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Abstract. Multi-level thresholding methods are a class of most popular image segmentation techniques, however, they are not 
computationally efficient since they exhaustively search the optimal thresholds to optimize the objective function. In order to 
eliminate the shortcoming, a novel multi-level thresholding method for image segmentation based on tissue P systems is 
proposed in this paper. The fuzzy entropy is used as the evaluation criterion to find optimal segmentation thresholds. The 
presented method can effectively search the optimal thresholds for multi-level thresholding based on fuzzy entropy due to 
parallel computing ability and particular mechanism of tissue P systems. Experimental results of both qualitative and 
quantitative comparisons for the proposed method and several existing methods illustrate its applicability and effectiveness.
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1. Introduction

Image segmentation is one of the most important 
problems in computer vision and video applications. 
Thresholding is widely used as a popular tool in image 
segmentation. The goal of thresholding is to sepa-rate 
objects from background image or discriminate 
objects from objects that have distinct gray levels. 
Over these years, many thresholding techniques have 
been proposed [8, 24, 25]. Bi-level thresholding, 
which is firstly discussed, segments an image into two 
different regions. The pixels with gray values greater 
than a cer-tain threshold are classified as object pixels, 
and those with gray values lesser than the threshold 
are classified

as background pixels. Otsu’s method [19] and Kapur’s
method [11], which find the optimal thresholds by max-
imizing the between-class variance of gray levels and
the entropy of the histogram respectively, are simple
and effective in bi-level thresholding. However, gray
level histograms of most of the images in the real world
are multimodal. Therefore, multi-level thresholding has
been received much attentions in recent years. Multi-
level thresholding determines more than one threshold
for an image and segments the image into several dis-
tinct regions, which correspond to one background and
several objects. The Otsu’s and Papur’s methods can be
extendable to multi-level thresholding but they are inef-
ficient in determining the optimal thresholds due to the
exponential growth in computation time. To improve
the efficiency, some methods have been proposed to
reduce the computational complexity of determining



the multi-level thresholds, such as the recursive algo-
rithm [14]. But it still suffers from long processing time
when the number of thresholds increases.

Fuzzy entropy has been introduced into image seg-
mentation in recent years [1, 15, 26, 34]. Cheng et al.
[1] proposed a thresholding method, where the fuzzy
relation and the maximum fuzzy entropy were used
to perform fuzzy partition on a two-dimensional his-
togram. In [26], Shelokar et al. found the optimal
threshold by minimizing the sum of fuzzy entropies.
Zhao et al. [34] presented a three-level thresholding
method based on fuzzy entropy. In [15], Liu et al.
presented a fuzzy classification entropy to deal with
multi-level thresholding. However, these methods still
suffer from the same problem mentioned above.

In order to overcome this problem, intelligent com-
puting methods have been applied to solve multi-level
thresholding problems, such as genetic algorithm (GA),
particle swarm optimization (PSO) and ant colony opti-
mization (ACO). Yin et al. [32] presented a GA-based
thresholding method, where the objective function was
similar to Otsu’s or Kapur’s functions. In [2], Cheng et
al. defined an approach to fuzzy entropy and employed
the GA to find the optimal combination of fuzzy param-
eters. Tao et al. [28] presented a three-level thresholding
method that uses the GA to find the optimal thresholds
by maximizing the fuzzy entropy. In [6], Hammouche et
al. proposed a multi-level thresholding method, which
allows the determination of the appropriate number of
thresholds as well as the adequate threshold values.
However, GA has some drawbacks such as slow conver-
gence rate and premature convergence to local minima.
Thus, the PSO has been applied to multi-level thresh-
olding [5, 17, 33]. In addition, Tao et al. [27] used the
ACO to obtain the optimal parameters of the presented
entropy-based object segmentation method.

Membrane computing, as a new branch of natu-
ral computing, was proposed by Păun [20] in 2000.
Membrane computing is a novel class of distributed
parallel computing models, which is inspired by the
structure and the functioning of living cells as well
as the interactions of living cells in tissues or higher
order biological structures. The computing systems are
commonly called P systems. Generally, a P system
consists of three ingredients: membrane structure, mul-
tisets of objects and evolution rules [22]. Since then,
a large number of P systems and their variants have
been proposed [4, 7, 10, 13, 18, 21–23, 29–31]. Tissue
P systems as a class of P systems, are inspired by the
intercellular communication and cooperation between
neurons [4]. Tissue P systems can be viewed as a net

of processors dealing with symbols and communicating
them along channels specified in advance. In addition to
the advantage of distributed parallel computing, tissue
P systems have evolution and communication mecha-
nisms of objects, which allow the evolution of objects
as well as the exchange and sharing of objects between
elementary membranes.

In this paper, we propose a new multi-level thresh-
olding method based on tissue P systems to solve the
problem mentioned above. Our main motivation is to
improve and enhance the efficiency of the multi-level
thresholding method based on the fuzzy entropy cri-
terion by applying the parallel computing ability and
evolution and communication mechanisms of tissue P
systems. The proposed method is evaluated on several
standard images and it is also compared with the tradi-
tional method and GA-based and PSO-based methods.

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the fuzzy entropy criterion. The
proposed multi-level thresholding method based on tis-
sue P systems is presented in Section 3. Experimental
results are provided in Section 4. Finally, Section 5
draws the conclusions.

2. The fuzzy entropy criterion

Let D = {(i, j): i = 0,1,..., M-1; j = 0,1,..., N-1}, G = {0,
1, . . . , L-1}, where M, N and L are three positive inte-
gers. Thus, an image defines a mapping I: D→G. Let
I(x, y) be the gray level value of the image at the pixel
(x, y). Then, its histogram H can be calculated by

H = {hk|k = 0, 1, ..., L − 1}
hk = nk/(N × M)

where nk denotes the number of pixels such that
I(x,y) = k.

Suppose we segment image I into C partitions
by (C-1)-level thresholds, t1, t2, . . . , tC -1, which meet
t1 < t2 < . . . <tC -1. Formally, we denote the C par-
titions (classes) as A1, A2, . . . , AC . For sake of
simplicity, denote t0 = −1, tC = L-1. Thus, G is divided
into C regions, R1, R2, . . . , RC , where Ri = [ti -1, ti ],
i = 1, 2, . . . , C. We use the following fuzzy membership
function to express the C partitions (classes), which is
similar to that in Huang et al. [9],

µi(k) =
{ 1

1 + |k−µi |/(L−1) , k ∈ Ri

0, k /∈ Ri

(1)



where i = 1, 2, . . . , C, and �i gives the mean value in
the histogram of the region Ri , which is calculated by

µi =
ti∑

k = ti−1+1

k × hk

/
ti∑

k = ti−1+1

hk (2)

Now, we consider the fuzzy entropy as follows, which
is similar to that in Luo et al. [16],

H(I) =
C∑

i = 1

H(Ai) (3)

where

H(Ai) = −
L−1∑
k = 0

hkµi(k)

p(Ai)
log

hkµi(k)

p(Ai)
(4)

where

p(Ai) =
L−1∑
k = 0

hk

µi(k)
(5)

Notice that Equation (4) gives the entropy of the distri-
bution hk�ik /p(Ai ) of ith class, thus Equation (3) just
accumulates the entropy of all classes.

In this paper, maximizing Equation (3) will be
regarded as our criterion to find the optimal segmen-
tation thresholds, t1, t2, . . . , tC -1.

3. The proposed multi-level thresholding
method based on tissue P systems

The proposed multi-level thresholding method is
based on a tissue P system with symport/antiport rules.
In symport rules, objects cooperate to traverse a mem-
brane together in the same direction, whereas in the
case of antiport rules, objects residing at both sides
of the membrane cross it simultaneously but in oppo-
site directions. From the membrane structure, tissue
P systems are a directed graph with one layer. In
order to deal with the multi-level thresholding problem

Fig. 1. Membrane structure and communication relationship between
elementary membranes.

effectively, we design a special membrane structure,
which consists of m elementary membranes, shown
in Fig. 1. These elementary membranes are labelled
by 1, 2, . . . , m, respectively. Usually, the membrane
labelled by 0 indicates the environment. In this paper,
the environment is also an output membrane of the
system. When the system halts, the object contained
in membrane 0 will be regarded as output of the
system. In Fig. 1, these directed lines indicate infor-
mation exchange and sharing between the elementary
membranes. In the developed tissue P system, after all
objects are evolved in a computing step, each elemen-
tary membrane will transmit its best object into other
(m-1) elementary membranes. Thus, each elementary
membrane can receive (m-1) best objects from other
elementary membranes. As usual in P systems, these
evolution membranes work as parallel computing units
in a maximally parallel way (a universal clock is con-
sidered here).

As we know, every elementary membrane contains a
certain number of objects. For simplicity, we assume
that every elementary membrane contains the same
number of objects, and the number is denoted by n.
In this work, each object is a (C-1)-dimensional vector
X = (x1, x2, . . . , xC -1), where x1, x2, . . . , xC -1 are cor-
responding to segmentation thresholds of the image,
t1, t2, . . . , tC -1, respectively. Therefore, each object
expresses in fact a candidate of the optimal segmen-
tation thresholds to be found. In the tissue P system,
the criterion Equation (3) will be regarded as fitness
function of objects in the system to evaluate the quality
of each object, i.e., Fit = H(I).

Each elementary membrane will use evolution rules
to evolve its objects. In this work, we develop an
improved position-velocity model by integrating the
inherent mechanism of tissue P systems, which can be
viewed as a variant of the position-velocity model used
in particle swarm optimization (PSO) [3, 12]. For jth
object of kth elementary membrane, Xk ,j , the improved
position-velocity model is given as follows.

Vkj = w · Xkj + c1r1(Pk,j − Xk,j)

+c2r2(Gk − Xk,j) + c3r3(G∗ − Xk,j)

Xk,j = floor (Xk,j + Vk,j), j = 1, 2, ..., m,

k = 1, 2, ..., m (6)

where w is inertia weight, c1, c2 and c3 are learning fac-
tors, r1, r2, r3∈(0,1) are random numbers, and floor(×)
is a rounded function. Xk,j = (xk,j,1, xk,j,2, . . . , xk,j,C-1)



expresses the position of object Xk,j in solution space,
Vk,j = (vk,j,1, vk,j,2 , . . . , vk,j,C-1 ) is the corresponding
velocity vector, and Pk,j is the found best position of
object Xk,j so far. The improved position-velocity model
uses two kinds of the best objects to guide the evolution
of the objects in each elementary membrane: one is
the best object in the current elementary membrane,
Gk = (gk,1 , gk,2 , . . . , gk,C-1 ), and another is randomly
selected from the best objects that are transmitted from
other (m-1) elementary membranes in previous com-
puting step, G∗ = (g1

∗, g2
∗, . . . , gC -1

∗), called external
best object here. The improved position-velocity model
has two advantages for the evolution of the objects: (i)
The best object obtained by co-evolution of other ele-
mentary membranes is involved in guiding the evolution
of objects in each elementary membrane, so this mech-
anism will speed up the convergence of the system;
(ii) Since the two best objects are taken from different
sources, this mechanism can better improve the diver-
sity of objects in the system, thus it can avoid premature
convergence to local optima. This is an important fea-
ture of the presented multi-level thresholding method
based on tissue P systems.

In the developed tissue P system, in addition to above
evolution rules, there are some communication rules

between its elementary membranes. The role of com-
munication rules is to exchange and share the objects
between the elementary membranes. During each com-
puting step, the position-velocity model (6) is used to
evolve all objects in each elementary membrane. After
all objects are evolved, each elementary membrane will
transmit its best object into other elementary mem-
branes and update the object in the output membrane.
The used update rule is as follows: if fitness value of
the transmitted object is higher than that of the exist-
ing object in the output membrane, it will replace the
existing object; otherwise, replacement will not occur.

The maximum execution step number is employed as
halt condition in the multi-level thresholding method.
When the system halts, the object in the output mem-
brane is regarded as the output of the entire system.

The proposed multi-level thresholding method based
on tissue P systems is summarized in Table 1.

4. Experimental results

The applicability and efficiency of the proposed
multi-level thresholding method in image segmenta-
tion has been evaluated on six standard test images.

Table 1
Algorithm: the multi-level thresholding method based on tissue P systems

Input parameters: the number of elementary membranes m, the number of objects in each elementary membrane n, maximum execution step
number Smax , and learning factors c1, c2 and c3.

Output results: the optimal thresholds, t = (t1, t2,…, tC -1).
Step 1. Initialization

for k = 1 to m
for j = 1 to n

Xk ,j = rand(C, L); % Generate initial objects for each elementary membrane
Fitk ,j = FitnessCalculation(Xk ,j ); % Calculate the fitness value of the object according to Equation (4)

end for
end for
Set computing step s = 0;

Step 2. Object evolution in elementary membranes
for each elementary membrane k (k = 1, 2,…, m) in parallel do

for j = 1 to n
Evolve the object Xk ,j in the elementary membrane k according to Eqution (6);
Fitk ,j = FitnessCalculation(Xk ,j );
Update Pk ,j ; % Update best position of the object Xk ,j according to its fitness value Fitk ,j

end for
Update Gk ; % Update best object of membrane k according to the fitness values of its all objects

end for
Step 3. Object communication between elementary membranes

for each elementary membrane k (k = 1, 2,…, m) in parallel do
Receive best objects transmitted from other (m-1) elementary membranes;

end for
Update G∗; % Update external best object of membrane k according to these transmitted objects

Step 4. Halt condition judgment
If s > Smax is satisfied, the system exports object in environment as t and halts;
otherwise, s = s + 1, and goto Step 2



Fig. 2. Test images and their histograms. (a) Lena; (b) Peppers; (c) Hunter; (d) House; (e) Baboon; (f) Butterfly. (a′)–(f′) are the corresponding
histograms.

These well-known images are Lena, Peppers, Hunter,
House, Baboon and Butterfly respectively, shown
in Fig. 2(a)–(f). The test images are all with size
512 × 512. Fig. 2(a′)–(f′) show the histograms of the
six test images. In experiments, the parameters of the

proposed multi-level thresholding method based on P
systems are given as follows: (i) The tissue P sys-
tem used includes five elementary membranes (m = 5),
where the number of objects contained in each elemen-
tary membrane is n = 30, and the maximum execution



Fig. 3. Three-level thresholding images obtained by different methods. (a)–(f) P systems; (a′)–(f′) PSO; (a′′)–(f′′) GA; (a′′′)–(f′′′) Luo et al. [16].



Fig. 4. Four-level thresholding images obtained by different methods. (a)–(f) P systems; (a′)–(f′) PSO; (a′′)–(f′′) GA.



Table 2
Optimal thresholds obtained by different methods

Images C P systems PSO GA Luo et al. [16]

Lena 2 98.165 99.166 103.168 76.189
3 87.143.189 85.153.182 75.152.178 –

Peppers 2 78.150 80.145 85.151 69.177
3 65.123.176 72.125.173 60.117.180 –

Lunter 2 87.180 82.183 73.179 52.194
3 38.89.133 40.88.141 33.90.150 –

House 2 55.130 59.130 49.141 40.156
3 44.103.164 47.105.168 35.116.180 –

Baboon 2 97.149 94.154 86.165 78.174
3 83.128.161 78.125.174 65.129.186 –

Butterfly 2 97.152 100.149 111.179 90.185
3 76.115.165 75.120.175 62.113.195 –

step number Smax is 100; (ii) In the position-velocity
model used, c1 = c2 = c3 = 1.0, and w linearly varies
from 0.9 to 0.4.

The segmentation results obtained by the pro-
posed multi-level thresholding method are compared
with PSO-based and GA-based methods as well as
Lou’s method [16]. For PSO-based method, basic
position-velocity model is employed and its parameters
are given: population size NP = 30, maximum genera-
tion number Gmax = 100, c1 = c2 = 1.0, and w linearly
varies from 0.9 to 0.4. For GA-based method, its param-
eters are given: population size NP = 30, crossover
probability Pc = 0.6, mutation rate Pm = 0.01 and max-
imum generation number Gmax = 100.

Figure 3 gives optimal three-level segmentation
results on the six test images for the proposed method
based on P systems (in short, P systems), PSO-based
method (in short, PSO), GA-based method (in short,
GA) and Luo’s method, respectively. Their optimal seg-
mentation thresholds are listed in Table 2. From the
Fig. 3, we can see that results of the proposed method
are slightly better than that of PSO-based method but
evidently outperform that of GA-based method and
Lou’s method. This illustrates the applicability of the
proposed method for three-level thesholding.

For four-level thresholding, Fig. 4 shows the opti-
mal segmentation results on the six test images for the
proposed method, PSO-based method and GA-based
method, respectively. Table 2 gives the correspond-
ing optimal segmentation thresholds. From the visual
point of view, the proposed method has better segmen-
tation quality compared with PSO-based and GA-based
methods. This also indicates that the proposed method
is applicable to four-level thesholding in image
segmentation.

In order to investigate the efficiency, all methods
are compared according to the average CPU time (in

Table 3
Comparisons of CPU time (in seconds) for different methods

Methods C P systems PSO GA Luo et al. [16]

Lena 2 7.528 9.136 11.654 82.294
3 7.951 9.847 12.042 –

Peppers 2 6.993 9.849 12.117 80.195
3 7.232 10.125 12.936 –

Hunter 2 7.819 9.521 11.973 83.552
3 8.257 10.046 12.348 –

House 2 7.763 9.431 11.846 83.782
3 8.355 10.221 12.624 –

Baboon 2 7.218 9.685 11.672 81.375
3 7.561 9.918 12.856 –

Butterfly 2 7.249 9.772 11.995 84.017
3 8.361 10.342 12.983 –

seconds) taken to converge the solution. Comparison
results of all methods are given in Table 3. The experi-
mental results are obtained on a personal computer with
a Core 2 Duo 1.86 GHz. From Table 3, it is clear that
the proposed method has a fast convergence compared
with PSO-based and GA-based methods. The results
demonstrate that the proposed method is more efficient
and effective than other methods for multi-level
thresholding.

5. Conclusions

In this paper, we have described a fast multi-level
thresholding method that used the fuzzy entropy as
the evaluation criterion. The thresholding method was
based on a tissue P system. A special membrane struc-
ture was designed, which allowed multiple elementary
membranes to co-evolve the objects of the system,
and an improved position-velocity model was used
as evolution rules of elementary membranes. With its
particular communication mechanism, two kinds of
the best objects were used to guide the evolution of
the objects: one was the best object in each elemen-
tary membrane and another was from other elementary
membranes. This mechanism not only accelerates the
speed of convergence effectively but also enhances
the diversity of objects in the system. The proposed
method has been tested on several standard images
and was compared with the traditional method and
GA-based and PSO-based methods. The experimental
results showed that the proposed method outperforms
the other methods in terms of the applicability and com-
putation efficiency. Further works are to be carried out
to study the feasibility of the proposed method for var-
ious types of image processing applications.
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