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Abstract. Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes
the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution.
This paper begins with the observation that the balance equation depends only on the structure of linear redundancies in the
network, and so can be stated in a succinct manner, leading to computational efficiencies in steady-state analysis. This alternative
description of steady-state behaviour is then used to provide a novel method for network reduction, which complements existing
algorithms for describing intracellular networks in terms of input-output macro-reactions (to facilitate bioprocess optimization
and control). Finally, it is demonstrated that this novel reduction method can be used to address elementary mode analysis of
large networks: the modes supported by a reduced network can capture the input-output modes of a metabolic module with
significantly reduced computational effort.

Keywords: Metabolic network, metabolic flux analysis, metabolic control analysis, network reduction, metabolic module,
elementary flux modes

1. Introduction

The stoichiometry matrix provides a concise
representation of the structure of a chemical reaction
network. This matrix is the primary system description
when analyzing metabolic networks, complemented
by constraints on reaction rates or full reaction kinetics
when these are available.

The analysis in this paper begins with the stoichiom-
etry matrix, N. This matrix is invariably not full rank;
redundancies in the matrix reflect dependancies within
the network. Linearly dependent rows of N corre-
spond to chemical species whose dynamic behaviour is
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dependent on other species in the network. The reduc-
tion in system complexity through elimination of these
redundant species is standard in stoichiometric analy-
sis [3, 11], and the resulting computational advantages
are well recognized.

This paper shows that a description of the redun-
dancies among the columns of N can be harnessed to
improve analysis of steady-state behaviour in a number
of ways. We begin with the observation that the steady-
state balance condition depends only on the form of the
redundancies within N. Consequently, a great deal of
the content of the stoichiometry matrix plays no role
in any investigation of steady-state behaviour. Drop-
ping this unnecessary content results in streamlined
steady-state analysis. The techniques of metabolic con-
trol analysis and metabolic balancing are taken as
examples.
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The relationship between the stoichiometry matrix
and steady-state system behaviour is not one-to-one.
This observation allows us to define classes of net-
works that are equivalent from the steady-state point
of view. We then relax this equivalence notion to pro-
duce network reductions that respect the stoichiometric
structure of the original network. This novel reduction
procedure complements similar methods that describe
metabolic networks in terms of macro-reactions
[2, 10]. These methods facilitate the application of bio-
process optimization and control techniques to models
of intracellular metabolism. In contrast with previously
published approaches, our reduction strategy allows
for targeted elimination of specific reactions, which
can be used to generate simplified descriptions of the
flux profiles within an input-output network module.
In particular, this method can be used to significantly
reduce the computational effort required to determine
the set of elementary flux modes through network
modules, complementing existing approaches to this
problem [5, 8].

This paper is organized as follows. Section 2
describes how dependancies among the rows and
columns of a stoichiometry matrix can be identified,
and then used to formulate a factored stoichiometric
matrix. Section 3 briefly outlines how this matrix fac-
torization leads to computational efficiencies in two
commonly used analysis techniques. In Section 4, this
factored matrix formulation is used to characterize
classes of networks that share identical steady-state
behaviour. In Section 5, these classes of networks
are generalized to include network reductions whose
steady state behaviour is consistent with the origi-
nal. It is demonstrated that flux mode analysis of
a reduced network provides a meaningful descrip-
tion of flux through the original network. An E. coli
core metabolism network is analyzed as an exam-
ple. Concluding thoughts are contained in Section 6.
Finally, an appendix details how the novel network
reduction method described in this paper is, in certain
cases, equivalent to the network reduction approach
described in [2]. A preliminary description of some of
these results appeared in [4].

2. Rank deficiencies

Consider a network of n chemical species involved
in m reactions in a fixed volume. The concentrations
of the species are the elements of the n-vector s. The

reaction rates are collected into the m-vector v, which
depends on the species concentrations and on a vector
of parameters p. The network topology is described by
the n × m stoichiometry matrix N, whose i, j-th ele-
ment indicates the net number of molecules of species i

produced in reaction j (negative values indicate con-
sumption). The system dynamics are described at each
time t by

d

dt
s(t) = Nv(s(t),p). (1)

Analysis of this system can be simplified by exploiting
the dependencies among the rows and columns of N.
Metabolic networks typically have highly redundant
stoichiometry matrices. (An example is the metabolic
map from Escherichia coli from [12] which has a
770 × 931 stoichiometry matrix of rank 733.)

Linear dependencies among the rows of N corre-
spond to structural conservations, which most often
occur as conserved moieties. Linear dependencies
among the columns of N correspond to steady-state
flux distributions. We next formalize these stoichome-
tric features.

2.1. Deficiencies in row rank

This subsection reviews the standard procedure
given in [11] for treating the structural conservations
characterized by linearly dependent rows of N. Let r

denote the rank of N and re-index the species so that
the first r rows of N are linearly independent. Identify
the first r species as the independent species, denoted
si, and the remaining n − r as the dependent species,
denoted sd , so that s = [sT

i , sT
d ]T . Let NR denote the

submatrix of N consisting of the first r rows. We can
then write N = LNR, where the matrix L, referred to
as the row link matrix, has the form

L =
[

Ir

L0

]
. (2)

This row link matrix can be constructed from a matrix
G whose rows form a basis for the left nullspace of N.
Such a matrix can be chosen of the form

G = [−L0 In−r],

which is referred to as the conservation matrix. The
rows of this matrix correspond directly to combinations
of species concentrations that are conserved. Compu-
tational approaches to finding this conservation matrix
are reviewed in [13] (see also [18]).
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Following [11], note that

d

dt
s(t) = d

dt

[
si(t)

sd(t)

]
= LNRv(s(t),p).

Equation (2) then gives

d

dt
sd(t) = d

dt
L0si(t) for all t ≥ 0.

Integrating gives an explicit dependence among the
species concentrations: sd(t) = L0si(t) + T̃ for all
time, where T̃ = sd(0) − L0si(0). Finally, concatenat-
ing T̃ with the r-vector of zeros 0r, define T = [0T

r ,

T̃T ]T so that

s(t) = Lsi(t) + T. (3)

As a consequence of this decomposition, dynamic
analysis can be restricted to a reduced version of
equation (1), namely

d

dt
si(t) = NRv(Lsi(t) + T,p). (4)

The partitioning of species into independent and
dependent classes is not unique; specific methods for
partitioning are discussed in [3].

2.2. Deficiencies in column rank

Redundancy in the columns of N can be used to
arrive at a factored description of system behaviour, as
follows.

Mirroring the analysis in the previous subsection,
label the reactions so that the first m − r columns of N
are linearly dependent on the remaining r, and partition
the reaction rates accordingly into m − r independent
rates, denoted vi, and r dependent rates, denoted vd ,
so v = [vT

i ,vT
d ]T .

In analogy to the construction of the row link matrix,
let NC denote the submatrix of N consisting of the
last r columns, from which N can be recovered as
N = NCP, where the column link matrix P is of the
form

P = [P0 Ir].

The column link matrix, which is dual to the row
link matrix, can be determined through construction
of a matrix K of the form

K =
[
Im−r

−P0

]
,

whose columns span the (right) nullspace of N. The
linearly independent columns of K correspond to
steady state flows within the network (irrespective of
any reversibility constraints).

To arrive at a factored description of system dynam-
ics, write

d

dt
s(t) = Nv(s(t),p)

= NCPv(s(t),p)

= NC[P0 Ir]v(s(t),p) (5)

This description is consistent with the standard
method by which redundancy in columns is exploited.
As described in, e.g. [3], the system flux vector J
(i.e. the steady state reaction rate vector) can be par-
titioned into dependent and independent components
J = [JT

i ,JT
d ]T corresponding to the partitioning of

the reaction rates described above. The dependence is
given explicitly by

J = KJi =
[
Im−r

−P0

]
Ji. (6)

(In [3] the submatrix −P0 is referred to as K0.)
Equation (6) can be derived from Equation (5)
as follows. At steady state, the fact that NC

has full column rank gives P0vi + vd = 0.
Consequently vd = −P0vi, and so v = Kvi.

Equation (6) provides a dependence among the
steady-state reaction rates that is dual to the
dependence among the species concentrations in
Equation (3).

The partitioning of independent and dependent reac-
tion rates is not unique. A procedure for choosing
independent reaction rates as the entry and exit points
from the network is outlined in [20].

2.3. Complete stoichiometric reduction

The previous two subsections describe comple-
mentary system decompositions based on linear
dependencies. These can be combined to arrive at a
fully factored description of system dynamics:

d

dt
s(t) = LNC

RPv(s,p) (7)

=
[

Ir

L0

]
NC

R[P0 Ir]v(s,p)
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where NC
R is the invertible upper right r × r submatrix

of N. In the following discussion, the submatrix NC
R

will be referred to as a stoichiometric core of the sys-
tem. (This factorization of N is complementary to the
singular value decomposition, discussed in this context
in [1].)

Restricting attention to the dynamics of the indepen-
dent species, it follows from equation (7) that

d

dt
si(t) = NC

RPv(Lsi + T,p) (8)

Because the stoichiometric core NC
R is invertible, a

concise description of steady state behaviour is:

0 = Pv(Lsi(t) + T,p). (9)

Consequently, when analyzing steady state behaviour,
matrix storage cost can be reduced by retaining only
L and P, rather than the full stoichiometry matrix N.
(In the case of the E. coli metabolic map from [12] this
results in a reduction of over 75% – more than half a
million matrix entries.) Of course, the storage cost for
N, L0 and P0 can typically be reduced by exploiting
their sparsity, and so the storage savings afforded by
this factorization may not be significant.

The characterization of steady state in Equation (9)
indicates that the full rank stoichiometric core
NC

R plays no role in steady state analysis. This
observation was used by Wagner to formulate the
“nullspace" approach to identification of elemen-
tary flux modes [19]. The following section briefly
demonstrates computational efficiencies afforded by
this observation in two commonly used analytic
techniques.

3. Computational efficiencies

3.1. Metabolic control analysis

Metabolic Control Analysis (MCA) provides a
theory of local parametric sensitivity analysis that
takes advantage of stoichiometric structure. The direct
approach [11] begins with the steady state condition
from equation (4). Differentiating with respect to the
parameterp yields (unscaled) concentration sensitivity
coefficients (called response coefficients) of the form

ds
dp

= −L
(
NR

∂v
∂s

L
)−1

NR
∂v
∂p

. (10)

A streamlined version of this formula can be derived
by differentiating equation (9), resulting in

0 =
[
P

∂v
∂s

L
dsi

dp
+ P

∂v
∂p

]
.

When the matrix P ∂v
∂s L is presumed invertible (by

the standard assumption of asymptotic stability), one
arrives at the (unscaled) response coefficients in the
form

ds
dp

= −L
(
P

∂v
∂s

L
)−1

P
∂v
∂p

. (11)

The (unscaled) concentration control coefficients are
then

Cs = −L
(
P

∂v
∂s

L
)−1

P.

Flux response coefficients and flux control coefficients
can be derived accordingly.

Formula (11) is similar to formula (10), but involves
the column link matrix P in place of the partially
reduced stoichiometry matrix NR. The consequence
of this streamlined description is a reduced com-
putational effort and a clear role for stoichiometric
redundancy in the form of the sensitivity coefficients.

3.2. Metabolic flux analysis: Metabolic balancing

In metabolic balancing [7, 16], a metabolic network
is assumed to be at steady state and a subset of the
fluxes are measured. One then attempts to infer the
remaining fluxes. Following [7], partition the reaction
vector v into unknown rates, denoted vn, and known
rates, denoted vb. The stoichiometry matrix is likewise
partitioned intoNn andNb and the steady state balance
equation (from equation (1)) can be written as

Nnvn = −Nbvb. (12)

One then attempts to solve for vn. In the simplest case
Nn is invertible and vn is found exactly. More typi-
cally, one can make use of the pseudo-inverse of Nn.
The paper [7] contains a discussion of the cases in
which the given measurements are insufficient or are
inconsistent (in which cases the system (12) is under-
or over-determined, respectively).

If the known and unknown rates are each partitioned
into independent and dependent components (with the
columns of N re-ordered accordingly) one arrives at a
decomposition of v into four components:
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v =

⎛
⎜⎜⎜⎝

vn
i

vb
i

vn
d

vb
d

⎞
⎟⎟⎟⎠ .

The steady state equation (9) is simply

Pv = [P0 Ir] v = 0.

Partitioning P0 = [Pn
0 Pb

0] allows us to write this
balance equation as

[
Pn

0 Pb
0

I 0

0 I

] ⎛
⎜⎜⎜⎝

vn
i

vb
i

vn
d

vb
d

⎞
⎟⎟⎟⎠ = 0,

where the blocks in the identity matrix have dimensions
corresponding to vn

d and vb
d . Isolating the unknown

rates leads to a restatement of equation (12):[
Pn

0
I

0

](
vn

i

vn
d

)
= −

[
Pb

0

0

I

](
vb

i

vb
d

)
.

One is now faced with inverting

[
Pn

0
I

0

]
as opposed

to the original task of inverting Nn. Although these
matrices are of the same size, the former will typi-
cally be easier to deal with. In particular, the inverse of[
Pn

0
I

0

]
(if it exists) can be expressed directly in terms

of the inverse of a submatrix of Pn
0, since in general[

A I

B 0

]−1

=
[
0 B−1

I −AB−1

]

if B is invertible. Furthermore, the same submatrix can
be used to simplify computation of the pseudo-inverse

of

[
Pn

0
I

0

]
through the use of the Schur comple-

ment [15]. The pseudo-inverse of[
A I

B 0

]

is ⎛
⎝[A I

B 0

]T [
A I

B 0

]⎞⎠
−1 [

A I

B 0

]
,

where⎛
⎝[A I

B 0

]T [
A I

B 0

]⎞⎠
−1

=
[

(BT B)−1 −(BT B)−1AT

−A(BT B)−1 I + A(BT B)−1AT

]
.

The remainder of this paper addresses a novel ana-
lytic approach facilitated by the factored description of
system behaviour in Equation (7).

4. Steady-state-equivalent networks

Returning to the steady state balance equation (9),
recall that this condition depends only on the left and
right nullspaces of the stoichiometry matrix N. It fol-
lows that any network whose stoichiometry matrix
shares these nullspaces will be described by identi-
cal steady state conditions. This observations allows
the set of all n × m stoichiometry matrices to be par-
titioned into equivalence classes that share the same
steady-state behaviour: two stoichiometry matrices are
members of the same equivalence class when they
share the same left and right nullspaces.

As a simple example, consider the three-species net-
work shown in Fig. 1A.

Here

N =

⎡
⎢⎣

1 −1 0

1 0 −1

0 1 −1

⎤
⎥⎦ ,

which has rank two. Following the procedure in the
previous section, we take the stoichiometric core NC

R
as the upper right 2 × 2 submatrix, resulting in link
matrices

Fig. 1. Steady-state equivalent networks. All three networks have
identical conservations and steady-state flux distributions. They are
members of a single equivalence class as described in the text.
(Multiple-headed arrows are used to indicate production of multiple
copies of molecules from a single reaction event.
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L =

⎡
⎢⎣

1 0

0 1

−1 1

⎤
⎥⎦ and P =

[
−1 1 0

−1 0 1

]
.

Choosing any invertible 2 × 2 matrix as an alter-
native stoichiometric core leads to a steady-state
equivalent network. For example

NC
R =

[
−1 −1

0 −1

]
gives N = LNC

RP=

⎡
⎢⎣

2 −1 −1

1 0 −1

−1 1 0

⎤
⎥⎦

(Figure 1B) while

NC
R =

[
1 0

2 −1

]
gives N = LNC

RP =

⎡
⎢⎣

−1 1 0

−1 2 −1

0 1 −1

⎤
⎥⎦

(Figure 1C).
The members of this equivalence class are networks

composed of three species (S1, S2, S3) involved in
three reactions (rates v1, v2, v3) for which (i) a conser-
vation [S1] − [S2] + [S3] = T holds for all time, and
(ii) steady-state occurs when v1 = v2 = v3. All such
networks can be generated by the choice of different
stoichiometric cores, and the results of a steady state
analysis performed for any one representative of this
equivalence class will apply equally to every member
of the class.

As another example, consider the network shown in
Fig. 2A, (from [6], with reactions re-indexed).

Fig. 2. Metabolic balancing example. A. Original network.
B. Steady-state-equivalent network. In both cases, with flux mea-
surements of v7 = 2, v9 = 2 and v10 = 1 (units arbitrary), it follows
that v1 = 1, v4 = 1, v6 = 1, v8 = 1, while v2, v3 and v5 cannot be
determined (beyond the constraints that v2 = v3 = 1 − v5)

The stoichiometry matrix is

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0 −1 0 1 0 0 0

0 1 −1 −1 0 0 0 1 0 0

0 0 1 0 1 −1 0 0 0 0

1 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 0 −1

0 0 0 1 0 1 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

which has full row rank. The reaction indexing was
chosen so that the last six columns form a full-rank
submatrix, which can be taken as a stoichiometric core
NC

R. The kernel of N is spanned by the columns of

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 −1 0

1 0 0 0

2 1 −1 0

0 −1 1 1

1 0 0 1

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

from which the column link matrix can be constructed.
In [6] this network is used to illustrate the method

of metabolic balancing. Suppose that the following
flux measurements are available: v7 = 2, v9 = 2 and
v10 = 1 (units arbitrary). It can then be verified that
v1 = 1, v4 = 1, v6 = 1, v8 = 1, while v2, v3 and v5
are constrained only by the two conditions v2 = v3 =
1 − v5.

Consider now another member of the equivalence
class represented by this network, generated by the
alternative stoichiometric core

NC
R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0 0 0

0 0 0 1 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 −1

0 1 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The steady-state behaviour of the corresponding alter-
native network (generated by multiplication by the
column link matrix), shown in Fig. 2B, is identical to
the original. For instance, as the reader can verify, the
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metabolic balancing result cited above (for the origi-
nal) carry over precisely to this alternative network.

4.1. Relaxation of steady-state constraints

The structural conservations and steady-state flux
distributions in a system are described by the row
and column link matrices L and P, respectively. Each
choice of an invertible stoichiometric core leads to a
stoichiometry matrix composed of linearly indepen-
dent combinations of the rows of L and the columns
of P, and so all of the corresponding stoichiometry
matrices share the same left- and right-nullspaces.

Alternatively, a stoichiometric core could be cho-
sen that is not full rank (but is still of the appropriate
dimension: r × r). In this case, the corresponding sto-
ichiometry matrix has the same number of rows and
columns as the original, but the dimension of the
nullspaces will have increased (because the combi-
nations of rows of L and the columns of P are not
independent). Such a stoichiometry matrix character-
izes a network in which the original constraints have
been relaxed.

As an example, consider again the network shown in
Fig. 2A. Recall that the original stoichiometric core is
the upper-right 6 × 6 submatrix of the stoichiometry
matrix (13). Consider an alternative core:

NC
R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 −1 0 0

0 −1 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 1

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which has rank 4. The corresponding stoichiometry
matrix characterizes the network shown in Fig. 3.

Fig. 3. Reduced version of the network in Fig. 2A. The double-
headed arrow indicates that the reaction with rate v1 produces two
molecules of species A.

In the original network, the steady-state constraints
on the reaction rates are:

v6 = v1 v5 = v1 − v3 v7 = 2v1 + v2 − v3

v10 = v1 v9 = v1 + v4 v8 = −v2 + v3 + v4.

Figure 3 makes it clear that most of these constraints
hold in the alternative network. The exceptions are that
v5 is absent, and the two constraints on v9 and v10
have been merged into the single requirement that v9 =
v10 + v4.

Arbitrary relaxation of steady-state constraints can-
not be expected to yield meaningful networks. In
contrast, we next present a strategy for targeted net-
work reduction via specific choice of a non-invertible
stoichiometric core.

5. Steady-state-consistent network reduction

The network in Fig. 3 is simpler than the original
(Fig. 2A): there are two fewer species and one less
reaction. By tailoring the choice of a non-invertible
stoichiometric core, we can direct this simplification
process to arrive at a meaningful reduction of the orig-
inal network.

Previously published algorithms for network reduc-
tion have been motivated by the need to replace
uncharacterized intracellular reactions with a network
of macro-reactions that connect extracellular sub-
strates to extracellular products [2, 10]. In this section,
we describe targeted network reductions that can be
reached by appropriate choice of low rank stoichio-
metric cores. As shown in the Appendix, this procedure
recapitulates the technique of Haag et al. [2] in certain
cases.

Low rank stoichiometric cores can be generated by
zeroing selected columns of the original stoichiometric
core, thus eliminating the corresponding reaction from
the network. This procedure leads to a reduced network
that is consistent with the original behaviour at steady
state.

An algorithm for network reduction is as follows:

1. Determine the rank r of the given n × m stoi-
chiometry matrix N.

2. Identify a set of r linearly independent columns
of N; re-index the reactions so that these are the
rightmost columns of N. From this set, select
q < r columns to be eliminated in the network
reduction.
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3. Generate the row link matrix L and the column
link matrix P.

4. Take the upper right r × r submatrix of N as the
stoichiometric core NC

R.
5. Generate a reduced rank core by replacing the

q columns of NC
R that have been targeted for

elimination with columns of zeros.
6. Generate a reduced stoichiometry matrix as the

product LNC
RP.

The choice of reactions to be eliminated (step 2) will
depend on the aim of the reduction. In some cases, there
may be specific reactions whose elimination is pre-
ferred. In others, this choice may be dictated by desired
characteristics of the reduced network. An example of
this latter case is addressed in the next section.

As an example, consider once more the network in
Fig. 2A. Recall that the original stoichiometric core is
the upper right 6 × 6 submatrix of the stoichiometry
matrix (13). Taking an alternative stoichiometric core
resulting from zeroing the first column of NC

R (which
corresponds to reaction 5) leads to the alternative sto-
ichiometry indicated in Fig. 4A.

Alternatively, elimination of reaction 6, by zeroing
the second column of NC

R, leads to the topology shown
in Fig. 4B.

5.1. Exchange-equivalent steady-state-consistent
network reductions

When the reduction procedure described in the pre-
vious subsection is applied to a network, each of the
original reactions is treated in one of three ways:

1. Reactions targeted for elimination are eliminated.
2. Reactions corresponding to the retained columns

of the stoichiometric core are unchanged in the
reduced network.

3. All other reactions are subject to lumping.

Fig. 4. Reductions of the network in Fig. 2A. A. Reaction 5
eliminated. B. Reaction 6 eliminated.

Fig. 5. Minimal exchange-equivalent version of the network in
Fig. 2A.

Analysis of metabolic networks is often focused on
input-output behaviour: the processing of substrates to
end products. To arrive at a network reduction that is
consistent with the input-output behaviour of the orig-
inal network, the exchange reactions can be chosen as
part of the stoichiometric core to be retained unchanged
in the reduction. The resulting reduced network can be
interpreted as a minimal input-output description of the
original network.

As an example, starting with the network in Fig. 2,
consider an alternative stoichiometric core generated
by zeroing the first and second columns, retaining only
the exchange fluxes (i.e. the last four columns). The
resulting minimal input-output description is shown in
Fig. 5.

All internal species have been eliminated. The
fluxes have been reduced to a minimal number while
maintaining stoichiometric consistency among the
exchange species.

5.2. Flux mode analysis

One reason for carrying out network reduction is to
reduce the number of elementary flux modes (EFMs)
through the network. EFMs characterize the potential
flux distributions within a network, and are useful in
a range of analysis techniques [14]. The number of
EFMs supported by a network grows rapidly with net-
work size, limiting the use of EFM-based analysis for
large networks. Recent efforts to alleviate this prob-
lem have focused on techniques for identifying EFMs
through subnetworks [5, 8]. As discussed in [8], the
choices made in isolating a subnetwork can impact
the resulting flux distribution, which may not properly
represent the behaviour of the subnetwork within the
original network. The reduction technique introduced
in this paper provides a means to reduce the number
of EFMs in a subnetwork while retaining all exchange
fluxes, so that the interface with surrounding network
components is unchanged.
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A significant drawback of the reduction procedure
described here is that it does not directly account for
constraints on reaction rates. EFMs are constructed
with tools from convex analysis, which allow irre-
versibility constraints to be incorporated into the
description of feasible flux distributions. When the
reduction technique described above is applied to a
network, irreversibility constraints on the eliminated
reactions appear as inequality constraints on linear
combinations of the reaction rates in the reduced
network. For instance, in the reduction in Fig. 5, irre-
versibility constraints on the eliminated reactions 5
and 6 would result in the following constraints on the
reactions in the reduced network:

v5 ≥ 0 ⇒ v1 − v3 ≥ 0

v6 ≥ 0 ⇒ v1 ≥ 0

The constraint v6 ≥ 0 corresponds directly to an irre-
versibility constraint on v1, which is retained in the
reduced network. However, the constraint on v5 leads
to a more complex inequality constraint. Consequently,
the set of feasible flux distributions in the reduced net-
work is not a cone, and so cannot be analyzed directly
using the standard techniques for analysis of flux dis-
tributions.

This issue can be side-stepped by targeting only
reversible reactions for elimination. In that case,

Fig. 6. Elementary modes of the network in Fig. 2A (original) and the reduced version in Fig. 5. Reaction rates are either zero (thin arrows),
one (thick arrows), two (double-thick arrows) or negative one (reaction 5 in elementary modes 3 and 5).
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standard elementary mode analysis can be applied to
the reduced network (in which any irreversibility con-
straints will be unaltered).

As an example, consider again the procedure applied
to the network in Fig. 2A to arrive at the reduced net-
work in Fig. 5. The software package efmtool [17]
was used to analyze three cases of irreversibility con-
straints on the original network:

� If all reactions are reversible, then the original
network supports 21 EFMs. The reduced network
supports 16.

� If the exchange reactions (7–10) are irreversible
(oriented as in Fig. 2) and all internal reactions
are reversible, then the original network supports
15 EFMs. The reduced network supports 11.

� If reactions 5 and 6 are reversible and all other
reactions are irreversible (oriented as in Fig. 2),
then the original network supports 7 EFMs. The
reduced network (fully irreversible in this case)
supports only 5.

The EFMs for the third case (all reactions irre-
versible except for reactions 5 and 6) are illustrated in
Fig. 6. The first five elementary modes are clearly com-
parable between the original and reduced networks.
The sixth has no counterpart in the reduced network;
it involves only internal reactions, and has been elim-
inated. The seventh elementary mode of the original
network corresponds to a non-elementary flux mode
in the reduced network. The input-output flux distribu-
tions can be described as follows:

EFM1: v7 ⇒ v9 EFM2: v8 ⇒ v9

EFM4: 2v7 ⇒ v9 & v10 EFM5: 2v8 ⇒ v9 & v10.

These input-output behaviours are effectively captured
in the network reduction.

These examples demonstrate that when targeting
internal reversible reactions for elimination, there will
generallybeconsiderablefreedomintermsofthechoice
of reactions to eliminate. The number of reactions elim-
inated in the reduction is constrained by the rank of the
stoichiometry matrix. In some cases (e.g. the first two
cases above), only a subset of the internal reversible
reactions can be eliminated; the choice of which sub-
set could be dictated by further criteria. Alternatively, it
may be that after targeting all internal reversible reac-
tions for elimination, there will be an opportunity to
eliminate further reactions (whichwouldcausechanges
in input-output structure or rate constraints).

5.3. Example: core metabolism of E. coli

To better illustrate the potential of this reduction
method for facilitating elementary mode analysis, we
consider a more complex metabolic network: the core
E. coli metabolism network described in [9]. This
network is composed of 63 species involved in 77 reac-
tions. The stoichiometry matrix has rank 57, indicating
that there are 6 structural conservations within the sys-
tem. Of the 77 reactions, 14 are reversible exchange
reactions, and one (biomass production) can be taken
as an irreversible exchange reaction. Of the remain-
ing 62 internal reactions, 27 are irreversible and 35 are
reversible. The network admits 2 295 967 elementary
modes (as determined by efmtool [17]).

To generate a reduced version of the network, the
species and reactions were indexed so that (i) the top
57 rows of the stoichiometry matrix have full rank, (ii)
the 15 exchange reactions correspond to the rightmost
columns of the stoichiometry matrix, (iii) the columns
corresponding to the 35 reversible internal reactions
appear among the rightmost 57 columns of the stoi-
chiometry matrix, and (iv) the rightmost 57 columns
of the stoichiometry matrix have full rank. The upper-
right 57 × 57 submatrix of the stoichiometry matrix
then forms a full rank stoichiometric core, from which
the original stoichiometry matrix N can be recovered
from the row and column link matrices L and P.

To generate a reduced network, an alternative sto-
ichiometric core NC

R was constructed as follows.
The columns in the original core that correspond to
reversible internal reactions (35 in all) were replaced by
columns of zeros. The remaining columns of the origi-
nal core (corresponding to either exchange reactions
or irreversible internal reactions) were unchanged.
A reduced stoichiometry matrix was generated as
Nred = LNC

RP. The reduced network is composed
of 52 species involved in 42 reactions, of which 15
are exchange reactions and 27 are irreversible inter-
nal reactions. This network admits 18 480 elementary
modes (fewer than 1% of the original). This set of flux
modes provides a full characterization of the system’s
steady-state input-output behaviour. As in the anal-
ysis in the previous section, the modes that are not
retained in the reduction are either (i) internal cycles
or (ii) input-output modes that are not elementary in
the reduced network.

The seven irreversible internal reactions that were
included in the stoichiometric core of the original net-
work were chosen arbitrarily (within the constraint that
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the core be invertible). The potential advantages or dis-
advantages of such a choice are not addressed in this
paper.

6. Conclusion

The results in this paper extend the toolkit for taking
advantage of stoichiometric structure in the analy-
sis of network behaviour. Complete factorization of
the stoichiometry matrix (equation (7)) can be eas-
ily automated [13, 18] and is likely a worthwhile
pre-processing step if steady-state network analysis
demands a significant computational effort.

The model reduction approach that follows from
this factorization may be useful in dealing with large-
scale (e.g. genome-wide) networks. In particular, when
targeting reversible internal reactions for elimination,
this approach can facilitate elementary mode analy-
sis of large input-output modules. Alternatively, the
reduction procedure could be applied to achieve other
goals, such as elimination of a pre-determined network
submodule. Further efforts will be required to explore
the potential and limitations of this approach and to
develop a systematic methodology for its application.
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7. Appendix: Comparison of reduction
methods

In [2], a method is described to eliminate redundan-
cies in a network by writing all reaction rates in terms
of a subset of measured reaction rates (taking advan-
tage of metabolic balancing). That procedure can be
described as follows.

Given a metabolic network, partition the species into
extracellular metabolites (concentrations c) and intra-
cellular metabolites (concentrations x). Writing the
reaction rate vector as v, the dynamics of the extra-
cellular concentrations can be described by

d

dt
c(t) = K1v(t)Xv(t) + F(c(t), t), (14)

where K1 is the stoichiometry matrix for the extracel-
lular species, Xv(t) is the viable cell concentration at
time t, and the function F describes mass transfer in

and out of the reaction vessel. Denoting the stoichiom-
etry matrix for the intracellular species as K2, a steady
state assumption for these intracellular species leads to
the balance equation

K2v = 0.

The assumption is then made that constraints are
imposed on the steady-state reaction flux of the form

K3v = f (c), (15)

where the function f is known, such that the matrix[
K2

K3

]

is invertible. (This condition requires that (i) there are
no dependent internal species (i.e. K2 has full row
rank) and (ii) the number of rows of matrix K3 is equal
to the difference between the total number of fluxes
and the number of internal species.) The steady-state
reaction fluxes are then given by

v =
[
K2

K3

]−1 [
0

I

]
f (c),

and the intracellular network can be eliminated by writ-
ing the dynamics for the extracellular species as

d

dt
c(t) = Kf (c(t))Xv(t) + F(c(t), t),

where the reduced stoichiometry matrix K is given by:

K = K1

[
K2

K3

]−1 [
0

I

]
.

In the simplest case, the constraints (15) are given
as measurements of a set of reaction rates, so that f is
constant and K3 has the form

K3 = [I 0]

(where the reactions have been indexed so the mea-
sured rates appear as the first components in the vector
v). In this case, the reduced stoichiometry matrix can
be derived explicitly, as follows. Partitioning matrices
K1 and K2 as

K1 = [K11 K12] and K2 = [K21 K22] (16)

(where the dimensions of the submatrices align with
the partitioning of K3), we can write the reduced sto-
ichiometry matrix K as
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K1

[
K2

K3

]−1 [
0

I

]

= [K11 K12]

[
K21 K22

I 0

]−1 [
0

I

]

= [K11 K12]

[
0 I

K−1
22 −K−1

22 K21

][
0

I

]

= [K11 K12]

[
I

−K−1
22 K21

]

= K11 − K12 K−1
22 K21.

This formula for the reduced stoichiometry matrix
can be recovered using the reduction method described
in this paper, as follows.

Replacing the transport processes F (from equa-
tion (14)) with a collection of inward-oriented
single-species exchange reactions, we can formulate a
stoichiometry matrix for the full network (both extra-
cellular and intracellular species) as

N =
[
K1 I

K2 0

]
.

Partitioning K1 and K2 as in equation (16) above, we
have

N =
[
K11 K12 I

K21 K22 0

]
.

To apply a column factorization, we first solve for a
nullspace matrix, W, which satisfies

NW =
[
K11 K12 I

K21 K22 0

]
W = 0.

Partitioning W, and assuming the desired form, we
have

NW =
[
K11 K12 I

K21 K22 0

]⎡⎢⎣
I

W1

W2

⎤
⎥⎦ = 0.

This gives

K11 + K12W1 + W2 = 0

K21 + K22W1 = 0.

Solving, we have

W1 = −K−1
22 K21 W2 = −K11 + K12K−1

22 K21.

The nullspace matrix is then

W =

⎡
⎢⎣

I

−K−1
22 K21

−K11 + K12K−1
22 K21

⎤
⎥⎦ ,

from which we can construct the column link matrix
as

P =
[

K−1
22 K21 I 0

K11 − K12K−1
22 K21 0 I

]
.

Taking the stoichiometric core as

NC
R =

[
K12 I

K22 0

]
,

the stoichiometry matrix satisfies N = NC
RP.

Eliminating the internal reactions from the stoichio-
metric core results in a reduced core:

NC
R =

[
0 I

0 0

]
.

The reduced stoichiometry is then given by the product

NC
RP =

[
K11 − K12K−1

22 K21 0 I

0 0 0

]
.

Removing the zero columns, we arrive at a stoichiom-
etry that is identical to the reduction from [2] (along
with the exchange reactions).

Comparing the two methods, we find they are
complementary. The method of Hagg et al. has the
advantage that complex constraints can be applied. The
method described in this paper has the advantage that
the user can choose how many reactions to eliminate,
and specific reactions can be targeted for elimination.
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