Journal of Intelligent & Fuzzy Systems 28 (2015) 29-41 29
DOI:10.3233/IFS-141219
10S Press

Infrastructure to simulate intelligent agents
in cloud environments

Fernando De la Prieta®*, Sara Rodriguez?®, Juan M. Corchado® and Javier Bajo®

aComputers and Automation Control Department, Faculty of Science, University of Salamanca, Plaza de la Merced
S/N, Salamanca, Spain

bArtificial Intelligent Department, Faculty of Computer Science, Technical University of Salamanca, Boadilla del
Monte, Madrid, Spain

Abstract. Nowadays there is a clear trend towards using methods and tools that can help the development of Simulation Systems.
In this regard, Multiagent System (MAS) is a key technology that allows simulating user behavior. When the user is the focus of
the simulation, Ambient Intelligent (Aml) increases in importance. Aml is an emerging multidisciplinary area based on ubiquitous
computing that aims to adapt the environment to the needs of the user. Moreover, Cloud Computing is revolutionizing the services
provided through the Internet, continually adapting itself in order to maintain the quality of its services. This study presents a
multiagent based middleware for the simulation of agent behavior in cloud environments, and uses this information to adapt to the
environment as Aml proposed. The main challenge of this work is the design and development of a new middleware that makes
possible the communication between the technology in charge of the development of MAS and the technology in charge of the
simulation, visualization and analysis of the behavior of the agents using the potential of cloud computing. The platform makes

the computation and communication possible by following the principles proposed by Aml.

Keywords: Multiagent systems, simulation, agent based simulation, cloud computing, distributed systems

1. Introduction

Many new technical systems are distributed systems
involving complex interaction between humans and
machines, which notably reduces their usability. Ambi-
ent Intelligence (Aml) is an emerging multidisciplinary
area based on ubiquitous computing. It influences the
design of protocols, communications, systems, devices
and so on, proposing new ways of interaction between
people and technology, adapting them to the needs of
individuals and their environment. Nowadays, these
systems are evolving into a new paradigm known as
Cloud Computing, which has emerged as a key compo-

*Corresponding author. Fernando De la Prieta, Computers and
Automation Control Department, Faculty of Science, University
of Salamanca, Plaza de la Merced S/N, 37008 Salamanca, Spain.
Tel.: +34 923 294 400/Ext. 1525; Fax: +34 923 294 514; E-mail:
fer@usal.es.

nent of the Future Internet. The key advantage of this
new Computing framework lies in the provision of the
services: it tries to reduce user requirements and provide
a dynamic resource management, where the resources
increase only when there is a rise in service demand
[20, 21]. An environment based on cloud computing
must readjust its resources by taking the demand of the
provided services into account.

Cloud Computing and AmlI are complementary tech-
nologies. Ata functional level, Aml focuses on adapting
the environment to the user. However the underlying
technological level on whichitis based is the computing
and communication services. These computing needs
provide a Cloud Computing environment, in addition
to the demand for user needs. The Cloud Computing
environment provides these computational services.

Simulation can be defined as the representation of the
operation or features of one process or system through

1064-1246/15/$27.50 © 2015 — 10S Press and the authors. All rights reserved

mailto:fer@usal.es

30 F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

Environment

acts
Cloud Simulation 3D ToolS
Service
Middleware
(Repeat JADE >
- .4
Cloud Computing Infrastructure

Fig. 1. Simulation middleware overview.

the use of another [16]. Current research lines that
attempt to determine which technique is best for differ-
ent purposes of simulation are gaining importance. ABS
(Agent Based Simulation) is a new paradigm for the
simulation of complex systems that require a high level
of interaction between the entities of the system, includ-
ing humans. The benefits of agent based computing for
computer simulation include various methods for eval-
uating multi agent systems or for training future users
of the system [16]. The properties of ABS make it espe-
cially suitable for simulating this kind of system. The
ideais to model the behavior of the human users in terms
of software agents. Within this context, MAS are ade-
quate for developing applications in dynamic and flexi-
ble environments. This is primarily due to their capabil-
ities, which can be modeled in different ways and with
different tools [46]. Moreover, the use of both Cloud
Computing and Aml technologies in the context of user
behavior simulation is an advantage because it makes it
possible to anticipate the reallocation of the resources.

Open MAS should allow the participation of hetero-
geneous agents with different architectures and even
different languages [13, 47]. However, it is necessary
to define new solutions that allow the connection on
ABS simulation software.

This study describes the results achieved by a
multiagent-based middleware for the simulation of
agent behavior. The middleware allows the simula-
tion, visualization and analysis of the agents’ behavior.
The main contribution of this paper is the design of
a new infrastructure that makes it possible to provide
these capabilities, see Figure 1. The simulation middle-
ware makes use of technologies for the development of
widely used MAS, and combines them so that it is possi-
ble to use their capabilities to build highly complex and
dynamic systems. This includes, for example, JADE
[23] that is the most widely used platform for soft-
ware agents middleware, and Repast (Recursive Porous
Agent Simulation Toolkit) [34], a free and open-source
agent-based modeling and simulation toolkit. This mid-
dleware and its dependent component were deployed
into a Cloud Infrastructure in order to provide the sys-
tem as a cloud service.

The next contribution is the reformulation of the
FIPA protocol used in JADE [23] This has achieved
several advantages: (i) development of a new frame-
work that provides independence between the model
and visualization components; (ii) improvement of the
visualization component that makes it possible to use
the concept of “time”, essential for the simulation and

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments 31

analysis of the behavior of agents; (iii) and improve-
ments to the user capabilities to which several tools
were added, including message visualization. A 3D tool
was developed in order to provide a graphical represen-
tation of the information provided by the simulation
through the visualization messages. This tool provides
an interface to model buildings and visualization of the
simulation.

Smart environments must take context information
into account, which can be collected by sensor networks
[4]. Todo so, the system is complemented with amodule
that permits the actuation in the environment, adapting
itself to the needs of the end user. In this regard, the
simulation makes it possible to know the user’s needs
in advance.

This study simulates a work environment where there
are disabled people with special needs in their worksta-
tion. As a result of the information provided by the
simulation, user needs can be prepared in advance so
that the disabled people do not have to wait to work.

All contributions resulted in what is, to the best of our
knowledge, the first middleware infrastructure to simu-
late intelligent agents with 3D visualization, simulation
and analysis capabilities in a cloud platform.

The article is structured as follows: Section 2 reviews
the state of art of agent-based simulation and cloud com-
puting technology. Section 3 introduces a description of
the infrastructure specifically adapted to the simulation
of multiagent systems within dynamic environments.
Finally, some results and conclusions are given in
Sections 4.

2. Background
2.1. Agent-based simulation

The main characteristics of agents and MAS are
autonomy, learning and reasoning. These capabilities
can be implemented with different tools [46]. Open
MAS should allow the participation of heterogeneous
agents with different architectures and even different
languages [13, 47]. The development of open MAS is
still a recent field of the MAS paradigm and its devel-
opment will allow applying the agent technology in
new and more complex application domains. There are
existing studies on agent simulation using commercial
off-the-shelf-simulation packages with built-in agent-
based modeling and BDI (Belief-Desire-Intention)
behavior architecture [38], modeling detailed complex
human behaviors.

There are mainly two ways to visualize MAS simu-
lation: the agent’s interaction protocol, and the agent
entity. With the former, it is possible to visualize a
sequence of messages between agents and the con-
straints on the content of those messages. The latter
method visualizes the entity agent and its iteration
with the environment. Most software programs, such
as JADE platform [6, 23] and Zeus toolkit [12], pro-
vide graphical tools that allow the visualization of the
messages exchanged between agents.

The MASON [27], Repast [31, 34] and Swarm [40]
toolkits provide the visualization of the entity agent
and its interaction with the environment. Swarm [40]
is a library of object-oriented classes that implements
the conceptual framework of Swarm for agent-based
models, and provides many tools for implement-
ing, observing, and conducting experiments on ABS.
MASON [27] is multiagent simulation library core
developed in Java. It provides both a model library and
an optional suite of visualization tools in 2D and 3D.
Mason has a distributed version (DMASON). Finally,
Repast [34] is a free and open-source agent-based mod-
elling and simulation toolkit. Nowadays, there are also
distributed versions of these simulations frameworks:
DMASON [18], Repast HPC [1], AGLOBE [2] and
SO on.

There are also other studies such as Vizzari et al.
[43] which have developed a framework supporting the
development of MAS-based simulations based on the
Multilayered Multiagent Situated System model pro-
vided with a 3D visualization. We did not adopt this
framework because it would add a non-desired com-
plexity to our system. We chose the Repast toolkit
because, when the project first started, it was one of the
few to offer a 3D visualization feature, as well as being
simple and having good documentation. Moreover, the
Repast system, which includes the source code, is avail-
able directly from the web. Repast seeks to support
the development of extremely flexible models of liv-
ing social agents, but is not limited to modelling living
social entities alone. Repast is differentiated from other
systems since it has multiple pure implementations in
several languages and built-in adaptive features such as
genetic algorithms and regression [30].

2.2. Cloud computing paradigm

The technology industry is presently making great
strides in the development of the Cloud Computing
paradigm. As a result, the number of both closed and
open source platforms has been rapidly increasing.

32 F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

They all have a similar architecture. From an external
point of view, the three most widely known services are
Software, Platform and Infrastructure. From an inter-
nal point of view, the services generally offered are
considered elastic services due to the high number of
underlying technologies (virtualization, server farms,
web services, web portals, among others) which have
reached their prime.

NIST [29] propose the following definition, which
comes very close to what is understood today by Cloud
Computing: Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction.
This cloud model is composed of five essential char-
acteristics, three service models, and four deployment
models.

While at first sight it may be considered a merely
technological paradigm, reality demonstrates that its
rapid progress is primarily motivated by the economic
interests that surround its purely computational or tech-
nological characteristics. This type of platform will
allow Cloud Computing providers to offer computa-
tional services following a model comparable to the
concept proposed by Utility Computing [36] in that
computational services are offered in a way similar
to how traditional public utilities (e.g. electricity, tele-
phone, water, etc.) are offered. As a result, the service
providers will be able to offer their demanded services
through the Internet with a pay-per-use model [9, 19].
Cloud service users, on the other hand, will not be
required to adopt additional computational resources to
handle peak demand of their products or services, nor
will they be required to have the infrastructure needed
to provide them, thus turning their capital expenses into
operational expenses [5].

There are many cloud providers such as VMWare
[44], Citrix [11], Amazon [3] and so on. Furthermore,
from an academic and research scope, Cordeiro et al.
[15] propose the Euronet platform to interconnect mul-
tiple virtual laboratories using a Cloud environment.
Nurmin et al. [32] present EUCALYPTUS, an open
source framework for cloud computing that implements
TaaS functions. Another proposal is provided in [28],
which presents a 3C model (Cooperative Cloud Com-
puting) for research centers and universities. This model
is based on the Virtual Cloud model and expects to gen-
erate a vast repository of computational resources for
research centers. Given that the majority of Cloud plat-

forms are proprietary, the underlying infrastructure is
invisible to researchers.

2.2.1. +Cloud platform

For the deployment of the simulation middleware and
its associated software components, our own cloud-
based platform, +Cloud [22], was used. +Cloud is a
platform based on the Cloud Computing paradigm. This
platform allows services to be offered at the PaaS (Plat-
form as a Service) and SaaS (Software as a Service)
levels. The SaaS services are offered to end users in
terms of web applications, while the PaaS services are
offered as web services. Both PaaS and SaaS layers
are deployed using an internal layer, which provides a
virtual hosting service with automatic scaling and func-
tions for balancing workload. Therefore, this platform
does not offer an IaaS (Infrastructure as a Service) layer.

This platform is multipurpose and allows the deploy-
ment not only of components specially developed for
cloud environment, but also of software components
that are not originally designed to use within a cloud
infrastructure, such as with our case. As a result, it is
possible to take advantage of Cloud computing and, at
the same time, to continue using the traditional server-
side components.

The internal layer of +Cloud is formed by the
physical environment which allows the abstraction of
resources shaped as virtual machines. Thus, since this
layer is internal to the system, +Cloud does not offer this
kind of service to its users. A more detailed description
of each layer is provided below:

— SaaS Layer. This layer hosts a wide set of Cloud
applications. It offers a set of native applications to
manage the complete Cloud environment, where
users have a personalized virtual desktop from
which they can access their applications in the
Cloud environment, and other more general third
party applications.

— PaaS Layer. This layer is oriented to offer ser-
vices to the upper layer, and is supported by the
internal infrastructure layer. The PaaS layer pro-
vides services through RESTful web services [33]
in an API format. The components of this layer
are: (i) the IdentityManager, which is the mod-
ule in charge of offering authentication services
to clients and applications; (ii) the File Storage
Service (FSS), which provides an interface for a
container of files, emulating a directory structure
in which the files are stored; and, finally, (iii) the
Object Storage Service (OSS), which provides a

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments 33

simple and flexible schema-less database service
oriented towards documents.

The virtual and physical resources are managed
dynamically. To this end, a virtual organization of intel-
ligent agents that monitor and manage the platform
resources is used [22]. In +Cloud, the elastic manage-
ment of the available resources is performed by a MAS
based on VO, which eases the design of the overall sys-
tem [20]. In the +Cloud VO there is a set of agents that
are especially involved in the adaptation of the system
resources in view of the changing demand of the offered
services. In addition, one of the most innovative aspects
of the +Cloud framework is its ability to provide the pos-
sibility of reaching agreements at two different levels:
at the external level, whereby +Cloud allows tempo-
ral SLA’s parameter negotiation between the system
and its customers using multiagent interaction proto-
cols; and at the internal level, whereby +Cloud includes
a computational case-based argumentation framework
that agents can use to engage in an agreement process to
make a decision about the best resource redistribution
to meet a SLA during peak service demand.

2.3. Agent-based cloud computing and simulations

There are only alimited number of studies on the state
of the art that relate Cloud Computing with agent tech-
nology [41]. In general terms, a Cloud system may use
MAS applications in a Cloud environment for .deploy-
ment; there are also Cloud environments that use agent
technology to manage their resources. Some of those
applications include:

— Agents using Cloud. Within this group, the main
state of the art applications use computational
resources from the Cloud environment.

— Cloud using Agents. Within this subgroup, the
range of possibilities is even further extended.
Mong Sim [39] highlights three subgroups of
applications: (i) combination of resources among
Cloud providers; (ii) planning and coordination
of shared resources; (iii) establishing contracts
between users and Cloud service providers.

Obviously, a simulation using Cloud and MAS would
correspond to the first application, Agents using Cloud.
The research in this group is based on the use of
computation resources (storage and computation) that
the Cloud environment provides. With regards to the
computational capacity of the cloud, there are more
examples [10, 17] that use the computational strength

of the environment to perform simulations in different
fields. All of them use the computing environment as a
grid environment [8].

The approach of this paper is different; the simulation
not only uses the computational resources of the cloud
platform, but also offers a specific cloud service of sim-
ulation to the end users. It is also important to note that
the simulation does not use any kind of algorithm to dis-
tribute the complexity of the simulation over the cloud
(such as previous examples that use a Grid computing
approach). In the case of this paper, the middleware only
grants control to the +Cloud platform that is in charge
of providing the resources depending on the needs of
the simulation.

2.4. Ambient intelligent

Ambient Intelligence offers a great potential to
improve quality of life and to simplify the use of
technology by offering a wider range of personalized
services and providing users with easier and more effi-
cient ways to communicate and interact with other
people and systems [14].

The characteristics of the agents make them appro-
priate for developing dynamic and distributed systems
based on Aml, as they possess the capability of adapting
themselves to the users and environmental characteris-
tics [24].

The integration and interoperability of agents and
MAS with SOA. Web services approaches has been
explored in order to provide an intelligent environment.
Some developments are centered on communication
between these models, while others are centered on the
integration of distributed services into the structure of
the agents [7, 25, 26, 35, 37, 45].

Cloud Computing facilitates integration due to the
ease of use of services that it provides, besides the large
range of them (communication, computational service
and simulation) and the simulation makes possible to
advance the adaption of the system to the user needs.

3. Infrastructure to simulate environments

The most well-known agent platforms (like Jade
[23]) offer basic functionalities for the agents, such as
AMS (Agent Management System) and DF (Directory.
Facilitator) services; but designers must implement
nearly all organizational features, such as simulation
constraints imposed by the MAS topology, by them-
selves.

34

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

< REPAST SIMPHONY >

+Cloud PAAS Layer

Coordinator

0

Protocols

T I
I 1
I I
1 I
1 I
I I
: : uses uses
I |
coordinates ! S_ends uses
: | ticks
I
contains | : uses*
: v ! MiddlewareAgent
1 I . :
Repast ! A _ ! | ProtocolList | | MessageList |
Agent | gentList h - -
g ! ! | TickBehaviour |
I I

/\O=

JADE

_

Fig. 2. Middleware deployed in +Cloud Platform.

In order to model open and adaptive simulated sys-
tems, it becomes necessary to have an infrastructure
than can use agent technology in the development
of simulation environments. To this end, this study
presents a middleware infrastructure that allows mod-
eling JADE MAS with the possibility of being
represented in Repast.

In order to better understand the overall operation, it
is necessary to bear in mind the following idea: it is nec-
essary to synchronize JADE to work simultaneously to
Repast. The main concept introduced in this environ-
ment is the notion of time in JADE, which means it is
possible torender the events into Repastinreal time. One
of the main differences between JADE and Repast is that
in JADE, there does not exist a concept of time as such;
the agents interact with each other based on changes or
events that occur in the execution environment. How-
ever, Repast has a time unit, the tick, which is what sets
the pace and allows simulations. Agents in the JADE
context are implemented based on FIPA standards. This
allows creating MAS in open environments, which is
not possible within Repast. These differences are what
this middleware has been able to resolve, integrating the
two environments and achieving a working environment
for the creation and simulation of a more powerful and
versatile MAS and Middleware components.

Furthermore, the deployment of this new middleware
and its related components in a Cloud platform makes it
easier to underlay the infrastructure management. With

this approach, the responsibilities are clearly defined;
the middleware only has to manage the simulation pro-
cess, while the cloud takes care of the computational
resources.

The middleware consists of three principle compo-
nents or layers as shown in Fig. 2:

— The upper layer is the contact with Repast. It
contains two functional blocks, which are:

e RepastAgent. For every agent that we want to
have on the system we must actually create two:
aMiddlewareAgent agent running on JADE, and
its respective RepastAgent released on Repast. It
can be seen as follows: a logical agent, and two
physical agents. RepastAgents have an impor-
tant role: they cannot update their status until
their respective MiddlewareAgent has finished
with all the work they need to perform during
that unit time (tick). This is a very important
aspect, since it is the characteristic of the frame-
work as a system in real time.

Context. It has two important objectives. One is
to establish the synchronism in the execution.
When a tick goes by, it lets the Synchronizer
agent know that it is necessary to notify Mid-
dleware Agent agents that the tick has ocurred.
The other goal of this module is to incorporate
new RepastAgent that enter in the context of
the Repast simulation. For each new Middle-

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments 35

wareAgent that appears in the system, Context
will create its respective RepastAgent and add it
to the simulation environment.

— The bottom layer, which enables JADE, supports

the notion of time. It is divided into four functional
blocks:

o Middleware Agent. It is the extension of the
JADE agent. Performs the same functions, but
adapting them to the presence of ticks. It con-
sists of a number of features to manage the time
in JADE. These functions are detailed in the
following subsection.

o TickACLMessage. JADE messages are used
for communication between agents. Mid-
dlewareAgent agents communicate among
themselves with TickACLMessage messages.
TickACLMessage is the extension of the JADE
ACL message, incorporating the concept of
time. It includes aspects such as the tick identify-
ing where to send the message, and the delay that
the message has when it has reached its destina-
tion. In JADE, the messages exchanged between
agents are sent and arrive instantly; however, that
is not the case in real life. JADE aims to simu-
late and view the evaluation of the system as
time passes. To achieve this, messages cannot
be instant, but must have a shipping time and a
different reception time.

e FIPA Protocols. As discussed above, JADE
implements FIPA standards, which, among
other things, specify multiple communication
protocols. These define a series of patterns that
respond to different types of communication that
two or more agents can perform. The objective
is to adapt FIPA protocols defined in JADE with
Repast ticks. Features of this module will be
detailedin a subsequent section.

e Synchronizer. This is a JADE agent that acts
as notifier. It is responsible for notifying the
Middleware Agent when a tick goes by. It is
the system clock synchronization. When a tick
goes by, Synchronizer is notified in order to
notify MiddlewareAgents. Messages with a spe-
cial performance or function are made through
TickACLMessage.

— The intermediate layer, whose main goal is

to interconnect the two platforms (JADE and
Repast). Itis divided into two functional blocks, and
its goal is to join adjacent layers. These modules are:

e AgentList, as its name implies, it stores all agents
in the system at a given time. It plays an impor-
tant role because it enables communication
between a MiddlewareAgent and its respective
RepastAgent, and vice versa. The diagram
shows two-way information flows from
RepastAgent to AgentList, and from AgentList
to MiddlewareAgent. These flows represent the
communication between two physical agents.

e Coordinator coordinates ~ communication
between the two adjacent layers. The presence
of a coordinator to maintain synchronism
between both layers is fundamentally nec-
essary. Because of Coordinator, Context can
notify the occurrence of a tick to Synchronizer,
and Synchronizer can ensure Context that its
purpose has been carried out, reporting that
all MiddlewareAgent have received the tick.
This kind of communication is necessary to
maintain full synchronization between the two
platforms. Also shown in the diagram are two
flows: between Context and Coordinator, and
between Coordinator and Synchronizer; they
represent the flow of ticks and the synchronism.

3.1. Notion of time in JADE

The adaptation of JADE to support the notion of time
is the most important and complex feature of our pro-
posal. It was necessary to redefine a series of classes of
JADE agents. The new capacity autonomously manages
the receipt of ticks and maintains synchronism with
Repast, so that it abstracts all these aspects and pro-
vides flexibility to the final programmer who uses this
framework. Broadly, the sequence of steps that occurs
for a tick is, as it is shown in Figure 3:

— The occurrence of a tick is generated on Repast,
as it is the platform that has this ability. Context is
notified of this and, through Coordinator, can notify
Synchronizer of its tasks.

— When Synchronizer receives the notice from Con-
text, it alerts all Agents about the new tick. As
Synchronizer is an agent, it can communicate with
MiddlewareAgent through Tick ACLMessage mes-
sages. That is how it notifies them about the new
tick, sending a message with special semantics to
each agent.

— Once Synchronizer has sent all the special messages
notifications of tick, it must wait until all Middle-
wareAgents answer, to ensure that all have received

36

Prepare message
to Agent 2

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

Agent

Agent 2

ake a message
of the queue
and processed

JADE Runtime

Prepare message
to Agent 2

Send Message
(each one is put in

Agent 1 its queue)

Tick 1 Tick2 ...Tickn

to

send from Agent 1

e ——

Middleware

Tick message

|
JADE Runtime

Fig. 3. Sending a message in JADE and with the framework.

the notification. Moreover, it sends an ACK message
to maintain strong synchronism between both sides.
— When a MiddlewareAgent receives a tick by
Synchronizer, it carries out various actions. First,
it sends the message that it has to ship in this tick.
MiddlewareAgents have a special queue for sending
messages. Below is a comparative picture of how
shipping is performed in JADE, and what change
was made in the framework for adaptation over time.

In JADE, sending a message is instant, the program-
mer gives the order, and the message is sent ipso facto.
MiddlewareAgent agent functions differently. It has a
messaging queue, TickACLMessage, so that when a
programmer gives the order to send a message, the mes-
sage is automatically inserted in the scheduled queue
with the associated(?)tick, which must also be sent.
Thus, when a tick goes by, MiddlewareAgent imme-

diately sends messages that are queued and labeled
with the current tick. Subsequently, it adds to the agent
the protocols needed in this tick. This idea will be
further detailed in the following subsection. After per-
forming this task, Middleware Agent executes a method
designed to overwrite the final program. The aim of
this method is to have a function similar to step () of
the Repast method in JADE, which is automatically
executed when a tick goes by. This function is very con-
venient for developers, because by calling on every tick,
it is possible to separate the actions of the agent in order
to carry out them on a specific tick. Finally, after per-
forming all tasks, MiddlewareAgent notifies its agent
Repast counterpart, RepastAgent, to make the neces-
sary changes in the simulation environment. Once all
RepastAgent agents have been updated in the context
of the simulation, the tick goes by, and Repast proceeds
with the change to the next tick.

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments 37

Relation between AchieveREResponder (Jade) — MiddlewareAchieveREResponder

Jade

Midleware

AchieveREResponder (class)
protected ACLMessage handleRequest(ACLMessage request)
(AchieveREResponder method)

protected ACLMessage prepareResultNotification(ACLMessage
request, ACLMessage response) (AchieveREResponder method)

NotUnderstoodException (class)
RefuseException (class)
FailureException (class)

MiddlewareAchieveREResponder (class)

protected MisiaTick ACLMessage manejarPeticionRequest
(ACLMessage requestMessage) (MiddlewareAchieveREResponder
method)

protected MisiaTick ACLMessage manejarResultadoPeticionRequest
(ACLMessage requestMessage, ACLMessage responseMessage)
(MiddlewareAchieveREResponder method)

MiddlewareNotUnderstoodException (class)

MiddlewareRefuseException (class)

MiddlewareFailureException (class)

3.2. Redefinition of FIPA protocols

JADE has a number of implemented FIPA protocols,
which help the programmer. With these protocols, it
encapsulates the developer from having to prepare mes-
sages to be sent, sending the messages, or managing
their reception, among other things. The FIPA proto-
cols defined in JADE have been re-implemented in this
framework to support the notion of time.

It is possible to observe the presence of two roles
in the FIPA protocols implemented in Jade [23]: Ini-
tiator and Responder or Participant. Jade provides a
predefined class for each role and each type of FIPA
interaction protocol, or rather, for a certain group of
FIPA protocols. The jade.proto package contains all
the classes that, in the form of behaviors, facilitate the
implementation of the FIPA communication protocols.
Each pair of classes is told to implement a series of pro-
tocols. The middleware aims to adapt all these classes to
their environment, so that an end user can use them as in
Jade, without worrying about the presence of time. For
example, with the first pair adapted (AchieveRElnitiator
and AchieveREResponder), it is possible to implement
FIPA-Request, FIPA-Query, FIPA-Recruiting, FIPA-
Request-When 'y FIPA-Brokering protocols.

To implement any of these protocols in the Mid-
dleware, it is necessary to use AchieveRElnitiator
(Jade class) and MiddlewareAchieveREResponder,
the adapted class of the Responder role. Mid-
dlewareAchieveREResponder is intended to replace
AchieveREResponder (Jade class). It provides two
handling methods, manageRequest, to send the first
message in response, and manageResultRequestRe-
quest, to send a second message to the agent with the
Initiator role. In addition, it implements the exceptions,
to try to provide the same Jade interface. These excep-
tions are important because Jade uses them to send
messages of the rejection or not understanding of a
task (i.e. if Responder role sends a message of accep-

tation fora task, the execution flow does not diverge in
exception).

The messages of refuse, failure and notUnderstood
will diverge in exceptions, which are also adapted to the
notion of time to send these messages in the desired tick.
The equivalence between Jade classes (and methods)
and the middleware is shown in Table 1.

The communication protocols of JADE defines two
roles, ‘one which starts the conversation (Initiator
role), and the other which evolves in the conversation
(Responder role). The Initiator agent role will begin the
conversation by sending a message to the recipient. In
doing so, it follows the logic developed with the mes-
sage queue. When a MiddlewareAgent agent wishes
to follow a communication protocol in a given tick, it
is simply necessary to add the protocol of communi-
cation to the agent in the tick established. Therefore,
one of the functions of MiddlewareAgent agent after
receiving a tick is to add communication protocols. The
rest of the communication for sending and receiving
messages involves re-implementing and recording dif-
ferent behaviors that make the different functions of
the protocols. The novelty is that these new behaviors
support middleware modules redefined for JADE, such
as support Tick ACLMessage messages or the ability to
respond to a message in a certain tick, without being
immediately.

In the case of the Responder role must be sent two
messages, as discussed above. So, the middleware pro-
vides the programmers with two handles, as in JADE:
one to send the first message, and another to send the
second one, abstracting from all the system logic that
is managing ticks.

3.3. Deploying infrastructure in a Cloud
Both the middleware (including JADE and Repast)

have been deployed in +Cloud system. The simulation
environment is offered as a service in the Cloud, so

38 F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

Fig. 4. Simulation in a 3D environment.

that end users can configure their own simulations, and
access a 3D simulation environment that will get the
results of the simulation.

The main components of the middleware have been
deployed in the infrastructure layer of the cloud plat-
form. These are:

The JADE platform is deployed as a service within
the cloud. It is not possible to create a highly available
service from the basic platform. However, thanks to
the +Cloud platform, it is possible to deploy non-cloud
services in the platform.

Repast, as with JADE, is deployed as a service.
But the version used in the present study is Repast
HPC (High Performance Computing), so the simula-
tion service can use all the features offered in the Cloud
infrastructure.

Finally, the middleware is deployed as an additional
computing service, which interacts with JADE and
Repast. This service provides high availability because
its information is stored in the OSS and FSS services,
provided by the +Cloud environment.

Moreover, within the software layer there is a set of
applications deployed as services that provide a set of
tools. For example, we can highlight the configuration
and visualization environment, as well as a thin client
that allows 3D modeling and simulation environments.

4. Experimental results and conclusions

A case study was developed using this middleware
to create a MAS aimed at facilitating the employment
of people with disabilities. Since it is possible to simu-
late the behavior of the agents in the work environment
and observe the agents actions graphically in Repast,
we propose a case study developing an intelligent envi-
ronment for disabled people. This is a simple example
that defines four jobs, which are occupied by four peo-

ple with specific disabilities. Every job is composed of
a series of tasks. Agents representing the workers have
to carry out the jobs and, according to their capabili-
ties, carry out the assignment with varying degrees of
success. After performing various simulations and see-
ing the evolution in time, the results can be assessed to
determine what would be the most suitable job for each
employee.

The middleware is deployed into a +Cloud platform.
This platform has several virtual nodes that provide
computational resources to the middleware. +Cloud
automatically allocates the resources to the compo-
nents of the infrastructure taking instant demands into
account during the simulation. As a result, the middle-
ware does not need to take care of the computational
needs.

Figure 4 shows two examples of the 3D simulation
environment. It is possible to observe the entities rep-
resenting worker agents through their 3D avatar. The
scene has the option of hiding different components to
facilitate visualization during a simulation.

Figure 5 shows a messaging visualization in Repast.
Above each agent is its name, for identification. The
red spheres correspond to workers. The cylinders cor-
respond to the jobs of the workers, who are also actors
in the simulation. The different colors indicate the type
of job: dark blue represents an administrative assistant;
yellow represents a customer service representative;
green represents a workplace ordinance, the purple
cones represent the agents belonging to the quality con-
trol department, and the orange cubes represent the
agents belonging to the human resources department.

Figure 6 shows an example of the execution of this
case study. There are two ways of visualizing MAS
simulation: the agent interaction protocol, and the agent
entity.

The middleware provides the capability to visualize
the sequence of messages between agents and the entity

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

Fig. 5. Visualizaiton of messaging in Repast.

agent, and its iteration with the environment as shown
in Fig. 6. The union of these two platforms requires,
firstly, a highly efficient environment for the creation of
MAS, incorporating the benefits of JADE to create the
systems, as is the use of FIPA standards; and secondly,
the visual representation and extraction of simulation
data to different applications provided by Repast.

In this study we have presented a new infrastructure
to facilitate the development of simulation and visu-
alization environments. The platform is innovative, as
it integrates multiagent systems and cloud computing
technologies to take advantage of both the distributed
and adaptive capacities of multiagent systems and the
storage and elasticity capabilities of cloud computing
environments. The use of multiagent systems demon-
strates a high capacity and efficiency to develop virtual
environments and to provide new alternatives for social

(- NLDRepast - Repast Simphon

f
HHecum A
Hattorms
sPlattorm

B RMAGPeque 1(
B ams@Peque:10

B atencionPublico

B agPeque 1098

B gestionCarreod
opl

nnnnnnnn

;;;;;;;

@ snitter-on-Main | 41t

B sniterogPequd| 42 o
E]

ima;mum‘épn S ‘..(‘ seuswlo)
H 3 i

recestogrs

........

AEQUEST:A)

‘;Eéﬂﬁi

merdgeagre 3w ¢

39

simulation. The proposed approach provides the JADE
platform with new time simulation algorithms, which
make it very appropriated for agent-based simulation
and prediction. Additionally, the integration with the
+Cloud platform facilitates a flexible and adaptive
repository that can be accessed in a ubiquitous manner
and provides dynamic and ubiquitous computation.

The proposed approach provides an innovative
framework to design, develop and evaluate intelligent
environments. In this sense, the work contributes to
improve the state of the art of Ambient Intelligence
and to provide a new and effective approach for labor
integration of people with disabilities.

The middleware was tested within the framework
of two national Spanish projects to develop simula-
tion environments aimed at facilitating the integration
of handicapped people into the workforce. The results
have shown that the proposed approach is appropriate
for simulating intelligent environments using a social
perspective. The new infrastructure allows the design
and development of adaptive social environments as
well as the simulation and prediction of potential situ-
ations in such environments. Domain experts and end
users participated in the design of the infrastructures
and in the experiments, and have remarked on the
usability of the infrastructure, paying special atten-
tion to the flexibility to define virtual environments
and to the prediction and analysis capabilities of the
infrastructure.

The goal is to improve the interactivity by allow-
ing specialists to interact with the live execution of
basic functionalities such as play, pause, stop and

Fie Run Tools View

fEe 0o |vRrsewO NGAERER siathcld
Scenaria Tree =08
T DR ept Model i % @ 1
ERULTo
4 Chats
& Dalasders
A BaCernesuie
P Dxtasets .
W Duglays
o trabojadork
 Macelanecun Actors
1 Modl Intisizaton - e
"
& watcwe Intaizwion rabajacord
W Oupatters
A fandom Strewss
€3 U Speched
n
1 "
‘% -
& il
-
gestionCorren //’ hacerfotocopias
-~ i
,/
ﬁ - ‘ﬁ
- 4
trabajadorC - revisionintormes
- 7
SconaioTree | User Panel trabajacer
e
Paused L

Fig. 6. Visualization of messages sequence in Jade and RepastDiscussion and future work.

40 F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments

increase/decrease the speed, by means of putting some
substances in the position and observing the emergent
behavior. It would optimize self-organization and the
proposal of new hypotheses. Moreover, it would allow
the generation of reports about the information visual-
ized during the simulation process in several levels of
detail, which could increase the comprehension of the
process.

This simulation middleware was joined with a prox-
imity detection system that is used by people with dis-
abilities to facilitate their integration in the workplace
[48]. When the proximity system detects an individ-
ual person, different actions can be performed on the
computer in order to facilitate workplace integration;
for example, automatically switching on/off the com-
puter, identifying user profile, launching applications,
and adapting the workplace to the specific needs of the
user. Many of these tasks are time consuming because
of the computation time required for the simulation sys-
tem to predict the position where the worker is going to
be. The system can advance these tasks in order to have
the workplace ready on time for the worker. Finally, the
main goal of the system is to detect the proximity of a
person to a computer using Zigbee technology [48] and
then activate the workplace instantly. More information
about this information system can be seen here [42].

Itis also important to note that, thanks to the underly-
ing Cloud Computing environment, it is possible to be
aware about the consumption of resources. For exam-
ple, +Cloud resources can be optimized by displaying
the graph of used, maximum available and cached
memory. It is necessary to remark that this approach
facilitates the use of cloud computing technologies to
develop Ambient Intelligence environments in and easy
and useful manner, which is very important given the
growing relevance that cloud computing is acquiring in
computational technologies.

Our further work focuses on testing the proposed
infrastructure on a wide variety of environments and
evaluating the obtained results with more domain
experts and end users. This will help us to have a
more realistic evaluation of the adaptability and usabil-
ity of the proposed infrastructure. Furthermore, we are
working on a more general multiagent architecture that
incorporates adaptive mechanisms to develop open vir-
tual organization-based environments. This way, we are
exploring new communication protocols and new adap-
tation and re-organization algorithms. Finally, we are
exploring new possibilities to improve the +cloud plat-
form, such as advanced negotiation technologies. These
are our next challenges.

Acknowledgments

This work has been partially supported by the
MICINN project TIN2012-36586-C03-03.

References

[1] AHigh-Performance Agent-Based Modeling Platform. Repast
HPC. http://repast.sourceforge.net/docs/api/hpc/. (Last access
in 2013).

[2] A Globe simulation platform. http://exile.felk.cvut.cz/aglobe/
(Last access in 2013).

[3] Amazon S3. Amazon Simple Storage Service. http:/
aws.amazon.com/es/s3/ (Last Access in 2013).

[4] G. Anastasi, M. Conti, M. Di Francesco and A. Passarella,
Energy conservation in wireless sensor networks: A survey,
Ad Hoc Networks 7 (2009), 537-568.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, R. Ariel, I. Stoica and M.A.
Zaharia, A view of cloud computing, Communications of the
ACM 53(4) (2010), 50-58.

[6] ~F.Bellifemine, G. Caire, A. Poggi and G. Rimassa, Jade a white
paper, EXP in search of innovation 3(3) (2003), 6-19.

[7]1 L.O. Bonino da Silva, F. Ramparany, P. Dockhorn, P. Vink, R.
Etter and T. Broens, A service architecture for context aware-
ness and reaction provisioning, /[EEE Congress on Services
(Services 2007) (2007), pp. 25-32.

[8] M.L. Bote-Lorenzo, Y.A. Dimitriadis and E. Gomez-Sanchez,
Grid Characteristics and Uses: A Grid Definition, Postproceed-
ings of the First European Across Grids Conference (ACG’03),
Springer Verlang. LNCS Volume 2003 (2970), 291-298.

[9] R. Buyya, Market-oriented cloud computing: Vision, hype,
and reality for delivering IT services as computing utilities,
In: 10th IEEE International Conference on High Performance
Computing and Communications, HPCC *08, 2008, pp. 5-13.

[10] Y. Cheng, M.Y.H. Low, S. Zhou, W. Cai and C. Seng Choo,
Evolving agent-based simulations in the clouds, In: Third Inter-
national Workshop on Advanced Computational Intelligence
(IWACI’10) (2010), pp. 244-249.

[11] Citrix Netscaler. http://www.cns-service.com/citrix/citrix-
netscaler.aspx. (Last access in 2013).

[12] J.C. Collis, D.T. Ndumu, H.S. Nwana and L.C. Lee, The
zeus agent building toolkit, BT Technol Journal 16(3) (2008),
60-68.

[13] E. Corchado, M.A. Pellicer and M.L. Borrajo, A MLHL based
method to an agent-based architecture, International Journal
of Computer Mathematics 86(10, 11) (2008), 1760-1768.

[14] J.M. Corchado, J. Bajo, Y. De Paz and D.I. Tapia, Intelligent
environment for monitoring alzheimer patients, agent technol-
ogy for health care, Decision Support Systems 44(2) (2008),
382-396.

[15] R.C. Cordeiro, J.M. Fonseca and A. Donellan, Euronet, LabA
cloud based laboratory environment, In: Global Engineering
Education Conference (EDUCON’12) (2012), pp 1-9.

[16] P. Davidsson, Multi agent based simulation: Beyond social
simulation, Multi Agent Based Simulation, Springer Verlag
LNCS series, Volume 1979, (2001), pp. 97-107.

[17] R.Debski, A. Byrski and Kisiel-Dorohinicki, Marek, Towards
and agent-based augmented cloud, Journal of Telecommuni-
cations and Information Technology 1 (2012), 16-22.

[18] DMASON. Distributed Multi-Agents simulation toolkit.
http://isis.dia.unisa.it/projects/dmason/ (Last access in 2013).

http://repast.sourceforge.net/docs/api/hpc/
http://exile.felk.cvut.cz/aglobe/
http://aws.amazon.com/es/s3/
http://www.cns-service.com/citrix/citrix-netscaler.aspx
http://isis.dia.unisa.it/projects/dmason/

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

F. De la Prieta et al. / Infrastructure to simulate intelligent agents in cloud environments 41

H. Erdogmus, Cloud computing: Does nirvana hide behind the
Nebula? IEEE Software 26(2) (2009), 4-6.

R. Fuentes-Fernandez, S. Hassan, J. Pavon, J.M. Galdn and A.
Lopez-Paredes, Metamodels for role-driven agent-based mod-
eling, Computational and Mathematical Organization Theory
18(1) (2010), 91-112.

R. Grewa and P. Pateriya, A rule-based approach for effective
resource provisioning in hybrid cloud environment, Interna-
tional Journal of Computer Science and Informatics 4 (2012),
101-106.

S. Heras, F. De la Prieta, V. Julian, S. Rodriguez, V. Botti, J.
Bajo and J.M. Corchado, Agreement technologies and their
use in cloud computing environments, Progress in Artificial
Intelligence 1(4) (2012), 277-290.

JADE, Java Agent Development Platform http://JADE.
tilab.com

G.T. Jayaputera, A.B. Zaslavsky and S.W. Loke, Enabling
run-time composition and support for heterogeneous pervasive
multi-agent systems, Journal of Systems and Software 80(12)
(2007), 2039-2062.

Y. Li, W. Shen and H. Ghenniwa, Agent-Based Web Services
Framework and Development Environment, Computational
Intelligence, In: Blackwell Publishing, 20(4) (2004), 678—692.
X. Liu, A multi-agent-based service-oriented architecture for
inter-enterprise cooperation system, In: Proceedings of the
Second international Conference on Digital Telecommunica-
tions (ICDT’07), IEEE Computer Society, 2007. pp. 22

S. Luke, C. Cioffi-Revilla, L. Panait and K.M. Sullivan, A
new multiagent simulation toolkit, In: Proceedings of the 2004
SwarmFest Workshop, 2004.

S. Malik, F. Huet and D. Caromel, Cooperative cloud comput-
ing in research and academic environment using virtual Cloud,
International Conference on Emerging Technologies (2012),
pp. 1-7.

P. Mell and T. Grance, The NIST definition of Cloud Comput-
ing, In: NIST Special Publication, 2011, pp. 800-145.

M.J. North, T. Collier Nicholson and R. Vos Jerry, Experiences
creating three implementations of the repast agent modeling
toolkit, ACM Transactions on Modeling and Computer Simu-
lation 16(1) (2006), 1-25.

M.J. North, T.R. Howe, N.T. Collier and J.R. Vos, The repast
symphony runtime system, In: Proceedings of the Agent 2005
Conference on Generative Social Processes, Models, and
Mechanisms.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff and D. Zagorodnov, The eucalyptus open-source
cloud-computing system, In: 9th IEEE/ACM International
Symposium Cluster Computing and the Grid, 2009, CCGRID
’09, 2009, pp. 124-131.

[33]

[34]
[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]

C. Pautasso, O. Zimmermann and F. Leymann, Restful web
services vs. ’big”’ web services: Making the right architectural
decision, In: Proceedings of the 17th international conference
on World Wide Web, WWW 08, 2008, pp. 805-814.

Repast, http://repast.sourceforge.net/repast_3/index.html

A. Ricci, C. Buda and N. Zaghini, An agent-oriented
programming model for SOA & web services, In: 5th
IEEE International Conference on Industrial Informatics
(INDIN’07), 2007, pp. 1059-1064.

J.W. Ross and G. Wsterman, Preparing for utility computing:
The role of IT architecture and relationship management, /BM
Systems Journal 43(1) (2004), 5-19.

M.O. Shafiq, Y. Ding and D. Fensel, Bridging multi agent
systems and web services: Towards interoperability between
software agents and semantic web services, In: Proceedings
of the 10th IEEE International Enterprise Distributed Object
Computing Conference (EDOC’06) (2006), pp. 85-96.

A. Shendarkar, K. Vasudevan, S. Lee and Y.-J. Son, Crowd
simulation for emergency response using BDI agent based on
virtual reality, In: Proceedings of the 2006 Winter Simulation
Conference, 2006, pp. 545-553.

M. Sim, Agent-based Cloud commerce, In: IEEE International
Conference on Industrial Engineering and Engineering Man-
agement (2009), pp. 717-721.

Swarm, http://www.swarm.org

D. Talia, Clouds meet agents: Towards intelligent cloud ser-
vices, IEEE Internet Computing 16(2) (2012), 78-81.

G. Villarrubia, A. Sanchez, I. Barri, E. Rubion, A. Fernandez,
C. Rebate, J.A. Cabo, T. Alamos, J. Sanz, J. Seco, C. Zato, J.
Bajo, S. Rodriguez and J.M. Corchado, Proximity Detection
Prototype Adapted to a Work Environment, In: Ambien Intelli-
gent — Software and Applications, Springer AISC Volume 153.
2002. pp. 51-59.

G. Vizzari, G. Pizzi and ES.C. da Silva, A framework for
execution and visualization of situated agents based virtual
environments, In: Workshop dagli Oggetti agli Agenti, 2007,
pp. 22-25.

VMWare. http://www.vmware.com/es/ (Last access in 2013).
C. Walton, Agency and the Semantic Web, In: Oxford Univer-
sity Press, Inc. 2002.

M. Wooldridge and N.R. Jennings, Agent Theories, Archi-
tectures, and Languages: A Survey, In: Intelligent Agents,
Springer, 1995, pp. 1-22.

F. Zambonelli, N.R. Jennings and M. Wooldridge, Developing
multiagent systems: The gaia methodology, ACM Transac-
tions on Software Engineering and Methodology 12 (2003),
317-370.

ZigBee Standards Organization, ZigBee Specification Docu-
ment 053474r13, ZigBee Alliance (2006).

http://JADE.tilab.com
http://repast.sourceforge.net/repast_3/index.html
http://www.swarm.org
http://www.vmware.com/es/

