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On definition and construction of association
measures

Ildar Z. Batyrshin∗
Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional, Mexico, Av. Juan de Dios Bátiz,
Esq. Miguel Othón de Mendizábal S/N, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México,
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Abstract. The definition and the general methods of construction of non-statistical association measures on different domains are
discussed. An association measure is a function of two variables defined on a set X with involutive operation and satisfying the
properties similar to the properties of the Pearson’s correlation coefficient. Such measure can be used for analysis of the possible
positive and negative relationships between variables. The methods of construction of association measures using similarity
measures and pseudo-difference operations associated to t-conorms are discussed. The examples of association measures on
different domains are considered.
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1. Introduction

The association measures are widely used in data
analysis. Different association and correlation measures
have been introduced in statistics, data mining, fuzzy
set theory etc. [1, 7, 12, 13, 17] for different types of
data. The Pearson’s correlation coefficient [12]

corr(x, y) =
∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2 ·
√∑n

i=1 (yi − ȳ)2
.

(1)
is the most popular association measure used for anal-
ysis of possible relationships between variables. Many
association measures similar to the correlation coeffi-
cient have been proposed but it is an interesting problem
not only to introduce a new association measure for
some type of data but to analyze a class of functions
similar to the correlation coefficient and to propose the
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S/N, Nueva Industrial Vallejo, Gustavo A. Madero, 07738 Ciudad de
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methods of their generation. In [1], it was proposed
the measure of correlation between fuzzy membership
functions satisfying to the set of properties similar to
the properties of the Pearson’s correlation coefficient.
In [6], it was considered another set of properties simi-
lar to the properties of Pearson’s correlation coefficient
and defining the time series shape association mea-
sures. In [7], the general methods of construction of
such association measures have been proposed and the
sample Pearson’s correlation coefficient was obtained
as a particular case of the general approach. In [8], the
methods proposed in [7] have been extended on the gen-
eral case of functionsA : X×X → [−1, 1] defined on
a set X with involutive operation N (called reflection)
and satisfying the properties similar to the properties
of the Pearson’s correlation coefficient. The methods
of construction of such measures [8, 9] use similarity
measures and pseudo-difference operations associated
with t-conorms [2, 15]. In [9], the problems appeared
in the definition of the general class of functions sim-
ilar to the Pearson’s correlation coefficient have been
discussed. These problems have the different reasons.
First, the properties of the function (1): corr(x,x) = 1 and
corr(x,–x) = –1, are, really, contradictive for the n-tuple
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x = (0, . . . ,0) where it is fulfilled: x = –x. The similar
problem appears, generally, for the fixed points of the
reflection operationN used in the definition of the asso-
ciation measure A. Second, the function (1) does not
defined for the constant n-tuples x = (x1, . . . , xn) =
(s, . . . , s) where s is some real value because the denom-
inator of (1) equals to 0. Similarly, it is possible that an
association measure cannot be defined on all setX. Such
elements of X can be excluded from the domain of the
association measure or this function should be addition-
ally defined there. Third, depending on the domain X,
additionally to the general properties of the association
measures it is possible to consider other properties spe-
cific for this domain. See, for example, the definition of
time series shape association measure [6, 7].

The current paper tries to avoid these problems by
two ways. First, to consider explicitly the association
measures defined on some subset V of X where these
problems disappear. Second, to define the association
measure on the set X and to correct some properties
required from the association measure to avoid the pos-
sible contradiction between them.

The current paper also gives the proofs of some
general results considered in the previous papers of
the author without proofs. Some related details can be
found also in [10].

The paper has the following structure. Section 2 dis-
cusses the definitions and the properties of association
measures defined on the sets with involutive operation.
For example, the simple association measure on the set
of real values is introduced. Section 3 considers the
basic definitions and the properties of operations of
fuzzy logic used in the following sections. Section 4
considers the general methods of construction of asso-
ciation measures and gives the proofs of the related
theoretical results. Section 5 considers an example of
association measure constructed by proposed methods.
The conclusions are given in the last section.

2. Association measures

Let X be a set and |X| > 1.

Definition 1. Let N : X → X be a function satisfying
for all x ∈ X the property:

N(N(x)) = x. (involutivity) (2)

N is called a reflection on X if it is not an identical
function, i.e. for some x ∈ X it is fulfilled N(x) /= x.
An element x ∈ X, such that

N(x) = x, (3)

is called a fixed point of N in X.
The fixed points will be denoted by xFP , hence:

N(xFP ) = xFP . (4)

Denote FP(N,X) the set of all fixed points of N in
X. This set can be empty.

Definition 2. LetXbe a set with a reflection operationN
onX,V be a subset ofX, |V | > 1, from x ∈ V it follows
N(x) ∈ V and the restriction of N on V is a reflection
on V . A function A : V × V → [−1, 1] satisfying for
all x, y ∈ V the properties:

A(x, y) = A(y, x), (symmetry) (5)

A(x, x) = 1, (reflexivity) (6)

A(x,N(y)) = −A(x, y), (inverse relationship) (7)

is called an association measure on V .

Proposition 1. If A is an association measure on
V ⊆ X then V ⊆ X\FP(N,X).

Proof. Suppose Proposition 1 does not true, i.e. A is a
function satisfying on V the properties (5)-(7) and V
contains some fixed point xFP of the reflection N.
Then from Equations (4) and (6) we obtain: A(xFP,
N(xFP )) = A(xFP, xFP ) = 1, but from Equations
(7) and (6) we have: A(xFP,N(xFP )) = −A(xFP,
xFP ) = −1. The obtained contradiction proves the
proposition. �

Consider the following properties of association
measures:

A(N(x), N(y)) = A(x, y), (cancellation of reflections)
(8)

A(x,N(y)) = A(N(x), y). (permutation of reflections)
(9)

Proposition 2. The association measure A on V sat-
isfies for all x, y ∈ V the properties (8), (9) and the
following property:

A(x,N(x)) = −1. (10)

Proof. (8) and (9) follow from Equations (7) and
(5): A(N(x), N(y)) = −A(N(x), y) = −A(y,N(x)) =
A(y, x) = A(x, y). A(N(x), y) = A(y,N(x)) =
−A(y, x) = −A(x, y) = A(x,N(y)). Equation (10)
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follows from Equations (7) and (6): A(x,N(x)) =
−A(x, x) = −1. �

Definition 3. Let X be a set with a reflection operation
N on X and FP(N,X) be a set of fixed points of N. A
function A : X×X → [−1, 1] will be called:

1) an association measure of type 1 on X if Equa-
tions (5) and (7) are fulfilled for all x, y ∈ X and
Equation (6) is fulfilled for all x /∈ FP(N,X);

2) an association measure of type 2 on X if Equa-
tions (5) and (6) are fulfilled for all x, y ∈ X
and Equation (7) is fulfilled for all x ∈ X and all
y /∈ FP(N,X).

Proposition 3. An association measure A of type 1 on
X satisfies for all x, y ∈ X the properties (8), (9) and:

A(x,N(x)) = −1 if x /∈ FP(N,X), (11)

A(x, xFP ) = A(xFP, x) = 0, for all xFP ∈ FP(N,X).
(12)

Proof. For the proof of Equations (8), (9) and (11)
see the proof of Proposition 2. Let us prove Equa-
tion (12). From Equations (4), (7) and (5) for all
x ∈ X and all xFP ∈ FP(N,X) it follows:A(x, xFP ) =
A(x,N(xFP )) = −A(x, xFP ) hence A(x, xFP ) = 0 and
A(xFP, x) = 0. �

Note that from Proposition 3 it follows A(xFP,
xFP ) = 0. Although some papers require the fulfill-
ment of (6) for all x ∈ X, in this paper the association
measures of type 2 will be not considered. The prop-
erty (12) of association measures of type 1 seems more
reasonable. See [10].

2.1. Association measures on [0,1]

In [10], it was considered an association measure of
type 1 on [0,1] related with the strong negation N.

Definition 4. A strong negation on X = [0,1] is a con-
tinuous strictly decreasing functionN : [0, 1] → [0, 1]
satisfying for all x ∈ [0, 1] the following properties:

N(N(x)) = x, (13)

N(0) = 1, N(1) = 0. (14)

A strong negation is a reflection operation on [0,1]
with the unique fixed point denoted as c. In [10], it
was considered the class of c-separable association

measures of type 1 satisfying for all x, y ∈ [0, 1] the
properties:

A(x, y) > 0 if x, y > c or x, y < c, (15)

A(x, y) = 0 if x = c or y = c. (16)

A(x, y) < 0 if x < c < y or y < c < x. (17)

Such association measures can be used for analysis
of associations between truth or probability values of
some plausible statements P and Q. For example, the
association between them is negative when one state-
ment has high plausibility value and another one has
low plausibility value.

2.2. Association measures on the set of real values

Let X be a set of real values, X = R, and N(x) = −x
for all x in R. We have XFP = 0 and FP(N,X) = {0}.
The association measures of type 1 satisfy on R the
properties:

A(x, y) = A(y, x), (18)

A(x, x) = 1 if x /= 0, (19)

A(x,−y) = −A(x, y). (20)

From Proposition 3 we obtain the following proper-
ties of the association measures on R:

A(−x,−y) = A(x, y), (21)

A(x,−y) = A(−x, y), (22)

A(x,−x) = −1 if x /= 0, (23)

A(x, 0) = A(0, x) = 0. (24)

Similarly to the c-separable association measure on
[0,1] introduce the following definition.

Definition 5. An association measure A on the set of
real values R is called 0-separable (or simply “sepa-
rable”) if the following properties are fulfilled for all
x, y ∈ R:

A(x, y) > 0 if x · y > 0, (25)

A(x, y) = 0 if x · y = 0. (26)

A(x, y) < 0 if x · y < 0, (27)
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0-separable association measures have the simple
interpretation: x and y are positively associated if they
have the same sign and they are negatively associated
if they have the opposite signs. Based on these con-
siderations it can be proposed the following simplest
association measure on the set of real values.

Proposition 4. The function

A(x, y) = sign(x · y) =

⎧⎪⎨
⎪⎩

1, if x · y > 0

0, if x · y = 0

−1, if x · y < 0
, (28)

is the 0-separable association measure of type 1 on the
set of real values.

The proof is straightforward.

2.3. Association measures on the set of time series

Association measures on the set of time series are
considered in [6, 7]. A time series of the length
n, (n > 1), is a sequence (n-tuple) of a real val-
ues x = (x1 . . . , xn). Consider the reflection operation
N(x) = −x = (−x1, . . . ,−xn) on the set X of all time
series with the length n. Suppose p, q are real values
andp /= 0. Define x+ y = (x1 + y1, . . . , xn + yn) and
py + q = (py1 + q, . . . , pyn + q). Denote q(n) a con-
stant time series with the length n with all elements
equal toq. The n-tuplexFP = 0(n) is a unique fixed point
of N. We write x = const if x = q(n) for some q, and
x /= const if xi /= xj for some i /= j from {1, . . . , n}.
Denote XC a set of all constant time series from X.

Definition 6. Suppose V is a subset ofX such that from
x ∈ V it follows −x ∈ V , and x+ q ∈ V for all real q.
A function A : V × V → [−1, 1] satisfying on V the
properties Equations (5)-(7) and the property:

A(x+ q, y) = A(x, y), for all real q,

(translation invariance)
(29)

is called a shape association measure on V . If from
x ∈ V it is fulfilled px ∈ V for all p > 0 andA satisfies
on V the property:

A(px, y) = A(x, y), for all p > 0, (scale invariance)
(30)

then A is called a scale invariant association measure.

Proposition 5. IfA is an association measure onV then
V ⊆ X\XC.

Proof. Suppose Proposition 5 does not true, i.e.A is an
association measure onV , andV contains constant time
series x = s(n) where s is some real value. For q = −2s
we have x+ q = x− 2s = (s− 2s, . . . , s− 2s) =
(−s)(n) = −(s)(n) = −x and from Equations (29),
(5)-(7) we obtain: A(x, x) = A(x+ q, x) =
A(−x, x) = A(x,−x) = −A(x, x) = −1, that contra-
dicts to reflexivity of A. The obtained contradiction
proves the Proposition �

In the next section, there are considered the basic
properties of some operations of fuzzy logic that will
be used further in construction of association measures.

3. Basic properties of operations of fuzzy logic

Consider the basic properties of the operations of
fuzzy logic used in the following sections [2–5, 10, 11,
14–16, 18].

Definition 7. t-conorm is a function S : [0, 1]2 →
[0, 1] satisfying for all x, y, z ∈ [0, 1] the following
properties:

S(x, y) = S(y, x), (commutativity)

S(x, S(y, z)) = S(S(x, y), z), (associativity)

S(x, y) ≤ S(x, z) if y ≤ z, (monotonicity)

S(x, 0) = x. (boundary condition)

From the definition of t-conorm it follows for all a ∈
[0, 1]:

S(1, x) = S(x, 1) = 1, S(0, x) = S(x, 0) = x. (31)

Definition 8. A t-conorm S is nilpotent if there exist
x, y ∈]0, 1[ such that S(x, y) = 1.

Definition 9. An element x ∈]0, 1[ is a nilpotent ele-
ment of t-conorm S if there exists y ∈]0, 1[ such that
S(x, y) = 1.

It is clear that t-conorm S has no nilpotent elements
if and only if for all x, y ∈ [0, 1] it is fulfilled:

S(x, y) = 1 implies x = 1 or y = 1. (32)

Consider the simplest, basic, t-conorms:
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SM(x, y) = max{x, y}, (maximum)

SP (x, y) = x+ y − x · y, (probabilistic sum)

SL(x, y) = min{x+ y, 1}. (Lukasiewicz t - conorm)

Maximum and probabilistic sum have no nilpotent
elements but Lukasiewicz t-conorm has.

Definition 10. Let S be a t-conorm.
(i) The S − difference

s− is defined for all a, b ∈
[0, 1] as follows:

a
s− b = inf {c ∈ [0, 1] | S(b, c) ≥ a}. (33)

(ii) The pseudo-difference �s associated to S is
defined for all a, b ∈ [0, 1] as follows:

a�s b =

⎧⎪⎪⎨
⎪⎪⎩

a
s− b if a > b

−
(
b
s− a

)
if a < b

0 if a = b

(34)

Pseudo-difference �s associated to S has the follow-
ing properties (see [10, 15] for details):

1) 1 �s b = 1, if b = 0 or

if b < 1 and t - conorm S has no nilpotent elements.
(35)

2) For any a, b ∈ [0, 1] it is fulfilled:

a�s b = −(b�s a). (36)

3) If t-conorm S is continuous at the point 0 in both
arguments then the following is fulfilled for all a, b ∈
[0, 1]:

a�s b > 0 if a > b. (37)

The following pseudo-differences are associated to
the basic t-conorms SM , SP and SL:

a�M b =

⎧⎪⎨
⎪⎩
a if a > b

−b if a < b

0 if a = b

, (38)

a�P b =
{

a−b
1−min(a,b) , if a /= b

0, if a = b
, (39)

a�L b = a− b. (40)

Definition 11. An automorphism of the interval
[0,1] is a continuous, strictly increasing function ϕ :

[0, 1] → [0, 1] satisfying boundary conditions ϕ(0) =
0, ϕ(1) = 1.

Theorem 1. [3, 18]. A functionN : [0, 1] → [0, 1] is a
strong negation if and only if there exists an automor-
phism ϕ of the unit interval such that

N(x) = ϕ−1(1 − ϕ(x)). (41)

The function ϕ in Equation (41) is called a generator
of N.

Example 1. The standard negation:

N(x) = 1 − x, (42)

has the generator ϕ(x) = x and the fixed point c = 0.5.

Example 2. Yager negation:

Np(x) = p
√

1 − xp, p > 0, (43)

has the generator ϕ(x) = xp and the fixed point
c = p

√
0.5.

Example 3. The negation, introduced by Batyrshin
in [10]:

N(x) =
{

1 − 1−c
c
x if x ≤ c

c
1−c (1 − x) otherwise

, (44)

It has the generator:

ϕ(x) =
{ x

2c if x ≤ c

x+1−2c
2(1−c) otherwise

. (45)

This simple strong negation connects by line seg-
ments the fixed point (c, c) with the points (0,1) and
(1,0). It can be used for construction of strong negations
with any fixed point c ∈]0, 1[.

4. Constructing association measures

Consider the methods of construction of association
measures using a similarity measure and pseudo-
difference operation associated with some t-conorm and
prove the related results [8, 9].

Definition 12. A function SIM : X×X → [0, 1] is a
similarity measure on X if it satisfies for all x, y ∈ X
the properties:

SIM(x, y) = SIM(y, x), (symmetry) (46)
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SIM(x, x) = 1. (reflexivity) (47)

Definition 13. A similarity measure SIM onX is strict
reflexive if

SIM(x, y) < SIM(x, x) for all x /= y in X. (48)

For strict reflexive similarity measure SIM onXwith
reflectionN it is fulfilled the property of weak similarity
of reflections:

SIM(x,N(x)) < 1 for all x ∈ X\FP(N,X). (49)

Proposition 6. The similarity measure SIM satisfies for
all x, y ∈ X the cancellation of reflections property:

SIM(N(x), N(y)) = SIM(x, y), (50)

if and only if it satisfies the permutation of reflections
property:

SIM(x,N(y)) = SIM(N(x), y). (51)

Proof. Equation (50) follows from Equation (51)
and involutivity of N : SIM(N(x), N(y)) = SIM

(N(N(x), y)) = SIM(x, y). Equation (51) follows from
Equation (50) and involutivity of N : SIM(x,N(y)) =
SIM(N(x), N(N(y))) = SIM(N(x), y). �

Theorem 2. SupposeX is a set with a reflectionN,V ⊆
X\FP(N,X), |V | > 1, V is closed under N which is a
reflection on V , S is a t-conorm and SIM is a similarity
measure on X satisfying the permutation of reflections
property then the function ASIM,S : V × V → [−1, 1]
defined for all x, y ∈ V by

ASIM,S(x, x) = 1 (52)

ASIM,S(x,N(x)) = −1 (53)

ASIM,S(x, y) = SIM(x, y) �S SIM(x,N(y))

if y /= x, y /= N(x),
(54)

is an association measure on V .

Proof. We need to prove only Equations (5) and (7).
Let us prove Equation (5). For y = x Equation (5) is

fulfilled trivially.
For y = N(x) from involutivity of N we have x =

N(y), and from Equation (53) we obtain: ASIM,S
(x, y) = ASIM,S (x, N(x))=−1 and ASIM,S (y, x)=ASIM,S
(y, N(y))=−1, hence ASIM,S (x, y)=ASIM,S (y, x).

Suppose y /= x, y /= N(x) then from the involutivity
of N it follows N(y) /= x. From Equations (54), sym-
metry and permutation of reflections properties of SIM
we obtain:

ASIM,S(y, x)

= SIM(y, x) �S SIM(y,N(x))

= SIM(x, y) �S SIM(N(x), y)

= SIM(x, y) �S SIM(x,N(y))

= ASIM,S(x, y). �

Let us prove Equation (7). For y = x Equation (7)
follows from Equations (53) and (52):
ASIM,S(x,N(y))=ASIM,S(x,N(x))= −1 = −ASIM,S
(x, x) = −ASIM,S(x, y).

For y = N(x) Equation (7) follows from the involu-
tivity ofN, Equations (52) and (53):ASIM,S(x,N(y))=
ASIM,S(x,N(N(x)))=ASIM,S(x,x)=1=−ASIM,S(x,N
(x)) = −ASIM,S(x, y).

If y /= x, y = N(x) then Equation (7) follows from
Equation (54), involutivity of N and Equation (36):

ASIM,S(x,N(y))

= SIM(x,N(y)) �S SIM (x,N(N(y)))

= SIM(x,N(y)) �S SIM(x, y)

= − (SIM(x, y) �S SIM(x,N(y)))

= −ASIM,S(x, y) �

Theorem 3. If in the conditions of the Theorem 2 SIM
is a similarity measure on X satisfying the properties
of permutation of reflections and weak similarity of
reflections then the function ASIM,S : V × V → [0, 1]
defined for all x, y ∈ X by:

ASIM,S(x, y) = SIM(x, y) �S SIM(x,N(y)), (55)

is an association measure on V if one of the following
is fulfilled:

1) SIM(x,N(x)) = 0, for all x ∈ V,
(non - similarity of reflections)

(56)

2) the t - conorm S has no nilpotent elements. (57)

Proof. The symmetry of ASIM,S follows from the sym-
metry and the permutation of reflections properties of
SIM:
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ASIM,S(x, y)

= SIM(x, y) �S SIM(x,N(y))

= SIM(y, x) �S SIM(N(y), x)

= SIM(y, x) �S SIM(y,N(x))

= ASIM,S(y, x).

The reflexivity ofASIM,S follows from the reflexivity
and weak similarity of reflections properties of SIM
and from (35) that requires the fulfilment of (56) or
(57):

ASIM,S(x, x) = SIM(x, x) �S SIM(x,N(x))

= 1 �S SIM(x,N(x)) = 1.

The inverse relationship of ASIM,S follows from the
involutivity of N and Equations (36) and (55):

ASIM,S(x,N(y))

= SIM(x,N(y)) �S SIM(x,N(N(y)))

= SIM(x,N(y)) �S SIM(x, y)

= − (SIM(x, y) �S SIM(x,N(y)))

= −ASIM,S(x, y) �

5. Examples of association measures

The examples of association measures on different
domains constructed by the methods discussed in the
previous section can be found in [7–10]. The similar-
ity measures satisfying the conditions of Theorems 2
and 3 can be obtained from the distance measures used
together with some data transformation [7], from gener-
ators of strong negations [3, 5, 9, 10] etc. For example,
suppose φ,ψ : [0, 1] → [0, 1] are automorphisms of
[0,1] and φ defines by (41) a strong negationN on [0,1].
Then the function

SIM(x, y) = 1 − ψ(|ϕ(x) − ϕ(y)|), (58)

is a similarity measure on [0,1] that can be used for
constructing association measure on [0,1] related
with strong negations (42)-(44) (see [10] for details).
Below is an example of the simplest association
measure on [0,1] related with the standard negation
(42) [10]:

ASIM,SM (x, y) =⎧⎪⎨
⎪⎩

1 − |x− y| if x, y > 0.5 or x, y < 0.5

0, if x = 0.5 or y = 0.5

|x+ y − 1| − 1 otherwise

6. Conclusion

The paper gives the definitions of the association
measures generalizing the Pearson’s correlation coeffi-
cient and proposes the general methods of construction
of such measures. The proofs of the main results are
provided. The simple association measure on the set
of real numbers is introduced. The considered meth-
ods of generation of association measures can be used
for construction of association measures on different
domains.
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