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Where Do CABs Exist? Verification of a
specific region containing Concave Actin
Bundles (CABs) in a 3-Dimensional
confocal image
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Abstract. CABs (Concave Actin Bundles) are oriented against the scaffold transversally in a manner different from traditional
longitudinal F-actin bundles. CABs are present in a specific area, and do not exist in random areas. Biologically, CABs are
developed to attach cells to fibers firmly so that CABs are found near cells. Based on this knowledge, we closely examined
3D confocal microcopy images containing fiber scaffolds, actin, and cells. Then, we assumed that the areas containing high
values of compactness of fiber, compactness of actin, and density of cells would have many numbers of CABs.

In this research, we wanted to prove this assumption. We first incorporated a two-point correlation function to define a
measure of compactness. Then, we used the Bayes’ theorem to prove the above assumption. As the assumption, our results
verified that CABs exist in an area of high compactness of a fiber network, high compactness of actin distribution, and high
density of cells. Thus, we concluded that CABs are developed to attach cells to a fibrillar scaffold firmly. This finding may
be further verified mathematically in future studies.
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1. Introduction

Jones et al. [1] investigated the in vitro interac-
tion of both mature endothelial cells (ECs) and of
less differentiated EC colony-forming cells to poly-�-
capro-lactone (PCL) fibers with diameters in 5-20 �m
range (scaffold micro-fibers (SMFs)). This range of
diameters of fibers is within cell-size range.

In their experiment, the researchers found that ECs
wrap the SMFs completely, forming a cylindrical
morphology. They further investigated the distribu-
tion of F-actin microfilaments in scaffold-wrapping
ECs, to determine their circumferential extension.

∗Corresponding author: Doyoung Park. E-mail: parkd@oldwe
stbury.edu.

Figure 1 (a)-(b) shows cells incubated for a longer
time with SMFs. They reported the full circumfer-
ential continuity of F-actin structures by unwrapping
the image in Fig. 1 (c), which is shown as a ring-like
pattern occasionally crossing the nuclei.

The median portion of cells often displayed only
partial F-actin arcs, which are named “concave actin
bundles” (CABs). In serial optical sections, CABs
were found to co-exist with fully-wrapped F-actin
bands, that were preferentially located towards cell
margins (Fig. 1 (c)-(d)). CABs were either shorter
than a half-circle and oriented obliquely to the axis
of SMFs (Fig. 1 (d)), or longer than a semicircle and
showing a more transversal positioning (Fig. 1 (e)),
a grading that suggests their progression towards full
circles. Where CABs represent full circles, they are

ISSN 1386-6338 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:parkd@oldwe{penalty -@M }stbury.edu
https://creativecommons.org/licenses/by-nc/4.0/


2 D. Park / Mathematical verification of Concave-Actin-Bundles in cell-scaffold interaction

Fig. 1. Visualization of circular gripping of SMFs by F-actin in the human umbilical vein ECs (HUVECs) (Reproduced from [1]). (a)-(c)
visualized F-actin in the HUVECS. (a) An original confocal image in 2D projection. A SMF portion containing F-actin bands of interest is
marked by a yellow rectangle; (b) An enlarged image of the yellow rectangle in (a); (c) Left shows a vertically oriented image projection of
(b). For comparison, we unwrapped the cylinder distribution of F-action to visualize full-circle continuity of F-actin around the SMF (right).
Fig (d)-(f) are examples of F-actin rings in the interaction between a cell and a scaffold(s). (d) Full-wrapping of a fiber at the cell’s extremities
(yellow line) by F-action bundles. The white scale is around 10 �m; (e) F-actin in a SMF-attached cell. It contains AGs (arrowhead), an actin
ruffle-like structure (arrow), and a blob with abundant actin (dashed arrow); (f) A cell is laid over three intertwining SMFs. The concentration
of AGs is greater at all extremities than at the interior of the cell(arrowhead).

named “actin grips” (AGs). Thus, AGs are special
cases of CABs.

This wrapping is performed by adopting a cylin-
drical morphology, accompanied by the progressive
reorganization of F-actin filaments in a ring-like pat-
tern. This is a newly found type of organization of
F-actin filaments mediating cell-matrix interactions.
Thus, in the cells that intimately engaged individual
SMFs, F-actin was distributed not only as classical
stress fibers longitudinally aligned with the scaffold,
but also as transversal rings, in a proportion that
increased with the time in culture. Figure 2 shows
these two types of organization of F-actin filaments.

CABs (or AGs) are conspicuous F-actin bundles ori-
ented transversally to scaffold’s fibers as shown in
Fig. 2 (b) which is different from Fig. 2 (a).

Unlike stress fibers, CABs (or AGs) showed no
co-localization with focal adhesions, or intermediate
filaments. The grip formation depends on scaffold
fiber diameter, with an optimum diameter around
10 �m. Confocal and live-cell images showed that
more grips were formed in cells which remained in
culture longer, and that these cells were also less
motile.

CABs helps understand how ECs solve their
topological problem, when (literally) facing an
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Fig. 2. F-actin organization in cell-scaffold interaction. (a) An
image of longitudinally aligned stress fibers (arrows). The arrow-
heads indicate F-actin containing ruffles. (b). A cross-sectional
image of a supporting fiber. Concave actin bundles (CABs) (arrow)
grip the fiber in a circular fashion. Green indicates F-actin. Blue
indicates the nuclei.

unusual environment, and could also illuminate their
behaviour in corresponding situations in vivo.

CABs are more dynamic structures than stress
fibers. CABs also do not co-localize with the actin
filaments oriented alongside the scaffold. Based on
these observations, it was determined that CABs
may contribute to the maintenance of an elongated
endothelial morphology on the fibrillar support even
in the absence of a FA-mediated adhesion, and that
their dissolution may lead to cell shape modifications.
These facts imply that CABs may supply (or replace)
cells’ need for direct adherence, required for survival
[2]. Further, CABs suggest a constrictive capacity,
a function reserved only for cytokinesis furrows in
ECs, and to the peri-vascular contractile cells (e.g.
pericytes) [1].

Thus, CABs have multiple possible applications
in tissue engineering, such as the stabilization of
EC interaction with the scaffolds used as cell
carriers, immuno-isolation of fibrillar scaffolds to
mitigate their foreign body reaction, control of
post-implantation immune responses, or controlling
the differentiation of ECs via substrate-driven gene
expression [1].

CABs are believed to exist for cell’s direct adher-
ence to fibers, which provides to the attached cell
essential mechanical properties. Thus, it seems that
CABs exist around cells. However, we want to ver-
ity this fact, so that we may scrutinize an existential
question: Where do CABs exist?

By closely probing 322 regions (which might con-
tain a CAB) extracted by our previous algorithms
described in [3] from 11 confocal image volumes
(containing fiber scaffold, actin, and cells), we made a
hypothesis of CABs’ existence: CABs exist largely in
the area of high compactness of fibers, high compact-

ness of actin, and high density of cells. In a confocal
image volume, fibers were stained in red, actin in
green, and cell in blue. We defined a fiber as a set of
templates in our previous algorithms [3].

We calculated the density of fibers in the number of
templates in a candidate CAB region. We calculated
the density of actin as the number of green pixels
in a CAB candidate region. Regarding cells, we seg-
mented cells using the algorithm described in [4] and
counted the number of pixels in the segmented cells.
In the above hypothesis of CAB’s existence, if the
number of templates, the number of green pixels, and
the number of pixels in detected cells were above the
experimental thresholds in a CAB candidate region
in a confocal image volume, we defined the cases as
‘high’

If an area that has many numbers of fibers and those
fibers cross each other intricately, the area has a high
value of compactness of fibers. Similarly, if an area
is widely and closely distributed with actin, the area
has high value of compactness of actin. In addition, if
an area contains many numbers of cells or large-sized
cells or both, the area has Sa high value of intensity
of cells.

For the purpose of proving the above hypothesis,
we define a compactness measure. Using this com-
pactness measure, we can estimate the compactness
of a fiber network, and the compactness of the actin
distribution in an area. The compactness measure is
built on a two-point correlation function (TPCF) [5].
TPCF is the probability of both endpoints of a line
segment landing in the same constituents (i.e. fibers,
actin, cells, and back ground black space) of a 2D
or 3D image space when a line segment of random
length and orientation is placed in that image space
(for details, see the Sections 4.1.1–4.1.3). Because
our confocal microscopy image is in a 3-dimensional
(3D) space, the line segment will be thrown into the
3D space.

Next, we calculate a probability according to the
compactness of a fiber network, and the probability
according to the compactness of actin distributions.
We also calculate the probability distribution accord-
ing to cell density. These probabilities are applied
to the Bayes theorem, so that we can prove the
hypothesis by comparing posterior probability to pri-
ori probability.

1.1. Related works

TPCF is a simplified version of the N-point proba-
bility functions which were brought into the context



4 D. Park / Mathematical verification of Concave-Actin-Bundles in cell-scaffold interaction

of determining the effective transport properties of
random media by [6]. Frisch et al. [7] and Torqua-
tor et al. [8] studied several general properties of
the N-point probability functions. In addition, lower-
order N-point probability functions were calculated
for various sphere models [9–11].

There were several research studies using TPCF
for segmentation purposes. R. Ridgway et al. [12]
used TPCF for segmenting tissue regions of a mice
placenta. They used a high-order SVD classifier for
the segmentation. F.Janoos et al. [13] improved com-
putational costs and accuracy of the segmentation by
using the adaptive high-order SVD classifier on the
TPCF feature space in a multi-resolution setting. K.
Mosaliganti et al. [5] demonstrated that the TPCF
produced notably better segmentation that both Har-
alick and Gabor features for the placenta tissue. L.
Cooper et al. [14] suggested a new fast and deter-
ministic method for TPCF feature computation which
illustrated several fundamental aspects of TPCF fea-
ture space.

Bayes theorem has been often used for medical
diagnoses. H. Sahai [15] illustrated the application
of Bayes’ theorem in the context of medical diag-
noses, and presented a brief overview of the computer
programs to support them. N.T. De Silva et al. [16]
employed a Bayesian framework for these diagnoses,
so that they could perform them more accurately with
the prior/conditional probabilities and compute the
posterior probability using the Bayes theorem.

2. Results (or proof)

For the experiment, we have used 11 image vol-
umes. We used a confocal microscope to obtain their
original image volumes. Each voxel size of the 3D
images was 1 � m in the x-axis resolution, 1 � m in
the y-axis resolution, and 1.45 � m in the z-axis res-
olution. The original image volumes were resampled
so that the size of each voxel has the same resolu-
tion, but the number of the slices of an 3D image
volume were adjusted so that it maintains the origi-
nal image characteristics. The number of image slices
in a 3D image volume was adjusted by multiplying
the division of the z-resolution by the x-resolution to
the original number of image slices for the purpose of
image computation. Then, they were filtered with a
Gaussian Kernel to be resilient to noises. The volume
visualized in Fig. 3 (a) is of size 512×512×200, and
that in Fig. 3(b) is of 512×512×322. For other cases

shown in Fig. 3 (c)-(k), they were in a range between
200 and 350 in z-direction.

After locating the upper left corner of a ω × ω × ω

local widow � at the center of each template over all
fibers in all 11 images, we calculated TPCF Si

2(r)
(describe in Equation 6 in the Method section) of
a fiber network in the red phase, TPCF Si

2(r) of an
actin distribution in the green phase, and the density
of cells in the blue phase in that local window �.
The density of cells was calculated by counting the
number of voxels belonging to detected cells using
the algorithm in [4] in the local window �.

Based on the calculated Si
2(r) distribution accord-

ing to the distance r, we next calculated the
compactness of a fiber network, and the compactness
of an actin distribution in the local widow � accord-
ing to the Equation 7 in the Method section. We also
have the information about whether a template con-
tains a CAB or not with the method described in [15].
Thus, we have the following information for a local
window � located at each template: the compact-
ness of a fiber network, the compactness of an actin
distribution, the density of cells, and whether the tem-
plate is a CAB. We collected the information over all
templates of all extracted fibers from the 11 image
volumes in Fig. 3 using the ‘Algorithm for Calcu-
lating Probability Distribution of Compactness and
Density’ described in Section 4.4.

Figure 4 (a) shows the probability distribution of
a fiber network compactness. Similarly, Fig. 4 (b)
is the probability distribution of actin compactness.
Figure 4 (c) shows the probability distribution of cell
density. In these probability distributions, the distri-
bution over all templates (without considering if a
template contains a CAB or not) in all 11 images is
that in red. The distribution over templates containing
CABs is in blue.

In Fig. 4 (a), the distribution in red represents P(f )
and the distribution in blue represents P(f |CAB).
The distribution in red represents P(a) and the distri-
bution in blue is P(a|CAB) in Fig. 4 (b). Similarly, the
distribution in red represents P(c) and the distribution
in blue is P(c|CAB) in Fig. 4 (c).

In Fig. 4, the blue distribution covers the red
distribution. This indicates that P(f |CAB) > P(f ),
P(a|CAB) > P(a), and P(c|CAB) > P(c) respec-
tively.

Therefore, we conclude that P(CAB|f, a, c) >

P(CAP). This conclusion verifies the hypothesis of
CAB’s existence in (H.1) mentioned in the Method
section.
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Fig. 3. 3D confocal microscope images used for the experiment; the white scale bar designated by a white arrow in (a) is around 10 �m.
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Fig. 4. Probability distributions. (a) The probability distribution of
fiber network compactness; (b) the probability distribution of an
actin distribution compactness; (c) the probability distribution of
cell density. In these probability distributions, the distribution over
all templates (without considering if a template contains a CAB or
nor) is in red. The distribution over templates containing CABs is
in blue.

3. Conclusion

In this research, we hypothesized that CABs would
exist largely in the area with a high compactness of
fibers, high compactness of actin, and high density of
cells. For this purpose, we developed a compactness
measure based on a two-point correlation function
(TPCF). Next, we calculated the probability distri-
bution of the compactness of a fiber network, the
probability distribution of the compactness of an actin
distribution, and the probability distribution of the
density of cells in a local window. We then incorpo-
rated the famous Bayes theorem to those probability
distributions. Finally, we verified the CAB’s exis-
tence with these processes.

We also proposed a local parameter that refers to
the compactness of a local fiber network. Although
the parameter is extensible over a whole fiber network
in an image and its value is comparable to the value
calculated from any other fiber network (i.e, which
fiber network is more compact than the other), the
parameter has a drawback to represent other statistical
and topological meanings (e.g, centrality, clustering,
of nodes in the graph representation of a fiber net-
work). Thus, we plan to develop such a statistical
and topological network parameter and then assess
the statistical significance of the difference in com-
parison. We plan to develop a network parameter that
contains more statistical and topological informa-
tion and examine if this parameter brings meaningful
improvements compared to the parameter used in this
research through a statistical testing.

In the present study, we verified which type of
regions contains CABs. We are still trying to explore
why CABs exist in specific areas. Biologically, it
seems that CABs are developed to attach cells to a
fibrillar scaffold firmly. This biological observation
needs to be verified mathematically as well.

4. Method

4.1. Two-point correlation function in
3-dimensional space

4.1.1. Phase image
An image is composed of a certain number of

discrete constituents. For example, 3-dimensional
confocal microscopy image in Fig. 3 consists of
4 discrete constituents (i.e, fibers, actin, cells, and
background black space). Each constituent defines
a unique phase. Thus, the image in Fig. 3 has 4
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phases. In this vein, we defined a phase image as
a collection of discrete constituents. In other words,
a phase image is partitioned into a certain number
of disjointed phases. If a phase image I is composed
of n phases from Pl to Pn , then

⋃n
i=1 Pi = I and⋂n

i=1 Pi = ∅.
For each phase Pi , we define an indicator function

for x = (x, y, z) ∈ R
3 in I.

I(i)(x) =
{

1, x ∈ Pi

0 else
, (1)

4.1.2. N-point Correlation Function (NPCF)
Suppose we have n points in a phase image I :

x1, x2, . . . , xn. NPCF is defined as the probability
that n points at positions x1, x2, . . . , xn land in the
same phase Pi . It is the expectation of the product
I(i)(x1)I(i)(x2) · · · I(i)(xn). Therefore, NPCF S(i)

n is
expressed as follows:

S(i)
n (x1, x2, . . . , xn) ≡ E

{
I(i)(x1)I(i)(x2) · · · I(i)(xn)

}
= P{

I(i)(x1)I(i)(x2) = 1, · · · , I(i)(xn) = 1
}

(2)

4.1.3. Two-point Correlation Function (TPCF)
As a specific case of the NPCF, the TPCF is defined

as the probability that two points x1, x2 are in the
phase i. Therefore, TPCF S

(i)
2 is expressed as follows:

S
(i)
2 (x1, x2) ≡ E

{
I(i)(x1)I(i)(x2)

}
= P

{
I(i)(x1) = 1, I(i)(x2) = 1

}
,

(3)

If S
(i)
2 is invariant under translation of a phase

image, the phase image is statistically homogeneous.
In this case, S

(i)
2 is subject to x12 = x1 − x2 rather

than absolute locations: x1, x2. If S
(i)
2 is invariant

under rigid-body rotation of the spatial coordinates
of a phase image, the phase image is therefore homo-
geneous but isotropic. In this case, S(i)

2 is subject only
to the distance r =| x12 |.

Thus, in the case where a phase image is statis-
tically homogenous and isotropic, TPCF S(i)

x (x1, x2)

can be represented with S
(i)
2 .

S
(i)
2 is used to calculate the probability that, if we

throw a needle of length r in a phase image, both ends
of the needle will land in the same phase.

4.1.4. 3D TPCF calculation
Kishore et al. [17] implemented a 2D version of

TPCF for the segmentation with a 2D image. We
extended it to a 3D version. A few modifications are
required to implement 3D TPCF.

Given an L × M × N 3-dimensional phase image
I, two-point correlation function S

(i)
2 for a phase i are

calculated from the indicator autocorrelation:

R(i)(�x, �y, �z) =
∑

l

∑
m

∑
n
I(i)(l, m, n)

I(i)(l + �x, m + �y, n + �z)
(4)

where �x, �y and �z are integers. The equation (4)
is the correlation between the phase image I and the
shifted image by �x, �y and �z from the image I.

Let’s define r =
√

�x2 + �y2 + �z2.
R(i) is normalized by an L × M × N matrix of

ones in order to get probabilities R̂(i):

R̂(i) = R(i), I(1L×M×N ∗ 1L×M×N ) (5)

where ./ is an element-wise division, and * is convo-
lution.

In order to get a homogeneous and isotropic TPCF,
we need to sample circumferentially at a distance r
from R̂(i)(0, 0). This process gives us S

(i)
2 (r) from

S
(i)
2 (r). The expression of S

(i)
2 (r) is defined as:

S
(i)
2 (r) = �ϕ

π

�θ

2π

∑ 2π
�θ

−1

k1=0

∑ π
2 + π

�ϕ
−1

k2= π
2

R̂(i)(r cos(k1�θ) sin(k2�ϕ), r sin(k1�θ)

sin(k2�ϕ), r cos(k2�ϕ))

(6)

where �θ and �ϕ are the angular intervals.

4.1.5. Example of TPCF distribution
An example of the TPCF distribution according to

the distance r is shown in Fig. 5 (b) for white area (a
fiber network) in Fig. 5 (a). This distribution is cal-
culated under the condition that, if we throw a needle
of length r in the image Fig. 5 (a), both ends of the
needle should be in that image space (that is, the nee-
dle cannot land outside the image). The distribution
is the general shape of any fiber network (that is, it
follows that the similar shape of poisson distribution
has the shape parameter λ = 1).

4.2. Compactness measure

We developed a measure that indicates the degree
of compactness of a fiber network from a 3D confocal
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Fig. 5. An example of the distribution of a two-point correlation
function (TPCF) (a) The 3-dimensional image contains two phases
(white phase: a fiber network, black phase: background). (b) The
probability distribution of TPCF calculated from the image in (a).

microscopy image containing fibers, actin, and cells.
The fiber network in Fig. 5 (a) is represented in white
phase.

Given anL × M × N 3-dimensional phase image I
containing a fiber network in the white phase, assume
that we throw a needle the length of r in the image I
where 1 ≤ r ≤ max(L, M, N). If the probability that
both ends of a needle have the length close to 1 and
land over fibers is high, this indicates that the fiber net-
work is compact. Based on this rationale and the fact
that the shape of TPCF distribution over a fiber net-
work has a similar shape of poisson distribution with
the shape parameter λ = 1, we define the following
compactness measure (mcompactness) as follows:

mcompactness = 1

A
·
∫

p(r)

r
dr (7)

where p(r) is the TPCF probability at the distance
r(1 ≤ r ≤ max(L, M, N)), A = ∫ 1

r
dr, and so 0 ≤

mcompactness ≤ 1.
A as a normalization factor represents a case where

an image of interest is filled with white phase. That is,
the probability that both ends of a needle having any
length land in the white phase is 1. This case is con-
sidered as the most compact one of a fiber network.
Geometrically, mcompactness represents the portion of
area enclosed by x-axis, y-axis, and the graph of p(r)

r
among the area enclosed by x-axis, y-axis, and the
graph of 1

r
.

The measure mcompactness can be used to calcu-
late the compactness of an actin distribution. If an
actin distribution is wide and dense, the value of
mcompactness produces a higher value.

4.3. Bayes theorem

Hypothesis of CABs’ existence: It is more likely
that CABs exist in an area of high compactness of a
fiber network, high compactness of actin distribution,
and high density of cells. (H.1)

In order to prove the above hypothesis, we applied
the compactness measure (mcompactness) to a ω × ω ×
ω local region of interest (�) in the L × M × N 3-
dimensional phase image I. The length ω of the local
widow � is determined considering the diameter dis-
tribution of fibers so that the window � is not filled
fully with a part of one fiber. In addition, the win-
dow � should not be filled fully with several fibers in
the area having highly populated fibers. That is, the
length ω should be determined for the window � to
contain enough black phase.

We define P(CAB), P(f ), P(a) and P(c) as fol-
lows:

P(CAB) is the probability that a template contains
a CAB.

P(f ) is the probability of the compactness depend-
ing on a fiber network in a local widow �.

P(a) is the probability of the compactness depend-
ing on an actin distribution in a local widow �.

P(c) is the probability of the density depending on
cell’s locations in a local widow �.

By the famous Bayes theorem, we have the follow-
ing equations (8):
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= P(CAB) · P(f |CAB)

P(f )
· P(a|CAB)

P(a)
· P(c|CAB)

P(c)
(8)

4.4. Calculation of probability distribution of
compactness and density

In this research, we hypothesized that CABs would
exist largely in the area with a high compactness of
fibers, high compactness of actin, and high density of
cells. For this purpose, we developed a compactness
measure based on a two-point correlation function
(TPCF). Next, we calculated the probability distri-
bution of the compactness of a fiber network, the
probability distribution of the compactness of an actin
distribution, and the probability distribution of the
density of cells in a local window. We then incorpo-
rated the famous Bayes theorem to those probability
distributions. Finally, we verified the CAB’s exis-
tence with these processes.

We defined a fiber as a set of templates in our
previous algorithms [3] where a fiber is expressed
as

Fi = {tj|1 ≤ j ≤ ni}, 1 ≤ i ≤ N, (9)

Algorithm for Calculating Probability Distribution of
Compactness and Density

For each image volume
For each fiber Fi

For each template tj in Fi
Put a local window � on tj
Compute the compactness (Cfn ) of a fiber network in �

Compute the compactness (Cad ) of an actin distribution
in �

Compute the density (Dc) of cells in �

Store Cfn in a collection H(overall,Cfn)

Store Cad in a collection H(overall,Cad )
Store Dc in a collection H(overall,Dc)
If tj contains a CAB

Compute the compactness (Cfn ) of a fiber network in �

Compute the compactness (Cad ) of an actin
distribution in �

Compute the density (Dc) of cells in �

Store Cfn in a collection H(CAB,Cfn)

Store Cad in a collection H(CAB,Cad )
Store Dc in a collection H(CAB,Dc)

End If
End For
Calculate two histograms: one from H(overall,Cfn), one from

H(CAB,Cfn) and overlay them
Calculate two histograms: one from H(overall,Cad ), one from

H(CAB,Cad ) and overlay them
Calculate two histograms: one from H(overall,Dc), one from

H(CAB,Dc) and overlay them
End For

End For

where Fi is i-th fiber in an image volume, N is the
number of fibers in the image volume, and ni is the
number of templates in the i-th fiber. We extracted the
N fibers by using template matching and fiber track-
ing approaches and then decided whether or not a
template tj contains a CAB using the CABS detec-
tion procedure in Park et al. (2013, refer to [3] for
details).

The algorithm below shows the steps to com-
pute the probability distribution over a collection of
fiber network compactness, the probability distribu-
tion over a collection of actin compactness, and the
probability distribution over a collection of cell den-
sities.
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