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Abstract. Fast Reduced set density estimator (FRSDE) is an important technique to realize the fast kernel density estimation 

based on the fast minimal enclosing ball (MEB) approximation technique. However, its performance on the running time is 

severely affected by the approximation parameter   used in this algorithm, where a smaller value will lead to more accurate 

approximation but heavy learning burden. In this study, we reveal that the random Gaussian white noise manually added to the 

data will speed up the learning and accordingly propose a speedup version of FRSDE, i.e., the noise-benefit FRSDE (NB-

FRSDE). NB-FRSDE can realize such a speedup because a larger value of   can be used on the noisy version of the original 

data to obtain the equivalent approximation performance, which only can be obtained by FRSDE on the original data with a 

smaller value of  . The distinctive characteristics of NB-FRSDE exist in the following aspects: (1) its implementation is very 

simple because NB-FRSDE is the same as FRSDE except that there are Gaussian noises manually added to the original data in 

NB-FRSDE. (2) While most of the existing machine learning methods always try to remove the noise in order to overcome the 

influence of noise, NB-FRSDE benefits from the manually added noise in the sense of the average running time. The experi-

mental studies on density estimation and its application to image segmentation demonstrate the above advantages. 

Keywords: Fast reduced set density estimator, Minimal enclosing ball, Core set, Noise-benefit, NB-FRSDE 

1. Introduction

Probability density estimation is very important in 

many fields, such as pattern recognition and machine 

learning [1, 2, 14-16]. Parzen window kernel density 

estimator is one of the most attractive nonparametric 

density estimation methods [3-7, 17-19], which uses 

a full reference set for computing the estimate of a 

given datum. On the other hand, it is prohibitively 

expensive for online testing purposes in the practical 

applications for large data environments [8]. The 

reduced set density estimator (RSDE) [9] is another 

quite effective density estimation method due to its 

distinctive features, that it only needs both time and 

space complexities  2O N  to estimate the weighting 

coefficients. Although RSDE shows a nicer perfor-

mance, a critical challenge to RSDE is its long time 

and space complexities in learning the weighting 
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coefficients of a model. Fast Reduced Set Density 

Estimator (FRSDE), therefore, has been proposed as 

a fast version of RSDE in order to overcome the 

shortcoming [10]. The FRSDE has the following 

distinctive features: 1) The upper bound of its time 

complexity is asymptotically linear with the size N  

of a data set and the space complexity is independent 

of N , and 2) FRSDE can usually obtain comparable 

density accuracy with much higher data condensation 

rates than RSDE. However, the performance of 

FRSDE is severely influenced by the approximation 

parameter   used in its learning algorithm, where a 

smaller value leads to a more accurate approximation 

but takes expensive computational cost. In this study 

we will address this problem by using noise-benefit 

technique and present the improved method for the 

speedup of the density estimation on large datasets. 

We reveal that the random Gaussian white noise 

manually added to the data will result in a further 

speedup for FRSDE due to an obtained observation 

that a larger value of   can lead to the equivalent

approximation performance based on the noisy data. 
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This only can be obtained by FRSDE with a smaller 

value of   on the original data. Based on the above 

observation, a noise-benefit FRSDE (NB-FRSDE) 

algorithm is proposed. The NB-FRSDE can be im-

plemented in a very simple way because it is the 

same as FRSDE except that the Gaussian noises are 

added to the original data. Moreover, NB-FRSDE 

can benefit from the noise added manually in the 

sense of the average running time, which is very dif-

ferent from the most of the existing machine learning 

methods which always try to suppress the influence 

of noise. The experimental studies on density estima-

tion and the application to image segmentation will 

demonstrate the above advantages. 

The rest of this paper is organized as follows. Sec-

tion 2 describes RSDE and FRSDE in brief. In sec-

tion 3, the noise-benefit FRSDE is proposed to obtain 

a speedup version of FRSDE. Experimental studies 

are reported in Section 4, and conclusions are given 

in the last section. 

2.  RSDE and FRSDE 

2.1. RSDE 

RSDE was first proposed in [9] for kernel density 

estimation. The general form of a kernel density es-

timator can be denoted 

as    
1

; , ,
N

i h ii
p h K


x γ x x  based on a given 

dataset  1, , d

NS R x x , with  ,h iK x x  as the 

kernel function. The solution of RSDE can be de-

scribed as a QP problem with the following form: 
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In Eq.(1), C  is a N N matrix with 

   ( , ) ; ;
di j h i h j

R
C K K d x x x x x x x ; p is a 1N  

vector of Parzen density estimates with 
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 x x x , i.e., h Np K 1 , where 

N1  is the 1N vector whose elements are all 1
N

; 

1  is the 1N vector whose elements are all 1 . Alt-

hough the exact shape of the kernel function does not 

affect the approximation greatly a lot, Gaussian den-

sity function  ,h iG x x  is the most adopted kernel 

function. When  ,h iG x x  is adopted, 

   ( , ) ; ;
di j h i h j

R
C K K d x x x x x x x  can be direct-

ly denoted as  2 ,h i jG x x , which results in the easier 

computation for C . By solving the above QP prob-

lem, the final density estimator can be represented as 

   
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with m Srx , where  | 0, 1,2, ,i iSr i N  x is 

the reduced set of RSDE and M Sr  is the size of 

the reduced data. 

2.2.  FRSDE 

RSDE is very time consuming on large datasets. In 

[10], the fast version on large datasets, i.e., FRSDE, 

is proposed by using the MEB approximation strate-

gy and the core-set technique. 

(a) Core-set-based MEB approximation 

A ball can be denoted as  ,B Rc  with center and 

radius as c  and R , respectively. Given a data set 

 1, , d
NS R x x , the minimum enclosing ball of 

S  can be denoted as MEB( S ) , which is the smallest 

ball that contains all the data in S . The MEB can be 

solved by the following constrained optimization 

problem: 
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Many machine learning methods are related to 

MEB. In order to investigate the relationship between 

the MEB problem and kernel methods, Tsang et al 

[11] extended the MEB to the Center-Constrained 

minimal enclosing ball (CCMEB). The CCMEB 

problem can be expressed as 

     
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The dual of (6) is a QP problem as follows. 
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Since arbitrary multiple of T
α 1  added to the objec-

tive function will not affect the optimal solution, for 

an arbitrary R , (5) yields the same optimal α  as 

   argmax   
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For the MEB problem, an important advance is 

that it can be solved by using the fast core-set-based 

approximation algorithm [12-14], aiming at returning 

a good approximate solution for the MEB problem. 

Given a 0  , a ball   , 1B Rc  is called an 

 1  –approximation of MEB( S ) if  MEB S
R R  

and   , 1S B R c . It has been found that solv-

ing the MEB on a subset, called the core-set, Q  from 

S , can often return an accurate and efficient approx-

imation solution [14]. A breakthrough on achieving 

such an  1  –approximation was obtained by us-

ing the following iterative scheme [12]: At the t th 

iteration, the current estimate  ,t tB Rc  is expanded 

by including the farthest point outside the  1  –

ball  ,t tB Rc  and this operation is repeated until all 

the points in S  are covered by   , 1t tB Rc . Alt-

hough this strategy is simple, a surprising property is 

revealed that the maximal number of iterations and 

the size of the final core-set depend only on  , 

which are not related to the dimensional number or 

the size of a dataset [14]. 

(b) MEB approximation based FRSDE 

According to the core-set based MEB fast approx-

imation technique, the FRSDE is proposed based on 

the relationship between RSDE and CCMEB prob-

lems [10]. Let us observe the relationship between 

RSDE formulated in (1) and CCMEB problem for-

mulated in (7). For (1), let 

  2diag    Δ C p 1                                        (8) 

with 0   as a much larger constant such that Δ 0 . 

Then (1) is equivalent to the following formulation. 
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By comparing (9) with (7), it is found that they have 

the same expressions when K C . Thus, a signifi-

cant conclusion on RSDE is that it can be taken as a 

special MEB problem, i.e. the CCMEB problem. The 

important finding implies that the core-set based fast 

MEB approximation technique is highly useful to 

develop efficient algorithms for RSDE including the 

corresponding FRSDE. The algorithm FRSDE in 

[10] can be described in brief below. 

Algorithm FRSDE: Fast reduced sets density estima-

tor 

Inputs: Data set S , the approximation parameter 

 , a much larger positive constant   and 

the kernel width h . 

Outputs: Core set Q , reduced set Sr  and the 

weight coefficients vector γ  of density 

function  p x .  

Training procedure: 

Step 1: Initialize 0Q , 0c , and 0R . Set the itera-

tion number 1t  . 

Step 2: If there is no training point x  in the ex-

tended feature space such that x  falls 

outside the  1  -ball   , 1t tB Rc , 

go to Step 6.  

Step 3: Find x  such that it is farthest away from 

tc  in the extended feature space. Set 

1tQ  =  tQ  x . 

Step 4: Find the new CCMEB, i.e., MEB ( 1tQ  ) 

in the extended feature space and then set 

1tc  =  1MEC tQ 
c  and 1tR   =  1MEC tQ

R


. 

Step 5:  Let 1t t   and go to Step 2 

Step 6:  Terminate the training procedure and 

return the obtained outputs. 

3. Noise-Benefit FRSDE for the Speedup 

In this study, we will reveal that the random 

Gaussian white noise manually added to the data can 

result in a further speedup for FRSDE. The details 

are presented below. 

Let = + ( )nx x x  be the corresponding noisy data 

point to the original data point x . When the common 

Gaussian kernel function is adopted for FRSDE, its 

objective function based on the noisy dataset can be 

expressed as follows. 
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Let the Gaussian white noise as the random variable 

with mean and standard deviation as 0 and  , re-



 

 

spectively. Then the expectation  2E || ||i jx x can 

be computed as follows. 
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where 1=[ , , ]d σ . Otherwise, 

   2 2E || || =E || || =i j i i x x x x 0 . 

Based on the noisy data with the random Gaussian 

noise, the expectation of the objective can be ex-

pressed as follows. 
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Eq.(13) can be equivalently expressed as the follow-

ing compact form. 
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γ  is a regulariza-

tion term. The regularization term usually can im-

prove the generalization ability of the model. So let 

us observe other terms in (14) in a qualitative way. 
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where 0   is a much larger constant such that 

Δ 0 . Then (14) can be written as 
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Now, we have a comparison on the MEB obtained 

by using the core-set based fast approximation tech-

nique based on the original dataset and the noisy da-

taset. In Fig. 1, the MEB and CCMEB obtained on 

the original dataset and the CCMEB obtained on the 

noisy dataset (called CCMEB_noise for simplicity) 

by FRSDE are shown. The extended part of the 

CCMEB and CCMEB_noise are as follows. 

CCMEB: 

       2 2
12 [ , , ]Ndiag       Δ C p 1           (17.a) 

CCMEB_noise:             
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Fig. 1 Comparison of the MEB obtained on the original 

dataset and its noisy version 

Comparing (17.a) and (17.b), we can find 
2 2

1 N   . It indicates that FRSDE on the noisy da-

taset is able to get a more compact ball than that ob-

tained on the original dataset with the same values of 



 

 

the approximation parameter  . Thus if a larger val-

ue is set for the approximation parameter   on the 

noisy dataset, the more slack ball can be learned 

which is equivalent to the ball obtained by FRSDE 

on the original dataset. We reveal that the random 

Gaussian white noise added to the data will result in 

a fast learning since a much large value of   can be 

adopted to obtain the equivalent approximation per-

formance, which only can be obtained based on the 

original data with a smaller value of approximation 

parameter. More precisely, the smaller value of the 

approximation parameter   will result in the longer 

learning time of FRSDE, so that a bigger value of 

this parameter can lead to a speedup of the solution 

to the MEB associated with the kernel density esti-

mation. Thus, the noisy data based FRSDE will be 

faster than the original data based FRSDE in order to 

obtain the equivalent density estimation accuracy. 

Here, the noisy-benefit FRSDE is called NB-FRSDE 

in this study. In general, the proposed NB-FRSDE 

has the following distinctive characteristics. 

(1) It is a simple implementation of FRSDE on the 

dataset with the Gaussian white noise added. 

(2) The NB-FRSDE can benefit from the noise in 

the sense of the average running time, which is very 

different from the most of the existing machine learn-

ing methods that always try to remove the noise from 

the data in order to overcome the influence of noise. 

4. Experimental studies 

In this section, in order to investigate the perfor-

mance of NB-FRSDE, the experimental results on 

density estimation using two density estimators, i.e., 

FRSDE and NB-FRSDE, are compared and reported. 

In our experiments, two kinds of experiments are 

conducted. Firstly, the accuracy of density estimation 

is evaluated on different size of datasets. Secondly, 

the adopted algorithms are applied to image segmen-

tation. 

We use the following index, i.e., the accuracy of 

density estimation, denoted as J, to measure the den-

sity estimation accuracy, which is computed by the 

L2 error between the obtained density function and 

the real density function. Meanwhile, the running 

time, denoted as T, is also used to further evaluate 

the performance of the adopted algorithms. 

In our experiments, the best Gaussian kernel width 

parameter is determined by 10 folds cross-validation 

strategy based on the log-likelihood criterion as in [9]. 

4.1. Performance on Density Estimation 

The 1-D multi-modal benchmarking Gaussian 

density function in (18) is used in this experiment [9, 

10]. Training sets of 1e3 to 1e6 data points are drawn 

from this distribution and two density estimators 

FRSDE and NB-FRSDE are fit to the data. A testing 

set of 1000 points is then drawn and the 2L  testing 

errors of two estimators are computed. For the noisy 

data, 10 different datasets with the same extent of 

noise are generated based on the original noise-free 

dataset. In order to observe and compare the perfor-

mances of FRSDE and NB-FRSDE, we take the ap-

proximation parameter   as 2e-6 for FRSDE, and 

3e-6 and 4e-6 for NB-FRSDE respectively. In other 

words, in order to verify the idea in the last section, 

we want to observe whether NB-FRSDE with a com-

paratively bigger   on the noisy version of the origi-

nal dataset is comparable in the sense of the average 

approximation accuracy of density estimation but 

faster in the sense of the average running time, when 

comparing with FRSDE with a comparatively small-

er   on the original dataset. 
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In Tab.1 and 2, the comparison of the accuracy 

and training time are reported. From these results we 

can have the following observations and analysis. 

(1) In Table 1, the accuracy obtained by FRSDE 

on the original dataset and the means and standard 

deviations (s.d for simplicity) of accuracy obtained 

by NB-FRSDE on the noisy datasets are compared. 

The results show that the obtained accuracies of both 

methods are comparative. 

(2) In Table 2, the running time of FRSDE on the 

original dataset and the means and standard devia-

tions of accuracies of NB-FRSDE on the noisy da-

tasets is compared. The results on the average run-

ning time show that the NB-FRSDE is more efficient 

than FRSDE. 

In general, while FRSDE and NB-FRSDE have 

the comparative performances on the accuracy of 

density estimation, the latter has an obvious ad-

vantage on the running time. 

 

Table 1  

Performance comparison of between Accuracy (J) between FRSDE and NB-FRSDE 



 

 

Size 

Accuracy (J) 

FRSDE 

(  =2e-6) 

NB-FRSDE (  =3e-6) 

(σ=0.05) (σ=0.1) (σ=0.2) 

mean s.d mean s.d mean s.d 

1e3 0.0028 0.0022 0.0006 0.0014 0.0006 0.0013 0.0004 

5e3 0.0029 0.0019 0.0011 0.0019 0.0011 0.0015 0.0004 

1e4 0.0025 0.0015 0.0010 0.0021 0.0010 0.0014 0.0002 

5e4 0.0016 0.0017 0.0014 0.0019 0.0014 0.0013 0.0005 

1e5 0.0017 0.0012 0.0009 0.0018 0.0009 0.0018 0.0007 

5e5 0.0013 0.0017 0.0003 0.0015 0.0003 0.0013 0.0005 

1e6 0.0015 0.0014 0.0010 0.0017 0.0010 0.0011 0.0002 

Size 

Accuracy (J) 

FRSDE 

(  =2e-6) 
NB-FRSDE (  =4e-6) 

(σ=0.05) (σ=0.1) (σ=0.2) 

mean s.d mean s.d mean s.d 

1e3 0.0028 0.0022 0.0012 0.0020 0.0014 0.0026 0.0012 

5e3 0.0029 0.0019 0.0011 0.0021 0.0008 0.0019 0.0007 

1e4 0.0025 0.0015 0.0008 0.0015 0.0009 0.0015 0.0007 

5e4 0.0016 0.0017 0.0002 0.0017 0.0004 0.0017 0.0007 

1e5 0.0017 0.0012 0.0007 0.0014 0.0005 0.0012 0.0006 

5e5 0.0013 0.0017 0.0003 0.0015 0.0007 0.0017 0.0007 

1e6 0.0015 0.0013 0.0007 0.0014 0.0004 0.0014 0.0004 

 
Table 2  

Performance comparison of running time between FRSDE and NB-FRSDE 

Size 

Running time (T) 

FRSDE 

(  =2e-6) 

NB-FRSDE (  =3e-6) 

(σ=0.05) (σ=0.1) (σ=0.2) 

mean s.d mean s.d mean s.d 

1e3 180.3684 0.9766 0.9739 0.3705 0.0390 0.4134 0.0772 

5e3 255.4984 0.8775 0.2751 1.2074 0.5938 0.9984 0.0220 

1e4 360.0659 1.3416 0.5872 2.0436 0.4899 1.2870 0.6508 

5e4 486.5983 1.7706 0.7086 2.2744 0.4504 1.2792 0.5956 

1e5 1506.657 1.6887 0.0234 1.4391 0.4103 1.6302 0.0772 

5e5 2588.274 1.9851 0.4140 1.8135 0.0702 2.0124 0.0882 

1e6 2421.759 2.3244 0.8255 3.0732 0.7317 2.2230 0.0772 

Size 

Running time (T) 

FRSDE 

(  =2e-6) 

NB-FRSDE (  =4e-6) 

(σ=0.05) (σ=0.1) (σ=0.2) 

mean s.d mean s.d mean s.d 

1e3 180.3684 0.3432 0.1141 0.2925 0.0603 0.3744 0.1416 

5e3 255.4984 0.7831 0.2232 0.8229 0.3515 0.8642 0.1367 

1e4 360.0659 1.6505 0.1100 1.6068 0.0422 1.3026 0.5405 

5e4 486.5983 1.7940 0.3315 1.4157 0.3978 1.7253 0.5436 

1e5 1506.657 1.3603 0.4775 1.8915 0.4343 1.8595 0.6592 

5e5 2588.274 3.1044 0.9153 1.8798 0.4949 2.0280 0.3885 

1e6 2421.759 2.7424 0.5569 1.7355 0.5149 2.6707 0.5089 

4.2. Application to large image segmentation 

In this subsection, we apply FRSDE and NB-

FRSDE to image segmentation. The proposed NB-

FRSDE and FRSDE based image segmentation 

method can be stated as follows [10]: 

1) Generate the data set imS  by extracting the fea-

tures of each pixel in an image; 

2) Estimate the density function of the data set imS  

or noisy imS , and then obtain the reduced set reS  of 

imS  by using FRSDE or NB-FRSDE; 

3) Use the famous fuzzy clustering algorithm FCM 
in [22] to cluster the reduced set reS  into C  clusters 

and label the data points in reS ; 

4) Take imS  as the testing set and the labeled reS  

as the training set and then utilize KNN classifier 
[23] to classify imS  into C  clusters; 

5) Obtain the segmented image using the obtained 
classification result in step 4). 



 

 

In our experiment, HSV features of a color image 

are extracted to generate the corresponding data set. 

In the above step 4), we set 1k   for KNN classifier. 

Two color images, as shown in Fig. 2, are adopted 

for this experiment. The sizes of Fig.2 (a) and (b) are 

426*527*3 and 223*350*3, respectively. For each 

image, it is partitioned into three sections.  

Fig. 3 and Table 3 show the segmented results. 

From Fig. 3, we can see that these two methods can 

obtain comparable segmentation results on the adopt-

ed images. However, from Table 3, it can be easily 

found that for these images, the NB-FRSDE based 

method has an obvious advantage over the FRSDE 

based method in running time. 

 
Image 1 Image 2 

  
(a) (b) 

Fig. 2 The adopted images for segmentation. 

 
Image 1 Image 2 

  
(a) (b) 

  
(c) (d) 

Fig. 3 The segmentation results by two methods: (a) and (b) ob-

tained by FRSDE based method; (c) and (d) obtained by NB-

FRSDE based method. 

 
Table 3  

Performance comparison between FRSDE and NB-FRSDE on 

running time. 

 Running time (T) 

FRSDE NB-FRSDE (σ=0.1) 

mean s.d 

Image 1 308.1955 154.1393 7.4803 

Image 2 301.5655 160.0414 1.6748 

5. Conclusions 

In this study, it is revealed that the random Gauss-

ian white noise manually added to the original data 

will result in a speedup of FRSDE density estimator 

where a much larger value of   can be used to obtain 

the equivalent approximation performance that only 

can be obtained by FRSDE based on the original data 

with a smaller value of  . The experimental studies 

on density estimation and the application on to image 

segmentation also demonstrate this advantage.  

Although the proposed NB-FRSDE has demon-

strated the promising performance, many further 

works can be done in depth. For example, the follow-

ing several aspects deserve the further study. 

(1) When a larger value of   is adopted for NB-

FRSDE, how to determine the most appropriate value 

is still an open problem. 

(2) Large scale datasets are becoming main data 

sources for many modeling tasks [20, 21]. How to 

use the proposed method for different application 

scenarios with large scale data is still a challenge 

work.  

(3) For complicated modeling scenarios, transfer 

learning and multi-view learning are attracting more 

and more attentions. Thus, it is also a very valuable 

work to integrate the proposed method with transfer 

learning and multi-view learning techniques and de-

velop the corresponding new methods. 
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