issued by 618

the agent. 619

It is also necessary to specify another model for 620

the deployment of the application (see Fig. 11). For 621

instance, this model would specify that there is one 622

instance for each type of agent related to a device, one 623

instance of personal health agent, one instance of med- 624

ical resource manager agent, ten instances of MICU 625

agents and MicuGUI applications, and one instance 626

for applications of type UserDB and UserGUI for the 627

described scenario. It is worth noting that the above 628

described models are just a partial view of the system, 629

as they would have to be extended to consider all its 630

requirements. For instance, this is the case in order to 631

create new patients or to define additional reasoning.

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

10 J.M. Gascueña et al. / IDK and ICARO in support of AmI

Fig. 9. Interaction protocol.

Fig. 10. Automaton of personal health agent.

Finally, once the different INGENIAS models are632

specified, the following process is carried out using the633

developed modules in order to obtain the final applica-634

tion (see Fig. 12):

1. The developer uses the INGENIAS ICARO Frame- 635

work generator module (IIF) to automatically 636

generate code from the design specified with the 637

IDK tool (see Fig. 12, step 1). IIF generates several 638

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

J.M. Gascueña et al. / IDK and ICARO in support of AmI 11

Fig. 11. Deployment model.

XML files that describe the behavior of each agent,639

java classes for each agent and application, and the640

XML file describing the application deployment.641

2. After that, the developer manually inserts code into642

the protected regions of the generated java classes643

and implements the new necessary classes (see Fig.644

12, step 2). Specifically, the developer only needs645

to develop the graphical user interfaces, knowing646

how an agent accesses the resources and how an647

agent and/or a resource sends an event to an agent648

to complete the implementation of the application.649

Let us clarify that resources code is generated from650

application entities specified in the detailed design651

model using the INGENIAS modeling language.652

3. The developer uses the ICAROTCodeUploader653

module to update the model with the modifications654

introduced in the protected regions (see Fig. 12,655

Fig. 12. Development of ICARO applications using IDK.

step 3). It enables the developers to always keep 656

synchronized the model and the source code, so 657

that changes introduced in the source code are kept 658

when the code is again regenerated from the model. 659

Finally, the script file generated by the IIF module 660

is executed by the deployment manager to launch 661

the developed application. 662

5. Conclusions 663

This paper has shown the easiness to implement AmI 664

applications using the IDK tools to design them as 665

MAS. The paper has also described the two developed 666

modules to generate code for the ICARO framework 667

from the design. More specifically, the development of 668

these two modules (code generator and code update) 669

that provide support for the implementation of ICARO 670

reactive agent applications has been described. These 671

modules are integrated into the IDK tool. It is worth 672

pointing out that the time spent for learning how to 673

develop and implement the IIF and ICAROTCodeU- 674

ploader modules described in section 3 was two months 675

and fifteen days. This effort shows an improvement in 676

modeling and implementing new applications in terms 677

of productivity. The main reason is that the time neces- 678

sary for coding is reduced as developers do not need to 679

learn the structure, location and naming rules of ICARO 680

applications files. 681

We would like to point out that the presented modules 682

have been validated through their use in the develop- 683

ment of two different applications. The first application 684

[16] was developed to face the problem of a collection 685

of robots patrolling around a surveillance environment. 686

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

12 J.M. Gascueña et al. / IDK and ICARO in support of AmI

The second application [17] was developed for monitor-687

ing and controlling the normal and anomalous situations688

that happen when humans access to a specific area. Dur-689

ing the development of both applications, the developer690

only had to write manually the body of both the resource691

methods and semantic actions along with some aux-692

iliary classes. The remaining code was automatically693

generated by using as input the models created with the694

IDK.695

Finally, two challenges constitute our on-going work.696

The first one is related to the validation of the proposal.697

The developed modules have shown their usefulness698

and suitability when used in the two aforementioned699

projects. They allow to reduce the time necessary to700

perform coding tasks and to increase the quality of the701

developed systems since the generated code contains702

no errors. Although these results are very promising,703

we are currently designing an experimental evaluation704

[12] with developers to determine the acceptance of705

this proposal in a close future. The second challenge is706

mainly related to the extension of the IDK modules to707

provide additional support. Currently, we are extending708

the IIF module to generate the event notification code.709

Acknowledgements710

This work is partially supported by Spanish Min-711

isterio de Economía y Competitividad / FEDER under712

projects TIN2010-20845-C03-01 and TIN2012-34003.713

References714

[1] J. Augusto, Ambient intelligence: The confluence of perva-715

sive computing and artificial intelligence, Intelligent Computing716

Everywhere (2007), 213–234, Springer.717

[2] I. Ayala, M. Amor and L. Fuentes, A model driven engineer-718

ing process of platform neutral agents for ambient intelligence719

devices, Autonomous Agents and Multi-Agent Systems (2013),720

doi:10.1007/s10458-013-9223-3.721

[3] A. Aztiria, A. Izaguirre and J.C. Augusto, Learning patterns in722

ambient intelligence environments: A survey, Artificial Intelli-723

gence Review 34 (2010), 35–51.724

[4] F. Bellifemine, G. Caire and D. Greenwood, Developing Multi-725

Agent Systems with JADE, John Wiley and Sons, (2007).726

[5] R.H. Bordini, M. Dastani, J. Dix and A. El Fallah Seghrouchni,727

Multi-Agent Programming: Languages, Tools and Applications728

(1st ed.), Incorporated, Springer Publishing Company, 2009.729

[6] T. Bosse, F. Both, C. Gerritsen, M. Hoogendoorn and J. Treur,730

Methods for model-based reasoning within agent-based ambi-731

ent intelligence applications, Knowledge-Based Systems 27732

(2012), 190–210.733

[7] O. Boissier, R. Bordini, J.F. Hübner, A. Ricci and A. Santi,734

Multi-agent oriented programming with JaCaMo, Journal of735

Science of Computer Programming 78 (2013), 747–761.736

[8] L. Braubach, A. Pokahr and W. Lamersdorf, Jadex: A BDI-agent 737

system combining middleware and reasoning, Software Agent- 738

Based Applications, Platforms and Development Kits (2005), 739

143–168 740

[9] S. Chernbumroong, S. Cang, A. Atkinsa and H. Yud, Elderly 741

activities recognition and classification for applications in 742

assisted living, Expert Systems with Applications 40 (2013), 743

1662–1674. 744

[10] D.J. Cook, J.C. Augusto and V.R. Jakkula, Ambient intelli- 745

gence: Technologies, applications, and opportunities, Pervasive 746

and Mobile Computing 5 (2009), 277–298. 747

[11] A. Costa, J.C. Castillo, P. Novais, A. Fernández-Caballero and 748

R. Simoes, Sensor-driven agenda for intelligent home care 749

of the elderly, Expert System with Applications 39 (2012), 750

12192–12204. 751

[12] F.D. Davis, Perceived usefulness, perceived ease of use, and 752

user acceptance of information technology, MIS Quarterly 13 753

(1989), 319–340. 754

[13] L.C. De Silva, C. Morikawa and P.M. Iskandar, State of the art 755

of smart homes, Engineering Applications of Artificial Intelli- 756

gence 25 (2012), 1313–1321. 757

[14] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten and J.C. 758

Burgelman, ISTAG: scenarios for ambient intelligence in 2010, 759

ISTAG, Technical Report, 2010. 760

[15] J.M. Gascueña, E. Navarro and A. Fernández-Caballero, 761

Model-driven engineering techniques for the development of 762

multi-agent systems, Engineering Applications of Artificial 763

Intelligence 25 (2012), 159–173. 764

[16] J.M. Gascueña, E. Navarro and A. Fernández-Caballero, 765

VigilAgent for the development of agent-based multi-robot 766

surveillance systems, Lecture Notes in Computer Science 6685 767

(2011), 200–210. 768

[17] J.M. Gascueña, E. Navarro and A. Fernández-Caballero, 769

VigilAgent methodology: Modeling normal and anomalous sit- 770

uations, Advances in Intelligent and Soft Computing 89 (2011), 771

27–35. 772

[18] J.M. Gascueña, A. Fernández-Caballero and F.J. Garijo, Using 773

ICARO-T framework for reactive agent-based mobile robots, 774

Advances in Intelligent and Soft Computing 70 (2010), 91– 775

101. 776

[19] J.J. Gómez-Sanz, INGENIAS Agent Framework. 777

Development Guide version 1.0. Technical Report, 778

Universidad Complutense de Madrid, (2008). 779

http://grasia.fdi.ucm.es/main/myfiles/guida.pdf 780

[20] J.J. Gómez-Sanz, R. Fuentes, J. Pavón and I. García-Magariño, 781

INGENIAS development kit: A visual multi-agent system 782

development environment, Proceedings of the 7th Confer- 783

ence on Autonomous Agents and Multi-agent Systems (2008), 784

1675–1676. 785

[21] R.C. Gronback, Eclipse Modeling Project: A Domain-Specific 786

Language Toolkit, Addison-Wesley, (2009). 787

[22] J. Lacoûture, J.M. Gascueña, GleizesMP Glize, P. Garijo, F.J. 788

Fernández-Caballero and A., ROSACE: agent-based systems 789

for dynamic task allocation in crisis management, Advances in 790

Intelligent And Soft Computing 155 (2012), 255–259. 791

[23] P. Leitão, Agent-based distributed manufacturing control: A 792

state-of-the-art survey, Engineering Applications of Artificial 793

Intelligence 22 (2009), 979–991. 794

[24] F. Mastrogiovanni, A. Sgorbissa and R. Zaccaria, Activity 795

recognition in smart homes: From specification to represen- 796

tation, Journal of Fuzzy and Intelligent Systems 21 (2010), 797

33–48. 798

[25] B. Mittelstadt, N.B. Fairweather, N. McBride, M. Shaw, 799

Ethical issues of personal health monitoring: A literature 800

http://grasia.fdi.ucm.es/main/myfiles/guida.pdf
AFC
Cross-Out

AFC
Inserted Text
,

AFC
Inserted Text
 and TIN2013-47074-C2-1-R.

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

J.M. Gascueña et al. / IDK and ICARO in support of AmI 13

review. ETHICOMP 2011 Conference Proceedings, (2011).801

http://www.academia.edu/attachments/31140067/download file802

[26] M. Morandini, L. Penserini and A. Perini, Modelling self-803

adaptivity: A goal-oriented approach, Proceedings of the 2nd804

IEEE International Conference on Self-Adaptive and Self-805

Organizing Systems (2008), 469–470.806

[27] M. Morandini, C.D. Nguyen, L. Penserini, A. Perini and A. Susi,807

Tropos modeling, code generation and testing with the Taom4E808

tool, Proceedings of the 5th International i* Workshop (2011),809

172–174.810

[28] A. Muñoz, J.C. Augusto, A. Villa and J.A. Botía, Design and811

evaluation of an ambient assisted living system based on an812

argumentative multi-agent system, Personal and Ubiquitous813

Computing 15 (2011), 377–387.814

[29] V. Noel, J.P. Arcangeli and M.P. Gleizes, Between815

design and implementation of multi-agent systems: A816

component-based two-step process, Proceedings of the817

8th European Workshop on Multi-Agent Systems (2010).818

ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/PUBLIS/eumas-819

2010-noel.pdf820

[30] L. Padgham, J. Thangarajah and M. Winikoff, Prometheus821

design tool, Proceedings of the 23th AAAI Conference on Arti-822

ficial Intelligence, 1882–1883.823

[31] J. Pavón, J.J. Gómez-Sanz and R. Fuentes, Model driven devel-824

opment of multi-agent systems, Lecture Notes in Computer825

Science 4066 (2006), 284–298.826

[32] J. Pavón, J.J. Gómez-Sanza, A. Fernández-Caballero and827

J.J. Valencia-Jiménez, Development of intelligent multisensor828

surveillance systems with agents, Robotics and Autonomous829

Systems 55 (2007), 892–903.

[33] A. Pokahr and L. Braubach, A survey of agent-oriented develop- 830

ment tools, Multi-Agent Programming: Languages, Tools and 831

Applications (2009), 289–329. 832

[34] C. Ramos, J.C. Augusto and D. Shapiro, Ambient intelligence – 833

the next step for artificial intelligence, IEEE Intelligent Systems 834

23 (2008), 15–18. 835

[35] A.S. Rao and M.P. Georgeff, BDI agents: From theory to 836

practice, Proceedings of the First International Conference on 837

Multi-Agent Systems (1995), 312–319. 838

[36] E. Serrano and J. Botia, Validating ambient intelligence based 839

ubiquitous computing systems by means of artificial societies, 840

Information Sciences 222 (2013), 3–24. 841

[37] M.V. Sokolova, J. Serrano-Cuerda, J.C. Castillo and A. 842

Fernández-Caballero, A fuzzy model for human fall detection 843

in infrared video, Journal of Fuzzy and Intelligent Systems 24 844

(2013), 215–228. 845

[38] S. Warwas and C. Hahn, The DSML4MAS development envi- 846

ronment, Proceedings of the 8th Conference on Autonomous 847

Agents and Multi-agent Systems (2009), 1379–1380. 848

[39] I. Willians, Beginning XSLT and XPaht: Transforming XML 849

Documents and Data, Wiley Publishing Inc, (2009). 850

[40] M. Winikoff, Jack intelligent agents: An industrial strength 851

platform, Multi-Agent Programming Languages, Platforms 852

Applications (2005), 175–193. 853

[41] H. Yi-bin, H. Zhang-qin and H. Jian, Modeling the Am-bient 854

intelligence application system: Concept, software, data, and 855

network, IEEE Transactions on Systems, Man, and Cybernetics, 856

Part C: Applications and Reviews 39 (2009), 299–314. 857

http://www.academia.edu/attachments/31140067/download_file
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/PUBLIS/eumas-2010-noel.pdf

