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Abstract. A variety of mathematical models is used to describe and simulate the multitude of natural processes examined in
life sciences. In this paper we present a scalable and adjustable foundation for the simulation of natural systems. Based on
neighborhood relations in graphs and the complex interactions in cellular automata, the model uses recurrence relations to
simulate changes on a mesoscopic scale. This implicit definition allows for the manipulation of every aspect of the model even
during simulation. The definition of value rules ω facilitates the accumulation of change during time steps. Those changes
may result from different physical, chemical or biological phenomena. Value rules can be combined into modules, which in
turn can be used to create baseline models. Exemplarily, a value rule for the diffusion of chemical substances was designed
and its applicability is demonstrated. Finally, the stability and accuracy of the solutions is analyzed.
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1. Introduction

The simulation of complex physical, chemical,
and biological phenomena has become an impor-
tant tool for the research in life sciences. Models
that mimic the behavior of natural systems support
the understanding and analysis of laboratory experi-
ments [1]. In systems and cell biology such models
are valuable for inferring the life-sustaining chemi-
cal transformations in cells [2], the self-organization
of the cytoskeleton synthesis [3], and phenotypes of
whole organisms [4]. Quantitative models are able
to give actual predictions about the quantities in a
system. Most models are generally systems of ordi-
nary or partial differential equations (PDE). Such
systems are composed of multiple equations, where
each equation represents the concentration of a chem-
ical compound. It is of high importance to model
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these equations as accurately as possible to correctly
capture the phenomena observed on the biological
level. Even small differences in the initial conditions
may produce large discrepancies between the sim-
ulation and the experimental outcome [5]. Hence,
each experimental model has to be addressed dif-
ferently, and many parameters have to be measured
and set to describe the phenomenon observed under
specific conditions. While helpful for a small group
of scientists, those models can rarely be adapted for
problems that are the result of a similar underlying
phenomenons [6]. Scientists can only observe con-
sequences of physical and chemical laws that are
entangled in complex systems such as cells and organ-
isms. So it is no surprise, that most models do not
describe the “real shape” of the problem and only
characterize the guise of the phenomenon. For an
illustration of the problem, consider a medical doc-
tor who tries to cure an illness. Only by approaching
and treating the underlying causes, he can hope to
cure the patient. Treating the symptoms is only viable
in the most severe cases. Similarly, if we are able
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to characterize the processes in a cell and know
their interactions, it is possible to modify the sys-
tem and obtain the behavior that is required. The
creation of new fundamental laws is a large step in
the development of systems biology [7]. Modeling
those fundamental processes and combining them as
system-theoretic concepts is still one of the greatest
challenges in the field of systems biology [8, 9].

One technique to explore the general traits of
interacting systems and spatio-temporal patterns are
cellular automata (CA). Originated in the 1940s,
CA are simulations discrete in time, space, and
state. By applying a simple set of rules – which
depend on automata elements, so-called cells, and
their respective associations between each other –
at each time-step, remarkably complex behaviors
emerge from such automata [10, 11]. This discrete
character to CA is tailored for the computation using
traditional computers that operate at finite precision
by design. Dynamic Cellular Automata, as an agent-
based adaptation of CA, have been shown to describe
a multitude of different cellular or biochemical pro-
cesses [12]. Although CA have been used in many
fields of biology [13], they played a minor role in
recent years, because powerful tools such as ECell
[14] and VCell [15] started to dominate the research
field. Both tools and many others alike are based
on PDEs that are composed and specified by the
user of the software. With all reactions and pro-
cesses defined, a numerical solution of the system
of PDE is generated and calculated. The user is able
to inspect the results and adjust parameters to fine-
tune the model to fit the results gained via laboratory
experiments.

Space is one of the key components when modeling
the processes in cells. In the last decade simulations
in systems biology have been moving from temporal-
only models to spatio-temporal models [16]. An
established practice for simulations with a spatial
component is to partition the simulation space into
smaller compartments that are able to exchange com-
ponents or information. This holds true for CA,
which are traditionally defined to handle spatial
neighborhood relations on two- or three dimensional
geometric tilings. The neighbors of each cell are
defined by adjacent edges or corners.

Another approach to model natural systems are
stochastic simulation algorithms (SSA) such as
Chemical Master Equations (CME), which can be
necessary when biological phenomena depend on
stochastic fluctuations [17]. CME are able to model
diffusion using particle position distributions – which

are either compartment-based or reliant on Smolu-
chowski equations – and chemical reactions, based on
probabilities of molecular reactions during a defined
time period. Assuming a spatially homogeneous sys-
tem the changes in concentration can be simulated.

PDEs, SSA and CA represent different techniques
to explore the behavior of dynamic systems, all
designed to define the change that occurs in events or
time steps. In PDEs this change is explicitly defined
from the starting point and for all following steps
in time. Therefore it is possible to poll the state of
the system by solving a single equation. In compar-
ison, using CA, numerical methods, or SSE the next
state of the system is implicitly defined by its cur-
rent state, thus adjusting parameters or even states
can be accomplished readily at every time step, but
every state in between the current and the required
time step has to be calculated [18, 19]. This leads to
a consideration of the advantages and disadvantages
of implicit definitions in opposition to explicit defi-
nitions. The updating procedure of explicit systems
depends on the value of the previous time step, and
may even be analytically formulated as a closed form
solution. Therefore the determination of the updates
is straightforward and computationally inexpensive.
As a compromise, explicit methods are only condi-
tionally stable, meaning errors at any stage of the
computation or divergence in the starting conditions
are amplified and not attenuated as the simulation pro-
gresses. Hence, explicit solutions require very small
time steps, especially when there are major changes
in a short time period. Implicit systems can include
values of the current and previous time steps. The cal-
culations performed in each time step are generally
more difficult, resulting in a higher time complex-
ity of the simulation. Nevertheless, implicit schemes
are stable and can tolerate larger time steps than
explicitly defined systems [20]. This also includes a
robustness to unexpected changes. Especially in bio-
logical environments the ability to respond and adjust
to spontaneous disturbances, such as molecular sig-
nals from other cells or changes in temperature is vital
in order to create a realistic and robust model [21].

In 2001 Tomita proposed that systems biology
should rise to a grand challenge of the 21st century
[22]. The construction of a mathematical model of
the whole cell is a key aspect in this challenge. In
order to understand the complex system of the cell,
the fundamental processes that govern its behavior
have to be understood. A modular system that allows
to easily add and remove certain aspects of a model
is a possible approach to analyze the forces that drive
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biological systems. A seed model can be used as a
basis to experiment with different pathways, reaction
types, and parameter sets, without the need to modify
the entire system due to adding a single component.
To evaluate the possibilities that CA offer for modu-
larized spatio-temporal modeling of natural systems,
we define a graph-oriented CA and design a function
to simulate diffusion processes. The diffusion of six
different molecules within a rectangular shaped space
is simulated with the model proposed in this paper
and validated with a numerical approach. We discuss
the stability of the solutions gained concerning differ-
ent time and space resolutions and suggest a general
guideline to select those parameters. In systems that
simulate multiple chemical components and/or mul-
tiple phenomena, it can be difficult to select the best
size for the time step. In numerical analyses differ-
ent algorithms are available to estimate a stable step
width, such as Ruge-Kutta methods [19]. With the
proposed model it is possible to determine the time
and spatial step size, without additional estimation
methods. The user of the model has the freedom
to weigh and choose between simulation accuracy,
complexity, and stability before performing the sim-
ulation of the system.

2. Methods

The concept of cellular graph automata has been
pioneered by Angela Wu [23] in the late 1970s. The
research with graph automata was mainly focused on
investigating the properties of graphs and applica-
tions to graph grammars. Nevertheless, the dynamic
definition of neighborhood in CA is a powerful aspect
to capture geometries that cannot be defined easily by
a static geometric definition.

2.1. Modeling cellular graph automata

The definition of cellular d-graph automata pro-
posed by Wu and Rosenfeld [23] has been adapted for
this work. For reference purposes we will present a
short informal definition. A d-graph � is a graph with
labeled nodes and numbered edges. A distinguished
label element # exists – if a node is not labeled with
# it has exactly d edges emanating from it. Further a
finite-state automaton M on d-graphs is defined as a
double (Q, δ), where Q is a nonempty set of states and
δ the transition function, which maps a new state to
a node depending on the current state, the edge num-
bers and neighbor states. Further, the cellular d-graph
automaton M is a triple (�, M, H) with a d-graph �

and M as defined before and H the neighbor vector
of a node n. An automaton M is placed at each node
n of �. The neighbor vector H supplies the required
information about the neighbors.

For the adaption of cellular graph automata
(CGA) presented here, we exchanged the definition of
d-graphs with finite graphs, that are triplets (X, U, α)
where X and U are two finite disjoint sets and α is
a function [24]. This implies that nodes and edges
are no longer labeled and do not rely on a bounded
degree d. Additionally, the states Q is introduced at
the level of CGA, because they are globally defined.

Definition 1 (Cellular Graph Automaton). Let
a cellular graph automaton be a quadruple
CGA = (V, E, Q, α), for which:

· V is a finite set of graph automaton cells,
· E is a finite set,
· Q is a finite set, and
· α : E �→ V ∪ V is a partial function.

V , E, and Q are disjoint sets. The set V con-
tains the nodes of the graph with elements denoted
as v1, v2, . . . , vn and each element of this set is a
graph automaton cell (see Definition 2). Elements
e1, e2, . . . , eu originate from the set of edges E.
The set Q = {q1, q2, . . . , qr} is the set of possi-
ble states. The number of elements in each set is
given as n = |V |, u = |E|, and r = |Q|. The func-
tion α(ei) = (vj, vk) assigns the relation between a
pair of nodes vj, vk ∈ V and an edge ei ∈ E. If such
a relation exists between two nodes vj, vk they are
called neighbors.

A graph automaton cell (GAC) is a modified ver-
sion of the finite state automaton M, where we keep
the essence of the transition function δ.

Definition 2 (Graph automaton cell). Let a graph
automaton cell be a triple GAC = (p, δ, q), for which

· p ∈ R
g is the position

· δ : Q∗ �→ QCGA is a total function
(the state rule), and

· q ∈ QCGA is the current state.

The position of a node in a space of dimension g

is represented by the position p ∈ R
g. Each node is

enclosed by the Voronoi region of p, which represents
the surface or volume a node is responsible for during
the simulation. Formally the Voronoi region Rvk

of
a node vk can be described by all points in a space
x ∈ R

g with a metric dR, such that

Rvk
= {

x ∈ R
g | dR(x, pvk

) ≤ dR(x, pvj ), ∀j /= k},
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as described by Aurenhammer in [25]. In the context
of CGA the metric dR is called geometric distance.

CGA are composed of nodes, and unlike CA,
their neighborhood relations are based upon the
connections represented by edges. Let dN be the
neighborhood distance of two nodes. In other words:
dN defines the number of edges on the shortest
path between two nodes. Therefore the distance dN

between two nodes vk, vj ∈ V , is dN (vk, vj) = 1, if
and only if there exists an edge e ∈ E such that α(e) =
(vk, vj). Further, the distance dN between two dis-
tant nodes v1, vn ∈ V can be defined by the shortest
path between them. Hence let (v1, v2, . . . , vn) ∈ V ×
V × · · · × V be the shortest path between two nodes,
such that vi is neighbored to vi+1 for 1 ≤ i < n.
The resulting distance will be dN (v1, vn) = n − 1.
In contrast to CA, CGA do not define specific bound-
ary conditions. Different pseudo boundaries can be
created be adding new edges that specify the desired
interactions.

While CA operate in a predefined tiling, GAC act
depending on their neighbors, defined by α and rep-
resented by a multiset N. Let the multiset N, called
neighbor states, be a double N = (Q, m), for which
Q is the finite set of states and m : Q �→ N is a
function. The function m(q) maps a state q ∈ Q to a
natural number. This is the number of times a neigh-
boring node is in the state q ∈ Q. If Q ⊂ QCGA, then
the multiplicity m of the elements QCGA \ Q is 0.
Consequently, the multiset Nvk

of a node vk contains
the states q of nodes vi that are connected to vk with
an edge:

Nvk
= {

qvi ∈ QCGA|dN (vk, vi) = 1
}

The cardinality of the multiset is the sum of all
multiplicity functions and equal to the degree deg of
the node vk:

|Nvk
| =

∑
q∈Q

m(q) = deg(vk)

As an example consider a node vk in state q1 with
three neighboring nodes in q3 and one neighbor also
in state q1. The available states consist of QCGA =
{q1, q2, q3}. The resulting multiset of neighbor states
is Nvk

= {q1, q1, q1, q3} and the appropriate func-
tions are m(q1) = 3, m(q2) = 0 and m(q3) = 1.

The transition of a node from one state q(t) at time
t to the next state q(t + �t) is defined by the state
rule δ, which can be either deterministic or stochastic.
The step size �t is uniform. The domain Q∗ of δ

is a multiset of states from QCGA that consists of

the neighbor states Nvk
, in addition to the state of

node vk itself and maps to the next state q(t + �t)
of vk. An exemplary deterministic transition function
would be:

δ(Q∗
vk

) =

⎧⎪⎨
⎪⎩

q1 if m(q1) >
|N|
2 ,

q2 if m(q2) >
|N|
2 ,

q3 else.

This deterministic transition function determines
the next state of a node, by the number of neighboring
nodes in a certain state. If the number of nodes in state
q1 is larger than the number of nodes in state q2 the
next state of this node will be q1 and vice versa. The
state q3 would be assigned if the number of nodes in
q1 and q2 are exactly even.

With these definitions the state of a node can be
set. Considering the initial representation of nodes
as a segment of space inside of a biological system,
possible states could be comprised of the environ-
ment or compartment a node is enclosing. In this
context, the state of a node may be any organelle,
such as chloroplast, endoplasmic reticulum, or Golgi
apparatus. The states or objects can be allowed to
move through the cell with rules adapted from the
String definition in [26] or remain static. In order
to handle continuous values, such as concentra-
tions of species, the previous definition is augmented
to Extended Graph Automaton Cells (EGAC), which
are used to enrich the concept of CGA. Here, each
node is able to accommodate a set of entities that
represent its content.

The description species is used to generally refer to
sets of atoms, molecules, molecular fragments, ions
and similar entities, subject to a chemical process or to
a measurement. Each species s ∈ S represents such a
chemical compound. A value function f (s) ∈ R maps
a value to the species s that represents any quantitative
or physicochemical property. The first quantitative
property defined for the purpose of this paper is the
concentration function fc(s) that maps the concentra-
tion of a species s to any node vk. Additionally, the
function fd(s) maps a species to its diffusivity. This
function is independent from any node, since the dif-
fusivity of a species is considered constant regardless
of its position in the CGA. Other functions can read-
ily be implemented, and the set of all value functions
is referred to as F .

Definition 3 (Extended graph automaton cell).
An extended graph automaton cell is a quintuple
EGAC = (δ, �, q, W), for which
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· p ∈ R
g is the position

· δ : Q∗ �→ QCGA is a total function
(the state rule),

· � is a set of functions ω : W∗ × s �→ W

(the value rules),
· q ∈ QCGA is the current state, and
· W is the current value set.

The Definition 2 of GAC also applies to the mul-
tiset Q∗, the transition function δ and the current
state q. The value functions � and the current current
value set W are new components to this definition.
The value set W contains the sets of values defined
by each value function f ∈ F and for each species
s ∈ S. For example, consider two species s1, s2 ∈ S

and two value functions fc mapping the concentra-
tion and fd mapping the diffusivity of a node vk. The
resulting value set could look like Wvk

= {{fc(s1) =
0.3, fc(s2) = 0.4}, {fd(s1) = 1.2, fd(s2) = 2.7}}.

The domain W∗ of each value rule ω consists again
of the neighboring value sets. Each value set Wvi of
the nodes vi that share an edge with the node vk is
included in the Mvk

set.

Mvk
= {

Wvi |dN (vk, vi) = 1
}

The set of value rules � contains all value rules
that are to be applied to the value set of the node vk.
A single value rule ω maps from the set of multiple
value sets W∗, including neighbor value sets Mvk

and
the node vk itself, to the new value set W . A rule ω

is used to calculate the change of any fi(t, v, s) of
a species s, at node v and time t. For example, the
arithmetic mean of the concentrations in a node can
be assigned with:

ω
Avg
fc

(si) = �fc(vk, si) = 1

|W∗
vk

| ·
∑

fc(si)∈W∗
vk

fc(si).

ω
Avg
fc

(si) denotes the value rule for averaging the con-
centration fc of any species si, �fc(vk, si) describes
the change in concentration at nodevk of the species si
and |W∗

vk
| the number of neighbors of vk. A visualiza-

tion of this definition and its interpretation is depicted
in Fig. 1.

The idea behind this definition is the creation of
multiple value rules that represent natural phenom-
ena inside of the cell. It is possible to define multiple
value rules that modify the same value in a value set.
For example, consider the diffusion of a species into
neighboring compartments in addition to the conver-
sion into another species during a chemical reaction.
Both events would modify the concentration of the

Fig. 1. A section of a cellular graph automaton illustrating nodes,
edges, and Voronoi regions. A set of species S is globally defined
and a set of attributes can be assigned to every individual species.
Each extended graph automaton cell (see Definition 3) contains
the current concentration fc(si) of a species si. The species and
values depicted were only chosen as an example. The value func-
tion ωfc (si) defines a rule for the change in concentration for each
species.

Fig. 2. The flowchart describes the general sequence of steps dur-
ing the initialization process and actual simulation of CGA.

same species. In this case the sum of the changes for
each species and value function will be applied to the
node.

The size of the time step is uniform and can
be parametrized as described in Section 2.3. This
enables the simulation of multiple time scales
depending on the phenomenon that is to be addressed.
Additionally, the size of the time step provides
the possibility to choose between a more accurate
prediction (using numerous small time steps) or a
faster simulation (using fewer large time steps). A
schematic representation of the sequence of oper-
ations that are needed to setup and perform a
simulation is depicted in Fig. 2.
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To evaluate the proposed model, the process of dif-
fusion has been implemented as a value rule ωDif .
Diffusion is one of the fundamental processes that
governs the behavior of all natural systems on a
molecular level. It is possible to derive an implicit
value rule that is able to describe the flow of matter
between the nodes in CGA. The derivation of this rule
is presented in the following section.

2.2. Modeling diffusion

Diffusion is a natural physical process in which
molecules disperse from an area of high concentra-
tion proportional to a concentration gradient. This
phenomenon is describes the random motion of all
particles in solutions, called Brownian motion. Fick
proposed the Second Law of Diffusion, in which the
flux of matter in a liquid is proportional to the gradient
of its concentration c scaled by a factor D [27]:

∂c

∂t
= D

∂2c

∂x2 . (1)

This equation needs to be transformed into a
recurrence relation, which then enables the imple-
mentation into CGA. Using the finite differences
method as shown in [20], the infinitesimal small steps
in time ∂t and space ∂x can be formulated using
finitely small steps �t and �x. The concentration
was rewritten to c(t, x), to indicate its dependence on
time t and the position x:

1

�t

(
c(t + �t, x) − c(t, x)

)
︸ ︷︷ ︸

change of c per �t

= D
∂

∂x
·

1

�x

(
c(t, x + �x) − c(t, x)

)
︸ ︷︷ ︸

change of c per �x

.

By calculating the limit with �x, �t → 0 of this
function, it is possible to reformulate Fick’s sec-
ond law in a discrete manner. The reformulation of
the second space-derivative is performed specifically
for CGA. Since the introduction of a neighborhood-
oriented approach is required, it is necessary to
distribute the spatial differences as uniformly as pos-
sible around the point of interest x, so that the isotropy
of the geometric space is conserved. Subsequently, it
is necessary to define the neighborhood of the cur-
rent position x. Thus, let H = {h1, · · · , hd} be the
set of nodes that are adjacent to a node vk. This
relationship is derived by collecting all nodes where

dN (vk, hi) = 1 (see Definition 1). In conclusion,
position x will now be represented as a node vn and
hi ∈ H are nodes, that have a distance of �x = dN to
vk. Since there is now a finite amount of neighbors,
the concentration of each neighboring node needs to
be considered:

1

�t

(
c(t + �t, vk) − c(t, vk)

) = D
1

d2
N

·
((

c(t, h1) − c(t, vk)
) + · · · + (

c(t, hd) − c(t, vk)
))

= D
1

d2
N

·
∑
hi∈H

(
c(t, hi) − c(t, vk)

)
.

Since the time scale of CGA is uniform and
homogenous, it is possible to assume �t = 1 and
�dN = 1 without loss of generality if the nodes in the
graph are arranged uniformly. When applying these
terms, the previous equation results in:

c(t + 1, vk) − c(t, vk)=D ·
∑
hi∈H

(
c(t, hi) − c(t, vk)

)
.

and by rearranging further the final equation is

c(t + 1, vk) = D ·
∑
hi∈H

c(t, hi)

︸ ︷︷ ︸
amount entering

−

D · d · c(t, vk)

︸ ︷︷ ︸
amount leaving

+ c(t, vk).

︸ ︷︷ ︸
current amount

Now it is possible to translate the equation to a
value rule usable in CGA. The new concentration of
a species s can be calculated with:

ω
Dif
fc

(si) = �fc(vk, si) = fd(si) ·
∑

fc(si)∈Mvk

fc(si)−

fd(si) · |Mvk
| · fc(vk, si) (2)

2.3. Parameterizing and scaling

As mentioned in the definition of CGA, the spa-
tial and time scales of CGA are dimensionless and
uniform. The scaling factors that result from the true
dimensionality of the system (time step size and node
distance) have to be included in the value or transition
rules, in order to affect the model system.

The diffusion coefficient D(s) represented by fd(s)
is the only constant in the diffusion value rule ω(s)
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that connects the model system with specific char-
acteristics of nature, and therefore provides an the
opportunity to scale the diffusion value rule using
node distance and the size of the time step. D is mea-
sured as a unit of area2 · time−1 and can be retrieved
from literature or estimated from the molecular
weight or volume. Hayduk and Laudie compiled
a list of the diffusivities of 89 small molecules and
developed a reliable correlation [28]. Young did the
same for 143 proteins [29]. Using these correlations
it is also possible to estimate the diffusion coefficient
and in turn parametrize the simulation. In case of
molecules the coefficient is often given in cm2 · s−1.

The distance between two nodes �d and the length
of a time step �t has to be specified in order to
simulate a defined environment (see Fig. 2). If these
parameters are given, the diffusion constant D can be
scaled to the size of the system. However, this requires
the arrangement of nodes to be uniform across the
covered space, so that dG(vj, vk) ∼ dN (vj, vk). We
therefore propose the setup work flow depicted in
Fig. 3. Ideally, the geometric distance dG is equal for
all pairs of neighboring nodes and can therefore be
used as �d. The time step can be chosen depending
on the environmental configuration. The final value
of D, which is used and applied in CGA, is rescaled to
represent �t and �d correctly. The scaled diffusivity
D is calculated using

D = fd(s) = D(s) · �t

�d2 . (3)

2.4. Verification

The viability of the simulated diffusion process,
calculated by the implementation of the suggested
model, is assessed in comparison to a numerical
solution of the two-dimensional representation of
the diffusion equation [30]. To compare the differ-
ent approaches, the half-life τh was measured. In
this context, τh is the time required for half of the
concentration of the steady state to accumulate at
a specified position. The half-life was used to con-
trast both approaches, since this measure is highly
delicate and important to approximate the speed of
the diffusion process [31]. Therefore, a good consen-
sus between the predicted half-lives indicates a good
overall compliance.

The sample system to be simulated was constructed
as a square with a side length of 2500 nm. This square
is partitioned into two rectangles with a width of
1250 nm (half of the system) and a height of 2500 nm.

One of the rectangles is set up to have a starting
concentration of 1.0 mol · l−1 and the other rectan-
gle is set to a concentration of 0.0 mol · l−1. The
system’s initial setup and progression is depicted
in Fig. 4. Multiple species have been considered to
assess the viability of the system. We have chosen
some of the smallest molecules that may be of inter-
est in cellular biology. Those species should be the
most critical in the system because large quantities
are moving between nodes. The diffusivity covers
ranges from 4.40 · 10−5 cm2 · s−1 for hydrogen gas
up to 6.40 · 10−6 cm2 · s−1 for ethane-1.2-diol (see
Table 1) [28].

Initially, a numerical approach was used to sim-
ulate the diffusion process in a closed system. This
computation was performed using Octave [32]. The
simulation uses an explicit finite difference method
with a first order upwind in time and a second order
central difference in space scheme [30, 33]. To spec-
ify the square shape of the simulation space, four
reflecting Neumann boundaries were set. After speci-
fying the systems boundaries, the kinematic viscosity
of the system is set to exhibit the properties of the
desired species ν = D(s). In the simulation, the con-
centrations of the far right side are observed and the
system is simulated until it approaches the steady
state c = 0.5 mol · l−1. Finally, the simulated half-
life τh is measured.

Additionally, using the definition presented in this
paper, a CGA is designed to simulate the same rect-
angular system (see Fig. 4B). The number of nodes
at either side of the grid z is adjusted and the total
number of nodes in the graph is |V | = z2. The global
size of the system (2500 nm side length) will stay
the same, only the distance between nodes �d has to
be recalculated for the scaling of the diffusion coef-
ficient. Different automata were designed to assess
the influence of node distance �d and length of time
steps �t. Therefore 682 different systems have been
simulated ranging from 10 to 70 nodes per side (using
31 samples in this range) and time steps of 10 ns to
1500 ns (using 22 samples in this range). Further-
more, these simulations have been performed for all
mentioned species.

3. Results and discussion

A mathematical concept was developed that allows
the simulation of multiple chemical species, sub-
ject to natural phenomena described by so-called
value rules ω. The geometry of the model system
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Fig. 3. The first step to setup a simulation with cellular graph automata is to define the desired geometry of the system that one wants to
simulate. Afterwards, the system is partitioned by covering it with a net-like graph. Each node is responsible for a subsection of space.
Further adjustment methods can be applied to truncate and rearrange nodes, so that the true geometry is represented accurately. After the
CGA has been adjusted to cover the simulation space, chemical species can be added to the system. Species and their attributes can be
retrieved from databases such as ChEBI [35] or Pubchem [34]. For every node in the system the concentration can be set individually, a
gradient qualitatively indicates nodes with a high concentration of a particular species in darker color and low concentrations in light color.

Fig. 4. A: The initial setup of the proposed experiment. A tube is filled with two solutions, separated by a central barrier. One half (indicated
with light color) contains a high concentration of the proposed substance, the other half does not contain the solved substance. The distance
between the barrier and the point of observation is the diffusion distance, for which the half life will be measured. To start the experiment the
barrier is removed. Now the time is measured until half of the equilibrium concentration is reached at the point of observation. B: The initial
setup of the rectangular graph automaton with twelve nodes side length. The nodes contain concentrations of 1.0 mol · l−1 (indicated with
dark color) and 0.0 mol · l−1 (indicated with light color). C: A schematic depiction of the progression of the diffusion process of methanol at
the point of observation. The half life is measured when the concentration reaches half of the equilibrium. This concentration of 0.25 mol · l−1

is indicated with a grey line. The coloring shown in the three boxes illustrate the state of the system at three points in time based on the
experimental progression.

is divided into multiple smaller subspaces that are
simulated individually (see Fig. 3). Value rules are
used to change the concentration of species inside of

subspaces of the modeled system. The model itself is
scale free, only the value rules have to be adjusted to
the actual time and space regime of the simulation.



C. Leberecht et al. / Simulation of diffusion using a modular cell dynamic simulation system 137

Table 1
Comparison of the simulation results

Species D(s) ( cm2

s
) τCGA

h
(ns) τNum

h
(ns) Difference (ns / %)

Hydrogen gas 4.40 · 10−5 135.9 131.8 4.1 / 3.07
Ammonia 2.28 · 10−5 262.2 254.3 –7.9 / 3.09
Methanol 1.66 · 10−5 360.1 349.3 –10.8 / 3.09
Benzene 1.09 · 10−5 548.4 532.0 –16.4 / 3.08
Succinic acid 8.60 · 10−6 695.1 674.3 –20.8 / 3.07
Ethane-1.2-diol 6.40 · 10−6 934.0 906.1 –27.9 / 3.08

The graph automata simulation has been performed with 5 ns time steps and 40,000 nodes (200 x 200). The values
for the diffusivity have been experimentally determined and are presented in [28].

Fig. 5. Simulations for six different substances. The number of nodes (side length of the square graph) ranges from 10 to 70 (implicitly
changing the node distance �d to maintain the overall simulation space) and the time step size �t ranges from 10 ns to 1500 ns. Each dot
corresponds to a simulation performed with different parameters for �t and �d. The ratio of the half life τCGA

h
: τNum

h
is represented by the

brightness of the dots. Dim gray sections with values near 1.0 corresponds to predictions with a low deviation when compared to numerical
methods. Half lives that occurred later than expected (values bigger than 1.0) are indicated in darker gray and light gray regions report models
that overestimate τCGA

h
(values smaller than 1.0).

After the underlying geometry of the simulation is
defined, chemical components can be added to each
node of the system (see Fig. 3). Different attributes
can be assigned to the chemical components that
may be subject to change during the progression
of the simulation. The diffusion requires the con-
centration and the diffusivity of each species. The
concentration is node specific and will be changed
during the simulation depending on the concentra-
tion of the surrounding cells, whereas the diffusivity
is species specific and remains constant over time.
The two global parameters that determine the scal-
ing of the system are species and node independent.
Those are the node distance �D (spatial step size)
and the time step size �t. Following the initializa-

tion of all required parameters, the simulation can
be started. In each time-step the transition rules are
applied and new values are set for the next iteration.
A step-by-step progress of the setup of such a system
is reenacted in Appendix A and another example for
the implementation of value rules in the case of first
order reactions is given in Appendix B.

The simulation system and model were imple-
mented in order to verify their applicability.
We developed the application programming inter-
face Simulation of Natural Systems using Graph
Automata (SiNGA) in the Java programming lan-
guage. The source code is provided on GitHub
under GNU General Public License Version 3 (see
github.com/cleberecht/singa).
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The results of an exemplary system (see Fig. 5)
indicate, that the simulation using CGA with an
increasing number of nodes and a decreasing time
step size converge to the half life calculated with the
numerical simulation. However, the graphs also show
that the system is unstable when a large number of
nodes (equivalent to small node distances �d) is used
in conjunction with large time steps. This is to be
expected if the combined amount of concentration to
be distributed among the neighbors in one time step
is larger than the concentration a node currently con-
tains. Hence, the time scale is underestimated and
negative values ensue. Consequently, the initial setup
of the system has to be done carefully. The dimen-
sions of the system have to match the speed of the
species with the highest diffusivity D(s). We derived
the following threshold

�d2

�t
> max

v∈V
(deg(v)) · max

s∈S
(D(s)) − max

v∈V
(�c(vi, vj)),

(4)

that traces the arches that can be seen in Fig. 5. Here,
let maxv∈V (�c(vi, vj)) be the maximal difference in
concentration between two neighboring nodes. Addi-
tionally, the node with the maximal degree and the
species with the highest diffusivity are taken into
account. If the parameters of a CGA do not sal-
sify the inequality, the system is unlikely to reach a
meaningful result. As a result, this inequality approx-
imates the stability of the global system, leading to a
rather pessimistic prediction that resembles the worst
case scenario of a possible configuration. By insert-
ing the actual values of a proposed CGA simulation
into the inequality, adjustments can be made to create
a stable system. The geometric setup of the system
can be changed in two different ways. On the one
hand, it is possible to reduce the globally highest
node degree. On the other hand, species with high
diffusivity may be removed, or steep concentration
gradients can be smoothed across multiple nodes. If
the system setup is to be taken as fixed, the envi-
ronmental parameters �d and �t can be adjusted to
increase stability. Smaller time steps entail more cal-
culations in intermediate steps to stop values from
changing too rapidly. Increasing the number of nodes
has the same effect. When the size of the time step
approaches zero and the number of nodes reaches
positive infinity, the predicted half life of calculated
with CGA approaches the result gained by classical
numerical methods. The system gets more accurate
when small time steps are used in conjunction with

small node distances. Simultaneously, the runtime of
the simulation increases.

As depicted in the flowchart in Fig. 5 for every time
step every node needs to be addressed at least once.
The complexity of each time step is O(n2), domi-
nated by the number of nodes |V | and number of
species |S|. Conclusively, the end user needs to find
a trade-off between accuracy and time complexity
depending on the requirements for the simulation.
To gain a brief overview of the system’s behavior an
inaccurate setup might suffice. If the diffusion pro-
cess needs to be determined accurately, more nodes
and small time steps are required. Finally, the half life
τh calculated by classical numerical simulations and
those from CGA are compared in Table 1. Remark-
ably the difference between both methods amounts
to about three percent across all species.

4. Conclusion

PDEs are an established strategy to simulate a
variety of natural systems. In systems that have pre-
dictable behaviors and outcomes PDEs flourish to
their full potential. In biology however, one often
encounters systems that are very complex and influ-
enced by multiple aspects. In these cases PDEs reach
the limits of their applicability. Using implicit sys-
tems such as CA or CGA, it may be possible to
simulate different systems that cannot be tackled effi-
ciently using PDE.

With the proposed definition of CGA we have
shown that it is possible to simulate diffusion of dif-
ferent chemical species to a high degree of accuracy.
Diffusion is one of the most fundamental processes
that many biological systems rely on. The system
shown here is able to easily adjust to different time
and space scales with little adjustments to the config-
uration of the system. Using the underlying structure
of graphs it is possible to define different topologies.
It is possible to add plenty of species to a simula-
tion. Furthermore, the user is able to simulate and
observe the system in order to improve the under-
standing of its current behavior. It is even possible to
alter the concentration of a species at a specific node,
or the structure of the graph at any point during the
simulation, due to the implicit definition. Finally, not
much mathematical understanding that is needed to
set the system up (see setup process in Appendix A).
As shown in Fig. 2, the user has to initialize the graph
first, than choose the required species and finally
define the systems parameters �d and �t. To guide
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the definition process of the parameters, the thresh-
old (Equation 4) can be consulted. A trade-off can be
chosen between accuracy and time complexity of the
simulation. Hence, the end user can decide whether
qualitative predictions are sufficient or precise sim-
ulations are required. Databases such as PubChem,
ChEBI, or UniProt allow the automatic extraction of
features for different species that are relevant for the
estimation of critical parameters (such as the diffu-
sivity) [34–36].

Computer simulations are able to act as a bridge
between theory and experiment [37]. In the past the
gap between theory and experiment for molecular
behavior has been overcome by molecular dynamic
simulations [38, 39]. However there is still a lot to
be done to bring theory and experiment together
when it comes to the dynamics of cellular pro-
cesses. First steps were done by many researchers
over the past centuries. Nevertheless, the gap between
generalizable simulations and experimental outcome
still needs to be closed. We hope that the differ-
ent fields of science will work together to make
a similar approach to “Cell Dynamic Simulations"
possible.

In the near future, research will be directed towards
the creation of value rules for different chemical
reaction types and membrane transport. The setup
process for simulations will be further simplified by
providing possibilities to extract information from
relevant databases and by offering visual feedback
using the graphical user interface. Additionally the
SiNGA application programming interface (available
on GitHub github.com/cleberecht/singa)
is under constant development.
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Appendix A. Simulation setup

Step 1: Definition of the target system. The layout of
the underlying graph of the CGA is the first step in
the setup of a simulation. The geometry and dimen-
sionality of the target system has to be respected
and eventually assumptions have to be made. A one
dimensional system can be simulated by using a line
of nodes, where each node is only connected to the
next node. By also connecting the first and the last
node of the system a periodic boundary condition
in terms of regular cellular automata can be intro-
duced. A two dimensional system can be composed
in different ways, for instance by arranging four nodes
around a central node (see example system in Fig. 4),
a classical cellular automaton with a squared tiling
can be recreated. It would also be possible to cre-
ate a hexagonal tiling by introducing six neighbors to
each node. Again, by connecting opposite sides of the
system periodic boundary conditions are introduced.
In theory the modeling of arbitrary dimensionalities
should be possible depending only on the connection
of nodes in the graph.

Example: For the purpose of this guide, a two dimen-
sional system is chosen without periodic boundary
conditions.

Step 2: Placement of the corresponding nodes. If the
CGA should represent the actual geometry of a cell, a
microscopic image can be used as a guideline to place
the nodes of the graph. The number of nodes that are
supplied in this step determine the accuracy of the
system to a large extend. Each node is responsible for
the simulation of a small region of space during the
simulation. More nodes increase accuracy as well as
runtime. Since the nodes need to be placed uniformly
in the desired space a relaxation algorithms such as
Lloyds Algorithm [40] should be applied and after-
wards the nodes should be connected using a stringent
distance cutoff. After this step the graph should uni-
formly span across the simulation space. Now the
average distance between neighboring nodes is used
to parametrize �d.

Example: A simple square simulation space with an
area of 100 mm2 is filled with 100 nodes. The large
square is partitioned in 100 small squares, and at the
center of each square a node is placed. Now the space
is uniformly covered. Afterwards, neighboring nodes
are connected and the distance between two nodes
should be uniformly the same with �d = 0.9 mm.
The distance might seem surprising but is a result of

the nodes being placed inside of the square and not
on the border.

Step 3: Species selection and concentration assign-
ment. Now the species of interest need to be specified
and the concentrations have to be set. Each node
requires a starting concentration.

Example: We might choose the molecule Benzene
that has a concentration of 0.5 mol · l−1 in the two
leftmost columns. Hence we set the value function
fc(Benzene) = 0.5 for the corresponding nodes and
fc(Benzene) = 0.1 for all remaining nodes.

Step 4: Choosing Δt and determining D. If we want
to simulate the diffusion of Benzene its diffusivity
has to be set as well. To scale the diffusivity for the
proposed setup system, the size of the time step is
required. To choose the time step size most suitable
for ones requirements, the proposed threshold (Equa-
tion 4) will be consulted, with the already determined
values inserted.

Example: For the system that was introduced up to
this point, the following threshold can be derived:

0.92

�t
> 4 · D(Benzene) − 0.4

A node is neighbored to a maximum of four
neighbors, the node distance has been set to
0.9 mm, and the maximal difference in concen-
tration is 0.4 mol · l−1. Now the following three
time steps will be considered: 1 s, 50 s and 100 s.
To scale the experimentally determined diffu-
sivity D(Benzene) = 1.09 · 10−5 cm2 · s−1 [28] to
D(Benzene), Equation 3 is calculated for each pro-
posed �t and inserted into the threshold (D is brought
to the same unit). This insertion results in the fol-
lowing inequalities: 0.81 > −0.394 for 1 s, 0.162 >

−0.131 for 50 s and 0.0081 /> 0.136 for 100 s. The
time steps 1 s and 50 s are sufficient for a stable sys-
tem, but a time step of 100 s would be too large. The
larger the absolute difference between both sides of
the inequality, the more accurate the resulting simu-
lation.

Simulation. After the graph is constructed and the
the time step size �t, node distance �d, and scaled
diffusivity of all desired species are set, the simulation
can begin. During simulation, the change for each
node is calculated first using the the value rules ω.
After all changes have been calculated, they are added
to the previous values and the time step is increased.
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Appendix B. Implementing value rules

The implementation of additional value rules is
dependent on their requirement for neighboring
values. If the value rule does not require informa-
tion from neighboring values, its implementation is
straight forward. As an example a simple case of
chemical kinetics shall be demonstrated:

The general case of a first order reaction with two
chemical species A and P and their stoichiometric
coefficients a and p can be denoted in the form:

aA → pP

The reaction rate of a first-order reaction A → P

can be described by:

v = −1

a

dc(A)

dt
= 1

p

dc(P)

dt
= kc(A)

for which:
�

v is the reaction rate (in mol · l−1 · s−1),
�

c(S) is the concentration of a species s,
�

k is the rate coefficient, and
�

t is the time.

The differentials will be be transformed to discrete
changes, to transition to CGA.

v = �c(S)

�t
= 1

p

�c(P)

�t
= −1

a

�c(A)

�t
= kc(A)

Further, the concentration will be rewritten to
c(s, t), to describe c as a function depending on
species and time:

1

�t
�c(s, t + �t) = 1

p

1

�t
�c(P, t + �t) =

− 1

a

1

�t
�c(A, t + �t) = kc(A, t)

Because of the uniformity of the time steps �t can
be set to 1:

�c(s, t + 1) = 1

p
�c(P, t + 1) =

− 1

a
�c(A, t + 1) = kc(A, t)

Therefore the recurrence relation for the new con-
centration of a species S at t + 1 in a first-order
reaction can be calculated with:

c(s, t + 1) ={
c(s, t) + k · u(s) · c(A, t) for products,

c(s, t) − k · u(s) · c(A, t) for substrates.

In this equation u(s) denotes the stoichiometric
coefficient in the reaction that is to be simulated. The
equation can be translated to a value rule in CGA
notation, for which only the change is relevant:

ωKin
fc

(si) ={
fk(si) · u(si) · fc(sA) for products,

−fk(si) · u(si) · fc(sA) for substrates.

Note that the rate of change is always calculated
in dependence of the substrate concentration of the
reaction sA, since if there is no actual substrate no
reaction can occur. The rate coefficient k from litera-
ture or databases needs to be scaled to take the actual
time step into account, that is to be applied in the
concrete CGA with k = fk(s) = k(s) · �t.


