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1. Introduction

Left almost semigroups [16], abbreviated as LA-semigroups, are an algebraic
structure midway between groupoids and commutative semigroups with wide ap-
plications in the theory of flocks [20]. Certaine (cf. [3]) applied idempotent flocks to
affine geometry, as does Baer in his book Linear Algebra and Projective Geometry.

LA-semigroups are also called Abel-Grssmann’s groupoids or AG-groupoids. This
structure is closely related with a commutative semigroup because if an LA-semi-
group contains right identity then it becomes a commutative monoid. An LA-
semigroup with left identity is a semilattice [14]. Although the structure is non-
associative and non-commutative, nevertheless, it posses many interesting proper-
ties which we usually found in associative and commutative algebraic structures.
For example, congruences of some AG-groupoids have very similar properties as
congruences of semigroups (cf. [5] and [15]). Moreover, any locally associative AG-
groupoid S with left identity is uniquely expressible as a semilattice of archimedean
components. The archimedian components of S are cancellative if and only if S is
separative. Such AG-groupoid can be embedded into a union of groups [13]. On
the other hand on some AG-groupoids one can define the structure of an abelian
group [12].

Usually the models of real world problems in almost all disciplines like engineer-
ing, medical sciences, mathematics, physics, computer science, management sci-
ences, operations research and artificial intelligence are mostly full of complexities
and consist of several types of uncertainties while dealing them in several occasion.
To overcome these difficulties of uncertainties, many theories have been developed
such as rough sets theory, probability theory, fuzzy sets theory, theory of vague
sets, theory of soft ideals and the theory of intuitionistic fuzzy sets. Zadeh [21]
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discovered the relationships of probability and fuzzy set theory which has appropri-
ate approach to deal with uncertainties. Many authors have applied the fuzzy set
theory to generalize the basic theories of Algebra (cf. [2, 6, 7, 8, 17, 18]). Mordeson
et al. [11]has discovered the grand exploration of fuzzy semigroups, where theory
of fuzzy semigroups is explored along with the applications of fuzzy semigroups
in fuzzy coding, fuzzy finite state mechanics and fuzzy languages and the use of
fuzzyfication in automata and formal language has widely been explored.

In this paper we present various characterizations of intra-regular AG-groupoids
with left identity by the properties of their left ideals and bi-ideals. We also present
characterizations by fuzzy left ideals and fuzzy bi-ideals of some special types.

2. Preliminaries

In this section we remind basic facts which will be need later. For simplicity
a multiplication will be denoted by juxtaposition. Dots we will use only to avoid
repetitions of brackets. For example, the formula ((xy)(zy))(xz) = (x(yy))z will
be written as (xy · zy) · xz = xy2 · z.

A groupoid (S, ·) is called AG-groupoid, if it satisfies the left invertive law :

(1) ab · c = cb · a.

Each AG-groupoid satisfies the medial law :

(2) ab · cd = ac · bd.

Moreover, a unitary AG-groupoid, i.e., an AG-groupoid with a left identity,
satisfies the paramedial law :

(3) ab · cd = db · ca.

In this case also holds

(4) a · bc = b · ac,

(5) ab · cd = dc · ba.

for all a, b, c, d ∈ S.
Let S be an AG-groupoid. By AG-subgroupoid of S we mean a nonempty subset

A of S such that A2 ⊆ A. By a left (right) ideal of S we mean a nonempty subset
B of S such that SB ⊆ B (resp. BS ⊆ B). A two-sided ideal or simply an ideal of
S is a subset which is both a left and a right ideal of S. In a unitary AG-groupoid a
right ideal is a left ideal, and consequently – an ideal, but there are left ideals which
are not a right ideal. Note also that the intersection of two left (right) ideals may
be the empty set but the intersection of two ideals always is nonempty. Indeed, if
A,B are ideals of S and a ∈ A, b ∈ B, then ab ∈ A∩B. Obviously A∩B is an ideal
of S. In a surjective AG-groupoid, i.e., in an AG-groupoid S with the property
S = S2, each right ideal is a left ideal. The converse is not true.

By a generalized bi-ideal (generalized interior ideal) of S we mean a nonempty
subset I of S such that (IS)I ⊆ I (resp. (SI)S ⊆ I). A generalized bi-ideal
(generalized interior ideal) of S which is an AG-subgroupoid is called a bi-ideal

(respectively, interior ideal) of S. If a2 ∈ A implies a ∈ A for all a ∈ S, then we
say that a subset A ⊆ S is semiprime.



3

A fuzzy subset f of a set S is described as an arbitrary function f : S −→ [0, 1],
where [0, 1] is the usual closed interval of real numbers. A fuzzy subset f of S of
the form

f(z) =

{

t ∈ (0, 1] if z = x,
0 if z 6= x

is called the fuzzy point and is denoted by xt. A fuzzy point xt is said to belong to
a fuzzy set f, written as xt ∈ f, if f(x) ≥ t, and quasi-coincident with f, written as
xtqkf, if f(x)+ t+k > 1, where k is a fixed element of [0, 1). The symbol xt ∈ ∨qkf
means that xt ∈ f or xtqkf .

For any two fuzzy subsets f and g of S, f ≤ g means that, f(a) ≤ g(a) for all
a ∈ S. The symbols f ∧k g, f ∨k g and f ◦k g, where k ∈ [0, 1), denote the fuzzy
subsets of S:

(f ∧k g)(a) = min{f(a), g(a), 1−k
2 } = f(a) ∧k g(a),

(f ∨k g)(a) = max{f(a), g(a), 1−k
2 } = f(a) ∨k g(a),

(f ◦k g) (a) =

{ ∨

a=pq

{f(p) ∧k g(q)} if ∃p, q ∈ S such that a = pq,

0 otherwise
for all a ∈ S.

The set S can be considered as a fuzzy subset of S such that S(a) = 1 for all
a ∈ S. So, the fuzzy subset (f ∧k S)(a) will be denoted as fk(a).

A fuzzy subset f of an AG-groupoid S is called:
− an (∈,∈∨qk)-fuzzy subgroupoid if for all x, y ∈ S and r, t ∈ (0, 1]
xr, yt ∈ f ⇒ (xy)min{r,t} ∈∨qkf ,

− an (∈,∈∨qk)-fuzzy left ideal if for all x, y ∈ S and t ∈ (0, 1]
yt ∈ f ⇒ (xy)t ∈∨qkf ,

− an (∈,∈∨qk)-fuzzy right ideal if for all x, y ∈ S and t ∈ (0, 1]
xt ∈ f ⇒ (xy)t ∈∨qkf ,

− an (∈,∈∨qk)-fuzzy two-sided ideal if it is both left and right (∈,∈∨qk)-fuzzy
ideal,

− an (∈,∈∨qk)-fuzzy generalized bi-ideal if for all x, y, z ∈ S and r, t ∈ (0, 1]
xt, zr ∈ f ⇒ (xy · z)min{r,t} ∈∨qkf ,

− an (∈,∈∨qk)-fuzzy generalized interior ideal if for all x, y, z ∈ S and t ∈ (0, 1]
yt ∈ f ⇒ (xy · z)t ∈∨qkf ,

− an (∈,∈∨qk)-fuzzy semiprime if f(a) ≥ fk(a
2) for all a ∈ S.

An (∈,∈ ∨qk)-fuzzy subgroupoid which is an (∈,∈ ∨qk)-fuzzy generalized bi-
ideal (generalized interior ideal) is called an (∈,∈∨qk)-fuzzy bi-ideal (respectively,
an (∈,∈∨qk)-fuzzy interior ideal).

Similarly as in the case of semigroups (for details see [19]) we can prove the
following two propositions.

Proposition 2.1. A fuzzy subset f of an AG-groupoid S is

(i) an (∈,∈∨qk)-fuzzy subgroupoid if and only if f(xy) ≥ f(x) ∧k f(y),
(ii) an (∈,∈∨qk)-fuzzy left ideal if and only if f(xy) ≥ fk(y),
(iii) an (∈,∈∨qk)-fuzzy right ideal if and only if f(xy) ≥ fk(x),
(iv) an (∈,∈∨qk)-fuzzy bi-ideal if and only if f(xy) ≥ f(x) ∧k f(y) and

f(xy · z) ≥ f(x) ∧k f(z),
(v) an (∈,∈∨qk)-fuzzy generalized bi-ideal if and only if f(xy·z) ≥ f(x)∧kf(z),
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(vi) an (∈,∈∨qk)-fuzzy interior ideal if and only if f(xy) ≥ f(x) ∧k f(y) and

f(xy · z) ≥ fk(y),
(vii) an (∈,∈∨qk)-fuzzy generalized interior ideal if and only if f(xy ·z) ≥ fk(y).

for all x, y, z ∈ S.

Corollary 2.2. In a unitary AG-groupoid each (∈,∈ ∨qk)-fuzzy right ideal is an

(∈,∈∨qk)-fuzzy left ideal.

Proof. Indeed, f(xy) = f(ee · xy) = f(yx · ee) ≥ fk(yx) ≥ fk(y). �

All such fuzzy subsets can be characterized by their levels, i.e., subsets of the
form U(f, t) = {x ∈ S : f(x) ≥ t}. Namely as a simple consequence of the transfer
principle for fuzzy subsets (cf. [10]) we obtain

Proposition 2.3. A fuzzy subset f of an AG-groupoid of S is its an (∈,∈ ∨qk)-
fuzzy subgroupoid (left, right, interior ideal) if and only if for all 0 < t ≤ 1−k

2 each

nonempty level U(f, t) is a subgroupoids (left, right, interior ideal) of S.

A similar result is valid for bi-ideals, generalized bi-ideals and generalized interior
ideals.

Definition 2.4. Let k be a fixed element of [0, 1). The characteristic function
(CA)k of a subset A ⊂ S is defined as

(CA)k (x) =

{

t ≥ 1−k
2 if x ∈ A,

0 if x /∈ A.

The proof of the following proposition is very similar to the proof of analogous
results for semigroups (cf. [19]).

Proposition 2.5. Let J be a nonempty subset of an AG-groupoid S. Then:

(i) J is an ideal of S if and only if (CJ )k is an (∈,∈∨qk)-fuzzy ideal of S,
(ii) J is a left (right) ideal of S if and only if (CJ )k is an (∈,∈∨qk)-fuzzy left

(right) ideal of S,
(iii) J is a bi-ideal of S if and only if (CJ)k is an (∈,∈∨qk)-fuzzy bi-ideal of S,
(iv) J is an interior ideal if and only if (CJ )k is an (∈,∈ ∨qk)-fuzzy interior

ideal of S,
(v) J is semiprime if and only if (CJ )k is an (∈,∈∨qk)-fuzzy semiprime.

The following lemma is obvious, so we omit the proof.

Lemma 2.6. Let A,B be nonempty subsets of an AG-groupoid S. Then:

(i) (CA∩B)k = (CA ∧k CB),
(ii) (CA∪B)k = (CA ∨k CB),
(iii) (CAB)k = (CA ◦k CB) .

3. Ideals of intra-regular AG-groupoids

Definition 3.1. An element a of an AG-groupoid S is called intra-regular if there
exist x, y ∈ S such that a = xa2 · y. If all elements of S are intra-regular, then we
say that an AG-groupoid S is intra-regular.
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Example 3.2. Let (G, ◦, e) be an arbitrary abelian group. Then, as it is not
difficult to see, G with the operation xy = x−1 ◦ y is an intra-regular AG-groupoid
with the left identity e. This groupoid is not a semigroup. It is a special case of
transitive distributive Steiner quasigroups (cf. [4]). Moreover, in this AG-groupoid
a fuzzy subset f of G is an (∈,∈∨qk)-fuzzy subgroupoid of (G, ·) if and only if it is
an (∈,∈∨qk)-fuzzy subgroup of the group (G, ◦, e).

Example 3.3. It is not difficult to verify that the set S = {1, 2, 3, 4, 5, 6} with the
multiplication defined by the table

· 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 1 1 1 1
3 1 1 5 6 3 4
4 1 1 4 5 6 3
5 1 1 3 4 5 6
6 1 1 6 3 4 5

is an AG-groupoid. It is intra-regular because 1 = (1 · 12) · 1, 2 = (2 · 22) · 2,
3 = (3 · 32) · 5, 4 = (6 · 42) · 3, 5 = (5 · 52) · 5 and 6 = (4 · 62) · 3. Moreover, A = {1}
and B = {1, 2} are its ideals. A fuzzy subset f of S such that f(1) = 0.9, f(2) = 0.8
and f(x) = 0.5 otherwise, is an (∈,∈∨qk)-fuzzy ideal of S.

Lemma 3.4. In a unitary intra-regular AG-groupoid G for every a ∈ G there exist

x, y, z ∈ G such that

(i) a = a · za,
(ii) a = wa · a,
(iii) a = (a2 · x2y2)a,
(iv) a = (a · x2y2)a2,
(v) a = a2 · (ay2 · x2),
(vi) a = a(y2x2 · a) · a,
(vii) a = a2z · a2,
(viii) a2 = az · a.

Proof. (i). Let S be a unitary intra-regular AG-groupoid with the left identity e.
Since for every a ∈ S there exist x, y ∈ S such that a = xa2 · y, we have

a = xa2 · y = xa2 · ey
(5)
= ye · a2x

(4)
= a2(ye · x)

(5)
= (x · ye)a2 = z · a2

(4)
= a · za

for z = x · ye.
(ii). From (i) we obtain

a = a · za = ea · za
(2)
= ez · a2

(5)
= a2 · ze

(1)
= (ze · a)a = wa · a

wchich proves (ii).
(iii). Using (4) and (1), we have

a = xa2 · y = (x · aa)y = (a · xa)y
(1)
= (y · xa)a = (y · x(xa2 · y))a

= (y · (xa2 · xy))a = (xa2 · (y · xy))a = (xa2 · xy2)a = (a2 · x2y2)a.
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This proves (iii). Applying (1) to (iii) we obtain (iv). Now, (iv) together with (2)
and (1) imply (v). (vi) is a consequence of (iii). Indeed,

a = (a2 · x2y2)a
(2)
= (x2 · a2y2)a

(4)
= (a2 · x2y2)a

(3)
= (y2a · x2a)a

(2)
= (y2x2 · aa)a

(4)
= (a · (y2x2 · a))a = a(y2x2 · a) · a.

Similarly, using (4) and the left identity e of G, we have

a = xa2 · y = (a · xa)y = (a · x(xa2 · y))y = (a · (xa2 · xy))y

= (xa2 · (a · xy))y
(1)
= (y(a · xy)) · xa2 = (y(ea · xy)) · xa2

(3)
= (y(ya · xe)) · xa2 = (ya · (y · xe)) · xa2,

i.e., a = (ya · u) · xa2, where u = y · xe.
Further

a = (ya · u) · xa2 = (y(xa2 · y) · u) · xa2 = ((xa2 · y2) · u) · xa2

(1)
= (uy2 · xa2) · xa2

(1)
= (xa2 · xa2) · uy2

(2)
= (x2 · a2a2) · uy2

(3)
= (a2x · a2x) · uy2

(1)
= (a2x · x)a2 · uy2

(1)
= (x2 · a2)a2 · uy2

= (x2a2 · a2) · uy2
(1)
= (uy2 · a2) · x2a2

(2)
= (uy2 · x2) · a2a2

= a2 · (uy2 · x2)a2
(2)
= a(uy2 · x2) · aa2

(3)
= a2(uy2 · x2) · a2.

Thus a = a2z · a2 for z = uy2 · x2. This proves (vii).
To prove (viii) observe first that

a2 = a(xa2 · y)
(4)
= xa2 · ay

(5)
= ya · a2x

(4)
= a2 · (ya · x)

(1)
= (ya · x)a · a,

i.e.,

(6) a2 = ua · a

for u = ya · x.
On the other hand

ua = u(xa2 · y)
(4)
= xa2 · uy

(5)
= yu · a2x

(4)
= a2 · (yu · x)

(5)
= (x · yu) · a2

(4)
= a · (x · yu)a = az,

where z = (x · yu)a.
This together with (6) proves (vi). �

As a simple consequence of Lemma 3.4 we obtain

Corollary 3.5. In unitary intra-regular AG-groupoids fuzzy left (right) ideals and

fuzzy generalized bi-ideals (interior ideals) are semiprime.

It is not difficult to see that generalized interior ideals are semiprime also in
intra-regular AG-groupoids which are not unitary.

Corollary 3.6. In an intra-regular AG-groupoid with a left identity e we have

f(a) = f(a2) ≥ f(e) for all fuzzy left (right) ideals, fuzzy generalized bi-ideals and

fuzzy generalized interior ideals.
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Proof. For fuzzy left (right) ideals it is clear. Using Lemma 3.4 (vii) and (viii)
we obtain f(a) = f(a2) for fuzzy generalized bi-ideals. In this case also f(a2) =
f(ea · a) = f(a2 · e) = f(ea2 · e) ≥ f(e).

For fuzzy generalized interior ideals we have f(a2) = f(ea · a) ≥ f(a) = f(xa2 ·
y) ≥ f(a2). So f(a) = f(a2) for every a ∈ G. Moreover, f(a2) = f(e2 · a2) ≥
f(e). �

Comparing the above results with Proposition 2.1 we can see that the correspond-
ing results are valid for (∈,∈∨qk)-fuzzy ideals too. Moreover, as a consequence of
Proposition 2.5 we obtain

Corollary 3.7. In unitary intra-regular AG-groupoids all left (right) ideals and all

generalized bi-ideals (interior ideals) are semiprime.

Theorem 3.8. A unitary AG-groupoid S is intra-regular if and only if a ∈ Sa2

for every a ∈ S.

Proof. Let S be an AG-groupoid and let e be its left identity. Then for every a ∈ S

we have Sa2 · S
(4)
= (a · Sa)S

(1)
= (S · Sa)a = (eS · Sa)a

(3)
= (aS · Se)a ⊆ (aS · S)a

(1)
=

aS · aS
(3)
= S2a2 = Sa2, which shows that Sa2 · S ⊆ Sa2. Obviously, a2 ∈ Sa2.

If S is intra-regular, then for every a ∈ S we obtain

a ∈ Sa2 ·S ⊆ (S ·Sa2) ·S = (S ·Sa2) · eS = Se · (Sa2 ·S) ⊆ Se ·a2 = S2 · ea2 = Sa2.

So, a ∈ Sa2.
Conversely, since a ∈ Sa2 for every a ∈ S, thus

a ∈ Sa2 = eS · a2 = a2S · e ⊆ a2S · S = (a2 · eS) · S
(5)
= (Se · a2) · S ⊆ Sa2 · S.

Hence a ∈ Sa2 · S. �

Corollary 3.9. A unitary AG-groupoid is intra-regular if and only if all its right

ideals (or equivalently: all its interior ideals ) are semiprime.

Proof. By Corollary 3.7 in any unitary intra-regular AG-groupoid right ideals and
interior ideals are semiprime. On the other side, from the first part of the proof
of Theorem 3.8 it follows that Sa2 is a right ideal of each unitary AG-groupoid S.
Moreover, Sa2 is also an interior ideal. Indeed,

(S · Sa2) · S = (S · Sa2) · eS
(5)
= Se · (Sa2 · S) ⊆ Se · Sa2

(2)
= Sa2.

So, if all right ideals or all interior ideals of S are semiprime, then, by Theorem
3.8, a unitary AG-groupoid S is intra-regular. �

Using these results, we can get useful characterizations of unitary intra-regular
AG-groupoids by their ideals of various types. Let’s start with the characterizations
by left ideals.

Theorem 3.10. For a unitary AG-groupoid S the following conditions are equiv-

alent.

(i) S is intra-regular.

(ii) A ∩B ∩ C ⊆ (AB)C for all subsets of S when one of them is a left ideal,

(iii) f ∧k g ∧k h ≤ (f ◦k g) ◦k h for all (∈,∈∨qk)-fuzzy subsets of S when one

of them is an (∈,∈∨qk)-fuzzy left ideal.
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Proof. (i) ⇒ (iii) Assume that f is an (∈,∈ ∨qk)-fuzzy left ideal of S. Since
by Lemma 3.4 (iii) and (1) for every a ∈ S there are x, y ∈ S such that a =
(a2 · x2y2)a = ((x2y2 · a)a)a we have

((f ◦k g) ◦k h)(a) =
∨

a=pq

{(f ◦k g)(p) ∧k h(q)}

=
∨

a=pq

{(

∨

p=uv

f(u) ∧k g(v)

)

∧k h(q)

}

=
∨

a=uv·q

{(f(u) ∧k g(v)) ∧k h(q)}

=
∨

a=((x2y2·a)a)a=uv·q

{(f(u) ∧k g(v)) ∧k h(q)}

≥
{

f(x2y2 · a) ∧k g(a)
}

∧k h(a)

≥ (fk(a) ∧k g(a)) ∧k h(a)

= ((f ∧k g) ∧k h)(a)

for (∈,∈∨qk)-fuzzy subsets g, h of S. Thus (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.
In the case when g is an (∈,∈∨qk)-fuzzy left ideal of S the proof is similar but

we must use the equation (iv) from Lemma 3.4.
In the last case when h is an (∈,∈∨qk)-fuzzy left ideal we must use the equation

a = a2 · (x2y2 · a) which is a consequence of Lemma 3.4 (iv) and (3).

(iii) ⇒ (ii) Assume that A is a left ideal of S and B,C are arbitrary subsets
of S. Then by Proposition 2.5, (CA)k is an (∈,∈ ∨qk)-fuzzy left ideal of S and
(CB)k, (CC)k are (∈,∈∨qk)-fuzzy subsets of S. Thus, by Lemma 2.6 and (iii) we
have

(C(A∩B)∩C)k = (CA ∧k CB) ∧k CC ≤ (CA ◦k CB) ◦k CC = (C(AB)C)k.

Therefore A ∩B ∩ C ⊆ (AB)C.

(ii) ⇒ (i) Since S has a left identity, for every a ∈ S we have

S · Sa = eS · Sa
(3)
= aS · Se ⊆ aS · S

(1)
= S2 · a = Sa.

So, Sa is a left ideal of S. Obviously, a ∈ Sa. Thus

a ∈ Sa ∩ Sa ∩ Sa ⊆ (Sa · Sa) · Sa
(2)
= (S2 · a2) · Sa ⊆ Sa2 · S,

which shows that S is an intra-regular AG-groupoid. �

Corollary 3.11. For a unitary AG-groupoid S the following conditions are equiv-

alent.

(i) S is intra-regular.

(ii) A ∩B ∩ C ⊆ (AB)C for all left ideals of S,
(iii) f ∧k g ∧k h ≤ (f ◦k g) ◦k h for all (∈,∈∨qk)-fuzzy left ideals of S.

Theorem 3.12. For a unitary AG-groupoid S the following are equivalent.

(i) S is intra-regular.

(ii) A ∩B ⊆ AB ∩BA for all left ideals of S,
(iii) f ∧k g ≤ (f ◦k g) ∧ (g ◦kf) for all (∈,∈∨qk)-fuzzy left ideals of S.



9

Proof. (i) ⇒ (iii) Since S is a unitary intra-regular AG-groupoid, by Lemma 3.4
(vi), for every a ∈ S there exist x, y ∈ S such that a = a(y2x2 · a) · a. Therefore,
for all (∈,∈∨qk)-fuzzy left ideals of S we have

(f ◦k g)(a) =
∨

a=pq

{f(p) ∧k g(q)} =
∨

a=a(y2x2·a)·a=pq

{f(p) ∧k g(q)}

≥ f(a(y2x2 · a)) ∧k g(a)

≥ fk(a) ∧k g(a) = (f ∧k g)(a).

Thus f ∧k g ≤ f ◦k g. Similarly we can show that f ∧k g ≤ g ◦kf . Consequently,
f ∧k g ≤ (f ◦k g) ∧ (g ◦kf).

(iii) ⇒ (ii) Analogously as in the proof of Theorem 3.10.

(ii) ⇒ (i) Since Sa is a left ideal of S, for every a ∈ S we have

a ∈ Sa ∩ Sa ⊆ (Sa · Sa) ∩ (Sa · Sa) = Sa · Sa
(3)
= a2 · S2

(4)
= S · a2S = S2 · a2S

(2)
= Sa2 · S2 = Sa2 · S,

which shows that S is an intra-regular AG-groupoid. �

Theorem 3.13. For a unitary AG-groupoid S the following are equivalent.

(i) S is intra-regular,

(ii) A ∩B ∩ C = (AB)C for each bi-ideal A and arbitrary subsets B,C of S,
(iii) f ∧k g ∧k h ≤ (f ◦k g) ◦k h for each (∈,∈ ∨qk)-fuzzy bi-ideal f and all

(∈,∈∨qk)-fuzzy subsets g, h of S,
(iv) f ∧k g ∧k h ≤ (f ◦k g) ◦kh for each (∈,∈∨qk)-fuzzy generalized bi-ideal f

and all (∈,∈∨qk)-fuzzy subsets g, h of S.

Proof. (i) ⇒ (iv) By Lemma 3.4 (vi) for every a ∈ S there exist x, y ∈ S such that
a = a(y2x2 · a) · a. Hence, using (4), we obtain

a = a(y2x2 · a) · a = a(y2x2 · (xa2 · y)) · a
(4)
= a(xa2 · (y2x2 · y)) · a

(2)
= a((x · y2x2) · a2y) · a

(4)
= a(a2 · (x · y2x2)y) · a

(4)
= a2(a · (x · y2x2)y) · a

(1)
= ((a · (x · y2x2)y)a · a) · a.

Thus, for an arbitrary (∈,∈ ∨qk)-fuzzy generalized bi-ideal f and all (∈,∈ ∨qk)-
fuzzy subsets g, h of S we have

((f ◦k g) ◦kh)(a) =
∨

a=pq

{(f ◦k g)(p) ∧k h(q)}

=
∨

a=pq

{

∨

p=uv

(f(u) ∧k g(v)) ∧k h(q)

}

=
∨

a=uv·q

{f(u) ∧k g(v) ∧k h(q)}

=
∨

a=([a·(x·y2x2)y]a·a)·a=uv·q

{f(u) ∧k g(v) ∧k h(q)}

≥ f([ a · (x · y2x2)y]a) ∧k g(a) ∧k h(a)

≥ fk(a) ∧k g(a) ∧k h(a) = (f ∧k g ∧k h)(a).
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So, f ∧k g ∧k h ≤ (f ◦k g) ◦kh.

(iv) ⇒ (iii) Obvious.

(iii) ⇒ (ii) Similarly as in the proof of Theorem 3.10.

(ii) ⇒ (i) Since S has a left identity, so we have

(Sa · S)Sa ⊆ S2 · Sa
(3)
= aS · S2 ⊆ aS · S

(1)
= S2 · a ⊆ Sa

for every a ∈ S. This means that Sa is a bi-ideal of S. Thus, by (ii) and (2),
we obtain a ∈ Sa ∩ Sa ⊆ (Sa · Sa) · Sa = (S2 · a2) · Sa ⊆ Sa2 · S. Hence S
intra-regular. �

Corollary 3.14. For a unitary AG-groupoid S the following are equivalent.

(i) S is intra-regular,

(ii) A ∩B ∩ C = (AB)C for all bi-ideals of S,
(iii) f ∧k g ∧k h ≤ (f ◦k g) ◦kh for all (∈,∈∨qk)-fuzzy bi-ideals of S,
(iv) f ∧k g∧k h ≤ (f ◦k g)◦kh for all (∈,∈∨qk)-fuzzy generalized bi-ideals of S.

Theorem 3.15. For a unitary AG-groupoid S the following are equivalent.

(i) S is intra-regular.

(ii) A ∩B ⊆ AB ∩BA for any bi-ideal A and any subset B of S,
(iii) f ∧k g ≤ (f ◦k g) ∧ (g ◦k f) for any (∈,∈ ∨qk)-fuzzy bi-ideal f and any

(∈,∈∨qk)-fuzzy subset g of S.

Proof. (i) ⇒ (iii) Since S is a unitary intra-regular AG-groupoid and for z ∈ S
there exist u, v in S such that z = uv. Then from Lemma 3.4 (vi)

a = a2z · a2
(5)
= a2 · za2

(1)
= (za2 · a)a

(5)
= (a2z′ · a)a,

where z′ = vu. Therefore, for an arbitrary (∈,∈∨qk)-fuzzy bi-ideal f of S and an
arbitrary (∈,∈∨qk)-fuzzy subset g of S we have

(f ◦k g)(a) =
∨

a=pq

{f(p) ∧k g(q)} =
∨

a=(a2z′·a)a=pq

{f(p) ∧k g(q)}

≥ f(a2z′ · a) ∧k g(a)

≥ fk(a
2) ∧k g(a) = (f ∧k g)(a).

Thus f ∧k g ≤ f ◦k g. Similarly we can show that f ∧k g ≤ g ◦kf . Consequently,
f ∧k g ≤ (f ◦k g) ∧ (g ◦kf).

(iii) ⇒ (ii) Analogously as in the proof of Theorem 3.10.
(ii) ⇒ (i) Analogously as in the proof of Theorem 3.12. �

Corollary 3.16. For a unitary AG-groupoid S the following are equivalent.

(i) S is intra-regular.
(ii) A ∩B ⊆ AB ∩BA for all bi-ideals of S,
(iii) f ∧k g ≤ (f ◦k g) ∧ (g ◦kf) for all (∈,∈∨qk)-fuzzy bi-ideals of S.

Using the same method as in the proofs of Theorems 3.10 and 3.12 we can obtain
the following characterization of unitary intra-regular AG-groupoids by their left
ideals and bi-ideals.

Theorem 3.17. A unitary AG-groupoid S is intra-regular if and only if one of the

following conditions is satisfied:
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(i) A = A2 for all left ideals of S,
(ii) A = A2A for all left ideals of S,
(iii) fk ≤ f ◦k f for all (∈,∈∨qk)-fuzzy left ideals of S,
(iv) fk ≤ (f ◦k f) ◦k f for all (∈,∈∨qk)-fuzzy left ideals of S.

The above theorem is also valid if we replace the equation A = A2 by the
inclusion A ⊆ A2 and left ideals by bi-ideals or generalized bi-ideals.

4. Quasi-ideals of intra-regular AG-groupoids

By a quasi-ideal of an AG-groupoid S we mean a nonempty subset Q of S such
that SQ ∩QS ⊆ Q. Obviously each left (right) ideal is a quasi-ideal.

Proposition 4.1. If S is a unitary AG-groupoid, then Sa ∩ aS, Sa and Sa2 are

quasi-ideals for every a ∈ S.

Proof. Indeed, using (1) and (4), for every a ∈ S we get

S(Sa ∩ aS) ∩ (Sa ∩ aS)S = S(Sa) ∩ S(aS) ∩ (Sa)S ∩ (aS)S
= S(Sa) ∩ aS ∩ (Sa)S ∩ Sa
⊆ Sa ∩ aS,

which shows that Sa ∩ aS is a quasi-ideal. Moreover,

S(Sa) ∩ (Sa)S ⊆ S(Sa) = SS · Sa
(5)
= aS · SS = aS · S

(1)
= SS · a = Sa

and

S(Sa2)∩(Sa2)S ⊆ (Sa2)S = Sa2·S2 (5)
= S2·a2S = S·a2S

(4)
= a2·SS

(5)
= SS·a2 = Sa2.

Hence Sa and Sa2 are quasi-ideals of S. �

From the above proof we obtain

Corollary 4.2. In a unitary AG-groupoid S we have Sa · Sa = Sa2 = Sa2 · S for

every a ∈ S.

Proposition 4.3. Quasi-ideals of a unitary AG-groupoid are semiprime.

Proof. In fact, if Q is a quasi-ideal of S and a2 ∈ Q, then by Lemma 3.4 (vii) and
(v) we see that a ∈ SQ ∩QS ⊆ Q. �

Definition 4.4. A fuzzy subset f of an AG-groupoid S is called an (∈,∈∨qk)-fuzzy
quasi-ideal of S if f ≥ (S ◦ f) ∧k (f ◦ S).

As a simple consequence of the transfer principle for fuzzy subsets (cf. [10]) we
have

Proposition 4.5. A fuzzy subset f of an AG-groupoid S is its (∈,∈ ∨qk)-fuzzy
quasi-ideal if and only if for all 0 < t ≤ 1−k

2 each nonempty level U(f, t) is a

quasi-ideal of S.

Proposition 4.6. A nonempty subset Q of an AG-groupoid S is its quasi-ideal if

and only if (CQ)k is an (∈,∈∨qk)-fuzzy quasi-ideal of S.

Corollary 4.7. Any (∈,∈ ∨qk)-fuzzy left ideal of an AG-groupoid is its (∈,∈ ∨qk)-
fuzzy quasi-ideal.
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Theorem 4.8. For a unitary AG-groupoid the following are equivalent.

(i) S is intra-regular.

(ii) Sa ⊆ Sa2 for every a ∈ S.
(iii) I ∩ J ⊆ IJ for all quasi-ideals of S.
(iv) f ∧k g ≤ f ◦k g for all (∈,∈ ∨q)-fuzzy quasi-ideals of S.

Proof. (i) =⇒ (iv). Let f and g be (∈,∈ ∨q)-fuzzy quasi-ideals of a unitary intra-
regular AG-groupoid S. Then by Lemma 3.4,

a = a · za and wa = a · (w · za)

because wa = ew · (a · za) = (za · a) · we = ea · (w · za) = a · (w · za). Hence,

(f ◦k g) (a) ≥
((

(S ◦ f) ∧k (f ◦ S)
)

◦k

(

(S ◦ g) ∧k (g ◦ S)
))

(a)

=
∨

a=pq

{(

(S ◦ f) ∧k (f ◦ S)
)

(p) ∧k

(

(S ◦ g) ∧k (g ◦ S)
)

(q)
}

=
∨

a=pq

{

(S ◦ f)(p) ∧k (f ◦ S)(p) ∧k (S ◦ g)(q) ∧k (g ◦ S)(q)
}

≥
∨

a=wa·a

{

(S ◦ f)(wa) ∧k (f ◦ S)(wa) ∧k (S ◦ g)(a) ∧k (g ◦ S)(a)
}

=
∨

a=wa·a

{

(S ◦ f)(wa) ∧k (f ◦ S)(a(w · za)) ∧k (S ◦ g)(ea) ∧k (g ◦ S)(a · za)
}

=
∨

a=wa·a

{

(S(w)∧f(a)∧kf(a)∧ S(w · za)∧kS(e)∧g(a)∧kg(a)∧S(a · za)
}

= f(a) ∧k g(a) = (f ∧k g)(a).

Therefore f ◦k g ≥ f ∧k g.

(iv) =⇒ (iii). Let a ∈ I ∩ J , where I and J are quasi-ideals. Then

(CIJ )k(a) = (CI ◦k CJ )(a) ≥ (CI ∧k CJ )(a) = (CI∩J )k(a) ≥
1− k

2

by Lemma 2.6. Thus, a ∈ IJ . Consequently, I ∩ J ⊆ IJ for any quasi-ideals of S.

(iii) =⇒ (ii). By Proposition 4.1 and Corollary 4.2.

(ii) =⇒ (i). By Theorem 3.8. �

Corollary 4.9. A unitary AG-groupoid S is intra-regular if and only if one of the

following conditions is satisfied;

(i) Q2 = Q for all quasi-ideals of S,
(ii) Sa = Sa2 for every a ∈ S,
(iii) fk ≤ f ◦k f for all (∈,∈ ∨qk)-fuzzy quasi-ideals of S.

Proof. By Theorem 4.8 in unitary intra-regular AG-groupoid S for every quasi-
ideal Q we have Q ⊆ Q2. On the other hand, Q2 = Q2 ∩Q2 ⊆ SQ ∩QS ⊆ Q. So,
Q2 = Q. Similarly, Sa ⊆ Sa2 = Sa · Sa ⊆ S2 · Sa = aS · S2 = Sa by Corollary 4.2.

The rest is clear. �
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5. Conclusions

Unitary intra-regular AG-groupoids can be characterized by the properties of
their left ideals, bi-ideals and quasi-ideals. A crucial role in this characterization
play ideals of the form Sa and Sa2. Seems that future research work should focus
on understanding the role played by subsets Sa and Sa2 in the theory of all AG-
groupoids and not just in intra-regular AG-groupoids.
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[15] P. V. Protić, Some remarks on Abel-Grassmann’s groups, Quasigroup and Related Systems

20 (2012), 267-274.
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