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Abstract

The following problem is considered. Two players are each required

to allocate a quota of n counters among k boxes labelled 1, 2, . . . , k.

At times t = 1, 2, 3, . . . a random box is identified; the probability of

choosing box i is pi. If a player has at least one counter in the chosen

box, she removes one counter from it; otherwise she takes no action.

The winner is the first player to remove all her counters. The game

so described may be modified so that each player simultaneously, but

independently, identifies a box at random.

This paper analyses this deceptively simple game, which has ap-

parently not been studied in the literature. Some analytical and nu-

merical results are then presented, followed by some challenges for

further work.

1 Introduction

Two players are each required to allocate a quota of n counters among k

boxes labelled 1, 2, . . . , k. At times t = 1, 2, 3, . . . a random box is identified;

the probability of choosing box i is pi and these probabilities are common

knowledge. If a player has > 1 counters in the chosen box, she removes one

counter from it; otherwise she takes no action. The winner is the first player

to remove all her counters, except that if both players remove their respective

last counters simultaneously then the game is a draw. As such the problem

may be considered to be a two-person zero-sum game.
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Further to the above, in which the same box is identified for each player

(the “common throw” régime), the game may be modified so that each player

simultaneously, but independently, identifies a box at random (the “separate

throw” régime). In this case the two players may both use the same set

of probabilities p1, p2, . . . , pk, or each player may use her own probabilities;

however, unless otherwise stated in what follows, the two sets of probabilities

will be identical.

Observe that, in contrast to allocation games such as Colonel Blotto [13]

in which the units to be allocated are beneficial, here the units are detrimen-

tal. The game described here bears the same relation to resource allocation

as chore division [12] does to cake division [5]: we call it “Alice’s game”.

The box probabilities will be arranged in a nonincreasing order, so that p1 >

p2 > . . . > pk. The initial allocation of counters n1, n2, . . . , nk, with
∑

ni =

n, is termed a strategy, written 〈n1, n2, . . . , nk〉; strategies thus comprise com-

positions in the language of Hankin [7]. Players may be identified with their

strategies when this does not cause confusion.

Writing tS for the time at which the final counter is removed under strat-

egy S, and observing that this cannot be less than n, it is convenient to

consider the random variable XS = tS − n, taking non-negative integer val-

ues, here denoted the number of “excess [die] throws to removal”.

This game is natural and easily specified, and may be played with nothing

more than some plastic counters, a piece of paper, and a pair of dice. Appli-

cations might include inventory control (for example, allocating slow-selling
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goods amongst shops with different sales rates) and perhaps allocation of

multiple indistinguishable tasks among workers of different efficiencies.

The game is equivalent to a weighted coupon collector’s problem [4], with

removing a counter corresponding to collecting a coupon. However, in this

paper, the allocation of counters amongst boxes is adjustable by the player

at will subject to the overall sum (quota) being fixed. The game reduces to

that considered by Myers [11] if each player allocates the same number of

counters to each box.

2 The two-box game

Much of the flavour of the general game is visible in the simplest non-trivial

case: that of two boxes with probabilities (p, 1 − p) respectively. Then the

probability mass function of X〈a,b〉, the number of excess throws to removal

for the strategy of placing a counters in box 1 and b counters in box 2, is

Pr(X〈a,b〉 = r) =

pa(1−p)b
[(

a + b + r − 1

a− 1, b + r

)
(1− p)r +

(
a + b + r − 1

a + r, b− 1

)
pr
]
, r = 0, 1, 2, . . . .

(1)

where
(
x+y
x,y

)
= (x+y)!

x!y!
is the choose function. The two terms correspond

to the final counter being removed from box 1 or box 2 respectively. Expec-
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tations may be calculated by observing that

∞∑
r=0

r

(
a + b + r − 1

a + r, b− 1

)
pr = p

∞∑
s=0

(s + 1) ps
(

a + b + s

a + s + 1, b− 1

)
= p

∞∑
s=0

ps
(s + 1)!

s!

(a + b + s)!

(a + s + 1)! (b− 1)!

= p

(
a + b

a + 1, b− 1

) ∞∑
s=0

Γ (a + b + 1 + s)

Γ (a + b + 1)

Γ (2 + s)

Γ (2)

Γ (a + 2)

Γ (a + 2 + s)

ps

s!

= p

(
a + b

a + 1, b− 1

)
2F1 (a + b + 1, 2; a + 2; p) . (2)

Thus the PMF in Equation 1 has expectation

E
(
X〈a,b〉

)
= pa(1−p)b

[
(1− p)

(
a + b

a− 1, b + 1

)
2F1 (a + b + 1, 2; b + 2; 1− p) +

p

(
a + b

a + 1, b− 1

)
2F1 (a + b + 1, 2; a + 2; p)

]
(3)

where 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n!
is the hypergeometric function [1].

Here (a)n = a(a+1) · · · (a+n−1) is the rising factorial function. No analytical

continuation is needed here because the primary argument does not intersect

the function’s branch cut, conventionally defined as the interval [1,∞).

The strategy 〈a, b〉 which minimizes expected time to removal is

arg min
a,b|a,b>0,a+b=n

EX〈a,b〉.
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Conversely, the cut-off point of p, at which strategy 〈a, b〉 yields to strat-

egy 〈a− 1, b + 1〉 (assuming all integers non-negative) is given by solving the

equation EX〈a,b〉 = EX〈a−1,b+1〉 which may be solved numerically using the

hypergeo package [9]. Figures 1 and 2 show some numerical results.

2.1 Game theoretic analysis

The counter removal process is now considered as a standard two-person

zero sum game with payoff +1 for a victory—that is, removing all one’s

counters before the opponent, −1 for a loss and 0 for a draw. The situation

is complicated by the fact that play stops when either player removes her

last counter.

There are two natural interpretations: at each time, the players each ran-

domly choose a box independently from the other players (“separate [dice]

throw”); or alternatively, a random box is chosen for all the players simul-

taneously (a “common throw”). In the separate throw case, it is possible to

allow the box probabilities to differ between the players but unless otherwise

stated the probabilities will be identical.

2.2 Separate throws

Writing V (〈a1, b1〉 , 〈a2, b2〉) for the game-theoretic payoff to a 〈a1, b1〉 player

versus a 〈a2, b2〉 player, figures 3 and 4 show that V (〈1, 0〉 , 〈0, 1〉) = 2p−1
p2−p+1

and V (〈2, 0〉 , 〈0, 1〉) = 3p3−3p2+2p−1
(1−p(1−p))2 . The simplest non-trivial case with the
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players possessing an equal number of counters is 〈2, 0〉 versus 〈1, 1〉 for which

the payoff to the 〈2, 0〉 player may be calculated by extending the method-

ology of figures 3 and 4. Explicitly, the payoff to the 〈2, 0〉 player is given

as

V (〈2, 0〉 , 〈1, 1〉) = p2V (〈1, 0〉 , 〈0, 1〉)

+ p(1− p)V (〈1, 0〉 , 〈1, 0〉)

+ (1− p)pV (〈2, 0〉 , 〈0, 1〉)

+ (1− p)2V (〈2, 0〉 , 〈1, 0〉) (4)

The first term is given in Figure 3, the second is clearly zero, the third

given in Figure 4, and the fourth (in a different format) is given in Figure 5

as 1/(p − 2). Combining these gives p5−4p3+3p2−2p+1
p5−4p4+7p3−8p2+5p−2 . Thus 〈2, 0〉 has a

positive expected payoff against 〈1, 1〉 if and only if p exceeds the unique

real root of the numerator, about 0.643. Figure 6 shows the expected payoff

to 〈2, 0〉 as a function of p and exhibits an unexpected feature: a nontrivial

local minimum near p = 0.225 of about V = −0.543. This observation is

not useful in the general context of this paper in which a specified number of

counters must be allocated, but might be relevant if a player is constrained

to play 〈1, 1〉 against 〈2, 0〉 (and may vary p at will).

It is possible to relax the requirement that the players’ probabilities are

identical, although the algebra becomes complicated quickly. Figure 7 shows
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the expected payoff to I as a function of the players’ probabilities of choosing

the first box. If viewed as a game on the unit square in the sense of Heuer [10],

the expected payoff has a saddle point at p = 1, q = 1/2 at which the payoff

to I is 0.5.

2.3 Two boxes, common throw

The case where the throw is common to both players is qualitatively different;

see Figure 8. In the following, we suppose that a, b,m, n are strictly positive

integers.

Suppose player I plays 〈a + n, b〉 and player II plays 〈a, b + m〉. Then

player I may win in one of two ways: the final counter to be removed may

be from box 1 (written “winning by box 1”), or from box 2.

The successive throws constitute an iid sequence of 1’s and 2’s. At any

time, denote the total number of box 1 throws as r1 and number of box 2

throws as r2. Player I wins by box 2 if, when r2 = b, we have r1 > a + n,

and this occurs with probability Pr(r1 > a + n|r2 = b), a negative binomial

distribution. Similarly, player I wins by box 1 with probability Pr(b 6 r2 <

b + m|r1 = a + n).

Because the complementary cumulative distribution function of the nega-

tive binomial with parameters r, p is given by the regularized incomplete beta

function1 Ip(k + 1, r), the probabilities of player I beating player II by box 1

1This is a standard function defined as Ix(α, β) = Γ(α+β)
Γ(α)Γ(β)

∫ x
p=0

pα−1(1−p)β−1 dp. Here

it is evaluated using the GSL library [8] or the hypergeo library [9].
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is 1− Ip (a + n, b + m)− (1− I1−p (b, a + n)) and by box 2 is Ip (a + n, b).

Thus the total probability of player I winning is Ip (a + n, b + m) and,

observing that a draw is impossible, the expected payoff to player I is thus

2I1−p (b + m, a + n)− 1. Note that these probabilities are functions only of

the larger number of counters in each of the two boxes.

Similar considerations apply if player I plays 〈a, b〉 and II plays 〈a + m, b〉;

now player II cannot win but draws with probability I1−p (b + m, a) (both

players removing their final counter from box 2 simultaneously).

For completeness, we observe that 〈a, b〉 certainly beats 〈a + m, b + n〉,

and further that 〈a, b〉 certainly draws against 〈a, b〉, even if one or both of a

and b is zero.

The minimax strategy for the common-call two-category game is pure,

except possibly at boundaries. This follows from the facts that: the payoff

matrix is antisymmetric (see Figure 9 and Table 1); each row is decreasing

with column number on the left of the diagonal, and increasing to the right

(because Ip(a−1, b) > Ip(a, b) for a > 1); and, for any p ∈ [0, 1] one has Ip(a+

1, b) > Ip(a, b + 1).

Critical points for p are found by solving Ip(r, n + 1 − r) = 1/2 for r =

0, 1, . . . , n. For example, the range of p for which 〈1, 4〉 is the dominant

strategy (pL, pU) is given by IpL(4, 2) = IpU (5, 1) = 1/2; numerically this is

about (0.686, 0.871).
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3 Three boxes

The three box case is now considered, partly motivated by the fact that the

space of probabilities is easily visualized on a ternary plot.

The simplest nontrivial case for three boxes is with three counters, in

which case there are are 10 strategies, from 〈3, 0, 0〉 through 〈1, 1, 1〉 to 〈0, 0, 3〉.

The optimal strategy for any box probabilities is shown in figure 10.

It is possible to streamline graphical results by taking advantage of the

fact that we may assumet, without loss of generality, that p1 > p2 > p3

(Figure 11). In what follows, we will consider only strategies for which n1 >

n2 > n3—restricted partitions in the language of Hankin [7]—as strategies

not satisfying this constraint may be improved in expectation2 and game

value3.

2To see this, consider the general case of p1 > · · · > pk and a strategy that violates the
constraint, that is, there exist i, j with 1 6 i < j 6 k and ni < nj . Then split the boxes
into two sets: S = {i, j} and its complement S. Then removal of a counter from either set
may be embedded into two independent Poisson processes, following [4]. Then consider
transferring a counter from box i to box j. The S process is unaffected, but the S process
has lower expected time to completion. Proof: consider the common throw game with
player I playing 〈a+ 1, b〉 and player II 〈a, b+ 1〉; here a > b and p > 1

2 . We shall show
that player I’s expected throws is strictly less than player II’s. First, define I’s margin
of victory M as the number of throws needed for II to clear her counters after I clears
her counters (M < 0 means she lost; note that M 6= 0). Then E(M) may be calculated
as E (M |M > 0) · Pr(M > 0) + E (M |M < 0) · Pr(M < 0).

From Figure 8, we see that the two conditional distributions are geometric and

so E(M) =
Ip(a+1,b+1)

1−p − 1−Ip(a+1,b+1)
p . This is strictly positive because 1 − p < 1

2 <

I1/2 (a+ 1, b+ 1) < Ip (a+ 1, b+ 1). Thus a player may increase her game value by trans-
ferring a counter from box i to box j.

3Proof: for the common throw case, we observe that p > 1
2 and a > b im-

ply Ip (a+ 1, b+ 1) > 1
2 . For the separate throw case we observe that the existence

of a,m, n > 0 with p > 1
2 and V (〈a+ n, a〉 , 〈a, a+m〉) < 0 implies that ∃a′ < a

and m′, n′ > 0 with V (〈a′ + n′, a〉 , 〈a′, a′ +m′〉) < 0. The result follows from the fact
thatthat V (〈0, 0〉 , 〈0, 0〉) = 0.
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3.1 Expectation

The probability mass function for X〈n1,n2,n3〉 (that is, the time to removal of

the final counter, minus n = n1 + n2 + n3) is given by

Pr(X〈n1,n2,n3〉 = r) =
∑

r2+r3=r

(
n + r2 + r3 − 1

n1 − 1, n2 + r2, n3 + r3

)
pn1
1 pn2+r2

2 pn3+r3
3

+
∑

r1+r3=r

(
n + r1 + r3 − 1

n1 + r1, n2 − 1, n3 + r3

)
pn1+r1
1 pn2

2 pn3+r3
3

+
∑

r1+r2=r

(
n + r1 + r2 − 1

n1 + n1, n2 + r2, n3 − 1

)
pn1+r1
1 pn2+r2

2 pn3
3 . (5)

Here, the three terms correspond to the final counter being removed from

boxes 1,2,3 respectively; and ri corresponds to the number of “wasted” box i

throws (that is, the number of times box i is called when box i is empty).

This equation is analytically challenging; the first term is algebraically equal

to

pn1
1 pn3

2 pn3
3

[
p3

r

(
n + r − 1

n1 − 1, n2, n3 + r

)
2F1

(
1,−n3 − r;n2 + 1;−p2

p3

)
−

p2
r p2
p3

(
n + r − 1

n1 − 1, n2 + r + 1, n3 − 1

)
2F1

(
1, 1− n3;n2 + r + 2;−p2

p3

)]
. (6)

However, because the hypergeometric functions each have an upper argu-

ment of a strictly negative integer, the expressions are a polynomial in p2/p3.

However, equation 6 is the preferred form for numerical evaluation [9]. The
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other terms are analogous, unless one of the ni = 0, in which case that term

is omitted. These results may be used to show that the expected times to

removal for the three consistent strategies are:

EX〈3,0,0〉 =
3(1− p1)

p1
(7)

EX〈2,1,0〉 = −3 +
1

p2
+

p2(3p1 + 2p2)

p1(p1 + p2)2
(8)

EX〈1,1,1〉 = −2 +
1

p1
+

1

p2
+

1

p3
− 1

1− p1
− 1

1− p2
− 1

1− p3
(9)

(the first result is more easily determined as the expectation of an inverse

binomial distribution with parameters 2 and p1, and the third is a special

case of the Coupon Collector’s problem with n = 3 [2]).

To find the boundaries of the regions in which the three strategies are

optimal in expectation, solve EX〈3,0,0〉 = EX〈2,1,0〉 and EX〈2,1,0〉 = EX〈1,1,1〉.

These yield relationships showing that while the boundary of the 〈3, 0, 0〉

region is linear, the boundary of 〈1, 1, 1〉 is not; thus not all the regions in

Figure 12 are polygonal, despite appearances.

3.1.1 More than three counters

For the three-box case with an arbitrary number of counters, one natural

strategy would be to allocate one’s quota in proportion to p1, p2, p3 (or at

least as close as this as possible). However, this is not necessarily optimal

in expectation. Consider the game with probabilities (0.7, 0.2, 0.1) and ten
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counters; one might think strategy 〈7, 2, 1〉 to be superior to, say, 〈9, 1, 0〉.

However, numerical methods show that the former strategy has expected

time to removal of 6.09 (to 2dp), compared with the latter which has 3.37.

Figure 13 shows a triplot of the best strategy in expectation for distribut-

ing seven counters among three boxes over the region p1 > p2 > p3.

3.2 Game theoretic analysis

For both the common throw game and the separate throw game, natural

extensions of the methods of Figures 3 and 4 may be applied. Here the sim-

plest non trivial case, that of three counters, is considered. For the common

throw game, Table 2 shows the payoff matrix as a function of the proba-

bilities; but the equivalent calculation for the separate case is algebraically

more involved. To illustrate of this, if Table 3 is written in exact, rational

form with fractions in their lowest terms, one of the entries has denominator

exceeding 5× 1027. In the absence of intelligible algebraic formulas, Table 3

shows the payoff matrix for the three counters, three box case, written to

three decimal places, for both the common throw and separate throw games.

The tables show perhaps unexpected differences; for example, the sign of the

payoff to 〈3, 0, 0〉 when playing against 〈2, 1, 0〉 changes; also note that the

common throw game has a saddle point at 〈2, 1, 0〉, the separate throw game

at 〈3, 0, 0〉.

It is possible to conduct numerical experiments for larger numbers of

counters. Figure 14 shows the appropriate strategy for the case with three
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boxes and seven counters.

Figure 15 illustrates the optimal strategy in a game-theoretic sense for

the case of 7 counters and shows that, for some probabilities, the minimax

strategy is not pure. Thus if, for example, (p1, p2, p3) =
(
3
4
, 1
8
, 1
8

)
, a minimax

strategy is to play 〈7, 0, 0〉 with probability 0.156, 〈6, 1, 0〉 with probability

0.189, and 〈5, 1, 1〉 with probability 0.655.

4 The game with an arbitrary number of boxes

The PMF for the exact number of throws required to remove the final counter

in the general case is considerably more complicated. We have that Pr(X =

r) is

k∑
i=1

∑
∑

j rj=r

ri=0

(
n + r − 1

n1 + r1, . . . , ni−1 + ri−1, ni − 1, ni+1 + ri+1, . . . , nk + rk

) k∏
s=1

pns+rs
s

(10)

Here the ri are the number of “wasted” throws in box i. The outer

summation is over the number of the box whose counter is removed last; the

inner summation is over all distributions of r wasted throws among the other

boxes.

The original case [6] was to place 11 counters on boxes correspond-

ing to the total of two independent six-sided dice, that is, with proba-

bilities min [i, 13− i] /36, i = 2, . . . , 12. There are 56 ways in which the
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counters may be arranged if pi > pj −→ ai > aj is required. Of these,

〈0, 0, 1, 1, 2, 3, 2, 1, 1, 0, 0〉 is optimal in expectation and game-theoretic value.

There does not seem to be any way of ascertaining this fact other than direct

numerical evaluation of all 56 expectations.

A more interesting example would arise from Zipf’s law [14]. If there are 4

boxes then probabilities proportional to 1
1
, 1
2
, 1
3
, 1
4

would be indicated; with

seven counters, there are 11 distinct strategies from 〈7, 0, 0, 0〉 through 〈2, 2, 2, 1〉.

Expected time to removal is minimized by 〈5, 1, 1, 0〉, while the separate

throw game has minimax strategy of 〈4, 2, 1, 0〉. With a common throw, the

minimax strategy is mixed; specifically, play 〈4, 1, 1, 1〉 with probability 0.26

and 〈3, 2, 1, 1〉 with probability 0.73.

5 Conclusions and Further work

The liability allocation problem described here bears the same relation to

Blotto-type resource allocation as chore division does to cake division. The

games discussed here do not appear to have been discussed in the literature,

even though they are simple to state, and potentially rich in applications.

They are unusual in that the simplest non-trivial cases are algebraically in-

volved; numerical methods have to be used for even small numbers of counters

and boxes.

Further work might include relaxing the assumption that the box proba-

bilities are common knowledge; perhaps one or both players have to infer the
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box probabilities from previous calls, as in multi-armed bandit problems [3].

The three-box case shows a variety of results using the triplot device; it

would be interesting to understand why the boundary lines are so close to

perfect straight lines.

Acknowledgements

The author thanks S. Marshall for valuable discussions; and also A. M. Han-

kin (“Alice”) for bringing this problem to his attention, making the (then)

unintuitive observation that placing all one’s counters on the maximal prob-

ability box is suboptimal in expectation and game value.

References

[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions

with formulas, graphs and mathematical tables (AMS-55). National

Bureau of Standards (1965)

[2] Berenbrink, P., Sauerwald, T.: Computing and Combinatorics, 15 an-

nual international conference, COCOON 2009, Niagara Falls NY, USA,

July 2009, chap. The weighted coupon collector’s problem and applica-

tions, pp. 449–458. Springer (2009)

[3] Berry, D.A., Fristedt, B.: Bandit problems: sequential allocation of

experiments. Springer Netherlands (1985)

16



[4] Boneh, A., Hofri, M.: The coupon collector problem revisited—a survey

of engineering problems and computational methods. Communications

in Statistics—Stochastic Models 13(1), 39–66 (1997)

[5] Brams, S.J., Taylor, A.D.: On envy-free cake division. Journal of com-

binatorial theory, series A 70, 170–173 (1995)

[6] Hankin, A.M.: Personal communication (2014)

[7] Hankin, R.K.S.: Additive integer partitions in R. Journal of Statistical

Software, code snippets 16(1) (2006)

[8] Hankin, R.K.S.: Special functions in R: introducing the gsl package. R

News 6 (2006)

[9] Hankin, R.K.S.: hypergeo: the hypergeometric function

for complex numbers. R package number 1.2-5, URL

http://CRAN.R-project.org/package=hypergeo (2013)

[10] Heuer, G.A.: Three-part partition games on rectangles. Theoretical

Computer Science 259, 639–661 (2001n)

[11] Myers, A.N., Wilf, H.S.: Some new aspects of the coupon collector’s

problem. SIAM Review 48(3) (2006)

[12] Peterson, E., Su, F.E.: Four-person envy-free chore division. Mathe-

matics Magazine 75(2), 117–122 (2002)

17



[13] Roberson, B.: The Colonel Blotto game. Economic Theory 29, 1–24

(2006)

[14] Zipf, G.K.: The psychology of language. Houghton-Mifflin (1935)

18



I \ II 〈0, 5〉 〈1, 4〉 〈2, 3〉 〈3, 2〉 〈4, 1〉 〈5, 0〉
〈0, 5〉 0·00 −0·84 −0·53 −0·16 0·19 0·47
〈1, 4〉 0·84 0·00 −0·33 0·09 0·42 0·65
〈2, 3〉 0·53 0·33 0·00 0·37 0·64 0·81
〈3, 2〉 0·16 −0·09 −0·37 0·00 0·83 0·92
〈4, 1〉 −0·19 −0·42 −0·64 −0·83 0·00 0·98
〈5, 0〉 −0·47 −0·65 −0·81 −0·92 −0·98 0·00

Table 1: Expected game value for the two-box, five-counter game, p = 0.4,
common throw. Saddle point at 〈2, 3〉.
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I \ II 〈300〉 〈210〉 〈111〉

〈300〉 0
2p31

(1−p3)3 − 1
2p31

(
1

(1−p2)3

+ 1
(1−p3)3 − 1

)
− 1

〈210〉 1− 2p31
(1−p3)3 0

p22

(
2

(1−p2)2 + 1
(1−p3)2

+ p2
1−p1 − 2

)
− 1

〈111〉
1− 2p31

(
1

(1−p2)3

+ 1
(1−p3)3 − 1

) 1− p22

(
2

(1−p2)2

+ 1
(1−p3)2 + p2

1−p1 − 2
) 0

Table 2: Expected game value for the three-box, three counter common throw
game with probabilities (p1, p2, p3)
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I \ II 〈300〉 〈210〉 〈111〉

〈300〉 0 -0.059 +0.595

〈210〉 +0.059 0 +0.483

〈111〉 -0.595 -0.483 0

I \ II 〈300〉 〈210〉 〈111〉

〈300〉 0 +0.200 +0.707

〈210〉 -0.200 0 +0.519

〈111〉 -0.707 -0.519 0

Table 3: Expected game value, to three decimal places, for the three-box,
three counter game with probabilities

(
6
10
, 3
10
, 1
10

)
. Left, common throw game;

right, separate throw game
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strategy EX
〈10, 0, 0〉 4·2840
〈9, 1, 0〉 3·3731
〈8, 2, 0〉 3·9637
〈8, 1, 1〉 5·4261
〈7, 3, 0〉 6·3922
〈7, 2, 1〉 6·0878
〈6, 4, 0〉 10·4550
〈6, 3, 1〉 8·6927
〈6, 2, 2〉 12·2692
〈5, 5, 0〉 15·0561
〈5, 4, 1〉 12·2627
〈5, 3, 2〉 13·7832
〈4, 4, 2〉 16·6344
〈4, 3, 3〉 21·8522

Table 4: Expected time to removal for the three box, ten-counter game with
probabilities (0.7, 0.2, 0.1) as calculated numerically; figures accurate to 4
decimal places
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Figure 1: Expected number of excess throws as a function of p for different
allocations of 9 counters in a two-box game; note log scale
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Figure 2: The two-box game: optimal strategies in expectation for n = 1(1)9
counters (horizontal axis) as a function of probability of box 1 (vertical axis)
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p

1-p

p2

p(1-p)

(1-p)p

(1-p)2

I II

I II

draw

no change

player II
wins

player I
wins

Figure 3: Diagram showing 〈1, 0〉 vs 〈0, 1〉 game, separate throw game; ex-
pected payoff to player I is V. Here V = 1 · p2 + 0 · p(1− p) + V · (1− p)p +
(−1) · (1− p)2, giving V = 2p−1

1−p(1−p)
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p

1-p

p2

p(1-p)

(1-p)p

(1-p)2

I II

I II

player II
wins

no change

player II
wins

expected payoff
to player I:
(2p-1) / (p2-p+1)

(from figure 3)

Figure 4: Diagram showing 〈2, 0〉 vs 〈0, 1〉 game, separate throw game;
the p2 term is derived in Figure 3. The expected payoff to 〈2, 0〉
is

p2· 2p−1
1−p(1−p)

+p(1−p)·(−1)+(1−p)2·(−1)
1−p(1−p) = 3p3−3p2+2p−1

(1−p(1−p))2
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I wins
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2 1
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1 1

0 0
1 0

0 00 0
0 1

0 00 0
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start

(1-p)2 (1-p)2

Figure 5: Markov chain for 〈2, 0〉 vs 〈1, 0〉; separate calls. Absorbing states
shown in gray. Players I and II have box probabilities (p, 1 − p). Using the
fact that V (〈1, 0〉 , 〈1, 0〉) = 0, it can be shown that the game value is 1/(p−2)
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Figure 6: Expected payoff to a 〈2, 0〉 player against a 〈1, 1〉 player as a
function of (common) box 1 probability; separate calls
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Figure 7: Expected payoff to 〈2, 0〉 (box probablities p, 1 − p) against 〈1, 1〉
(box probablities q, 1− q)
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box 1

b
ox

 2

player I clears both boxes 

player II clears both boxes 

player I wins by box 1

player II wins by box 1

player II wins by box 2

player I wins by box 2

Figure 8: Two box, common thow game with player I playing 〈8, 3〉 and
player II playing 〈4, 5〉. A game is represented by a coloured line in the form
of a random walk from the origin; axes indicate total number of box 1 and
box 2 throws. Line colours show the winner: red for player I winning and
blue for player II winning, and line type shows the winning box: solid for
winning by box 1 and dotted for winning by box 2. Shaded regions indicate
a player clearing both boxes: red for player I and blue for player II
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Figure 9: All 6× 6 = 36 possible games played between two players with five
counters each. For each game, the two rectangles represent the allocation of
counters by player I (left) and player II (right); green indicates that that box’s
counters are “active” in the sense that the number appears in the expression
for the payoff to player I, viz 2I1−p (b + m, a + n)− 1
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[1,0,0]

[0,1,0] [0,0,1]

Figure 10: Triangular plot showing optimal strategies in expectation as a
function of the three box probabilities p1, p2, p3, where p1 + p2 + p3 ≤ 1.
Different coloured regions show the extent of the different strategies
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Figure 11: Diagram showing mapping used for the ternary diagrams
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Figure 12: Triangular plot showing optimal strategy in expectation for al-
locating 3 counters among 3 boxes, as a function of p1, p2, p3; p1 > p2 > p3.
The three points of the triangle correspond to (1, 0, 0),

(
1
2
, 1
2
, 0
)
, and

(
1
3
, 1
3
, 1
3

)
.

The line common to the 〈3, 0, 0〉 and 〈2, 1, 0〉 regions is straight, but the line
common to 〈2, 1, 0〉 and 〈1, 1, 1〉 is not
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Figure 13: Triangular plot showing optimal strategy in expectation for allo-
cating 7 counters among 3 boxes, as a function of p1, p2, p3, p1 > p2 > p3
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Figure 14: Triangular plot showing regions which are game-theoretic optimal
for the 7 counter, 3 box case (separate throws)
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Figure 15: Triangular plot showing regions in which the minimax strat-
egy is pure, marked in eight different colours for the eight different strate-
gies 〈7, 0, 0〉 through 〈3, 2, 2〉. White signifies regions in which the minimax
strategy is mixed
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