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Intelligent traffic signal controller based
on type-2 fuzzy logic and NSGAII
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Abstract. Intelligent traffic signal control (TSC) system is important for the alleviation of traffic congestion. Usually, most of
the researches about TSC focused on single intersection based on type-1 fuzzy set. Compared with type-1 fuzzy logic controller
(FLC), type-2 FLC can deal with more uncertainties in the road traffic control system. Therefore, a type-2 FLC optimized by
NSGAII (T2-NSGAII) is designed for TSC in a complex road network, in which the intersection’s traffic signal time is dynamically
adjusted by its own and adjacent intersections’ traffic volumes to reduce global delay time and traffic congestion. In T2-NSGAII,
the expert rule set and the parameters of the fuzzy membership functions are simultaneously optimized by NSGAII to achieve
less time delay and traffic congestion. In the simulations of a six-intersection traffic network with different vehicular arrival rates,
it is demonstrated that T2-NSGAII has better performance compared with vehicle actuated controller based on fixed-time control
(FTC), type-1 FLC, type-2 FLC and isolatedly optimized Type-2 FLC and the total delay time could be reduced by 76.3%, 65.1%,
58.3% and 35.4% respectively.
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1. Introduction

OVER the past few years, there has been a steady
growth of vehicles and total miles of road leading
to an enormous increase in traffic congestion. Given
that major road construction in cities are both difficult
and costly, one of the most effective ways to alleviate
congestion is to increase the capacity of the existing
infrastructure using Traffic signal control (TSC). TSC
can bring a substantial reduction to traffic congestion,
leading to improved conditions both for the drivers and
the environment [12].

TSC in the signalized traffic intersections can be
either fixed-time signal control or adaptive control [5].
Generally, the fixed-time control is simple and the
time of the signal light is fixed, therefore, it can not
dynamically response to real-time fluctuations of traffic
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volumes. To overcome the limitations of the fixed-time
control that using fixed time intervals, adaptive TSC
was designed based on the real-time traffic information
to make quickly adjustments to signal settings [3].

Nevertheless, controlling the traffic signals of a trans-
portation network constitutes a significant challenge
due to the complexity of the problem, especially the
uncertain and dynamic behavior of the network [3].
The TSC system has many uncertainties, i.e., the traffic
queue length, collected by the auto loop detectors, is
non-stationary, and it varies all the time. The traffic
variations are impacted by many factors, including the
length of cars, the road condition, the weather, the traffic
rules, etc. Therefore, new intellectual approaches are
needed to deal with the complexity and uncertainness
of the TSC system [10].

Fortunately, Fuzzy logic control (FLC) provides such
an intellectual approach for the TSC system, which
is capable of mimicking human thought and hold-
ing the expert knowledge in the form of inference
rules [1, 11]. It is well known that, Type-2 fuzzy
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sets can efficiently deal with large uncertainties based
on its three-dimensional membership. Compared with
Type-1 FLC, Type-2 FLC has better performance,
but the performance is largely affected by the qual-
ity of the fuzzy rules and it is extremely difficult to
select the optimal parameters for the membership func-
tions of Type-2 FLC [7]. As an efficient and powerful
stochastic parameter optimization method for mul-
tiple objects, Non-dominated Sorting-based Genetic
Algorithm (NSGA-II) has shown better performance
than traditional genetic algorithm (GA) and particle
warm optimization (PSO) [6]. Furthermore, NSGAII is
designed for the problems of multiple objects optimiza-
tion [4], which makes it more suitable for the parameter
optimization problem of type-2 fuzzy logic control
system.

In the paper, we proposed a type-2 fuzzy logic con-
troller, optimized by NSGAII, for the real-time light
control in the four phase intersections with turning vehi-
cles taken into consideration. To achieve high vehicle
throughput rate, both the expert rule set and the param-
eters of the membership functions were simultaneously
optimized by NSGAII. Then the fuzzy controller was
applied in a multi intersections traffic network, in
which the light time was dynamically adjusted by the
traffic volumes of each intersection and its adjacent
neighbors.

2. Simulation of the traffic

In the paper, as shown in Fig. 1, the common four
phase traffic situation is considered in our work, includ-
ing: W-E straight phase, W-E left turning phase, N-S
straight phase and N-S left turning phase. Therefore,
each intersection has four-phase and they alternately
emergent, which is similar with the widely used inter-
sections in real traffic network. Assume that l and f
represent the distance between two adjacent intersec-
tions and the length of one vehicle respectively, and the
average speed of vehicles is v km/h, then there are at
most l/f vehicles in each lane. As shown in Equation
(1), the time cost of vehicles to reach the next inter-
section consists of three parts: the intersection passing
time l/v, the delay time for red signal tg and the delay
time for congestion tc. Apparently, the length of the
signal time should be dynamically adjusted based on
the average moving speed of vehicles and the neigh-
bor intersections’ queue length to reduce the delay time
while raise the throughput rate. There are many sensing
technologies to detect vehicles’ speed data at intersec-

tions. Accordingly, the number of vehicles in each lane
can be estimated based on the sensed speed.

D = l/v + tg + tc (1)

3. Intelligent signal control based
on type-2 FLC

3.1. Input data

To design a FLC system, we need to choice the
input and output variables firstly. As described in
Fig. 1, there are four lane directions in each intersec-
tion: E-W straight, E-W left-turning, S-N straight, S-N
left-turning. Apparently, the vehicles in the direction,
which has more traffic volume, have high privilege to
pass. And the traffic state of the straight or left-turning
adjacent intersections should also be taken into consid-
eration. Therefore, at the end of every green light time,
in each intersection the queue length of the 4 directions
and the traffic state of the target intersection are chosen
to be two input variables to the fuzzy controller.

3.1.1. The queue length
The queue length, throughput rate, average delay

time and parking times are commonly used criteria
to evaluate the traffic conditions. According to [13],
we suppose that the minimum successive time unit is
1s, and the vehicles’ arrival time in each direction is

Fig. 1. The four phase of an intersection.
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random, thus, in a time unit interval, the number of
arrived vehicles qn is shown in Equation (2)

qi =
{

1, if a vehicle arrives in the ith unit time

0, otherwise
(2)

Let lq and rq represent the vehicle queue lengths
during green light time and red light time respectively,
the queue length is:

lq(i) =
{

max(0, lq(i − 1) + qi − s), if i > 1

0, if i = 1
(3)

rq(i) =
{

rq(i − 1) + qi, if i > 1

q1, if i = 1
(4)

where i indicates the i-th simulation time unit, while
s denotes the number of departure vehicle in one time
unit during green light time.

3.1.2. The traffic state
As defined in Equations (5) and (6), the traffic state

of the i-th intersection si is denoted by the flow rate fri,
and fri in each direction is calculated by the arriving
rate of upstream minus downstream departure flow rates
for each lane in that direction of the phase. Sampling
of the vehicle data is done at a pre-given time interval,
which can be about 10s (Minimum green time):

tsi = fri

max{fri, frj} , sj ∈ ni (5)

where ni is the intersection neighbors of si, and fri is
defined as:

fri =
∑cg/∇T

k=1

∑n
i=1

∑l
j=1(fup

ij − fdown
ij )

n · l · (Cg/∇T )
(6)

where Cg represent the current green time, n is the num-
ber of links having right of way, l is the number of lanes
in the links, ∇T is the sampling period and f

up
ij , f down

ij

is the count of vehicle in the upstream and downstream
directions.

3.2. The fuzzifier

The fuzzifier is utilized to map a numeric vector
x=(x1,...xp) ∈ X1 × X2 × · · · × Xp ≡ X into a type-2
fuzzy set Ãx, which is an interval type-2 fuzzy set
in this case. In the paper, type-2 singleton fuzzifier is
employed. In a singleton fuzzification, there is only a
single point on nonzero membership in the input fuzzy
set. Ãx is a type-2 fuzzy singleton if µ

Ãx
(x) = 1/1 for

x = x′ and µ
Ãx

(x) = 1/0 for x /= x′.
In the paper, to fuzzify the input data and output

result: queue length, traffic state and green time, four
linguistic partitions are adopted: “Sparse (S)”, “Low
(L)”, “Medium (M)” and “High (H)”. Interval type-2
uncertain standard deviation Gaussian membership
functions are employed, as illustrated in Fig. 2. The
basic domain of green time is denoted as [0, 60], while
the domain of queue length and neighbor status are
[0, 15], [0, 100] respectively. The upper and lower
boundary standard deviation can be calculated based on
the recorded flow rates and queues at different period
of time on different days in a week.

Usually, the rule base of FLC is expressed in the
“if-then” form, which holds the expert knowledge. The
structure of fuzzy rules in a type-1 FLC and a type-2
FLC is in the same manner, but in the type-2 FLC the
antecedents and the consequents are denoted by type-2
fuzzy sets. So assume that for a type-2 FLC with p
inputs x1 ∈ X1...xp ∈ Xp and one output y ∈ Y, there
are M rules, and the l-th rule in the type-2 FLS can be

Fig. 2. Fuzzified antecedents and consequents. (a) Fuzzified neighbor status, neighbor status, (b)Fuzzified queue length, l(c)Fuzzified green
time.
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Table 1
Preliminary fuzzy rule base

Queue length Neighbor target
intersection state

S L M H

L H H M M
M H M M L
H M M L L

written as:

Rl : if x1 is F̃ l
1 and x2 is F̃ l

2, ..., xp is F̃ l
p,

then yl is G̃l, l = 1, ..., M
(7)

F̃ l and G̃l represent the fuzzy linguistic partition of
the input and output variable respectively. Furthermore,
the corresponding membership functions (MF) of the i-
th input variable and output variable are denoted by
µ

F̃l (xi) and µ
G̃l (xi).

According to common sense and the daily experi-
ence, the preliminary rule base is shown in Table 1.The
rule base is optimized and validated based on a
group of traffic network consisting of interconnected
intersections.

3.3. Inference engine

The inference engine of the type-2 FLS is responsible
for combining rules and mapping the input fuzzy sets
to the output fuzzy sets. It is necessary to compute the
join (unions) and the meet (intersections), as well as
the extended sup-star compositions of type-2 relations.
If Fl

1 ×...×Fl
p=Al, the fuzzy rules can be re-written as

follows

Rl : F̃ l
1× ... ×F̃ l

p →G̃l = Ãl →G̃l, l=1, ..., M (8)

The inference result of the l-th fired rule Rl is
described by the membership function µRl (x,y)=
µRl (x1,...,xp, y) where µRl (x,y)=µ

Ãl→G̃l (x,y) can be
written as

µRl (x, y) = µ
Ãl→G̃l (x, y)

= µ
F̃l

1
(x1) ∩ ... ∩ µ

F̃l
p
(xp) ∩ µ

G̃l
p
(y)

= [∩p
i=1µF̃l

i

(xi)] ∩ µ
G̃l

p
(y)

(9)

In general, the p-dimensional input to Rl is given by
the type-2 fuzzy set Ãx whose membership function
becomes:

µ
Ãx

= µ
x̃l

1
(x1) ∩ ... ∩ µ

x̃l
p
(xp) = ∩p

i=1µx̃l
i
(xi) (10)

where x̃i (i=1...p) are the labels of the fuzzy sets describ-
ing the inputs. Each rule Rl determines a type-2 fuzzy
set x̃l = Ãx ◦ Rl such that:

µ
B̃l (y) = µ

Ãx◦Rl

= ∪x∈X[µ
Ãx

(x) ∩ µRl(x,y)],
(11)

where y ∈ Y, l = 1...M. This dependency is
the input/output relation, which holds between
the type-2 fuzzy set that activates a certain
rule in the inference engine and the type-2
fuzzy set at the output of that engine. In the
FLS, interval type-2 fuzzy sets and intersection under
product t-norm are employed, so the inference of
antecedents can be addressed as

f
l = [µ

x̃l
1
(x1) ∩ µ

F̃l
1
(x1)] ∩ ... ∩ [µ

x̃l
p
(xp) ∩ µ

F̃l
p
(xp]

(12)

f l = [µ
x̃l

1
(x1) ∩ µ

F̃l
1
(x1)] ∩ ... ∩ [µ

x̃l
p
(xp) ∩ µ

F̃l
p
(xp]

(13)

Then the inference result of the l-th triggered rule is
simplified and shown in Equation (14):

µ
B̃l (y) = µ

G̃l (y) ∩ Fl, F l = [f
l
, f l] (14)

Therefore, the final inference result of the all trig-
gered rules in the fuzzy rule base is shown in Equation
(15).

µ
B̃

(y) = ∪M
i=1µB̃l (y) (15)

3.4. Type-reducer and defuzzifier

After the fuzzy inference process, the output from
an interval type-2 fuzzy set is acquired. Type-reducer is
necessary to convert interval type-2 fuzzy set into type-1
fuzzy set output, which is then converted in a numeric
output through running the defuzzifier. For the case of
our FLS center of sets (cos) type reduction is employed,
Ycos, which is expressed as

Ycos(x) = [yl, yr]

=
∫

yl

..

∫
yM

∫
f l

...

∫
fM

1/

∑M
i=1 f iyi∑M
i=1 f l

(16)

In Equation (16), Ycos represent interval set calcu-
lated by yl and yr, yi = [yl, yr], which is the centroid of
the result set G̃l.
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yl =
M∑
i=1

f i
l y

i/(
M∑
i=1

f i
l ),

yr =
M∑
i=1

f i
ry

i/(
M∑
i=1

f i
r )

(17)

The output interval of the type-2 FLC system can
be calculated by the values of yl and yr.After type-
reduction, we get an interval set Ycos, which is applied
to defuzzifier, and the crisp output is obtained as:

f (x) = (yl + yr)/2 (18)

4. Optimization process using NSGAII

In the paper, NSGAII is employed to optimize the
fuzzy rule and parameters of the type-2 FLC sys-
tem. NSGAII is a high efficient and powerful random
search algorithm for solving multiple objects optimiza-
tion problems. NSGII was first introduced by K. Deb
[4]. For NSGAII, The optimal solutions lie on the non-
dominated front (Pareto optimal front) in the feature
space of multiple objectives.

4.1. Introduction of NSGAII

Usually, the multi-objective optimization problem
can be expressed as how to choice the correct map-
ping of a set of n parameters to a set of m objectives. It
can be described algebraically in Equation (19):⎧⎪⎪⎨⎪⎪⎩

Find x = < x1, x2...xn >

Minimum y = < f1(x), f2(x)...fm(x) >

Subject to li ≤ xi ≤ ui, 1 ≤ i ≤ m

(19)

In Equation (19), x represents the set of decision
variables, and y denotes the objective set. For an evolu-
tionary algorithm with multiple objectives, fi(x) is the
fitness function for the i-th objective. Specifically, if
any object function fi(x) is originally designed to find
a maximum value, and then it can be modified as -fi(x).
Just as other evolutionary algorithms, NSGAII is also
based on the idea of evolution of populations of pos-
sible candidate individuals, which represent possible
solutions, and the evolution process includes mutation,
crossover and selection. Furthermore, NSGAII intro-
duced the concept of pareto dominate ≺ to classify
the individuals into different pareto front based on the

multi-objects values, accordingly the pareto domination
is defined as:

If xA, xB are two possible solutions, if xA ≺ xB, then:{
∀i = 1...m, fi(xA) ≤ fi(xB)∧
∃j = 1...m, fi(xA) < fi(xB)

(20)

The solution xA ≺ xB means for each object func-
tion, xA is at least as good as xB, and at least for one
object, xA is better than xB. When xA and xB are not
pareto dominate each other, both solutions belong to
the same non-dominated front, which means if xA is
better than xB in some objectives, then it must be worse
at least in one other objective.

When a possible solution s in the last generation is not
dominated by any other feasible solutions, s is referred
to as a pareto optimal solution of the m-objective mini-
mization problem in Equation (19). The set of all pareto
optimal solutions forms the tradeoff surface (pareto
front) in the objective space.

4.2. Encoding of the parameters and rules

In the paper, the fuzzy rule set and the MF parameters
are simultaneously optimized by NSGAII. For the fuzzy
inference rules, as shown in Table 1, there are 12 rules.
Therefore, 12 codes are defined to denote the outputs
of the fuzzy rules.

For example, the first four codes represent the out-
put of the first row in Table 1, the linguistic Sparse
(S), Low (L), Medium (M) and High (H) are denoted
by numeric value 1,2,3 and 4 respectively. And the
rules in Table 1 is expressed by chromosome, it equals
[4,4,3,3;4,3,3,2;3,3,2,2].

In the rule base, as shown in Fig. 3, each lin-
guistic degree in the Gaussian membership function
of the queue length is decided by 7 parameters:
σL1,σL2,σM1,σM2,σH1,σH2 and the mean value m. Con-
sider the other input variable neighbor traffic state and
the output variable green time, there are 31 parame-
ters in all for the optimization of membership function.
Finally, each individual of NSGAII is encoded as shown
in Fig. 4.

4.3. The multi object fitness function

The delay of multiple intersections is taken as the fit-
ness function. Let D denotes the total delay in the last
sampling period of an intersection A. And the number
of the arrived vehicles is counted by the loop detectors.
Suppose n represents the total number of the arrived



2616 C. Wen et al. / Intelligent traffic signal controller based on type-2 fuzzy logic and NSGAII

Fig. 3. Coding for the MF parameters.

Fig. 4. Coding for the MF parameters.

vehicles at A. And the average delay of A is D/n. This
value is an absolute delay because D only related to
the number of the arrived vehicles. The average delay
of other intersections can be calculated in a similar
manner. Therefore, the multiple optimization objects
of NSGAII is

f = {f1, f2...fm}, fi = D/n, i = 1...m (21)

During the evolution of NSGAII, the individuals of
each generation is evaluated by the multiple fitness
function defined in Equation (21), furthermore, to keep
the diversity of the individuals, the crowding distance
is also taken into consideration when we choice indi-
viduals into the next generation. The detail of NSGAII
is described in [4].

5. Simulation results

To evaluate the performance of the fuzzy controllers,
type-2 fuzzy logic control optimized by NSGAII (T2-
NSGAII), a network of six intersections is de-signed.
All intersections are 4-way with four phases, as shown

Fig. 5. The traffic network in the simulations.

Fig. 6. The delay time of intersection A.

in Fig. 5. The proposed method and targets are tested
in same traffic flow patterns and the results are com-
pared and analyzed. The sequence of signal phasing,
traffic flow information and signal plans are gener-
ated by the matrix of origin-destination of PARAMICS
software. The bench mark objects include 4 kinds of
commonly used methods, includes: simple fixed-time
control (FTC) [2], fuzzy logic control based on type-1
(T1) [1], fuzzy logic control based on type-2 (T2) [8],
fuzzy logic control based on type-2 isolatedly optimized
by DE (T2-DE) [13].

The comparisons of the delay time of the intersec-
tions among different methods are shown in Figs. 6
to 11, where s represents the arrival rate of straight
vehicles per second and l denotes the arrival rate of
left-turning vehicles per second.

From the figures, we can see that T2-NSGAII has bet-
ter performance compared with the benchmarks TFC,
T1, T2, T2-DE, the average total delay time is reduced
by 76.3%, 65.1%, 58.3% and 35.4% respectively. The
average delay of T2-NSGAII is the smallest, while the
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Fig. 7. The delay time of intersection B.

Fig. 8. The delay time of intersection C.

Fig. 9. The delay time of intersection D.

simple FTC method gets the worst performance. More-
over, type-2 FLC methods optimized by DE or NSGAII
perform better than the T2 without optimization, which
demonstrates that the optimization can facilitate the
FLC systems to get suitable parameters and further
improve the throughput rate of the traffic system. The
figures also show that T2-NSGAII is superior to T2-DE,
that’s because the fuzzy rules and MF parameters of all

Fig. 10. The delay time of intersection E.

Fig. 11. The delay time of intersection F.

the adjacent intersections of T2-NSGAII are simulta-
neously optimized, it makes sure that the rules and the
MF parameters are compatible. However, in T2-DE,
the fuzzy rules, MF parameters are optimized inde-
pendently, which is prone to get trapped into local
optimal solutions and make the rules and parameters
incompatible.

The average queue lengths of intersections are shown
in Table 2. At the boundary intersections such as A, C
and D, the arrived vehicles can smoothly pass through
them. Meanwhile, some intersections in the central
blocks begin to get traffic jam. From Table 2 we can
find that, the queue length of T2-NSGAII method is
the smallest and the level of crowdedness is less than
others. Furthermore, the results shows that the vehicle

Table 2
The queue lengths of intersections (s =0.4, l=0.2)

Model A B C D E F

FTC 20.1 31.5 18.8 21.3 33.5 20.8
T1 16.6 21.4 16.4 18.6 22.5 19.0
T2 13.7 18.9 15.1 15.9 19.4 15.8
T2-DE 10.1 15.6 14.0 13.4 16.5 13.9
T2-NSGAII 6.9 11.5 9.6 9.8 12.2 6.5
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queue length of all the T2 method (T2, T2-DE, and
T2-NSGAII) is less than that of T1, which demon-
strates our theoretical analysis that type-2 FLC has
the ability of deal with more uncertainties which exist
in the traffic control system, because of its special
three-dimensional membership functions holds more
uncertainties. It should be noted that the communica-
tion and changing phase sequence information between
intersections also facilitates the FLC system, especially
when they are simultaneously optimized.

6. Conclusion

In this paper, an intelligent traffic signal controller
based on type-2 FLC and NSGAII was proposed.
As the type-2 fuzzy logic can well model nonlinear
systems, especially on the condition that only a small
number of data or expert knowledge is available, it has
better ability in tackling uncertainties and robustness
than traditional type-1 FLC. Therefore, type-2 FLC is
more suitable for traffic signal control. Then NSGAII
was employed to optimize both the fuzzy rules and
the MF parameters, as it can well optimize multiple
objects simultaneously compared with other evolu-
tionary algorithms. The proposed method and other
benchmarks were applied to a six-intersection traffic
network. Different traffic scenarios were simulated
and compared with each other. The results showed
that T2-NSGAII got better performance than the other
methods, which demonstrated T2-NSGAII’s ability in
the application of complicated traffic signal control.
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