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Abstract. The model building of Influence Nets, a special instance of Bayesian belief networks, is a time-consuming and la-

bor-intensive task. No formal process exists that decision makers/system analyst, who are typically not familiar with the under-

lying theory and assumptions of belief networks, can use to build concise and easy-to-interpret models. In many cases, the 

developed model is extremely dense, that is, it has a very high link-to-node ratio. The complexity of a network makes the al-

ready intractable task of belief updating more difficult. The problem is further intensified in dynamic domains where the struc-

ture of the built model is repeated for multiple time-slices. It is, therefore, desirable to do a post-processing of the developed 

models and to remove arcs having a negligible influence on the variable(s) of interests. The paper applies sensitivity of arc 

analysis to identify arcs that can be removed from an Influence Net without having a significant impact on its inferencing ca-

pability. A metric is suggested to gauge changes in the joint distribution of variables before and after the arc removal process. 

The results are benchmarked against the KL divergence metric. An empirical study based on several real Influence Nets is 

conducted to test the performance of the sensitivity of arc analysis in reducing the model complexity of an Influence Net with-

out causing a significant change in its joint probability distribution.  
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1.  Introduction 

Bayesian networks (BNs) have become the tool of 

choice for reasoning in uncertain domains. They have 

been successfully applied in several domains ranging 

from medical diagnosis to anti-terrorism and from 

information fusion to system troubleshooting. Mittal 

and Kassim [25] and Pourret et al. [28] provide an 

extensive list of areas where BNs have been applied. 

Mathematically, a BN is a graphical representation of 

a joint probability distribution. It consists of two 

components: (a) a directed acyclic graph in which 

each node represents a random variable while arcs 

between pairs of nodes represent certain conditional 

independence properties and (b) a collection of pa-

rameters that describes the conditional probability of 

each variable given its parent in the graph. Together, 

these two components represent a unique probability 

distribution [27].  

A lot of research in the field of Bayesian belief 

networks is driven by their two major limitations: (a) 

difficulty of knowledge elicitation and (b) intractabil-

ity of belief updating algorithms. The former is relat-

ed to the exponential number of parameters required 

to fill the conditional probability table (CPT) of a 

variable while the latter is related to the non-

polynomial time required to do belief updating in a 

BN [8]. Different schemes and approxi-

mate/simulation-based algorithms have been suggest-

ed that aim to tackle the belief updating issue [1, 7, 

12-14, 29].  For knowledge elicitation, schemes such 

as Noisy-Or [27, 28] and the CAST logic [6, 29] have 

been proposed that ask a linear number of parameters 

from a subject matter expert and convert them into 
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conditional probability tables (having exponential 

number of parameters). The variant of Bayesian net-

works that uses the CAST logic for knowledge elici-

tation is referred to as Influence Nets [32]. The pri-

mary purpose of building an IN is to connect a set of 

actionable events to a desired effect through chains of 

cause and effect relationships. The IN is then used to 

identify a course of action that has the highest proba-

bility of achieving the desired effect. Influence Nets 

and their extensions, Timed Influence Nets and Dy-

namic Influence Nets, have been experimentally used 

in Effects-based Operations [11, 16-19, 21, 30-35]. 

Despite several enhancements on knowledge elici-

tation and belief updating fronts, the model construc-

tion of Bayesian belief networks and its variants 

(such as Influence Nets) in large and complex do-

mains is an extremely difficult and a pain-stacking 

task. Many times a subject matter expert building 

such models is not aware of the underlying condition-

al independence assumption and builds a very dense 

model (where each node is connected to almost every 

other node in the network). This not only complicates 

the already intractable task of belief updating but also 

reduces the readability of the model. Thus, there is a 

need for a support tool that can aid in reducing the 

complexity of a belief network without causing a sig-

nificant change in the underlying joint probability 

distribution. This complexity reduction would also be 

very helpful when the belief network is used in dy-

namic domains where its structure is repeated for 

multiple time slices. 

The approach presented in this paper uses sensitiv-

ity of arc analysis as a heuristic for complexity reduc-

tion of an Influence Net. It takes advantage of the 

local parameter specification mechanism used by the 

CAST logic.  Instead of asking complete conditional 

probability tables for each node in an IN, the logic 

allows a subject matter expert to specify the influence 

of a parent node on the child node while ignoring all 

other influences on the child node. This unique fea-

ture of INs is exploited in this paper and, together 

with the sensitivity of arc analysis, it aids in removing 

insignificant arcs from the modeled IN. The approach 

changes the CAST logic parameters to their extreme 

values and then analyze the impact of these changes 

on the desired effect to decide whether the corre-

sponding arc can be removed from the network or not.  

It is worth mentioning that efforts have been made 

within the Bayesian network domain to apply sensi-

tivity analysis to assess the impact of change in a sin-

gle parameter on the variable(s) of interest. This 

change in parameter can be in the form of obtaining 

soft/hard evidence on certain variables or by chang-

ing values in the conditional probability table of a 

variable [2, 3, 10, 36]. Efforts have also been made to 

analyze the impact of changing multiple parameters at 

a time although the process itself is computationally 

expensive [5, 23]. When done in consultation with 

domain experts and as a model refinement tool, the 

sensitivity analysis helps in refining the parameters of 

a BN according to experts’ satisfaction [9]. Chan [4] 

provides a good discussion on the issues related to 

sensitivity analysis in Bayesian belief networks. 

Before opting for any scheme (be the ones present-

ed in this paper or any other) for removing insignifi-

cant arcs from an Influence Net, it is important to 

make sure that the arc removal process does not re-

sult in changing the joint distribution of the model 

variables in a significant way. The exact way of gaug-

ing this change is to compare the joint probability 

distribution of the modeled variables before and after 

the arc removal process. This, however, requires gen-

erating and comparing an exponential number of pa-

rameters (and that too of a very small magnitude as 

the sum should add up to 1) and is therefore an in-

tractable process. The paper presents an approximate 

way of gauging the impact of arc removal process on 

the probability of variable(s) of interests. The metric 

makes use of the sets of actions finder (SAF) algo-

rithm [20, 22]. As stated earlier, INs are typically 

built to determine the cause and effect relationships 

among actionable events and a desired effect con-

nected through chains of uncertain variables. Thus, 

the primary variable of interest in an Influence Net is 

the desired effect and how it is impacted by different 

states of actionable events. The SAF algorithm aims 

to find this impact. It runs in quadratic time and pro-

vides a reasonable mechanism to gauge changes in 

the joint probability distribution before and after the 

arc removal process. It is benchmarked against Kull-

back-Leiber (KL) divergence [24] method for com-

paring distance between the two probability distribu-

tions. 

The rest of the paper is organized as follows. Sec-

tion 2 provides an overview of Influence Nets along 

with the CAST logic. The proposed heuristic, sensi-

tivity of arc analysis, to remove insignificant arcs 

from an IN is explained in Section 3. KL-divergence 

and the SAF algorithm based metric, to estimate the 

changes in joint probability distributions before and 

after arc removal process, are discussed in Section 4. 

Experimental design, models used in the experiments, 



and the results are described in Section 5. Finally, 

Section 6 concludes the paper and provides the future 

research directions.  

2. Influence Nets 

Influence Nets are Directed Acyclic Graphs 

(DAGs) where nodes in the graph represent random 

variables, while the edges between pairs of variables 

represent causal relationships. The modeling of the 

causal relationships is accomplished by creating a 

series of cause and effect relationships among varia-

bles representing a set of actionable events and a de-

sired effect. The actionable events are drawn as root 

nodes (nodes without incoming edges), while the de-

sired effect is modeled as a leaf node (node without 

outgoing edges). Typically, the root nodes are drawn 

as rectangles while the non-root nodes are drawn as 

rounded rectangles.  

Fig. 1 shows a portion of an Influence Net devel-

oped to model the political crisis that occurred in 

East Timor during the late 90s [33]. The model was 

developed as a prototype for the Decision Support 

System for Coalition Operations developed by 

SPAWAR Systems Center-San Diego to support the 

Operations Planning Team of the Commander in 

Chief, U.S. Pacific Command. As mentioned above, 

the leaf node “Rebels decide to avoid violence” is the 

desired effect, while the root nodes, such as “US 

president declares resolve to keep peace in Indone-

sia”, “Coalition forces deploys forces to Indonesia”, 

etc., represent actionable events. The directed edge 

with an arrowhead between two nodes shows the par-

ent node promoting the chances of a child node being 

true, while the roundhead edge shows the parent node 

inhibiting the chances of a child node being true. 

The strength of the positive or negative influence 

of the presence/absence of each event on its child 

event is captured through the CAST logic parameters. 

These parameters are linear in terms of number of 

arcs in the network and thus relieve the experts from 

specifying an exponential number of conditional 

probability values – a daunting task when each node 

has many parents (incoming arcs).  The conditional 

probabilities values are internally generated by the 

CAST logic algorithm. The Influence Nets are there-

fore appropriate for the following situations: i) for 

modeling situations in which it is difficult to fully 

specify all conditional probability values, and/or ii) 

the estimates of conditional probabilities are subjec-

tive, and iii) estimates for the conditional probabili-

ties cannot be obtained from empirical data, e.g., 

when modeling potential human reactions and beliefs 

[31]. The following items characterize an IN [20]:

   

1. A set of random variables that makes up the 

nodes of an IN. All the variables in the IN have bina-

ry states. 

2. A set of directed links that connect pairs of 

nodes. 

3. Each link has associated with it a pair of 

CAST logic parameters that shows the causal strength 

of the link (usually denoted as h and g values). 

4. Each non-root node has an associated CAST 

logic parameter (denoted as the baseline probability), 

while a prior probability is associated with each root 

node. 

2.1. CAusal STrength (CAST) Logic 

The CAusal STrength (CAST) logic [6, 29] was 

developed with the aim of overcoming the knowledge 

acquisition intractability of BNs. Instead of asking an 

exponential number of parameters to specify the CPT 

of a node, the logic asks a linear number of parame-

ters and transforms these numbers into CPTs. The 

logic is an extension of the Noisy-Or approach [1, 8] 

and requires two parameters for each link in an Influ-

ence Net. The first parameter represents the impact of 

parent node being true on the child node while the 

second represents the impact of parent node being 

false on the child node. The negative values show a 

negative influence of an event on its child event while 

the positive values show a positive influence of an 

event on its child event. Fig. 2 shows an IN with four 

nodes, namely, A, B, C, and X. On each arc in the IN, 

two causal strengths are specified. For instance, the 

arc between B and X has values –0.33 and 0.9. The 

first value, referred to as h, states that if B is true, 

then this will cause X to be false with probability 

0.33, while the second value, referred to as g, states 

that if B is false, then this will cause X to be true with 

probability 0.9. Both h and g can take values in the 

interval (-1, 1). All non-root nodes are assigned a 

baseline probability, which is similar to the “leak” 

probability in the Noisy-Or approach. This probabil-

ity is the user-assigned assessment that the event 

would occur independently of the modeled influences 

in a net. 



 

Fig. 1. A Sample Influence Net 

 

Fig. 2. An Influence Network with CAST Logic Parameters 

 

Once a user specifies all the g and h values and the 

baseline probabilities, these parameters are converted 

into CPTs of the corresponding nodes in an IN and 

are then used during probability propagation and be-

lief updating. The conversion process consists of fol-

lowing major steps:  

 Aggregate positive causal strengths 

 Aggregate negative causal strengths 

 Combine the positive and negative causal 

strengths, and 

 Derive conditional probabilities 

 

In the Influence Net of Fig. 2, the CPT of node X 

has eight entries. This includes P(X | A, B, C), P(X | A, 

B, ¬C), …….., and P(X | ¬A, ¬B, ¬C). The four steps 

listed above are used to calculate each of these eight 

conditional probabilities. For instance, to calculate 

the probability P (X | A, B, ¬C), the h values on the 

arcs connecting A and B to X and the g value on the 

arc connecting C to X are considered. Hence, the set 

of causal strengths is {0.9, -0.33, -0.66}. 

Aggregate the Positive Causal Strengths:  

In this step, the set of causal strengths with positive 

influence are combined. They are aggregated using 

the equation 

 PI = 1 – Πi (1 – Ci)  ∀Ci>0   

where Ci is the corresponding g or h value having 

positive influence and PI is the combined positive 

causal strength. For our example 

PI = 1 – (1 – 0.9) = 0.9 

 

Aggregate the Negative Causal Strengths:  

In this step, the causal strengths with negative val-

ues are combined. The equation used for aggregation 

is 

 PI = 1 – Πi (1 – |Ci|)  ∀Ci<0   

where Ci is the corresponding g or h value having 

negative influence and NI is the combined negative 

causal strength. Using the above equation, the aggre-

gate negative influence is found to be:   

NI  = 1 – (1 – 0.33) (1 – 0.66) = 0.77 

 

US President Declares 

Resolve to keep Peace in 

Indonesia 

UN Secretary General 

Declares Resolve to See 

Peaceful Settlement 

Rebels Believe Firm 

US Resolve will 

Hold Coalition 

Together 

Rebels Believe Coali-

tion has Resolved to 

Stop Them  

Rebels Decide to 

Avoid Violence  

GOI Authorizes Coali-

tion Use of Force Coalition Willing to 

Enforce Civil Order on 

GOI Troops  

Rebels Believe Coali-

tion will Keep Peace 

Impartially  

Coalition Deploys 

Forces to Indonesia 
Coalition can Build 

Overwhelming Force  

Rebels Believe they can Inflict 

Large Number of Casualties  



Combine Positive and Negative Causal Strengths:  

In this step, aggregated positive and negative influ-

ences are combined to obtain an overall net influence. 

Mathematically, 

If  PI > NI 

AI = (PI – NI) / (1 – NI) 

If NI > PI 

AI = (NI – PI) / (1 – PI) 

Thus, the overall influence for the current example 

is 

AI = (0.9 – 0.77) / (1 – 0.77) = .56 

 

Derive Conditional Probabilities:  

In the final step, the overall influence is used to 

compute the conditional probability value of a child 

for the given combination of parents.  

  P(child | jth state of parent states) =  

baseline + (1 – baseline) * AI  when PI  > NI 

baseline  –  baseline * AI  when PI < NI 

Using the above equation, P (X | A, B, ¬C) is ob-

tained as: 

P (X | A, B, ¬C) = 0.5 + 0.5 * 0.56 = .78 

The steps explained above are repeated for the re-

maining seven entries of node X’s CPT.  It should be 

noted that if the experts had sufficient time and 

knowledge of the influences then they could have 

directly provided the CPT for each node in the IN 

instead of providing g and h values. Furthermore, 

after estimating the CPTs if some entries do not satis-

fy the experts then those entries can be modified. 

3. Sensitivity of Arc Analysis 

The paper presents a sensitivity of arc analysis 

(SAA) based heuristic for arc removal in an IN. In-

fluence Nets are primarily used to model the impact 

of actionable events on a desired effect. Thus, any 

sort of sensitivity analysis involves changing one pa-

rameter at a time and observing its impact on the de-

sired effect. The presented approach changes the 

CAST logic parameters to their extreme values and 

observes the impact of this change on the probability 

of achieving the desired effect. The arcs having an 

insignificant impact are removed. The algorithm is 

presented as Algorithm 1. It is worth mentioning that 

the extreme values suggested in the table (such as 

0.99 and -0.99) are arbitrary and can be replaced by 

0.9/-0.9 or 0.999/-0.999 (any absolute number less 

than 1.0). The step 3 of the CAST logic (combining 

positive and negative causal strengths) requires the 

absolute maximum strength to be less than 1.0 to 

avoid division by zero. 

 

Algorithm 1. Sensitivity of Arc Analysis Algorithm 

Considering Fig. 2, there are three links in the IN 

and hence three pairs of g and h values. Suppose the 

prior probabilities of actionable events A, B, and C 

are 0.5, 0.6, and 0.4, respectively, which would result 

in the marginal probability of X being 0.71. The algo-

rithm changes each of the g and h values to their ex-

treme values and observes the impact on the desired 

effect (in this case, X). For instance, the link between 

A and X has a positive value of h (0.9) and a negative 

value of g (-0.66). The algorithm first changes the 

value of h to 0.99 and computes the new marginal 

probability of X. It then changes the value of h to 0 

and re-computes the marginal probability of X. The 

difference between the two marginal probability val-

ues of X is also stored. The h parameter is now re-

stored to its original value and the same process is 

repeated for the g value which is first changed to 0 

and then to -0.99. The difference in the marginal 

probability of X due to these changes is recorded. 

The process is repeated for the other arcs in the Influ-

ence Net and the results are presented in Table 1. 

 

 



Table 1  

Results of Applying SAA on IN of Figure 2 

Link  A → X B → X C → X 

delta_hmin 0.56 0.41 0.61 

delta_hmax 0.74 0.73 0.73 

|delta_hmax–delta_hmin| 0.18 0.33 0.12 

delta_gmax 0.50 0.62 0.44 

delta_gmin 0.77 0.75 0.78 

|delta_gmax –delta_gmin| 0.27 0.13 0.34 

The sensitivity of arc analysis gives insight to a 

system analyst/decision maker about the significance 

of each link and how it impacts the probability of 

achieving the desire effect. The paper suggests the 

use of this analysis as a heuristic to report arcs that 

have insignificant impact on the desired effect. The 

system analyst/decision maker can then decide to 

either remove such arcs or make changes in their 

CAST logic parameters to capture the desired impact. 

The subject is further discussed in Section 5. 

4. Metrics to Gauge Changes in the Joint 
Distribution  

The sensitivity of arc analysis is primarily a change 

in one parameter at a time heuristic to identify the 

significance/insignificance of an arc in an IN. The 

underlying joint distribution of an IN, however, is 

likely to contain nonlinearities and thus a decision 

based on this one parameter at a time heuristic may 

produce misleading results in certain cases. It is im-

portant, therefore, to identify if the arc removal pro-

cess has caused a significant change in the joint dis-

tribution of the modeled variables. The exact way of 

gauging this change is by computing the joint proba-

bility distributions of the original and reduced models 

(before and after the arc removal process) and com-

paring them against each other. The joint probability 

distribution of N variables (X1,…..XN)  in a Bayesian 

network (or in an Influence Nets) is computed with 

the help of the chain rule: 

P(X1,……,Xn) = Π P(Xi | pa(Xi))  

 where i = 1….N 

The computation, however, requires generating an 

exponential number of parameters for each IN and 

then comparing them. For instance, if there are 100 

variables in an Influence Net, the process requires 

computing 2 x 2100 values for both the original and 

the reduced INs and then comparing them. The expo-

nential number of steps required to generate and 

compare the joint distribution makes this process an 

intractable one. Furthermore, the computed number 

would be extremely small as the sum of 2100 values, 

representing the joint probability distribution, would 

add up to 1. Thus, there is a need for metrics which 

can assist in (an approximate) comparison of the joint 

distribution of the two INs. The paper uses the sets of 

actions finder (SAF) algorithm [20, 22] as a metric to 

gauge changes in the joint probability distribution of 

an IN due to the arc removal process. It is important 

to remember that the primary purpose of building an 

IN is to model the impact of actionable events on the 

desired effect. Thus, if there is not a significant dif-

ference in the results produced by the SAF algorithm, 

then it could be safe to assume that the joint distribu-

tion modeled by the IN has not changed substantially. 

The proposed SAF based metric is benchmarked 

against the KL (Kullback-Leiber) divergence method 

for estimating the distance between two probability 

distributions. The following subsections provide a 

brief description of both metrics. 

4.1. Sets of Actions Finder (SAF) Algorithm 

 

Algorithm 2. The SAF Algorithm 

The sets of actions finder (SAF) algorithm [20, 22] 

is a heuristic approach to determine the sets of actions 

that cause the probability of the desired effect to be 

above (below) a given probability threshold.  The 

algorithm achieves this task in significantly less time 

than what is required for an exhaustive examination 



of the actions’ search space, which is exponential in 

terms of the number of actions. The algorithm runs in 

quadratic time and uses a greedy approach to identify 

the best (or close-to-best) sets of actions. The algo-

rithm is presented as Algorithm 2 below. It starts with 

a single action which, when considered individually, 

causes the highest increase (for a maximization prob-

lem) in the probability of the desired effect being true. 

This is followed by the selection of a second action 

from the remaining set of actions that together with 

the first action cause the highest increase in the prob-

ability of the desired effect. Other actions are added 

iteratively in a similar manner. The process stops at a 

point where (i) the inclusion of an action causes the 

probability of the objective node to decrease and to 

fall below the given probability threshold or (ii) there 

are no more actions to add. Once alternative sets of 

actions are obtained, they can be grouped together to 

form more general sets of actions. 

4.2. Kullback-Leiber Divergence 

The most common method of comparing two prob-

ability distributions is the Kullback-Leiber divergence 

[24]. The quality of the reduced Influence net, caused 

by removing insignificant arcs, is measured in terms 

of divergence of its probability distribution from the 

probability distribution of the original network. Sup-

pose a random variable A with n states. Let Pa repre-

sents its initial probability distribution and Pa’ repre-

sents its posterior probability distribution. The KL-

divergence is then computed as: 

 

The KL-divergence only takes into account the 

probabilities of a target variable. For instance, con-

sidering Fig. 2, suppose variable X is our target vari-

able and let X’ denotes its posterior state. The KL-

divergence for variable X will then be given as: 

 KL(X,X’) = P(X) * log( P(X)/P(X’) ) + 

P(~X) * log( P(~X) / P(~X’) ) 

5. Design of Experiments and Results 

This section discusses the design and results of ex-

periments/simulations conducted to test the validity of 

the sensitivity of arc analysis based heuristics. The 

two metrics that are used to gauge the changes in the 

joint probability distributions of the INs are given 

below:  

(a) SAF Algorithm based Metric: 

Absolute difference between the maximum proba-

bility to achieve the desired effect in the original and 

the reduced INs 

(b) Kullback-Leiber Divergence: 

The divergence between the probability distribu-

tions before and after the arc removal process. 

The first metric records the absolute difference be-

tween the maximum probability of achieving the de-

sired effect, as produced by the SAF algorithm, in the 

original and reduced INs. The second metric, on the 

other hand, computes the KL divergence in the prob-

ability distributions of the desired effect in the origi-

nal and the reduced Influence Nets. As suggested in 

Section 3, SAA suggests the removal of an arc if 

changing its CAST logic parameters (g and h values) 

to their extreme values does not change the probabil-

ity of achieving the desired effect above a certain 

cutoff point. Three distinct cutoff points (shown in 

Table 2) are tested in the experiments. It is important 

to note that the presented approach only serves as a 

decision support tool to aid a system modeler in mak-

ing a better sense of the model. Thus, the choice of a 

specific cut-off point is arbitrarily and rests with the 

system modeler. The experiments below, however, 

justify the use of the proposed metric and show that it 

provides a consistent method for model simplification. 
Table 2 

Cutoff Points 

S. # SAAPerturb’s Cutoff Points 

1 

2 

3 

|hmax - hmin| < 0.01 and |gmax - gmin| < 0.01 

|hmax - hmin| < 0.005 and |gmax - gmin| < 0.005 

|hmax - hmin| < 0.001 and |gmax - gmin| < 0.001 

Five unique INs are used in the simulations. Each 

IN is run 100 times with different and randomly gen-

erated sets of CAST logic parameters. Thus, conclu-

sions are drawn based on the results of 500 INs. A 

brief description (such as number of nodes, number of 

links, number of actionable events, etc.) of the 5 INs 

is presented in Table 3 while the INs  are shown in 

Fig. 3. The IN models are built in Pythia, a software 

tool to model and analyze Influence Nets. The soft-

ware was developed at the System Architectures Lab, 

George Mason University. Few of the INs have al-

ready been published and analyzed in detail. For in-

stance, M1 was developed by Wagenhals and Wentz 

[35] to combat the insider threat in an information 

security scenario. M2 was developed by DeGregario 

et al. [12] to model certain aspect of the first Gulf war. 

M5 was developed by Wagenhals et al. [34] to model 

the political crisis that occurred in East Timor during 

the final years of the previous decade. A small por-



tion of this net was also shown in Fig. 1. Even though 

M2 and M4 were not published, they nevertheless 

were built by domain experts to capture certain anti-

terrorism activities. 

 
Table 3 

Description of Models Used in the Experiments 

Model # of 

Nodes 

# of 

Links 

Node-to-

Link Ratio 

# of Actionable 

Events 

M1  21 39 1.86 10 

M2 52 96 1.85 23 

M3  36 78 2.17 11 

M4 39 98 2.51 5 

M5  48 89 1.89 18 

 

The steps involved in the simulation are presented 

in Table 4. During each iteration, an IN is initialized 

with a set of randomly generated CAST logic parame-

ters. After converting these parameters into condi-

tional probability tables, the SAF algorithm is run to 

find the best probability of achieving the desired ef-

fect (Step 3). Sensitivity of arc analysis is run next 

and arcs having insignificant impact, based on the 

given cutoff point, on the probability of the desired 

effect are removed from the model (Step 4). Step 6 

runs the SAF algorithm on the reduced model ob-

tained after the arc removal process. Finally Step 7 

computes metrics based on SAF and KL-divergence 

using the results obtained from the original and the 

reduced INs. 
Table 4 

Working of the Simulation 

 
The averages of 100 simulations for each of the 

five models under cutoff points 0.001, 0.005, and 

0.01 are given in Table 5, 6, and 7, respectively. For 

instance, the first row of Table 5 shows that the aver-

age decrease (over 100 simulations) in the link-to-

node ratio of M1 after the arc removal process is 

Fig. 3. Influence Nets Models (M1, M2, M3, M4, M5) Used in the Simulation 



13.59%. The two metrics based on SAF algorithm 

and KL-divergence have values 0.04 and 0.016, re-

spectively. The simulation was run under the cutoff 

point of 0.001, that is, an arc was removed if chang-

ing the g and h values to their extreme values only 

cause a change of less than 0.001 in the probability of 

the desired effect. Similarly, the second last row of 

Table 6 shows a drop of 26.15% in the link-to-node 

ratio for M4 under the cutoff point of 0.005. The SAF 

based metric indicates a little change in the joint 

probability distribution of the original and the re-

duced INs. The metric scores 0.036 while the KL-

divergence based metric scores 0.006.  Other entries 

of Tables 5-7 can be read in a similar manner. 

  
Table 5 

SAA Simulation Results When Cut-Off is less than 0.001 

Model Avg. % Reduc-

tion in Node-to-

Link Ratio 

Avg. Change in 

Best Probability 

by SAF 

Avg. KL 

Divergence 

M1 13.59 0.040 0.016 

M2 24.95 0.032 0.003 

M3 28.346 0.032 0.004 

M4 14.77 0.017 0.002 

M5 28.10 0.09 0.040 

 

Table 6 

SAA Simulation Results When Cut-Off is less than 0.005 

Model Avg. % Reduc-

tion in Node-to-

Link Ratio 

Avg. Change in 

Best Probability 

by SAF 

Avg. KL 

Divergence 

M1 27.26 0.076 0.018 

M2 34.04 0.081 0.016 

M3 38.81 0.060 0.010 

M4 26.15 0.036 0.006 

M5 36.88 0.122 0.042 

 

 

The aggregate statistics over all the INs for each cut-

off point are presented in Table 8. For instance, the 

last row of Table 8 suggests that under the cutoff 

point 0.01, the average reduction in link-to-node ratio 

is 39.41% (Column 2), the average absolute change in 

the best probability produced by SAF is 0.097 (Col-

umn 3) and the average KL-divergence is 0.028. It 

can be seen from the table that as the cutoff point 

increases, the reduction in link-to-node ratio also in-

creases. The same is true about the change in the best 

probabilities produced by the SAF algorithm as well 

as the KL-divergence scores. This simply indicates 

that as fewer arcs are removed from the original IN, 

the changes in the joint distribution of the modeled 

variables are also small.  A similar finding can be 

obtained from the graphs shown in Fig. 4. For in-

stance, Fig. 4(a) plots the decrease in link-to-node 

ratio of all five models under the three cut-off points. 

The pattern is consistent for all the models, that is, as 

the cut-off point increases; the reduction in link-to-

node ratio also increases. Similar statements can also 

be made about the SAF-based metric and the KL-

divergence metric shown in Fig. 4(b) and Fig. 4(c), 

respectively.  Based on these results, it is safe to say 

that the SAF algorithm based metric provides a good 

heuristic to gauge changes in the joint probability 

distributions of the modeled variables before and af-

ter the arc removal process. It is, however, difficult to 

suggest a fixed cutoff point for any arbitrary Influ-

ence Net as there is no ideal cutoff point and all de-

pends upon the discretion of the group of subject mat-

ter experts and knowledge engineers involved in the 

model construction. The heuristics presented in this 

paper, nevertheless, provide a good decision support 

tool to ease this laborious and scrupulous model con-

struction process. 

 

 

Fig. 4: Graphs of Metrics for Different Cut-off Points. From left to right (a), (b), and (c) 

 



Table 7 

SAA Simulation Results When Cut-Off is less than 0.01 

Model Avg. % Reduc-

tion in Node-to-

Link Ratio 

Avg. Change in 

Best Probability 

by SAF 

Avg. KL 

Divergence 

M1 31.72 0.098 0.032 

M2 47.31 0.117 0.029 

M3 44.32 0.071 0.014 

M4 29.48 0.042 0.006 

M5 44.22 0.158 0.060 

 

Table 8 

SAAPerturb Aggregated Results of All Five Influence Nets 

Cut-Off 

Points 

Reduced 

Node-to-

Link % 

Avg. Change 

in SAF Prob-

abilities 

Avg. KL 

Divergence 

0.001 21.95 0.042 

 

0.013 

0.005 32.63 0.075 

 

0.019 

0.01 39.41 0.097 

 

0.028 

6. Conclusions 

The model building of Influence Nets is a labor in-

tensive and painstaking process. No formal process 

exist that can guide subject matter experts, who at 

times are not quite familiar with the underlying theory 

of probabilistic graphical models, to make an Influ-

ence Net more readable and less dense. The paper 

presented an approach to reduce the model complexi-

ty of Influence Nets using sensitivity of arc analysis.  

The approach tests how sensitive a desired effect is to 

the strength of each influence. If the probability of 

achieving a desired effect is indifferent to changes in 

the causal strength of each arc then that arc can be 

suggested for permanent removal from the IN. How-

ever, due to nonlinearities typically present in the 

joint probability distribution of the modeled variables, 

it is important to know how this arc removal process 

affects the joint distribution. Considering the intracta-

ble amount of time required to generate and to com-

pare the joint probability distributions before and 

after the arc removal process; a metric, based on the 

SAF algorithm, is suggested to gauge this change. 

The metric is benchmarked against the classical KL-

divergence method.  

The approach presented in this paper works as a 

decision support tool to subject matter ex-

perts/knowledge engineers during the model building 

phase. It identifies arcs which are present in an IN but 

have no significant impact on the overall inference 

capabilities of the IN. The process aids the group of 

experts in developing a consistent model of the situa-

tion which is easy to interpret and is able to capture 

the intended situation with less complexity. It must be 

stated, however, that the Influence Net’s construction 

is an incremental process and the reduced network 

can be further revised (addition/deletion of more arcs 

and nodes) until the group of experts, involved in its 

construction, are happy with the final look of it. 
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