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Abstract

General two-party Secure Function Evaluation (SFE) allows mutually distrusting parties to cor-
rectly compute any function on their private input data, without revealing the inputs. Two-party
SFE can benefit almost any client-server interaction where privacy is required, such as privacy-
preserving credit checking, medical classification, or face recognition. Today, SFE is a subject of
immense amount of research in a variety of directions, and is not easy to navigate.

In this article, we systematize the most practically important works of the vast research knowledge
on general SFE. We argue that in many cases the most efficient SFE protocols are obtained by
combining several basic techniques, e.g., garbled circuits and (additively) homomorphic encryption.

As a valuable methodological contribution, we present a framework in which today’s most efficient
techniques for general SFE can be viewed as building blocks with well-defined interfaces that can be
easily combined into a complete efficient solution. Further, our approach naturally allows automated
protocol generation (compilation) and has been implemented partially in the TASTY framework.

In summary, we provide a comprehensive guide in state-of-the-art SFE, with the additional goal
of extracting, systematizing, and unifying the most relevant and promising general SFE techniques.
Our target audience are graduate students wishing to enter the SFE field and advanced engineers
seeking to develop SFE solutions. We hope our guide paints a high-level picture of the field, including
most common approaches and their trade-offs, and gives precise and numerous pointers to formal
treatment of its specific aspects.

Keywords: framework; protocol design; privacy-preserving protocols; homomorphic encryption; gar-
bled functions
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Figure 1: Function Representations

1 Introduction

Applications of SFE. There is a large body of literature on SFE applications, in particular those
with strong privacy requirements such as Privacy-Preserving Genomic Computation [34, 68, 71, 112],
Remote Diagnostics [16], Graph Algorithms [17], Data Mining [82, 85], Credit Checking [37], Medical
Diagnostics [5], Face Recognition [33, 105], or Policy Checking [35, 36, 38], just to name a few. These
applications are based on either HE or GF or a combination of both as explained before. Recently,
verifiable outsourcing of computations for cloud-computing applications has been proposed, based on
evaluating GCs under fully HE [42]. Existence of a variety of SFE compilers, coming from both academic,
e.g., [54, 90, 92], and industrial research, e.g., [11, 109], further proves significant interest in the SFE
technology.

Moreover, we note that secure two-party protocols can often be naturally extended to secure multi-
party protocols. Examples include secure mobile agents which can be based on HE [106] and GC [21], as
well as privacy-preserving auction systems based on GC [96] or HE [25]. However, in this work, we do not
address the issues of multi-party computation with more than two players. We mention, however, that the
practical aspects of secure multi-party computation are also a vibrant field, e.g., [8–11,22,29,30,62,81].
We note that in-depth conceptual and, where possible, performance comparison of two- and multi-party
computation is an open problem.

Outline of the Presentation. We start our discussion in §2 with a few of the most popular function
representations and point out their relative advantages in terms of possibility of efficient secure evaluation.
We note that it is possible to “mix-and-match” the representations in the construction of protocols. Then,
in §3, we briefly discuss various notions of security and their relationship. In §4, we describe today’s
practically efficient SFE constructions for each of the function representations we consider. We handle
the actual details of the composition, namely the techniques to convert encrypted intermediate values
between the protocols in §5 for semi-honest players, a model which suits many client-server applications.

2 Function Representations

Given the function to be securely computed, the first decision we face is the choice of the “programming
language” for describing the function. It turns out that this decision has a major impact on the efficiency
of the final solution. Further, it is not feasible to describe the optimal choice strategy as finding minimal
function representations is hard [13,69].

The following standard representations for functions are particularly useful for SFE: boolean circuits
(cf. Fig. 1(a)), arithmetic circuits (cf. Fig. 1(b)), and ordered binary decision diagrams (OBDD) (cf.
Fig. 1(c)).

In this section, we give their detailed descriptions and provide guidelines regarding efficiency choices.
We stress that the cost of implementing SFE protocols varies greatly among the function representations.
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For example, the GC technique for SFE of boolean circuits is much more efficient than techniques for
evaluating arithmetic circuits (e.g., using HE). However, some functions are represented much more
compactly as an arithmetic circuit. As another example, some functions (e.g., decision strategies) are
most compactly represented as OBDDs, while others (e.g., multiplication), require exponentially large
OBDDs.

In this work (specifically, §4 and §5), we explain and advocate a hybrid approach, where function
blocks can be evaluated using different techniques, and their encrypted intermediate results then glued
together.

We now discuss several major function representations used in SFE, and note their respective advan-
tages, trade-offs, and use aspects.

2.1 Boolean Circuits

Boolean circuits are a classical representation of functions in engineering and computer science.
A boolean circuit with u inputs, v outputs and k gates is a directed acyclic graph (DAG) with |V | =

u+ v+ k vertices (nodes) and |E| edges. Each node corresponds to either a gate, an input, or an output.
The edges are called wires. For simplicity, the input- and output nodes are often omitted in the graphical
representation of a boolean circuit as shown in Fig. 1(a). For a more detailed definition see [116].

A d-input gate G computes a d-ary boolean function g : {0, 1}d → {0, 1}. Typical gates are XOR (⊕),
XNOR (=), AND (∧), OR (∨); gates are often specified by their function table, which contains 2d entries.

Gates of a boolean circuit can be evaluated in any order, as long as all of the current gate inputs
are available. This property is ensured by sorting (and evaluating) the gates topologically, which can
be done efficiently in O(|V |+ |E|) [24, Topological sort, pp. 549-552]. The topologic order of a boolean
circuit indexes the gates with labels G1, . . . , Gk and ensures that the i-th gate Gi has no inputs that are
outputs of a successive gate Gj>i. In complexity theory, a circuit with such a topologic order is called
a straight-line program [2]. Given the values of the inputs, the output of the boolean circuit can be
evaluated by evaluating the gates one-by-one in topologic order. A valid topologic order for the example
boolean circuit in Fig. 1(a) would be ∧,⊕,∨,=. The topologic order is not necessarily unique, e.g.,
⊕,∧,=,∨ would be possible as well.

Automatic Generation. Boolean circuits can be automatically generated from a high-level specifi-
cation of the function. A prominent example is the well-established Fairplay compiler [8, 92]. Fairplay’s
Secure Function Description Language (SFDL) resembles a simplified version of a hardware description
language, such as VHDL (Very high speed integrated circuit Hardware Description Language), and sup-
ports types, variables, functions, boolean operators (∧,∨,⊕, . . .), arithmetic operators (+,−, ∗, /), com-
parison (<,≥,=, . . .), and control structures like if-then-else or for-loops with constant range (cf. [92, Ap-
pendix A] for a detailed description of the syntax and semantics of SFDL). Fairplay also includes a GUI
that assists the programmer in creating SFDL programs with graphical code templates. The Fairplay
compiler automatically transforms the functionality described as SFDL program into the corresponding
boolean circuit. Other candidates for automatic generation of boolean circuits are the languages and
tools provided by [54, 101]. As shown in [54, 94], boolean circuits can be generated with a low memory
footprint.

2.2 Arithmetic Circuits

Arithmetic circuits often offer a more compact function representation than boolean circuits.
An arithmetic circuit over a ring R and the set of variables x1, ..., xn is a directed acyclic graph

(DAG). Fig. 1(b) illustrates an example. Each node with in-degree zero is called an input gate labeled
by either a variable xi or an element in R. Every other node is called a gate and labeled by either + or
× denoting addition or multiplication in R.

Any boolean circuit can be expressed as an arithmetic circuit over R = Z2. However, if we use R = Zm
for sufficiently large modulus m, the arithmetic circuit can be much smaller than its corresponding
boolean circuit, as integer addition and multiplication can be expressed as single operations in Zm.
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Number Representation. We note that arithmetic circuits can simulate computations on both pos-
itive and negative integers by mapping them into elements of Zm as follows. Zero and positive values
are mapped to the elements 0, 1, 2, . . . whereas negative values are mapped to m− 1,m− 2, . . .. As with
all fixed precision arithmetics, overflows or underflows must be avoided.

2.3 Ordered Binary Decision Diagrams

Another possibility to represent boolean functions are Ordered Binary Decision Diagrams (OBDDs)
introduced by Bryant [19].

A binary decision diagram (BDD) is a rooted, directed acyclic graph (DAG) which consists of decision
nodes and two terminal nodes called 0-terminal and 1-terminal. Each decision node is labeled by a
boolean decision variable and has two child nodes, called low child and high child. The edge from a
node to a low (high) child represents an assignment of the variable to 0 (1). An ordered binary decision
diagram (OBDD) is a BDD in which the decision variables appear in the same order on all paths from the
root node to a terminal node. Given an assignment 〈x1 ← b1, . . . , xn ← bn〉 to the variables x1, . . . , xn,
the value of the Boolean function f(b1, . . . , bn) can be found by starting at the root and following the
path where the edges on the path are labeled with b1, . . . , bn.

Example. Fig. 1(c) shows the OBDD for the function f(x1, x2, x3, x4) = (x1 = x2) ∧ (x3 = x4)
of four variables x1, x2, x3, x4 with the total ordering x1 < x2 < x3 < x4. Consider the assignment
〈x1 ← 1, x2 ← 1, x3 ← 0, x4 ← 0〉. In the OBDD shown in Fig. 1(c), if we start at the root and follow the
edges corresponding to the assignment, we end up at the 1-terminal which implies that f(1, 1, 0, 0) = 1.
Note that OBDDs are sensitive to variable ordering, e.g., with the ordering x1 < x3 < x2 < x4 the
OBDD for f would have 11 nodes.

Generalizations. Multiple OBDDs can be used to represent a function g with multiple outputs. If
g’s outputs can be encoded by k boolean variables, then g can be represented by k OBDDs where
the i-th OBDD computes the i-th output bit. Further generalizations of OBDDs can be obtained by
having multiple terminal nodes (called classification nodes) and more general branching conditions. In a
Branching Program as defined in [16, Sect. 4.1] the child node is determined depending on the comparison
of the `-bit input variable xαi

with a decision node specific threshold ti. In Linear Branching Programs
as defined in [5] the branching condition is the comparison of the scalar product between the input
vector x of n `-bit values and a decision node specific coefficient vector ai with a decision node specific
threshold ti.

Efficiency. Although some functions require in the worst case an OBDD of size exponential in the
number of inputs (e.g., multiplication [20, 118]), many functions encountered in typical applications
(e.g., addition or comparison) have a reasonably small OBDD representation [19]. Even though finding
an optimal variable ordering for OBDDs is NP-complete [13], in many practical cases OBDDs can be
minimized to a reasonable size. Algorithms to improve the variable ordering of OBDDs are Rudell’s
sifting algorithm [103], the window permutation algorithm [39], genetic algorithms [32,80], or algorithms
based on simulated annealing [12]. Nevertheless, some functions have a lower bound for the size of the
smallest OBDD representation which is exponential. For example `-bit integer multiplication has an
exponential size OBDD [20,118] but requires only one multiplication gate in an arithmetic circuit over a
sufficiently large ring. Multiplication within a boolean circuit has complexity O(`2) using school method
or O(`log2 3) using Karatsuba multiplication [70] (indeed, for garbled circuits the latter is more efficient
already for ` ≥ 20 [54]).

3 SFE: Security Notions, Parameters, Notation, and Intuition

In the following we describe the security notions (§3.1), parameters, and notations (§3.2) we use and give
the general concept of computation under encryption (§3.3).
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3.1 Security Notions

In this section, we give the intuition of the security notions we use. Due to their size and complexity, we do
not include the standard definitions here. However, we present at the high-level the security guarantees
provided by these definitions, as well as the intuition behind the simulation-based definitional approach.
We refer the reader to standard sources for formal definitions and further discussion, e.g., [47, 85]. The
definitions model semi-honest, covert and malicious behavior.

The strongest and most general (and, perhaps, the most natural) notion is the malicious adversary.
Such attacker is allowed to arbitrarily deviate from the prescribed protocol, aiming to learn private inputs
of the parties and/or to influence the outcome of the computation. Not surprisingly, protection against
such attacks is relatively expensive, as we discuss later in §4.2.3.

A somewhat weaker covert adversary is similar to malicious, but with the restriction that they must
avoid being caught cheating. That is, a protocol in which an active attacker may gain advantage may still
be considered secure if attacks are discovered with certain fixed probability (e.g., 1/2). It is reasonable to
assume that in many social, political, and business scenarios the consequences of being caught outweigh
the gain from cheating; we believe covert adversaries is the right way to model the behavior of players
in many interactions of interest. At the same time, protocols secure against covert adversaries are
substantially more efficient than those secure against malicious players, e.g., as summarized in §4.2.3.

Finally, we consider the semi-honest adversary, one who does not deviate from the protocol, but aims
to learn the output of the computation. At first, it may appear contrived and trivial. Consideration of
semi-honest adversaries, however, is important in many typical practical settings. Firstly, even externally
unobservable cheating, such as poor random number generation, manipulations under encryption, etc.,
can be uncovered by an audit or reported by a conscientious insider, and cause negative publicity.
Therefore, especially if the gain from cheating is low, it is often reasonable to assume that a well-
established organization will exactly follow the protocol (and thus can be modeled as semi-honest).
Further, even if players are trusted to be fully honest, it is sometimes desired to ensure that the transcript
of the interaction reveals no information. This is because in many cases, it is not clear how to reliably
delete the transcript due to lack of control of the underlying computing infrastructure (network caching,
virtual memory, etc.). Running an SFE protocol ensures that player’s input cannot be subsequently
revealed even by forensic analysis.

At the same time, designing semi-honest-secure SFE protocols is far from trivial, and is in fact an
important basic step in designing protocols secure against covert and malicious adversaries (cf. §4.2.3).

Hybrid Security. It is often the case that players are not equal in their capabilities, trustworthiness,
and motivation. This is true especially often in the client-server scenarios. For example, it may be
reasonable to assume that the bank will not deviate from the protocol (act semi-honestly), but simi-
lar assumption cannot be made on bank clients, who may be much more willing to take the risks of
committing fraud.

This can be naturally reflected in protocol design and the guarantees given by the protocol. This
is because security definitions already separately state security against player A and player B. When
proposing a protocol, the security claim may be in the form “Protocol Π is secure against malicious A and
semi-honest B.” The proof of security then involves two different definitions, and simulator constructions
would also be correspondingly different. The benefit of this hybrid approach is the possibility to design
significantly more efficient protocols. For example, the garbled circuit protocol (in which players take the
roles of constructor or evaluator of garbled circuits) is almost free to secure against malicious evaluator,
and much more expensive to secure against malicious constructor (details later in §4.2.3). Thus, GC-
based protocols are good candidates for settings with corresponding trust relationships.

3.1.1 Simulatable Security

Formal definitions of security of SFE are detailed (pages long) and subtle. Here we discuss the basic
technical ideas of the simulatability and the ideal/real paradigm which are the core of the standard
definitions. We do not discuss less standard models, such as fairness, which is reviewed e.g., in [53,
Sect. 1.1].

Intuitively, a protocol transcript (i.e., the sequence of messages exchanged between the parties) does
not leak player’s input, if an indistinguishable (i.e., similar-looking) transcript can be constructed without
any knowledge of the input. (We note that the two transcripts, real and simulated, must look the same to
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a powerful distinguisher who, in particular, knows the inputs.) It is now intuitive that if the protocol leaks
some information on the inputs, there will exist a distinguisher who simply extracts this information from
the transcript and compares it with the player’s input. Since the simulated transcript was constructed
without the knowledge of the input, the distinguisher will be able to distinguish it from the real one,
and such protocol will be insecure by definition. Further, the proof of security for players A and B in
the protocol Π consists of constructing such simulators SimA, SimB , and proving that their output is
indistinguishable from the real transcript of the protocol.

The above intuition is sufficient for the formalization of the semi-honest model. However, in the
presence of actively cheating players (who can substitute their input, among other things), this does
not quite work, as it is not even clear if the players indeed evaluate the intended function. Thus, the
following extension of the simulation paradigm was introduced. We now define an ideal world, where
players have very limited cheating powers (they are allowed to abort, substitute their local inputs, and
output what they wish), and rely on a trusted party to provide them with the resulting output of the
computation over a perfectly secure channel. We say that a real-world protocol Π is secure if for any
real-world attacker there is a corresponding ideal-world attacker that can do “the same harm”. Since
the ideal world clearly limits the attack powers, the same limit would apply to the real world. This
is formalized by the ability to simulate the real-world transcript (i.e., to generate an indistinguishable
transcript) by the ideal-world simulator.

The formal definitions for the semi-honest and malicious player security can be found in [47].
The formalization of the covert adversaries is similar to that of the malicious; the difference is in the

definition of the ideal world, where ideal world adversaries are given the option to cheat, but are caught
(i.e., their opponent is notified) with certain fixed probability. Other aspects of definition remain the
same; because of simulatability properties and the general approach of the ideal-real paradigm, a secure
real-world covert adversary also may choose to cheat, but will be caught by the honest player with the
specified probability. The formal definitions for covert security (three variations) were proposed in [4].

We note that SFE protocols will guarantee security for the honestly behaving player who may be
engaging with the cheating adversary. If both players are deviating from the protocol, definitions provide
no guarantees.

3.2 Parameters and Notation

We denote the symmetric security parameter by t and the asymmetric security parameter, e.g., bitlength
of RSA moduli, by T . From 2011 on, NIST recommends at least t = 112 and T = 2048. For detailed
recommendations on the choice of security parameters we refer to [46]. The statistical security parameter
is denoted by σ and can be set to σ = 80 or σ = 40 depending on the application. The bitlength of x is
written |x|.

In the following, we refer to the two SFE participants as client C and server S. Our naming choice
is mainly influenced by the asymmetry in the SFE protocols, which fits into the client-server model.
We stress that, while in most of the real-life two-party SFE scenarios the corresponding client-server
relationship in fact exists in the evaluated function, we do not limit ourself to this setting.

3.3 Computation Under Encryption

Before presenting the protocols in the next section, we find it instructive to present the following simple
insight: each of the SFE techniques we consider can be viewed as evaluation under encryption with hints.

Evaluation under encryption is very complicated in its generality. In fact, only recently the first
promising candidate was proposed – an encryption scheme that allows to perform an arbitrary number
of both multiplications and additions on the plaintext [43] (more details later in §4.1.2). We stress that
this and similar schemes are currently prohibitively expensive, and are not likely to be considered for
practice at least in the near and medium term (see §4.1 for more discussion). In comparison, we propose
extremely efficient solutions to a much simpler problem, where the computed function is fixed. Now,
for example, the first player can send his encrypted input and additional function-specific “hints” to
assist the second player with evaluation under encryption. This assistance can also be interactive. We
further simplify our work by considering only elementary operations, e.g., boolean gates, and show how
to compose their evaluation in a secure way.
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4 SFE of Circuits and OBDDs in the Semi-honest Model

To reduce complexity, functions can be decomposed into several sub-functions (blocks). Each of these
blocks can be represented in its own way, e.g., a multiplication block can be represented as an arithmetic
circuit, a comparison block as a boolean circuit, and a specific decision tree as an OBDD.

In this section, we present the SFE protocols for the three representations of interest with semi-honest
adversaries.

It is our goal to be able to arbitrarily compose the three protocols. This, in particular, means that
the encrypted output of one protocol will be fed as input into another. To preserve a common interface
and simplify the presentation, we will extract and describe separately the core – computation under
encryption – of each protocol (done in this section). For completeness, we also discuss here the simple
issue of how to appropriately encrypt the inputs and decrypt the outputs. We will discuss the issues of
composition of the protocols, such as conversions of encryptions, in §5. Overall, the protocol structure
will look as follows: (i) encrypt the plaintext inputs, (ii) perform the computation under encryption
(which may include a composition of encrypted computations), and (iii) decrypt the output values.

4.1 Homomorphic Encryption: SFE of Arithmetic Circuits

In this section, we describe semantically secure homomorphic encryption schemes and how they can
be used for secure evaluation of arithmetic circuits. Let (Gen,Enc,Dec) be an encryption scheme with
plaintext space P and ciphertext space C. We write JmK for Enc(m, r).

4.1.1 Additively Homomorphic Cryptosystems

An additively homomorphic encryption scheme allows addition under encryption as follows. It defines
an operation + on plaintexts and a corresponding operation � on ciphertexts, satisfying ∀x, y ∈ P :
JxK � JyK = Jx+ yK. This naturally allows for multiplication with a plaintext constant a using repeated
doubling and adding: ∀a ∈ N, x ∈ P : aJxK = JaxK.

Popular instantiations for additively homomorphic encryption schemes are summarized in Table 1:
The Paillier cryptosystem [100] provides a T -bit plaintext space, where T is the size of the RSA modu-
lus N , and is sufficient for most applications. The Damg̊ard-Jurik cryptosystem [28] is a generalization
of the Paillier cryptosystem which provides a large plaintext space of size sT -bit for arbitrary s ≥ 1. The
cryptosystems of Damg̊ard-Geisler-Krøigaard (DGK) [25–27] and lifted EC-ElGamal [40] (implemented
over an elliptic curve group G with prime order p) have smaller ciphertexts, but are restricted to a small
plaintext space Zu (respectively a small subset of the plaintext space Zp) as decryption requires to solve
a discrete log.

Table 1: Additively Homomorphic Encryption Schemes (N : RSA modulus, s ≥ 1, u: small prime, p:
large prime)

Scheme P C Enc(m, r)

Paillier [100] ZN Z∗N2 gmrN mod N2

Damg̊ard-Jurik [28] ZNs Z∗Ns+1 gmrN
s

mod Ns+1

DGK [25–27] Zu Z∗N gmhr mod N
Lifted EC-ElGamal [40] Zp G2 (gr, gmhr)

4.1.2 Fully Homomorphic Cryptosystems

For completeness, we mention that some cryptosystems allow both addition and multiplication under
encryption. For this, a separate operation × for multiplication of plaintexts and a corresponding oper-
ation � on ciphertexts is defined satisfying ∀x, y ∈ P : JxK � JyK = Jx× yK. Cryptosystems with such a
property are called fully homomorphic.

Until recently, it was widely believed that such cryptosystems do not exist. Several works provided
partial solutions: [14, 45] allow for an arbitrary number of additions and one multiplication, and cipher-
texts of [3, 107] grow exponentially in the number of multiplications. While one-multiplication schemes
are relatively efficient, their use is limited due to their inherent restriction. Recent schemes [43,111,114]
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are fully homomorphic. However, the size of ciphertexts and computational cost of elementary steps in
fully homomorphic schemes are dramatically larger than those of additively homomorphic schemes.

Recently, the first working implementation of fully homomorphic encryption was presented [44].
Its performance for reasonable security parameters is in the order of Gigabytes of communication and
minutes of computation on high-end IBM System x3500 servers. Other recent implementation results
of [111] show that even for very small parameters where the multiplicative depth of the evaluated circuit
is bounded by d = 2, i.e., up to two multiplications, encrypting a single bit takes 386 ms on a 2.4GHz
Intel Core2 (6600) CPU. At the same time, there are applications where it is sufficient to perform only
a few multiplications under encryption. For this purpose, so called “somewhat homomorphic encryption
schemes”, the schemes from which fully homomorphic encryption schemes are bootstrapped, can be
used [31,79].

Significant effort is underway in the research community to improve performance of FHE. For exam-
ple, the US Defense Advanced Research Projects Agency (DARPA) currently funds the PROgramming
Computation on EncryptEd Data (PROCEED) project, which aims at making fully homomorphic en-
cryption and secure multi-party computations more practical. At the same time, it seems unlikely that
fully homomorphic encryption would very soon approach the efficiency of current public-key encryption
schemes. Intuitively, this is because a fully homomorphic cryptosystem must provide the same strong se-
curity guarantees, while, at the same time, possessing extra algebraic structure to allow for homomorphic
operations. The extra structure weakens security, and countermeasures (costing performance) are neces-
sary. Further, the main benefit and distinction of fully homomorphic encryption is the non-interactivity
of computation, which is not a critical goal in our discussion. In this work, we do not rely on, but could
use, (currently expensive) fully or somewhat homomorphic schemes.

4.1.3 Computing on Encrypted Data

Homomorphic encryption is a natural choice to evaluate arithmetic circuits via computation on encrypted
data, as follows. The client C generates a key pair for a homomorphic cryptosystem and sends his inputs
encrypted under the public key to the server S together with the public key. With a fully homomorphic
scheme, S can simply evaluate the arithmetic circuit by computing on the encrypted data and send back
the (encrypted) result to C, who then decrypts it to obtain the output. If the homomorphic encryption
scheme only supports addition, one round of interaction between C and S is needed to evaluate each
multiplication gate (or a layer of multiplication gates) as described later in §4.1.5. Today, the interactive
approach results in much faster SFE protocols than using fully homomorphic schemes. (The latter,
however, allows non-interactive evaluation of private functions by S; this can be done efficiently without
fully HE, but with interaction, using universal circuits as shown in §4.3.3.)

4.1.4 Packing

Often it is known from the structure of the protocol that the size of an element |xi| is substantially smaller
than the plaintext space P of the homomorphic encryption scheme. This allows for optimization of many
HE-based protocols by packing together multiple ciphertexts (each encrypting a small value) into one
before or after additive blinding and sending the single ciphertext from S to C instead. This substantially
decreases the message size and the number of decryptions performed by C. The computational overhead
for S is small as packing the ciphertexts Jx1K, ..., JxnK into one ciphertext JXK = Jxn|| . . . ||x1K costs at
most one full-range modular exponentiation by using Horner’s scheme: JXK = JxnK; for i = (n−1), . . . , 1 :
JXK = 2|xi+1|JXK � JxiK.1

4.1.5 Homomorphic Values and Conversions

We mention a few relatively simple issues and optimizations with encrypting the input, and decrypting
the output of the homomorphic computation. Describing these procedures completes (at a high level)
the description of SFE of arithmetic circuits.

The interface for SFE protocols based on homomorphic encryption are homomorphic values, i.e.,
homomorphic encryptions held by S encrypted under the public key of C (see Fig. 3 in §5). These
homomorphic values can be converted from or to plaintext values as described next.

1Note that S cannot decrypt and concatenate the ciphertexts as he does not know the corresponding public key.
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Plain Value to Homomorphic Value for Inputs. To convert a plain `-bit value x, i.e., |x| = `,
into a homomorphic value JxK, x is simply encrypted under C’s public key. If x belongs to C, JxK is sent
to S.

Homomorphic Value to Plain Value for Outputs. To convert a homomorphic value into a plain
value for C, S sends the homomorphic value to C who decrypts and obtains the plain value. If only
S should learn the plain value corresponding to a homomorphic `-bit value JxK, S additively blinds
the homomorphic value by choosing a random mask r ∈R {0, 1}`+σ, where σ is the statistical security
parameter, and computing Jx̄K = JxK� JrK. S sends this blinded value to C who decrypts and sends back
x̄ to S. Finally, S computes x = x̄ − r. Packing can be used to improve efficiency of parallel output
conversions.

Multiplication of Homomorphic Values. To multiply two homomorphic `-bit values JxK and JyK
held by S the following standard protocol requires one single round of interaction with C: S randomly
chooses rx, ry ∈R {0, 1}`+σ, where σ is the statistical security parameter, computes the blinded values
Jx̄K = Jx + rxK, JȳK = Jy + ryK and sends these to C. C decrypts, multiplies and sends back JzK =
Jx̄ȳK. S obtains JxyK by computing JxyK = JzK � (−rx)JyK � (−ry)JxK � J−rxryK. Efficiency of parallel
multiplications can be improved by packing multiple blinded ciphertexts together instead of sending them
to C separately.

4.2 Garbled Functions: SFE of Boolean Circuits and OBDDs

Efficient techniques for evaluating boolean circuits and OBDDs are quite similar; in fact the underlying
idea is the same. In this section we will present the main idea and a complete high-level treatment of
the two protocols. We then present the corresponding details for SFE of boolean circuits in §4.3 and
OBDDs in §4.4.

The idea for SFE, going back to Yao [119], is to evaluate the function, step by basic step, un-
der encryption. Yao’s approach, which considered boolean circuits, is to encrypt (or garble) each wire
with a symmetric encryption scheme. In contrast to homomorphic encryption (cf. §4.1), the encryp-
tions/garblings here cannot be operated on without additional help. We will explain in detail how to
operate under encryption on the basic function steps in §4.3, §4.4.

We now proceed to describe at the high level Yao’s technique, and present the state of the art in the
crypto primitives the method relies on. Following Yao’s terminology, we talk about garbled functions, as
the generalization of garbled (boolean) circuits and garbled OBDDs.

To securely evaluate a function f , the constructor (server S) creates a garbled function f̃ from f (a
detailed description on how this is done is given later in §4.3 for boolean circuits and §4.4 for OBDDs).

In f̃ , the garbled values of each wire Wi are two (random-looking) secrets w̃0
i , w̃

1
i that correspond to

the values 0 or 1. We note that a garbled value w̃ji does not reveal its corresponding plain value j. S
sends f̃ to evaluator (client C) and C additionally obtains both players’ garbled input values x̃1, . . . , x̃u
from S in an oblivious way (this requires further interaction as described later in §4.2.1). C uses the
garbled function and the garbled input values to obliviously compute the corresponding garbled output
values (z̃1, . . . , z̃v) = f̃(x̃1, . . . , x̃u). We emphasize that during the step-by-step encrypted evaluation,
all intermediate results are garbled values and hence do not reveal any additional information. (We

give details on evaluating f̃ later in §4.3 for boolean circuits and §4.4 for OBDDs.) Finally, the garbled
output values z̃j are translated into their corresponding plaintext values zj (cf. §4.2.1).

We stress that a garbled function f̃ cannot be re-used, and each secure evaluation requires construction
and transfer of a new garbled function. While this can be done in a pre-computation phase (see also
discussion in §4.3.1), the costs are not amortized by this pre-computation. A formal treatment of the
properties achieved by garbled functions was given recently in [7].

4.2.1 Garbled Values and Conversions

For garbled functions, conversions between plaintext values and encryptions involve a number of subtleties
and tricks. Recall, we first convert both players’ plain inputs into their corresponding garbled values
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(encrypt inputs), then evaluate the garbled function (evaluate under encryption), and finally convert the
garbled outputs back into plain values (decrypt result).

The interface for SFE protocols based on garbled functions are garbled values (see Fig. 3 in §5). A
garbled boolean value x̃i represents a bit xi. Each garbled boolean value x̃i = 〈ki, πi〉 consists of a key
ki ∈ {0, 1}t, where t is the symmetric security parameter, and a permutation bit πi ∈ {0, 1}. The garbled
value x̃i is assigned to one of the two corresponding garbled values x̃0i =

〈
k0i , π

0
i

〉
or x̃1i =

〈
k1i , π

1
i

〉
with

π1
i = 1−π0

i . The permutation bit πi allows efficient evaluation of the garbled function using the so-called
point-and-permute technique [96] (we give more details in §4.3.1). Of course, a garbled `-bit value can
be viewed as a vector of ` garbled boolean values.

We show how to convert a plain value into its corresponding garbled value and back next.

Garbled Value to Plain Value for Outputs. To convert a garbled value x̃i = 〈ki, πi〉 into its
corresponding plain value xi for evaluator C, constructor S reveals the output permutation bit π0

i which
was used during construction of the garbled wire and C obtains xi = πi ⊕ π0

i .
If the garbled value x̃i should be converted into a plain value for constructor S, evaluator C simply

sends x̃i (or πi) to S who obtains the plain value by decrypting it, e.g., compare with x̃0i and x̃1i . We
note that malicious C cannot cheat in this conversion as he only knows either x̃0i or x̃1i , but is unlikely
to guess the other one.

Plain Value to Garbled Value for Inputs. To translate a plain value xi held by S into a garbled
value x̃i for C, S sends the corresponding garbled value x̃0i or x̃1i to C depending on the value of xi.

To convert a plain value xi held by C into a garbled value x̃i for C, both parties execute an oblivious
transfer (OT) protocol where C inputs xi, S inputs x̃0i and x̃1i , and the output to C is x̃i = x̃0i if xi = 0
or x̃1i otherwise. In the following we describe how OT can be implemented efficiently in practice.

4.2.2 Oblivious Transfer

Parallel 1-out-of-2 Oblivious Transfer (OT) of n t′-bit strings (where t′ = t + 1 is the length of garbled
values for symmetric security parameter t), denoted as OTnt′ , is a two-party protocol run between a
chooser (client C) and a sender (server S) as shown in Fig. 2: For i = 1, . . . , n, S inputs pairs of t′-bit
strings s0i , s

1
i ∈ {0, 1}t

′
and C inputs choice bits bi ∈ {0, 1}. At the end of the protocol, C learns the chosen

strings sbii but nothing about the other strings s1−bii , whereas S learns nothing about C’s choices bi. As
described above, OT is used to convert plain values of C into corresponding garbled values.

Server SClient C

OTn
t�

∀i = 1, .., n :
Si =

�
s0

i , s
1
i

�

s0
i , s

1
i ∈ {0, 1}t�

S1, .., Snb1, .., bn

sb1
1 , .., sbn

n

Figure 2: Parallel Oblivious Transfer

Efficient OT Protocols. OTnt′ can be instantiated efficiently with different protocols [1, 88, 95]. We
refer to [53, Chapter 7] for a detailed description of practically efficient OT protocols. For example the
protocol of [1] implemented over a suitably chosen elliptic curve using point compression has communica-
tion complexity n(6(2t+1))+(2t+1) ∼ 12nt bits and is secure against malicious C and semi-honest S in
the standard model (based on the Decisional Diffie-Hellman assumption) as described in [74]. Similarly,
the protocol of [95] has communication complexity n(2(2t + 1) + 2t′) ∼ 6nt bits and is secure against
malicious C and semi-honest S in the random oracle model (based on the Diffie-Hellman assumption).
Both protocols require O(n) scalar point multiplications and two messages (C → S → C).

Extending OT Efficiently. The extensions of [59] can be used to reduce the number of computa-
tionally expensive public-key operations of OTnt′ to be independent of n. (This is the reason for our

choice of notation OTnt′ instead of n × OTt
′
.) The transformation for semi-honest C reduces OTnt′ to

OTtt and a small additional overhead: one additional message, 2n(t′ + t) bits additional communication,
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and O(n) invocations of a correlation robust hash function such as SHA-256 (2n for S and n for C)
which is substantially cheaper than O(n) asymmetric operations. A brief summary of the OT extension
construction of [59] optimized for pre-computations is given in [57, Appendix]. Constructions for OT
extension with security against malicious adversaries are given in [52,59,97,98].

In some computation-sensitive applications, the technique of [59] provides a critical performance
improvement by getting rid of expensive public-key operations. We strongly recommend using it for
functions with many/large inputs, possibly in conjunction with the following pre-computations.

Pre-Computing OT. All computationally expensive operations for OT can be shifted into a setup
phase by pre-computing OT [6]: In the setup phase the parallel OT protocol is run on randomly chosen
values. Then, in the online phase, C uses its randomly chosen values ri to mask his private inputs bi, and
sends them to S. S replies with encryptions of his private inputs sji using his random values mj

i from
the setup phase. Which input of S is masked with which random value is determined by C’s message.
Finally, C can use the masks mi he received from the OT protocol in the setup phase to decrypt the
correct output values sbii .

More precisely, the setup phase works as follows: for i = 1, . . . , n, C chooses random bits ri ∈R {0, 1}
and S chooses random masks m0

i ,m
1
i ∈R {0, 1}t

′
. Both parties run a OTnt′ protocol on these randomly

chosen values, where S inputs the pairs
〈
m0
i ,m

1
i

〉
and C inputs ri and obtains the masks mi = mri

i as
output. In the online phase, for each i = 1, . . . , n, C masks its input bits bi with ri as b̄i = bi⊕ri and sends
these masked bits to S. S responds with the masked pair of t′-bit strings

〈
s̄0i , s̄

1
i

〉
=
〈
m0
i ⊕ s0i ,m1

i ⊕ s1i
〉

if b̄i = 0 or
〈
s̄0i , s̄

1
i

〉
=
〈
m0
i ⊕ s1i ,m1

i ⊕ s0i
〉

otherwise. C obtains
〈
s̄0i , s̄

1
i

〉
and decrypts sbii = s̄rii ⊕ mi.

Overall, the online phase consists of two messages of size n bits and 2nt′ bits, respectively, and negligible
computation (XOR of bitstrings).

4.2.3 Covert and Malicious Adversaries

SFE protocols based on garbled functions can be easily protected against covert or malicious client C,
by using an OT protocol with corresponding security.

Standard SFE protocols with garbled functions which additionally protect against covert [4, 50] or
malicious [83] server S rely on the following cut-and-choose technique: S creates multiple garbled func-

tions f̃i, deterministically derived from random seeds si, and commits to each, e.g., by sending f̃i or
Hash(f̃i) to C. In the covert case, C asks S to open all but one garbled function I by revealing the

corresponding si 6=I . For all opened functions, C computes f̃i and checks that they match the commit-
ments. The malicious case is similar, but C asks S to open 3/5 of the functions [110], evaluates the
remaining ones and chooses the majority of their results. Additionally, it must be guaranteed that S’s
input into OT is consistent with the GCs as pointed out in [73], e.g., using committed, committing,
or cut-and-choose OT [86]. The practical performance of cut-and-choose-based GC protocols was in-
vestigated experimentally in [87, 102]: Secure evaluation of the AES functionality (boolean circuit with
33, 880 gates) between two Intel Core 2 Duos running at 3.0 GHz, with 4 GB of RAM connected by
gigabit ethernet takes approximately 0.5 MB data transfer and 7 s for semi-honest, 8.7 MB / 1 min for
covert, and 400 MB / 19 min for malicious adversaries [102]. In fact, an optimized implementation that
uses the combination of OT optimizations of §4.2.2 allows to reduce the online time for secure evaluation
of AES in the semi-honest case from 5 s to 0.5 s as shown in [54]. Further optimizations can be achieved
by streaming (cf. §4.3.1). The most recent implementation result on cut-and-choose-based GC proto-
cols [77] exploits massive parallelism in a grid computing infrastructure and reports secure evaluation of
AES with security against malicious adversaries in 1.1 seconds using 256 machines on each side.

For completeness, note that cut-and-choose may be avoided with some SFE schemes, e.g., [63], which
use zero-knowledge proofs of correctness of the circuit construction, and operate on committed inputs [41].
An alternative approach is the soldering approach taken in [99]. However, the elementary steps of these
protocols involve public-key operations for each gate. Hence, as estimated by [102], such malicious-secure
protocols often require substantially more computation than garbled functions/cut-and-choose-based
protocols.

We further note that there are yet other approaches to malicious security, e.g., the IPS compiler [61]
that compiles a secure multi-party computation protocol into a two-party SFE protocol. Optimizations
and a concrete efficiency analysis of this protocol are given in [81].
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A recent very efficient approach for security against malicious adversaries is described in [98]. Their
protocol combines the GMW protocol [48] with OT extensions similar to those summarized in §4.2.2. For
big enough circuits, their approach can evaluate more than 20000 gates per second, or takes 3 seconds
for performing 27 secure evaluations of AES in parallel.

We mention, but do not discuss in detail the approach of [93], where the authors define and construct
very efficient protocols secure against malicious players at the cost of leaking one bit of information.
This notion of security is weaker than malicious security and incomparable to covert. As demonstrated
in [56], this protocol can be implemented with only a slight overhead over the semi-honest version of the
SFE protocol using two threads on each side.

4.3 Garbled Circuits: SFE of Boolean Circuits

We now turn to presenting the boolean-circuit-specific details for SFE of garbled functions as introduced
in [119] and excellently presented in [84]. Recall, in §4.2 we left out the method of step-by-step creation

of the garbled function f̃ and its evaluation given the garblings of the input wires. In the following we
describe how the garbled circuit is constructed and evaluated.

To construct the garbled circuit C̃ for a given boolean circuit C, constructor S assigns to each wire
Wi of the circuit two random-looking garbled values w̃0

i , w̃
1
i – encryptions of 0 and 1 on that wire. We

now show how to perform a basic step – to evaluate a gate Gi under encryption. That is, given two
garblings (one for each of the two inputs of the gate), we need to obtain the garbling of the output wire
consistently with the gate function. Here the constructor S gives help to the evaluator C in the form
of a garbled table T̃i with the following property: given a set of garbled values of Gi’s inputs, T̃i allows
to recover the garbled value of the corresponding Gi’s output, but nothing else. This is easily done
as follows. There are only four possible input combinations (and their garblings). The garbled table
will consist of four entries, each of which is an encryption under a pair of input wire garblings of the
corresponding output garbling. Clearly, this allows the evaluator to compute Gi under encryption, and
it can be shown that T̃i does not leak any information [84].

This method is composable s.t. the entire boolean circuit can be evaluated gate-by-gate. This tech-
nique also applies to gates with more than two inputs, but the size of garbled tables grows exponentially
in the number of gate inputs.

The above is a simple description of Yao’s technique. Today, a number of optimizations exist, which
we survey next (but do not discuss in detail).

4.3.1 Efficient Garbled Circuit Constructions

A summary of several constructions for garbled circuits is shown in Table 2. In the following we con-
centrate on the currently most efficient technique for garbled circuits, Garbled Row Reduced Free XOR
(GRRFX) of [102], which combines free XOR gates of [75] with garbled row reduction of [96]. This
technique requires less communication than the secret-sharing based technique of [102] as soon as more
than 33% of the circuit’s gates are XOR gates. This is achieved in almost all cases when applying the
optimization techniques of [102] (see below). However, it can be proven secure only under a slightly
stronger assumption than the standard model.

The GRRFX technique of [102] allows “free” evaluation of XOR gates from [75], i.e., a garbled XOR
gate has no garbled table (no communication) and its evaluation consists of XOR-ing its garbled input
values to obtain the garbled output value (negligible computation).

The other gates, referred to as non-XOR gates, are evaluated with a combination of the point-and-
permute technique and the garbled row reduction technique of [96], i.e., each d-input non-XOR gate
requires a garbled table of size (2d − 1)t + (2d − 1) bit, where t is the symmetric security parameter.
Creating this garbled table in the pre-computation phase requires 2d invocations of a suitably chosen
cryptographic hash function such as SHA-256 in the random oracle model.2 Later, for evaluation of a
garbled d-input non-XOR gate, the evaluator needs only 1 invocation of the hash function as the correct
entry to decrypt is determined by the permutation bits of the gate’s input wires. Indeed, all known
efficient GC constructions listed in Table 2 require exactly this number of hash invocations.

2In fact, it is sufficient to model the hash function as circular 2-correlation robust [23].
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Table 2: Size of Efficient GC Techniques per Garbled d-Input Gate (t: Symmetric Security Parameter)

GC Technique
Size of garbled tables Free XOR

[bits] [75]
Point-and-Permute [96] 2dt+ 2d yes
Garbled Row Reduction [96] (2d − 1)t+ (2d − 1) yes
Secret-Sharing [102] (2d − 2)t+ 2d no

Circuit Optimizations. As the costs of GC constructions for creating and transferring garbled tables
grow exponentially in d, it is beneficial to optimize the circuit such that gates have small degree d
while exploiting free XOR gates as much as possible. [87] propose to encode circuit components with d
inputs consisting of multiple 2-input gates by a single d-input gate. Afterwards, when XOR gates are
“free”, these d-input gates are decomposed into 2-input gates while minimizing the number of non-XOR
gates [102].

Hardware-based SFE. We note that the transfer of garbled tables can be avoided entirely when
server S can send to client C a tamper-proof hardware token that generates the garbled circuit on
behalf of S. The token needs to compute only symmetric key primitives, processes the gates one-by-one
using a constant amount of memory, and does not need to be trusted by C [66]. Another direction for
improving SFE protocols is to use a cryptographic coprocessor for costly operations [58,67]. Using trusted
hardware also allows to implement OT non-interactively, called one-time programs in combination with
GC [49,51,67].

Pre-Computation vs. Streaming. We note that most GC-based SFE implementations (e.g., [54,
87, 92, 96, 102]) follow the compilation paradigm, in which the circuit is first compiled from a high-level
description and then optimized for size (see above). Although this approach requires storage linear
in the size of the circuit, it is beneficial when the function is fixed and the compilation (and possibly
GC creation) can be done in a pre-computation phase. When pre-computation is not feasible (e.g., in
scenarios where parties make ad-hoc decisions when and what to compute securely), it is also possible to
generate the circuit and its garbling with constant storage/memory: Firstly, the circuit can be compiled
on-the-fly using a constant amount of memory as implemented in [54] (see discussion in the full version
of [54]). Further, this stream of gates can be directly combined with the constant-memory GC creation
technique of [66], and the garbled tables can be streamed directly over the network to the evaluator who
evaluates them on-the-fly [55,67]. Finally, OT can be extended on-the-fly as mentioned in [59], s.t. only
a constant (in the security parameter) number of public key operations is needed for an arbitrary (and
unknown in advance) number of OTs. We note, however, that some circuits cannot be streamed as their
evaluation requires memory linear in the circuit size [65]. The recently proposed VMCrypt library [91] as
well as [55] specifically aim to maximize GC streaming. The currently fastest implementation of garbled
circuits in the semi-honest setting is implemented in Java and takes approximately 10 µs per gate [55].
Instead of compiling the entire function into a circuit first, these libraries generate sub-circuits on-the-fly.
The techniques described above as well as the “use cheapest SFE block” approach advocated in our work
can be also used with their architectures, resulting in corresponding performance improvements.

4.3.2 Efficient Circuit Constructions with Free XOR

As XOR gates can be evaluated “for free”, the circuits to be evaluated can be optimized so that the
number of non-XOR gates is minimized as described above. These tricks can improve many basic
functions, some of which are summarized in Table 3. For example, addition, subtraction and comparison
have cheap circuit representations (linear in the size of the inputs). Also selecting the minimum or
maximum value of n values together with its index (the function evaluated in a first-price auction [96])
has linear overhead. Permuting (without duplicates) or selecting (with duplicates) n bits grows like
O(n log n) and hence is feasible as well. In contrast, multiplication has a relatively expensive circuit
representation. Fast multiplication [70] with complexity O(`1.6) is more efficient than O(`2) textbook
multiplication for ` ≥ 20 [54].
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Table 3: Efficient Circuit Constructions for `-Bit Values (Optimized for Free XOR)
Functionality #non-XOR 2-input gates

Addition [15] `
Subtraction, Comparison [74] `
Multiplexer [75] `
Minimum/Maximum Value + Indexa

2`(n− 1) + (n+ 1)
of n `-bit values [74]
Permute n bits [75,117] n log n− n+ 1
Select v from u ≥ v bits [75,76] u+3v

2 log v + u− 2v + 1
Textbook Multiplication [74] 2`2 − `
Fast Multiplication [54] 9`1.6 − 13`− 34

aWhen only the minimum/maximum value needs to be computed but not
the index, the circuit size is 2`(n− 1) as described in [57].

4.3.3 Private Circuits

In some applications the evaluated function is known by one party only and should be kept secret from
the other party. This can be achieved by securely evaluating a Universal Circuit (UC) which can be
programmed to simulate any circuit C and hence entirely hides C (besides the number of inputs, number
of gates, and number of outputs). Efficient UC constructions to simulate circuits consisting of k 2-input
gates are given in [76, 113]. Generalized UCs of [104] can simulate circuits consisting of d-input gates.
Which UC construction is favorable depends on the size of the simulated functionality: Small circuits can
be simulated with the UC construction of [104] with overhead O(k2) gates, medium-size circuits benefit
from the construction of [76] with overhead O(k log2 k) gates, and for very large circuits the construction
of [113] with overhead O(k log k) gates is most efficient. Explicit sizes and a detailed analysis of the
break-even points between these constructions are given in [104]. The recent proposal of [72] avoids the
super-linear complexity of UCs, but requires O(k) public-key operations.

While UCs entirely hide the structure of the evaluated functionality f , it is sometimes sufficient to
hide f only within a class of topologically equivalent functionalities F ; this is called secure evaluation of a
semi-private function f ∈ F . The circuits for many standard functionalities are topologically equivalent
and differ only in the specific function tables, e.g., comparison (<,>,=, . . .) or addition/subtraction. It
is possible to directly evaluate the circuit and avoid the overhead of UC for semi-private functions as GC
constructions of [92,96] completely hide the type of the gates from evaluator C [35–38,101].

4.4 Garbled OBDDs: SFE of OBDDs

OBDDs can be evaluated securely in a way analogous to garbled circuits, as first described in [78]. We
base our presentation on the natural extension of [78] described in [108, §3.4.1] and [5], which also offers
a (slight) performance improvement. Alternative approaches [60, 89] based on homomorphic encryption
have smaller communication overhead, but put more computational load on S (public-key operations
instead of symmetric operations for each decision node).

We now turn to presenting the OBDD-specific details for SFE of garbled functions. Recall, in §4.2
we left out the method of step-by-step creation of the garbled function f̃ and its evaluation given the
garblings of the input wires. In the following we describe how the garbled OBDD is constructed and
evaluated. We note that the technique is somewhat similar to that of GCs described in §4.3.

Create Garbled OBDD. In the pre-computation phase, S generates a garbled version Õ of the
OBDD O. For this, the OBDD is first extended with dummy nodes to ensure that each evaluation path
traverses the same number of variables in the same order resulting in evaluation paths of equal length.
Further, OBDD nodes are randomly permuted to prevent leaking information from the sequence of steps
taken by the evaluator (the start node P1 remains the first node in Õ). Then, each decision node Pi,

labeled with boolean variable xj , is converted into a garbled node P̃i in Õ, as follows. A randomly
chosen key ∆i ∈R {0, 1}t is associated with each node Pi. Node’s information (pointers to the two
successor nodes, and their encryption keys) is encrypted with the node’s key ∆i. To preserve security,
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we ensure that ∆i is only revealed to the evaluator, if this node is reached by executing on the parties’
inputs. Processing/evaluating an OBDD node is simply following the pointer to one of the two child
nodes, depending on the input. Since we must prevent the evaluator from following both successor nodes,
we additionally encrypt left (resp. right) successor information with the garbling of the 0-value (resp.
1-value) of Pi’s decision variable xj .

Evaluate Garbled OBDD. It is now easy to see the corresponding OBDD evaluation procedure.
C receives the garbled OBDD Õ from S, and evaluates it locally on the garbled values x̃1, .., x̃n and
obtains the garbled value z̃ that corresponds to the result z = O(x1, . . . , xn), as follows. C traverses the

garbled OBDD Õ by decrypting garbled decision nodes along the evaluation path starting at P̃1. At
each node P̃i, C takes the garbled input value x̃i = 〈ki, πi〉 together with the node’s key ∆i to decrypt
the information needed to continue evaluation of the garbled successor node until the garbled output
value z̃ for the corresponding terminal node is obtained.

Implementation Observations and Optimizations. The employed semantically secure symmetric
encryption scheme can be instantiated as Encsk(m) = m⊕H(k||s), where s is a unique identifier used once,
and H(k||s) is a pseudo-random function (PRF) evaluated on s and keyed with k, e.g., a cryptographic
hash function from the SHA-2 family. Additionally the following technical improvement from [78] can be
used: instead of encrypting twice (sequentially, with ∆i and kji ), the successor Pij ’s data can be encrypted

with ∆i ⊕ kji . The terminal nodes are garbled simply by including their corresponding garbled output
value (z̃0 for the 0-terminal or z̃1 for the 1-terminal) into the parent’s node (instead of the decryption
key ∆i).

Efficiency. To evaluate the garbled OBDD Õ, the cryptographic hash function (e.g., SHA-256) is
invoked once per decision node along the evaluation path.

The garbled OBDD Õ for an OBDD with d decision nodes (after extension to evaluation paths of

equal length) contains d garbled nodes P̃i consisting of two ciphertexts of size dlog de+ t + 1 bits each.

The size of Õ is 2d(dlog de+ t+ 1) ∼ 2d(log d+ t) bits. Overall, creation of Õ requires 2d invocations of
a cryptographic hash function.

4.4.1 Private OBDDs

The garbled OBDD reveals only a small amount of information about the evaluated OBDD to C, namely
the total number d of decision nodes. We note that in many cases this is acceptable. If not, this
information can be hidden by appropriate padding with dummy-nodes.

5 Composition of SFE Blocks

We now show how to convert encryptions of intermediate values between the different representations
that are used in the three protocols we described. Done securely, this allows arbitrary compositions of
the three techniques, and implies significant improvements to SFE.

We had already described the conversions between the plaintext values and encryptions. These
conversions are only applicable for input encryption and output decryption. Intermediate values in the
protocol must be converted without ever being decrypted entirely.

Fig. 3 shows the types of conversions that may occur in the composed SFE protocol. Both parties
have plain values as their inputs into the protocol. These plain values, denoted as x, are first encrypted
by converting them into their corresponding encrypted value (garbled value created by S, denoted as x̃,
or homomorphic value encrypted under C’s public key, denoted as JxK, depending on which operations
should be applied). After encryption the function is securely evaluated on the encrypted values, which
may involve conversion of the encryptions between several representations. Finally, an encryption of the
output is obtained. The encrypted outputs are decrypted by converting them into their corresponding
plain output values. In the following we describe how to efficiently convert between the two types of
encryptions.
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Figure 3: Composition of Secure Function Evaluation Protocols

5.1 Garbled Values to Homomorphic Values.

A garbled `-bit value x̃ held by C (usually obtained from evaluating a garbled function) can be efficiently
converted into a homomorphic value held by S by using additive blinding or bitwise encryption as
described next.

5.1.1 Additive Blinding

S randomly chooses a random mask r ∈R {0, 1}`+σ, where σ is the statistical security parameter and
` + σ ≤ |P | to avoid an overflow, and adds the random mask converted into garbled value r̃ to x̃ using

a garbled (` + σ)-bit addition circuit that computes X̃ with X = x + r. This value is converted into
a plain output value X for C who homomorphically encrypts this value and sends the result JXK to S.
Finally, S takes off the random mask under encryption as JxK = JXK � (−1)JrK. A detailed description
of this conversion protocol is given in [74].

5.1.2 Bitwise Encryption

If the bitlength ` of x̃ is small, a bitwise approach can be used as well in order to avoid the garbled addition
circuit: C homomorphically encrypts the permutation bits πi of the garbled boolean output values
x̃i = 〈ki, πi〉 and sends JπiK to S. S flips those encrypted permutation bits for which the permutation bit
was set as π0

i = 1 during creation to Jπ′iK = J1K � (−1)Jπ′iK or otherwise Jπ′iK = JπiK. Then, S combines
these potentially flipped bit encryptions using Horner’s scheme as JxK = Jπ′`||..||π′1K.

5.1.3 Performance Comparison

The conversion based on additive blinding requires a garbled addition circuit for (`+σ)-bit values and the
transfer of the garbled value r̃ corresponding to the (`+σ)-bit value r, i.e., (`+σ)(t+1) bits (cf. §4.2.1).
When using the efficient GC technique described in §4.3.1, this requires in total 4(`+ σ)(t+ 1) bits sent
from S to C in the pre-computation phase. In the online phase, the garbled circuit is evaluated and the
result is homomorphically encrypted and sent to S (one ciphertext).

The conversion using bitwise encryption requires ` homomorphic encryptions and transfer of ` ci-
phertexts from C to S in the online phase. At least for converting a single bit, i.e., when ` = 1, this
technique results in better performance.

5.2 Homomorphic Values to Garbled Values

In the following we describe how to convert a homomorphic `-bit value JxK into a garbled value x̃.
This protocol has been widely used to combine homomorphic encryption with garbled functions, e.g.,
in [5, 16,18,64].
S additively blinds JxK with a random pad r ∈R {0, 1}`+σ, where σ is the statistical security parameter

and `+ σ ≤ |P | to avoid an overflow, as JXK = JxK � JrK. S sends the blinded ciphertext JXK to C who
decrypts and inputs the ` least significant bits of X, χ = X mod 2`, to an `-parallel OT protocol to
obtain the corresponding garbled value χ̃. Then, the mask is taken off within a garbled `-bit subtraction
circuit which gets as inputs χ̃ and ρ̃ converted from ρ = r mod 2` as input from S. The output obtained
by C is x̃ which corresponds to x = X − r = χ− ρ.3

3Note that as X − r > 0 subtraction of the ` least significant bits is sufficient.
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Again, packing as described in §4.1.4 can be used to improve efficiency of parallel conversions from
homomorphic to garbled values by packing multiple ciphertexts together before additive blinding and
sending them to C.

6 Conclusion

We conclude with a summary of past, present, and possible future directions in practically efficient SFE.

Where We’ve Come From. Although the theoretical foundations of SFE have been laid over two
decades ago, until recently, SFE was seen merely as a theoretical concept. Around ten years ago first SFE
implementations were reported, and new primitives, such as efficient additively homomorphic encryption,
have been proposed. About five years ago, coinciding with the availability of general SFE tools, a variety
of privacy-preserving protocols started appearing in the research area of security, and real-life applications
became within reach. In 2008 came a first major deployment of secure computation – its use in executing
a nation-wide sugar beets auction in Denmark [11].

Where We Are. Today, we are on the verge of SFE gaining widespread recognition and use. Even now,
the efficiency of existing protocols allows for business justification of its use in a number of scenarios. At
the same time, both theoretical and applied research in SFE are experiencing a great surge in anticipation
of its success. A variety of SFE techniques and their prototype implementations already exist, each with
its advantages and disadvantages – in this survey we have summarized today’s most efficient approaches
for generic SFE and presented a unified framework in which these can be arbitrarily combined.

Where We May Be Going. With the growth of the web and social networking came the realization
of the value of privacy. Governments are introducing far-reaching restrictions on data collection and
use, especially in the personal health domain. SFE is a clear candidate to help achieve privacy, while
enabling a variety of applications. (Of course, no single technology, not even powerful primitives such
as fully homomorphic encryption, can be used as a universal solution for private computing. This is
due to both impossibility results [115] and the cost barriers raised by some SFE techniques. Instead,
a comprehensive approach would include SFE, secure hardware, hardened code, legal agreements, etc.)
With the political and business need in place, the Moore’s-law performance improvements of hardware
and expected algorithmic improvements, it is clear that SFE’s use will be practically justified in more
and more of security- and privacy-critical applications. In the longer term, fully homomorphic encryption
may become practically efficient, and enable new opportunities.

We hope that our work serves to promote secure computation beyond theoretical research communi-
ties, and helps facilitate its earlier and broader practical use.
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