
Journal of Computer Security 22 (2014) 269–300 269
DOI 10.3233/JCS-130492
IOS Press

Effective verification of confidentiality for
multi-threaded programs

Tri Minh Ngo ∗, Mariëlle Stoelinga and Marieke Huisman
University of Twente, Enschede, The Netherlands
E-mails: tringominh@gmail.com, {Marielle.Stoelinga, Marieke.Huisman}@ewi.utwente.nl

This paper studies how confidentiality properties of multi-threaded programs can be verified efficiently
by a combination of newly developed and existing model checking algorithms. In particular, we study the
verification of scheduler-specific observational determinism (SSOD), a property that characterizes secure
information flow for multi-threaded programs under a given scheduler. Scheduler-specificness allows us
to reason about refinement attacks, an important and tricky class of attacks that are notorious in practice.
SSOD imposes two conditions: (SSOD-1) all individual public variables have to evolve deterministically,
expressed by requiring stuttering equivalence between the traces of each individual public variable, and
(SSOD-2) the relative order of updates of public variables is coincidental, i.e., there always exists a match-
ing trace.

We verify the first condition by reducing it to the question whether all traces of each public variable are
stuttering equivalent. To verify the second condition, we show how the condition can be translated, via
a series of steps, into a standard strong bisimulation problem. Our verification techniques can be easily
adapted to verify other formalizations of similar information flow properties.

We also exploit counter example generation techniques to synthesize attacks for insecure programs that
fail either SSOD-1 or SSOD-2, i.e., showing how confidentiality of programs can be broken.

Keywords: Confidentiality, scheduler, observational determinism, multi-threaded programs verification,
counter example, attack synthesis

1. Introduction

Finding ways to guarantee confidentiality of applications remains a difficult, but
highly important task. Applications such as Internet banking, medical informa-
tion systems, and authentication systems need to enforce strict protection of pri-
vate data, e.g., credit card details, medical records etc. In particular, private in-
formation should not be derivable from public data.1 For example, the program
if (h > 0) then l := 0 else l := 1, where h is a private variable and l is a
public variable, leaks secret information, since we can derive the value of h from
the value of l. If private data is not sufficiently protected, users refuse to use such
applications. Using formal means to establish confidentiality is a promising way to
gain the trust of users.

*Corresponding author. E-mail: tringominh@gmail.com.
1For simplicity, throughout this paper, we consider a simple two-point security lattice, where the data

is divided into two disjoint subsets, of private (high) and public (low) security levels, respectively.

0926-227X/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

270 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Various techniques are capable of modeling and analyzing the confidentiality
property. Classical approaches are typically based on type systems (see [35] for an
overview): if a program can be typed, it ensures secure information flow. Type sys-
tems are efficient, but imprecise, and also reject many innocuous programs.

Therefore, recent work on adopting techniques from model checking [8,16,24] is
emerging as an alternative approach to gain better precision. An interesting challenge
is to extend these results to the multi-threaded case. This is important, since with the
development of multiple cores on a chip and massively parallel systems like general-
purpose graphic processing units, multi-threading is becoming the standard. How-
ever, this is also a challenge, for two reasons. First of all, the formalization of con-
fidentiality for multi-threaded programs is not easy. The outcomes of multi-threaded
programs depend on the scheduling policy. Moreover, because of the interactions be-
tween threads and the exchange of intermediate results, we should take into account
intermediate results in the model of observations [23,24,44]. Existing confidentiality
properties, such as noninterference [19] and observational determinism [24,44] only
consider input-output behavior, and ignore the role of schedulers. Thus, they are not
suitable to ensure confidentiality for multi-threaded programs. New definitions of
confidentiality have to be developed for an observational model where an attacker
can access the full code of the program, observe the traces of public data, and limit
the set of possible program traces by selecting a scheduler.

The second challenge is, given an appropriate confidentiality property, to develop
an efficient and precise verification algorithm for the property. While various, subtly
different approaches to formalize multi-threaded confidentiality have been proposed
[22,24,34,40,44], efficient verification techniques for these properties are still lack-
ing. Therefore, this paper develops methods to verify these important information
flow properties by combining newly developed and existing model checking algo-
rithms.

Observational determinism. This paper studies the verification of scheduler-
specific observational determinism (SSOD). This is a formalization of the se-
cure information flow requirements for multi-threaded programs. As observed by
Roscoe [34], for a multi-threaded program, not to leak information about private
data, its public data have to behave deterministically. We formalized this as SSOD.
In contrast to other formalizations of observational determinism, SSOD explicitly
considers the scheduler that is used to execute the program. Indeed, due to the in-
teractions between threads, data traces of a multi-threaded program depend on the
scheduling policy. Therefore, the program’s confidentiality is only guaranteed under
a particular scheduler. A different scheduler might make the program reveal secret
information, as illustrated by the following example.

Example 1.

{
if (h > 0) then l1 := 1 else l2 := 1

}

||{l1 := 1;l2 := 1}||{l2 := 1;l1 := 1};

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 271

where || is the parallel operator. Under the uniform scheduler, i.e., a scheduler that
chooses threads uniformly and thus all possible interleavings of threads are consid-
ered, the secret information cannot be derived, since the traces in the cases h > 0 and
h � 0 are the same. However, under a scheduler that always executes the leftmost
thread first, the secret information is revealed by observing whether l1 is updated
before l2, i.e., when it is so, the attacker knows that h > 0.

Since we assume that an attacker knows the full source code of the program, if
he chooses an appropriate scheduler, secret information can be revealed from the
limited set of possible traces. This sort of attack is called a refinement attack [8,35],
since the choice of the scheduling policy refines the set of possible program traces.
Therefore, by formulating a confidentiality requirement that is parametric over the
scheduling policy allows to qualify which scheduler (or classes of schedulers) can
be used to securely execute a program.

SSOD imposes two requirements on the possible behaviors of a program:

• (SSOD-1) each public variable has to evolve deterministically. This is captured
by requiring that, for any two initial states I and I ′ that are indistinguishable
w.r.t. the public variables, all possible traces of a single public variable starting
in I and I ′ are stuttering equivalent; and

• (SSOD-2) the relative order of updates of public variables is coincidental. This
is captured by requiring that for any two initial states I and I ′ that are indistin-
guishable w.r.t. the public variables, and for every trace starting in I , there exists
a trace that is stuttering equivalent w.r.t. all public variables, starting in I ′.

SSOD is scheduler-specific, since traces model the runs of a program under a partic-
ular scheduler. When the scheduling policy changes, some traces cannot occur, and
also, some new traces might appear; thus the new set of traces may not respect our
requirements. For example, the above program is accepted by SSOD w.r.t. the uni-
form scheduler, but is rejected under the scheduler that always executes the leftmost
thread first.

Notice that the question which classes of schedulers appropriately model real-life
attacks is orthogonal to our results: our definition is parametric on the scheduler. In
[23], we compare SSOD with the existing formalizations of confidentiality proper-
ties [24,40,44], and argue that they are either unsuitable to the multi-threaded con-
text, or more restrictive than SSOD.

Verification. To verify SSOD, we extract a Kripke structure from the execution of
a program under the control of a scheduler, in a standard way. To check our first re-
quirement, we reduce it to the problem of verifying whether all traces of each public
variable of a certain Kripke structure are stuttering equivalent. Our algorithm to ver-
ify all-trace stuttering equivalence is implemented by checking whether there exists
a functional bisimulation between the Kripke structure and a witness trace. This is

272 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

a new algorithm, that is also relevant outside the security context, e.g., as in partial-
order reduction for model checking, since stuttering equivalence is a fundamental
concept in the theory of concurrent and distributed systems [6].

Our second requirement reduces to check the stuttering trace equivalence between
two Kripke structures. To check this, we first remove stuttering steps, and then deter-
minize two Kripke structures. Next, we check whether these two deterministic and
stuttering-free Kripke structure are strongly bisimilar. Our verification is based on
the well-known fact that in deterministic and stuttering-free Kripke structures, trace
equivalence and strong bisimulation coincides [17].

Our approach gives a precise verification method for confidentiality. We would
like to stress that other formalizations of observational determinism [24,40,44] can
also be verified by a minor modification of our algorithms.

Another advantage of using model checking techniques to verify information flow
properties is that we can synthesize attacks for insecure programs, based on counter
example generation techniques. Since the verification algorithm is precise, if it fails,
a counter example can be produced, describing a possible attack on the security of the
program. This paper describes how the verification algorithms can be instrumented
to produce these counter examples. We believe that our idea of applying counter ex-
ample generation to synthesize attacks for confidentiality property of multi-threaded
programs has not previously been mentioned in literature.

Currently, we are implementing our verification techniques in the symbolic model
checker LTSmin [10]. The algorithms are implemented, and we are now applying
the implementation to case studies.

The formal definition of SSOD, and the comparison with other formaliza-
tions of observational determinism in the literature, has been published before in
FoVeOOs [22,23] and has also been presented at SecCo 2011.2 However, in this ear-
lier version, we used a different verification technique: characterizing SSOD as a
temporal logic formula that leads to a model checking problem of very high com-
plexity. This paper proposes more efficient algorithms. Both verification algorithms
and the attack synthesis in this paper have not been published before. The algorithm
to check SSOD-1 borrows ideas from the one we developed for the verification of
scheduler-specific probabilistic observational determinism (SSPOD), a probabilistic
version of SSOD [31], but it solves a completely different problem: SSOD-1 checks
if all traces are stuttering equivalent, while SSPOD-1 in essence checks that all traces
are stuttering equivalent with probability 1.

Organization of the paper. The rest of this paper is organized as follows. After
the preliminaries in Section 2, Section 3 presents a formal definition of SSOD. Sec-
tion 4 discusses the algorithms to verify the property. Section 5 discusses the attack
synthesis. Finally, Sections 6 and 7 discuss related work and conclusions.

2The 9th International Workshop on Security Issues in Concurrency.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 273

2. Preliminaries

2.1. Sequences

Let X be an arbitrary set. The sets of all finite sequences, and all sequences of X
are denoted by X∗ and Xω , respectively. The empty sequence is denoted by ε. Given
a sequence σ ∈ X∗, we denote its last element by last(σ). A sequence ρ ∈ X∗ is
called a prefix of σ, denoted by ρ � σ, if there exists another sequence ρ′ ∈ Xω

such that ρρ′ = σ.

2.2. Kripke structures

Kripke structures are a standard way to model programs semantics [26]. Basi-
cally, Kripke structures are graphs where nodes represent states of the system and
edges represent transitions between states. Each state may enable several transitions,
modeling different execution orders to be determined by a scheduler. State labels
equip each state with the relevant information about that state. For technical conve-
nience, our Kripke structures label states with arbitrary-valued variables from a set
Var, rather than with Boolean-valued atomic propositions. Thus, each state c is la-
beled by a function (valuation) V (c) : Var → Val that assigns a value V (c)(v) ∈ Val
to each variable v ∈ Var. We assume that Var is partitioned into sets of low variables
L and high variables H, i.e., Var = L ∪ H, with L ∩ H = ∅.

Definition 1 (Kripke structure). A Kripke structure A is a tuple 〈S , I , Var, Val,V ,
→〉 consisting of (i) a set S of states, (ii) an initial state I ∈ S , (iii) a finite set
of variables Var, (iv) a countable set of values Val, (v) a labeling function V :S →
(Var → Val), (vi) a transition relation → ⊆ S × S . We assume that → is non-
blocking, i.e., ∀c ∈ S. ∃c′ ∈ S. c → c′.

Given a set Var′ ⊆ Var, the projection A|Var′
of A on Var′, restricts the label-

ing function V to labels in Var′. Thus, we obtain A|Var′
from A by replacing V by

V|Var′
:S → (Var′ → Val).

Semantics of programs. A program C over a variable set Var can be expressed as a
Kripke structure AC in a standard way: The states of AC are tuples 〈C, s〉 consisting
of a program fragment C and a valuation s : Var → Val. The transition relation →
follows the small-step semantics of C. If a program terminates in a state c, we include
a special transition c → c, i.e., a self-loop, ensuring that AC is non-blocking. In the
remainder of this paper, we leave out the superscript C whenever this is clear from
the context.

274 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Paths and traces. A path π in A is an infinite sequence π = c0c1c2 . . . such that (i)
ci ∈ S , c0 = I , and (ii) for all i ∈ N, ci → ci+1. We define Path(A) as the set of all
infinite paths of A; and Path∗(A) = {π′ � π | π ∈ Path(A)} as the set of all finite
paths in Path(A).

The trace T of a path π records the valuations along π. Formally, T = trace(π) =
V (c0)V (c1)V (c2) Trace T is a lasso iff it ends in a loop, i.e., if T = T0 . . . Ti
(Ti+1 . . . Tn)ω , where (Ti+1 . . . Tn)ω denotes a loop. Let Trace(A) denote the set of
all infinite traces of A. Two states c and c′ are low-equivalent, denoted c ∼L c′, iff
V (c)|L = V (c′)|L . Over a trace T , we let T|l and T|L denote the projections of T on a
low variable l and the set of low variables L, respectively.

2.3. Schedulers

A multi-threaded program executes threads from the set of non-terminated threads,
i.e., the live threads. During the execution, a scheduling policy repeatedly decides
which thread is picked to proceed next. A scheduler is a function that implements
a scheduling policy [36]. To make our security property applicable for many sched-
ulers, we give a general definition. We allow a scheduler to use the full history of
computation to make decisions: given a path ending in some state c, a scheduler
δ which determines a set of the possible successor states Q is formally defined as
follows,

Definition 2. A scheduler δ for a Kripke structure A = 〈S , I , Var, Val,V ,→〉 is a
function δ : Path∗(A) → 2S , such that, for all finite paths π ∈ Path∗(A), if δ(π) =
Q ⊆ S then last(π) can take a transition to any c ∈ Q. Given π, we write c0 →
c1 → c2 · · · → cn if ci ∈ δ(c0 . . . ci−1) for all 1 � i < |π|.

The effect of a scheduler δ on A can be described by Aδ: the set of states of Aδ

is obtained by unrolling the paths in A, i.e., SAδ
= Path∗(A) such that states of Aδ

contain a full history of execution. Besides, the unreachable states of A under the
scheduler δ are removed by the transition relation →δ .

Definition 3. Let A = 〈S , I , Var, Val,V ,→〉 be a Kripke structure and let δ be a
scheduler for A. The Kripke structure associated to δ is Aδ = 〈Path∗(A), I , Var,
Val,Vδ ,→δ〉, where Vδ : Path∗(A)×Var → Val is given by Vδ(π) = V (last(π)), and
the transition relation is given by π →δ πc iff c ∈ δ(π), i.e., Aδ can transition from
a path π to a path πc if δ enables scheduling state c after π.

2.4. Stuttering-free Kripke structures and stuttering equivalence

Stuttering steps and stuttering equivalence [24,33] are the basic ingredients of our
confidentiality properties.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 275

Definition 4 (Stuttering-free Kripke structure). A stuttering step is a transition c →
c′ that leaves the labels unchanged, i.e., V (c′) = V (c). A Kripke structure is called
stuttering free if c → c′ and V (c) = V (c′) imply c = c′ and c is a final state, i.e.,
stuttering steps are only allowed as self-loops in final states.

Two sequences are stuttering equivalent if they are the same after we remove ad-
jacent occurrences of the same label, e.g., (aaabcccd)ω and (abbcddd)ω .

Definition 5 (Stuttering equivalence). Let X be a set. Stuttering equivalence, de-
noted ∼, is the largest equivalence relation over Xω ×Xω such that for all T ,T ′ ∈
Xω , a, b ∈ X . aT ∼ bT ′ ⇒ a = b∧ (T ∼ T ′∨aT ∼ T ′∨T ∼ bT ′). A set Y ⊆ X
is closed under stuttering equivalence if T ∈ Y ∧ T ∼ T ′ imply T ′ ∈ Y .

3. Scheduler-specific observational determinism

A program is confidential w.r.t. a particular scheduler iff no secret information
can be derived from the observation of public data traces, or from the ordering of
public data updates. This is captured formally by the definition of scheduler-specific
observational determinism.

As shown in [23,44], to be secure, a multi-threaded program must impose an order
on the accesses to a single low variable, i.e., the sequence of operations performed
at a single low variable must be deterministic. Therefore, SSOD’s first condition re-
quires that any two traces of each low variable from any two initial low-equivalent
state I1 and I2 are stuttering equivalent. This condition ensures that no secret infor-
mation can be derived from the observation of public data traces. Indeed, when each
low variable individually evolves deterministically, the values of low variables are
independent of the values of high variables. Notice that requiring only the existence
of a single matching low variable trace is not sufficient, as shown in the following
example.

Example 2. Consider the following program, where h is a Boolean,

if (h) then {l := 0;l := 1} || l := 0

else {l := 0;l := 1} || {l := 0;l := 0};

This program leaks information under the uniform scheduler: if h is 1, then l is more
likely to contain 1 than 0 in final states. However, there always exists a matching low
location trace for l. Therefore, we require instead that traces of each low variable
must be deterministic. This deterministic property of traces also avoids cache attacks,
i.e., attacks that exploit the timing behavior of threads via the cache to derive secret
information [44].

276 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

It should be noted that a consequence of SSOD-1 is that innocuous programs such
as l := 0||l := 1 are also rejected, since its set of traces cannot be distinguished
from the traces of Example 2.

Notice that the transition relation of the Kripke structure is non-blocking, i.e.,
there is a self-loop at each final state. Thus, the attacker cannot detect termination.
However, the termination leaks are avoided, since SSOD requires stuttering equiv-
alence between traces, instead of stuttering and prefixing equivalence as in [40,44].
Huisman et al. analyzed this point in detail in [24].

SSOD also requires that, given any two initial low-equivalent states I and I ′, for
every trace starting in I , there exists a trace that is stuttering equivalent w.r.t. all
low variables, starting in I ′. The second condition of SSOD requires the existence
of a matching public data trace. This existential condition avoids refinement attacks
where an attacker chooses an appropriate scheduler to control the set of possible
traces. The second condition also ensures that the relative orders of updates of low
variables are coincidental. Thus, no information can be deduced from them.

Formally, SSOD is defined as follows.

Definition 6 (SSOD). For any two initial low-equivalent states I and I ′, let Aδ and
A′
δ denote two Kripke structures corresponding to I and I ′, respectively. Given a

scheduler δ, a program C respects SSOD w.r.t. L and δ, iff

SSOD-1 ∀T ∈ Trace(Aδ), T ′ ∈ Trace(A′
δ), l ∈ L. T|l ∼ T ′

|l ,

SSOD-2 ∀T ∈ Trace(Aδ). ∃T ′ ∈ Trace(A′
δ). T|L ∼ T ′

|L .

A program C is scheduler-specific observational deterministic w.r.t. a set of sched-
ulers Δ if it is so w.r.t. any scheduler δ ∈ Δ.

4. Algorithmic verification

This section discusses how we algorithmically verify the two conditions of SSOD.
As mentioned above, we use a combination of new and existing algorithms. The new
algorithm is general, and also applicable in other, non-security related contexts. We
assume that data domains are finite and schedulers use finite memory. Therefore, the
algorithms work only on finite Kripke structures.

We first simplify SSOD by replacing SSOD-1 with SSOD-1A. Intuitively,
SSOD-1A requires that, given a Kripke structure A that corresponds to any initial
state, after projecting on l, all traces are stuttering equivalent,

SSOD-1A ∀l ∈ L. T ,T ′ ∈ Trace(Aδ). T|l ∼ T ′
|l .

The new condition SSOD-1A and SSOD-2 are equivalent to SSOD-1 and SSOD-2.

Theorem 1. If a program is scheduler-specific observational deterministic w.r.t. L
and a scheduler δ, then SSOD-1 and SSOD-2 ⇔ SSOD-1A and SSOD-2.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 277

Proof.

(1) SSOD-1 and SSOD-2 ⇒ SSOD-1A
Given any two traces T1, T2 ∈ Trace(Aδ), and any T ′ ∈ Trace(A′

δ). Accord-
ing to SSOD-1, ∀l ∈ L, T1|l ∼ T ′

|l ∧ T2|l ∼ T ′
|l . Therefore, we can conclude

that ∀l ∈ L. T1|l ∼ T2|l .
(2) SSOD-1A and SSOD-2 ⇒ SSOD-1

Given any traces T ∈ Trace(Aδ), T ′ ∈ Trace(A′
δ). According to SSOD-2,

there exists a trace T ′′ ∈ Trace(A′
δ) such that T|L ∼ T ′′

|L . If T|L ∼ T ′′
|L ,

then ∀l ∈ L. T|l ∼ T ′′
|l . According to SSOD-1A, ∀l ∈ L, T ′

|l ∼ T ′′
|l , then

∀l ∈ L. T|l ∼ T ′
|l . �

Let Aδ |l and Aδ |L represent the projections of Aδ on the label sets l and L, respec-
tively. Since {T|l | T ∈ Trace(Aδ)} = Trace(Aδ |l) and {T|L | T ∈ Trace(Aδ)} =
Trace(Aδ |L), properties SSOD-1A and SSOD-2 can easily be reformulated over
these Kripke structures as follows:

SSOD-1K ∀l ∈ L. T ,T ′ ∈ Trace(Aδ |l). T ∼ T ′,

SSOD-2K ∀T ∈ Trace(Aδ |L). ∃T ′ ∈ Trace(A′
δ |L). T ∼ T ′.

Thus, SSOD-1K requires that for all l ∈ L, all traces of Aδ |l are stuttering equivalent,
while SSOD-2K requires stuttering trace equivalence between Aδ |L and A′

δ |L .

4.1. Verification of SSOD-1K

Given a program C, and a scheduler δ, SSOD-1K requires that after projecting Aδ
on any low variable l, all traces must be stuttering equivalent. To verify this, we pick
one arbitrary trace and ensure that all other traces are stuttering equivalent to this
trace. Concretely, for each l ∈ L, we carry out the following steps. (Figures 1 and 2
on page 283 provide an elaborate illustration of these steps.)

Notice that the following algorithms can be applied to any Kripke structure, i.e.,
independent of the scheduling policy. Thus, instead of the notation Aδ indicating a
specific scheduler, we use a general notation A.

Step 1. Step 1 is done by labeling every state with the value of l in that state.

Step 2. Step 2 identifies all divergent states of a Kripke structure A. Before describ-
ing the algorithm for Step 2, we first derive two lemmas that follow directly from the
definition of a divergent state (given in Step 2 of Algorithm 1).

Lemma 1. If state c has a stuttering loop or a self-loop, c is divergent.

Lemma 2. Assume that c has no self-loop or no stuttering loop. Then, state c is
divergent iff c has a divergent equivalent successor.

278 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Algorithm 1. SSOD-1K on l

1: Project Aδ on l, yielding Aδ |l .
2: Identify all divergent states of Aδ |l . A state c of A is divergent if there exists a

trace such that all states following c are equivalent to c.
3: Check whether all traces of Aδ |l are stuttering equivalent by:

3.1: Choose a witness trace by:
3.1.1: Take an arbitrary lasso T of Aδ |l .
3.1.2: Remove stuttering steps and minimize T .

3.2: Check stuttering trace equivalence between Aδ |l and T by checking if
there exists a functional bisimulation between them.

Step 2 is implemented by exploring state space of a Kripke structure A and de-
termining whether each reachable state is divergent or not. The state space of A
is explored in a breadth first search order (BFS). Let Pred(A, c) and Succ(A, c)
denote the set of all direct predecessors and successors of c, respectively, i.e.,
Pred(A, c) = {b ∈ S|b → c} and Succ(A, c) = {d ∈ S|c → d}. Let c ∼V c′

denote that c and c′ have the same valuation, i.e., V (c) = V (c′).
The algorithm to identify divergent states of A uses two queues: Q and

Non_Diver_Q, and two maps: Divergent and Checked. The queue Q stores the set
of frontier states of the exploration. Initially, Divergent indicates the number of stut-
tering transitions of each state, i.e., Divergent[c] = 3 indicates that c is equivalent
to three of its successors. During the execution, the algorithm changes the values
in Divergent. When the algorithm terminates, the value of Divergent[c] will indi-
cate whether c is divergent or not, i.e., iff Divergent[c] = 0, c is non-divergent. The
queue Non_Diver_Q stores non-divergent states, i.e., all reachable state c such that
Divergent[c] = 0. The Checked indicates that whether a state has been checked or
not, i.e., true or false.

The algorithm works as follows. States of A are explored by a BFS (lines 6–12 in
Algorithm 2). For each explored state c, the number of its direct stuttering transitions
is stored in Divergent[c] (line 11). If c has no outgoing stuttering transition, i.e.,
Divergent[c] = 0, it is clear that c is non-divergent (line 12).

For any c such that Divergent[c] = 0, for each predecessor b of c such that
c is reached from b by a stuttering transition, the algorithm decreases the value
Divergent[b] by 1 (lines 13–18). The idea is to remove the number of non-divergent
equivalent successors out of the value Divergent[b] of a state b. Finally, when
Divergent is stable, the value Divergent[b] will indicate whether b is divergent or
not, i.e., if b has a divergent equivalent successor, i.e., Divergent[b] �= 0, b is diver-
gent (due to Lemma 2).

For example, assume that b is a direct predecessor of a non-divergent c, and b has
only one stuttering transition, which goes to c, i.e., Divergent[b] = 1. Since c is non-
divergent, according to Lemma 2, b is also non-divergent. Due to the algorithm, the
value of Divergent[b] is decreased by 1; and thus becomes 0, which indicates that b
is non-divergent.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 279

Algorithm 2. Identify divergent states (A)

// Initialization
1. for all states c ∈ S do
2. Checked[c] := false;
3. Divergent[c] := 0;
4. Q := empty_queue(); enqueue(Q, init_state);
5. Non_Diver_Q := empty_queue();
// Explore state space by BFS
6. enqueue(Q, init_state); Checked[init_state] := true;
7. while !empty(Q) do
8. current := dequeue(Q);
9. for all states c ∈ Succ(A, current) and ¬Checked[c] do
10. enqueue(Q, c); Checked[c] := true;

// Record the number of stuttering successors
11. Divergent[current] := |{c ∈ Succ(A, current) | c ∼V current}|;
12. if Divergent[current] = 0 then enqueue(Non_Diver_Q, current);
// Propagate non-divergence backwards
13. while !empty(Non_Diver_Q) do
14. current := dequeue(Non_Diver_Q);
15. for all states b ∈ Pred(A, current) do
16. if b ∼V current and Divergent[b] �= 0 then
17. Divergent[b] := Divergent[b] − 1;
18. if Divergent[b] = 0 then enqueue(Non_Diver_Q, b);
// Normalize divergence
19. for all states c ∈ S do
20. if Divergent[c] �= 0 then Divergent[c] := true
21. else Divergent[c] := false;

Theorem 2. Algorithm 2 identifies divergent states of a Kripke structure A.

Proof. Algorithm 2 always terminates, since A is finite. Two queues Q and
Non_Diver_Q ensure that each state and each edge of A are processed at most once
in each while loop. Thus, the time complexity of this algorithm is linear in the size
of A.

We show that the second while loop correctly determines the divergent property
of each state. We first discuss its loop invariant Inv:

If a state c is divergent, Divergent[c] �= 0.

Initially, the value of Divergent[c] is the number of stuttering successors of c. If c
is divergent, according to the definition of divergent state, it must have at least one
stuttering successor, i.e., Divergent[c] �= 0. Thus, clearly, Inv holds upon the first
entry of the loop.

280 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

We show that the invariant is preserved by every iteration of the loop. Assume
Inv holds before the loop body. Consider a divergent state c. Due to the invariant,
Divergent[c] �= 0 holds before the execution of the loop.

Suppose that the value of Divergent[c] has been decreased by 1 in the iteration,
i.e., c has a stuttering successor d with Divergent[d] = 0.

• Case c has a self-loop. In that case, c has at least two stuttering successors: one
of them is itself. Therefore, the invariant is preserved after the iteration, since
Divergent[c] � 2 before the iteration.

• Case c has a stuttering loop. States in a stuttering loop always have at least one
stuttering successor. Since they are connected in a loop, their Divergent values
never become 0. Since Divergent[d] = 0, d must be outside the stuttering loop.
Thus, c has at least two stuttering successors before the iteration. The invariant
is preserved.

• If c has no self-loop or no stuttering loop, according to Lemma 2, c must have a
divergent stuttering successor e. Since the invariant is true before the iteration,
Divergent[e] �= 0. Hence, d and e are not the same state. Thus, c has at least
two stuttering successors. The invariant is preserved.

Thus, Inv is a loop invariant. Therefore, Inv holds after termination: if c is di-
vergent, Divergent[c] �= 0. In other words, any c such that Divergent[c] = 0 is
non-divergent.

Additionally, we show the following post-condition:

if the algorithm terminates, and if c is non-divergent, then Divergent[c] = 0.

If c is non-divergent, all traces starting in c must pass a state that is not equivalent
to c. Let C denote the set of equivalent states that are reachable from c only via
stuttering transitions. To define C formally, we define the stuttering-closure Stut(Q)
of a subset Q ⊆ S ,

Q0 = Q,

∀n � 0. Qn+1 =
{
c′ ∈ S | ∃c ∈ Qn. c → c′ ∧ c ∼V c′

}
.

We define Stut(Q) =
⋃

nQn. This is formally defined as an infinite union, but it is
actually a finite union; since there are at most a finite number of states in S . There-
fore, formally, C = Stut(c).

There must exist a state c′ ∈ C such that initially, Divergent[c′] = 0, i.e., c′ only
connects to states outside C. Otherwise, a contradiction occurs: assume that initially,
∀c′ ∈ C, Divergent[c′] �= 0, i.e., all states have at least a stuttering successor. Since
the set C is finite, if all states of C have stuttering successors, there must exist a stutter-
ing loop inside C. Hence, c is divergent due to Lemma 1; and this is a contradiction,
since we assume that c is non-divergent.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 281

Let D0 denote the set of states c′ ∈ C such that initially, Divergent[c′] = 0.
Notice that the algorithm changes the Divergent value of states. Let D0 denote the
set of states of C such that currently, their Divergent values are 0. Initially, D0 = D0.

Consider the set of direct predecessors of D0. We claim that there must exist a
state c′′ in this set of predecessors such that initially, Divergent[c′′] is equal to the
number of its successors c′ with Divergent[c′] = 0, i.e, Divergent[c′′] = |{c′ ∈
Succ(A, c′′) | c′ ∼V c′′ ∧ Divergent[c′] = 0}|. If not, the contradiction occurs
by the same argument, i.e., there exists a stuttering loop. Let D1 denote the set of
direct predecessors c′′ of D0 such that initially, Divergent[c′′] = 1. According to the
algorithm, the Divergent values of states in D1 are decreased by 1. Thus, after a few
iterations, the Divergent values of all states in D1 become 0, i.e., D0 = D0 ∪D1.

Therefore, by a similar argument, the Divergent values of other states, e.g., the
predecessors of D0 with the Divergent value 2, also become 0; and so on. The set
D0 gradually grows, and at the termination, D0 = C. Therefore, when the algorithm
terminates, if c is non-divergent, Divergent[c] = 0. This is also equivalent that if
Divergent[c] �= 0, c is divergent. �

Step 3. Step 3.1.1 is implemented via a classical cycle-detection algorithm based
on depth-first search. The initial state of a lasso is also the initial state of the Kripke
structure. The algorithm essentially proceeds by picking arbitrary next steps, and
terminates when it hits a state that was picked before.

In Algorithm 3, we use a map Visit to indicate visited states of A, i.e.,
Visit[current] = true indicates that current has been visited before. Clearly, this
algorithm returns a trace of A. Moreover, it always terminates, because A is finite
and there is a self-loop at every final state.

Step 3.1.2 is done via the standard strong bisimulation reduction [9]. For example,
the minimal form of a lasso abb(cb)ω is a(bc)ω . This minimal lasso is called the
witness trace. Except the final state, all states of the witness trace are set to be non-
divergent.

Step 3.2 checks stuttering trace equivalence between a Kripke structure A and the
witness trace T by checking if there exists a functional bisimulation between them,

Algorithm 3. Lasso T of A
for all states c ∈ S do Visit[c] := false;
index := 0;
current := init_state;
for (; ;) do

T [index] := current; // Implement T as an array
index := index + 1;
if Visit[current] = true then break;
Visit[current] := true;
current := some state c ∈ Succ(A, current);

return(T , position of current in T);

282 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Algorithm 4. All-trace stuttering equivalence (A, T)

1. for all states c ∈ S do Map[c] := ⊥;
2. continue := true;
3. Q := empty_queue(); enqueue(Q, init_state);
4. Map[init_state] := u0; // u0 is T0
5. while !empty(Q) ∧ continue do
6. current := dequeue(Q);
7. u := Map[current];
8. for all states c ∈ Succ(A, current) do
9. potential_map := (c ∼V current) ? u : Succ(T ,u);
10. case c �∼V potential_map � continue := false;
11. [] Divergent[c] �= Divergent[potential_map] � continue := false;
12. [] Map[c] = ⊥ � enqueue(Q, c); Map[c] := potential_map;
13. [] Map[c] �= potential_map � continue := false;
14. return continue;

i.e., a bisimulation that is a function, thus mapping each state in A to a single state
in T . This is done by exploring the state space of A in a breadth-first search (BFS)
order and building the mapping Map during exploration. We name each state in T by
a unique symbol u ∈ U , i.e., ui denotes Ti. Let Succ(T , u) denote the successor of u
on T .

We map A’s initial state to u0, i.e., Map[init_state] = u0 (line 4 in Algorithm 4).
Each iteration of the algorithm examines the successors of the state stored in the
variable current (lines 6–8). Assume that Map[current] is u, consider a successor c ∈
Succ(A, current). The potential_map of c is u if current → c is a stuttering transition;
otherwise, it is Succ(T , u) (line 9). The algorithm returns false, i.e., continue = false,
if (i) c and potential_map have different valuations, (ii) c and potential_map have
different divergent values, or (iii) c has been checked before, but its mapped state is
not potential_map (line 10, 11 and 13).

If none of these cases occurs and c was not checked before, c is added to Q, and
mapped to potential_map (line 12). Basically, a state c of A is mapped to u, i.e.,
Map[c] = u, iff the trace from the initial state to state c in A and the prefix of T up
to u are stuttering equivalent.

Let final(A, c) denote that c is a final state in A; and final(T ,u) denote that u is the
final state in T . The algorithm also uses a queue Q of frontier states. The termination
of the following algorithm follows from the termination of BFS over a finite A.

Example 3. Figure 1 illustrates Step 1–Step 3.1 on a Kripke structure A consisting
of 10 states, numbered from 0 to 9. Step 1 shows a projection of A on a low variable l
where the symbols a, b, c etc. denote state contents, i.e., states with the same value of
l are represented by the same symbol. Step 2 identifies divergent states by ∗. Step 3.1

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 283

astart
0

b

1

b

2 b

3

c

4

b

5 c

6

c

7 c

8

d

9

astart
0

b∗
1

b∗
2

b

3

c∗
4

b∗
5

c

6

c∗
7 c

8

d∗
9

a

0

b

3

c

6

c

8

d∗
9

a

u0

b

u1

c

u2

d∗
u3

Step 1 Step 2 Step 3.1.1 Step 3.1.2

Fig. 1. Step 1–Step 3.1 of Algorithm 1.

⊥start
0

⊥∗
1

⊥∗
2

⊥
3

⊥∗
4

⊥∗
5

⊥
6

⊥∗
7

⊥
8

⊥∗
9

a

u0

b

u1

c

u2

d∗
u3

Q = ∅
Before mapping

u0start

0

⊥∗
1

⊥∗
2

⊥
3

⊥∗
4

⊥∗
5

⊥
6

⊥∗
7

⊥
8

⊥∗
9

Q = [0]
Map state 0

u0start

0

�

1

⊥∗
2

⊥
3

⊥∗
4

⊥∗
5

⊥
6

⊥∗
7

⊥
8

⊥∗
9

Q = [1, 2, 3]
Violation in state 1

Fig. 2. Step 3.2 of Algorithm 1 (i.e., Algorithm 4).

takes an arbitrary trace of A and then minimizes it. Each state of the witness trace T
is denoted by a unique symbol ui. Figure 2 illustrates Step 3.2. Initially, all states of
A are mapped to a special symbol ⊥ that indicates unchecked states. To keep states
readable, we skip the valuation. Next, state 0 is enqueued, and mapped to u0. In the
next step, the algorithm examines all unchecked successors of state 0, i.e., states 1,
2, 3. Each of them follows a non-stuttering step, thus their potential_maps are all u1.
State 1 is divergent while potential_map is not, thus, continue = false. SSOD-1K
fails, since there exists a trace that stutters in state 1 forever, and thus, A and T are
not stuttering trace equivalent. The algorithm terminates.

As a first step towards proving correctness, we prove that Algorithm 4 ensures the
following loop invariant.

284 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Theorem 3. Algorithm 4 preserves the following loop invariant Inv:

If continue, then ∀c ∈ S such that Map[c] = u, the trace from init_state to c
and the prefix of T up to u are stuttering equivalent, and if ¬continue, then there
exists a trace of A that is not stuttering equivalent to T .

Proof. Clearly, Inv holds upon the first entry of the loop, since initially, continue
holds, and only init_state is mapped to the initial state of T , i.e., u0.

We show that the invariant is preserved by every iteration of the loop. Assume
that Stm holds before the loop body. If continue does not hold, then the loop is not
executed, and the algorithm ends. The invariant is preserved.

Otherwise, continue holds. The invariant before the loop body states that the trace
from init_state to current and the prefix of T up to u are stuttering equivalent. Now
consider a successor c of current. We distinguish the following cases:

Case c �∼V u and c �∼V Succ(T , u). Let potential_map denote the mapping candi-
date of c. It is u if c ∼V current; otherwise, it is Succ(T , u). If c �∼V u and
c �∼V Succ(T , u), then c �∼V potential_map. Thus, continue becomes false.
The invariant is preserved, since any trace that goes from current to c is not
stuttering equivalent to T .

Case c ∼V u or c ∼V Succ(T , u). Thus, c ∼V potential_map. Now, we consider
the following cases:

Case Divergent[c] �= Divergent[potential_map]. If c is a divergent state of
A, then there must be a trace that stutters in c forever, while T can evolve
from potential_map to a state with a different valuation (or vice versa).
Thus, these two traces are not stuttering equivalent. Hence, continue be-
comes false; and the invariant is preserved.

Case Divergent[c] = Divergent[potential_map].
Case c is unchecked. Thus, Map[c] = ⊥. State c is added to Q, and

becomes a frontier state. Moreover, it is mapped to potential_map.
It is easy to see that the trace from init_state to c and the prefix of T
up to potential_map are stuttering equivalent. Hence, the invariant
is preserved.

Case c is checked before. Thus, Map[c] �= ⊥.

Case Map[c] = potential_map. State c has been explored before;
the algorithm does not explore it further. Since continue and
Map are not updated, the invariant is preserved.

Case Map[c] �= potential_map. Thus, continue becomes false.
The invariant is preserved, since there exist two traces that both
lead to c and in these two traces, c is mapped to two different
states of T ; thus, one of these two trace is not stuttering equiva-
lent to T . �

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 285

Theorem 4. Algorithm 4 returns true iff there exists a bisimulation between A
and T .

Proof. If Algorithm 4 returns false, it follows directly from the invariant that no
functional bisimulation exists. If it returns true, due to the loop invariant, we can
conclude that for any trace of A, e.g., T1, there exists a prefix of T that is stuttering
equivalent to T1. We show that T1 is actually stuttering equivalent to the whole T .

Case T1 ends with a final state c. Assume that the algorithm maps c to potential_
map. Since the algorithm is divergent-sensitive, and in T , the only divergent
state is the final state, thus potential_map is also the final state of T . Therefore,
T1 and T are stuttering equivalent.

Case T1 ends with a non-stuttering loop that starts and ends in state c. Thus,
state c is investigated twice, and in the second visit, its corresponding mapped
state (of T) must be the same as its mapped state in the first visit; otherwise,
the algorithm returned false. Hence, the c’s mapped state is also the start and
end of a loop that terminates T . Thus, T1 and T are stuttering equivalent. �

Overall complexity. Step 1 labels every state of A by the value of l in that state.
This is done in time complexity O(n), where n is the number of states of A. Step 2
is based on BFS, thus its time complexity is O(n + m), where m is the number of
transitions of A. The time complexity of Step 3.1 to find a witness trace is O(m).
The core of Step 3.2 is also BFS, whose running time is O(n+m). Therefore, for a
single low variable l, the total time complexity of the verification is linear in the size
of A, i.e., O(n+m), and for any initial state, the total complexity of the verification
of SSOD-1K (for all l ∈ L) is |L|O(n+m). If we put restrictions on the initial inputs,
i.e., the number of initial states is finite, the verification of SSOD-1K is feasible in
practice.

4.2. Verification of SSOD-2K

SSOD-2K requires that, given two Kripke structures Aδ and A′
δ that model the

executions of a program C from any two initial low-equivalent states I and I ′, if
we project them on the set of low variables L, Aδ |L and A′

δ |L are stuttering trace
equivalent.

To verify SSOD-2, our algorithm first transforms the Kripke structures into two
equivalent ones, without stuttering steps, and then determinizes them.3 It is well-
known that, for deterministic and stuttering-free Kripke structures, trace equivalence
and strong bisimilarity coincide [17]. Therefore, we verify SSOD-2K by combining
several existing algorithms.

3We refer to the determinism concept in automata theory [21].

286 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Algorithm 5. SSOD-2K

1: Project both Aδ and A′
δ (modeling the executions starting in I and I ′) on the set

L, yielding Aδ |L and A′
δ |L .

2: Remove all stuttering steps from Aδ |L and A′
δ |L , yielding stuttering-free Kripke

structures Asf
δ|L and A′sf

δ|L .

3: Re-establish self-loops for final states of Asf
δ|L and A′sf

δ|L .

4: Determinize Asf
δ|L and A′sf

δ|L , yielding deterministic stuttering-free Rδ |L and
R′

δ |L .

5: Combine Rδ |L and R′
δ |L , yielding R+

δ |L , and then compute all bisimilarity equiv-

alence classes of R+
δ |L .

6: Check if I and I ′ are in the same bisimilarity equivalence class.

Step 1 is done by labeling every state of a Kripke structure with the set of low
values L in that state. To remove the stuttering steps in Step 2, we compute the stut-
tering closure of each state, using the standard all-pair shortest path algorithm, and
then collapse these components into a single state. To ensure that the transition re-
lation remains non-blocking, Step 3 re-establishes self-loops for final states. Notice
that A and Asf are stuttering trace equivalent, since traces of Asf are traces of A, but
all stuttering steps in traces have been removed.

The determinization of a Kripke structure in Step 4 is obtained via the well-known
subset construction. Due to the property of determinization of finite automata, Asf

and R are trace equivalent. Notice that the determinization is based on low events,
i.e., operations of changing the values of low variables. Thus, a state of R is a group
of states in the original Kripke structure A that are reached via the same low opera-
tion. Therefore, states of R have the same label with their inside component states.

Step 5: Computing bisimilarity equivalence classes. For deterministic stuttering-
free Kripke structures, trace equivalence and strong bisimilarity coincide. To verify
strong bisimilarity of R and R′, we first take the union of state spaces of the two
Kripke structures, denoted R+, and use the classic algorithm for computing bisim-
ilarity by Paige and Tarjan [32]. This is a standard algorithm, and readers can refer
to [32] for a detailed description of the algorithm. However, since this step strongly
relates to the next section where we synthesize attacks for insecure programs, we
represent briefly the algorithm’s main idea.

The algorithm for computing bisimilarity equivalence classes exploits the well-
known partition-refinement technique [32]. The main idea of this technique is to
partition the state space into disjoint blocks of states, and to repeatedly refine this
partition: whenever we find that states of a block are not equivalent, we split the
block into separate blocks. If the partition is stable, i.e., it is not necessary to refine
it more, we terminate.

A partition P of S is a collection {Qi}i∈I of nonempty subsets of S such that⋃
iQi∈I = S and for any i′ �= i: Qi′ ∩ Qi = ∅. The elements of a partition are

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 287

called blocks. Given a partition P , we say that another partition P ′ refines P , if
any block of P ′ is included in a block of P . We define P-equivalence as follows:
c ∼P c′ ⇔ ∃Q ∈ P . c ∈ Q∧ c′ ∈ Q, i.e., intuitively, c and c′ are in the same block.

The initial partition P0 is constructed by categorizing states with the same valu-
ation into blocks, i.e., c ∼P0 c′ ⇔ V (c) = V (c′). In the refinement step, we split
a block Q into two disjoint subblocks, one collects all states being able to reach an-
other block Q′, while the other collects all states that cannot reach Q′. In this case,
we call Q′ a splitter of Q. Partition P is stable w.r.t. a block Q′ if there is no block
Q ∈ P such that Q′ is a splitter of Q. P is stable if it is stable w.r.t. all its blocks.

Step 6: Inclusion check. Finally, we check if two initial states I and I ′ are in the
same bisimilarity equivalence class. This will indirectly answer whether Rδ |L and
R′

δ |L are bisimilar, i.e., they are bisimilar if two initial states fall into the same block,
otherwise they are not.

Overall complexity. The stuttering closures in Step 2 can be computed in O(n3)
using the all-pair shortest path algorithm. However, improved algorithms for doing
so run in O(n2.376) [15].

The algorithm by Paige and Tarjan computes the partition corresponding to strong
bisimilarity in O(m · logn) [32]. Thus, the complexity of verifying SSOD-2K is
dominated by the determinization in Step 4, which is exponential in the number of
states. However, the worse case complexity is often reached in only the extreme
cases. Therefore, we believe that the verification of SSOD-2K is feasible in practice.

5. Attack synthesis for SSOD

Counter example generation is a powerful technique in model checking, with
many applications, such as diagnosis, scheduler synthesis, and debugging [4,12,14,
20]. This section presents counter example generation techniques for attack synthe-
sis. That is, if for a given scheduler, a program does not satisfy the confidentiality
requirements, we generate program traces that reveal the reason why the confiden-
tiality is broken.

5.1. Attack synthesis for SSOD-1K

We propose to extend Algorithm 4 that checks SSOD-1K for counter example gen-
eration, i.e., Algorithm 6 returns a trace that is not stuttering equivalent to the witness
trace when the Kripke structure does not satisfy SSOD-1K. These two algorithms are
similar. However, when a state that violates SSOD-1K is found, Algorithm 6 does
not terminate, as Algorithm 4 does, but continues until it finds an unmatched trace.
The unmatched trace is returned via Algorithm 8.

State c is denoted as an unmatched state if it is not equivalent to its corresponding
state potential_map. State c is also unmatched if c is equivalent to potential_map,

288 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

but c is divergent while potential_map is not. Whenever an unmatched state is found,
SSOD-1K is not satisfied. A counter example trace is the trace from the initial state
to the unmatched state. Since the search is based on BFS, the trace is the shortest
path from the initial state to the unmatched state (line 11 in Algorithm 6).

Notice that if c is equivalent to potential_map, and c is not divergent but
potential_map is, it is clear that A does not satisfy SSOD-1K. However, the trace
from I up to c is not a counter example, since it is still stuttering equivalent to the
witness trace T . Hence, in this case, state c is treated as a normal state, i.e., if c is
unchecked, it is still assigned the label potential_map, and the algorithm continues
until a real counter example is found (lines 13–15).

Consider a situation that the check hits a state c that has been checked before, if
c ∼V potential_map but Map[c] �= potential_map, we consider c is an abnormal
checked state, denoted abnormal (lines 16–18). It means that there exist at least two
traces that both lead to abnormal; and abnormal corresponds to two different states
of T . Notice that one of them hits abnormal via current, thus we denote current as
pre_abnormal.

Figure 3 explains this situation. According to the algorithm, state 1 and state 2 are
both mapped to u1. Next, state 4 is also mapped to u1, since it follows state 1 via a
stuttering step. In this check, we store parent[state 4] = state 1. Next, the algorithm
examines the successor of state 2, i.e., state 3, and maps state 3 to u2; since this is a
non-stuttering transition, and state 3 is equivalent to u2.

When the algorithm examines the successor of state 3, which is state 4, the
potential_map is u3; since this is a non-stuttering transition. However, state 4 has
been explored before, and its current assigned label is u1. Since the current label of
state 4 is different from potential_map, but state 4 is still equivalent to potential_map,
then state 4 is an abnormal checked state. Notice that if state 4 and potential_map
are not equivalent, state 4 is an unmatched state. State 3 is the pre_abnormal state,
since in this check, state 4 is its successor. However, parent[state 4] still indicates
that state 1 is the parent of state 4, i.e., referring to the step of checking the successor
of state 1.

astart
0

b

1
b

2

c

3

b

4

b

5

c

6

a

u0

b

u1

c

u2

b∗
u3

Fig. 3. Abnormal state.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 289

When an abnormal is found, SSOD-1K is not satisfied. However, neither of the
two traces from init_state up to abnormal, e.g., abb and abcb in Fig. 3, is a com-
plete counter example. Actually, one of them is a prefix of a real counter example.
Therefore, the function Trace Return returns two traces: P1 that is from init_state
to parent[abnormal], e.g., P1 = ab, and P2 that is from init_state to pre_abnormal,
e.g., P2 = abc. The current BFS check is terminated. The new check starts from
abnormal (given by Algorithm 9), in which P1 is extended to a lasso. In this new
check, if an unmatched state is found, we are done; otherwise, a complete lasso T1
is obtained, i.e., T1 = P1 + P3. In Fig. 3, T1 = a(bbbc)ω . If T1 is not stuttering
equivalent to the witness trace T , it is a counter example; otherwise, the counter ex-
ample is the lasso T2 that is an extension of P2 + P3. The reason is that three traces
T , T1, and T2 cannot be all stuttering equivalent to each other. In Fig. 3, T1 is the
counter example.

If no counter example is found after all reachable states from the initial state have
been explored, SSOD-1K is satisfied (see Algorithm 6).

The function Unmatched-State Check (c, potential_map, current) returns a
counter example if c is an unmatched state (see Algorithm 7).

The function Trace Return (a, b) returns a finite trace from state a to state b (see
Algorithm 8). Notice that the stack trace stores the trace backwards, i.e., a is the last
element that enters the stack.

The function Abnormal-State Check (pre_abnormal, abnormal) returns a
counter example when an abnormal state is found (see Algorithm 9).

Algorithm 6. Attack synthesis for SSOD-1K (A, T)

1. for all states c ∈ S do Map[c] := ⊥;
2. continue := true;
3. Q := empty_queue(); enqueue(Q, init_state);
4. parent[init_state] := root; // to indicate the start of traces
5. Map[init_state] := u0; // u0 is T0
6. while !empty(Q) ∧ continue do
7. current := dequeue(Q);
8. u := Map[current];
9. for all states c ∈ Succ(A, current) do
10. potential_map := (c ∼V current) ? u : Succ(T ,u);
11. Unmatched-State Check (c, potential_map, current)
12. case
13. [] Map[c] = ⊥ � enqueue(Q, c);
14. parent[c] := current;
15. Map[c] := potential_map;
16. [] Map[c] �= potential_map �

17. continue := false;
18. Abnormal-State Check (current, c);
19. return continue;

290 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Algorithm 7. Unmatched-state check (c, potential_map, current)

if c �∼V potential_map or
Divergent[c] = true ∧ Divergent[potential_map] = false then

parent[c] := current;
continue := false;
Counter Example = Trace Return(init_state, c);

Algorithm 8. Trace Return (a, b)

trace := empty_stack(); // trace is a stack
PUSH (trace, b); // Add an item to the stack
parent_value := parent[b];
while parent_value �= parent[a] do

PUSH(trace, parent_value);
parent_value := parent[parent_value];

while !empty(trace) do
return POP (trace); // Remove an item from the top of the stack

Notice that in case c ∈ P1, P2 + Trace Return(abnormal, c) is not a complete
lasso (see Fig. 3 for a visual example), a counter example should be P2 + Trace
Return(abnormal, c) + Trace Return(c, abnormal).

Theorem 5. In case a Kripke structure A does not satisfy SSOD-1K, Algorithm 6
returns a trace that is not stuttering equivalent to the witness trace T .

Proof. Algorithm 6 is a variant of Algorithm 4 whose correctness has been proved.
Here we show that the algorithm produces a correct counter example.

Case c �∼V potential_map. It is clear that the trace from init_state to c is an counter
example.

Case Divergent[c] = true and Divergent[potential_map] = false. Since c is a di-
vergent state, there exists a trace that goes from init_state to c, and then stutters
in c forever. State potential_map is not divergent, thus, it is not the final state
of T . Since T is stuttering-free, it can evolve to a state that is not equivalent to
potential_map. Therefore, the trace from init_state to c is an counter example.

Otherwise. Let P1 = Trace Return (init_state, parent[abnormal]), and P2 =
Trace Return (init_state, pre_abnormal). Let T1 denote a lasso that is an ex-
tension of P1 from abnormal, i.e., T1 = P1 + P3, where P3 is the extension.
While extending P1, if an unmatched state is found, we are done. Otherwise,
when the lasso T1 is complete, i.e., when Map[c] �= ⊥, one of the two follow-
ing scenarios occurs.

Case Map[c] �= potential_map. T1 is not stuttering equivalent to T , since c
corresponds to two different states of T .

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 291

Algorithm 9. Abnormal-State Check (pre_abnormal, abnormal)

Let P1 = Trace Return(init_state, parent[abnormal]);
Let P2 = Trace Return(init_state, pre_abnormal);

//Except states on P1, erase the labels and parents of other states
for all states c ∈ S ∧ c /∈ P1 do

Map[c] := ⊥;
parent[c] := ⊥;

//The new check starts from abnormal
current := abnormal;
u := Map[abnormal];
c := some state ∈ Succ(A, current);

// Extend P1 to a lasso
while Map[c] = ⊥ do

potential_map := (c ∼V current) ? u : Succ(T ,u);
// if an unmatched state is found, we are done

Unmatched-State Check (c, potential_map, current);
parent[c] := current;
Map[c] := potential_map;
current := c;
u := potential_map
c := some state ∈ Succ(A, current)

// Return T1 if it is not stuttering equivalent to T
if Map[c] �= potential_map then

Counter Example = P1 + Trace Return(abnormal, c);
// Return T2 if T1 is stuttering equivalent to T

if Map[c] = potential_map then
if c ∈ P1 then

Counter Example = P2 + Trace Return(abnormal, c)
+ Trace Return(c, abnormal);

else Counter Example = P2 + Trace Return(abnormal, c);

Case Map[c] = potential_map. It is clear that T1 is stuttering equivalent to a
prefix of T , i.e., the prefix up to potential_map. We show that T1 is actu-
ally stuttering equivalent to the whole T . Given that c has been checked
before, then c is the start and end of a loop that terminates the lasso T1.
Case c is not divergent. Since c is mapped to potential_map twice,

potential_map is also the start and end of a loop that terminates T .
Thus T1 ∼ T .

Case c is a divergent state. Thus, potential_map is also divergent.
Therefore, potential_map is the final state of T ; then T1 ∼ T .

Let T2 denote an extension of P2+P3 to a lasso. Since T is deterministic
stuttering-free, and abnormal is mapped to two different states of T , T1

292 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

and T2 cannot be both stuttering equivalent to T . Since T1 ∼ T , T2 is
the counter example. �

5.2. Attack synthesis for SSOD-2K

Given two deterministic stuttering-free Kripke structures R and R′, if R and R′

do not satisfy SSOD-2K, Algorithm 10 outputs a trace of R that does not match with
any trace of R′, or vice versa.

It is clear that for R and R′, any two strongly bisimilar states must be in the
same block. We denote a couple of states of R and R′ to be valid if they have the
same label, but they are not in the same block of the stable partition P given by
the algorithm that computes bisimilarity equivalence classes in Section 4.2. Given a
valid couple (c, c′) (c ∈ SR, c′ ∈ SR′ , where SR, SR′ are state sets of R and R′,
respectively), similarly, two successors of (c, c′) are also valid if they have the same
label, but they are not strongly bisimilar. Therefore, from an initial state, a counter
example trace must pass states in a sequence of valid couples until it hits a state such
that the other trace (from the other initial state) cannot find a successor to form a
valid couple. The shortest counter example trace is found based on BFS.

Given two valid states c ∈ SR and c′ ∈ SR′ . Let SameBlock(c, c′) be a predicate
to check whether c and c′ are in the same block of the given partition, i.e., Same-
Block (c, c′) {return (∃Q ∈ P . c ∈ Q ∧ c′ ∈ Q)}. We formally define Valid (c, c′)
{return (c ∈ SR ∧ c′ ∈ SR′ ∧ V (c) = V (c′) ∧ ¬SameBlock (c, c′)}, and the set
Valid_Succ(c, c′) of valid successors of (c, c′) as follows:

Valid_Succ
(
c, c′

)

=
{(

d, d′
)
| c ∈ SR, c′ ∈ SR′ .c → d, c′ → d′ ∧ Valid

(
d, d′

)}
.

We also define a predicate Unmatched Succ on a valid couple (c, c′) to (1) check
whether either c or c′ can take a transition to a state d such that none of the other
state’s successors is equivalent to d, and to (2) return d, if d exists. Formally,

Unmatched Succ (c, c′) {
if (c → d ∧ �d′ ∈ SR′ . c′ → d′ ∧ V (c′) = V (c)) then return (d)
if (c′ → d′ ∧ �d ∈ SR. c → d ∧ V (c) = V (c′)) then return (d′) }

Therefore, given the stable partition P , the following algorithm explores the state
spaces and returns the first state given by Unmatched Succ.

Then Parent Return outputs the trace from the initial state up to the state returned
by the algorithm.

Theorem 6. In case R and R′ do not satisfy SSOD-2K, Algorithm 10 returns a
trace of R that does not match with any trace of R′, or vice versa.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 293

Algorithm 10. Invalid-state search (P)

QR[0] := initial state of R;
parentR[QR[0]] := root;
QR′[0] := initial state of R′;
parentR′ [QR′[0]] := root;
i := 0; // i: position of the latest items in both QR and QR′

while (true) do
Unmatched Succ (QR[i],QR′ [i]);
for each (c, c′) ∈ Valid_Succ(QR′ [i],QR′ [i]) do

QR[i+ 1] := c;
parentR[QR[i+ 1]] := QR[i];
QR′[i+ 1] := c′;
parentR′ [QR′ [i+ 1]] := QR′ [i];

i := i+ 1;

Proof. Two queues QR and QR′ store couples of valid successors reachable from
two initial states. When the first unmatched state is found, the trace from the initial
state to this state is returned. Due to BFS, this trace is one of the shortest paths from
the initial state to it.

Notice that in case no state is returned by Unmatched Succ (QR[i],QR′ [i]), for
each successor of QR[i], there must exist a successor of QR′[i] such that these
two states have the same label, or vice versa. If none of these couples is valid, i.e.,
two states of any couple are bisimilar, then QR[i] and QR′ [i] are also bisimilar.
This is a contradiction, since QR[i] and QR′[i] are a valid couple. Thus, the set
Valid_Succ(QR[i],QR′ [i]) is not empty; and the algorithm continues until an un-
matched state is found. �

Now, we have to derive the original traces of A that correspond to the trace of R
given by Algorithm 10; since these original traces are the real counter examples.

Derive the original traces of A from a trace of R. Suppose that R is the corre-
sponding deterministic Kripke structure of the stuttering-free Asf . We define a rela-
tion Re between a transition of Asf and a transition of R, i.e., Re ⊆ →Asf × →R
as follows. Let trn denote a transition, source(trn) and dest(trn) the source and the
destination state of trn.

∀trn ∈ →Asf , trn′ ∈ →R. trn Re trn′

⇔ V
(
source(trn)

)
= V

(
source

(
trn′

))
∧ V

(
dest(trn)

)
= V

(
dest(trn′)

)
.

Given a trace T of R, the following algorithm derives a set Trace(T) = {T ′} of
Asf corresponding to T . Let N denote the number of transitions in T . We rewrite
T as an array of N transitions, i.e., T = T [0],T [1], . . . ,T [N − 1], where T [i] =

294 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Algorithm 11. Trace map (T)

States[0] := initial state of Asf ;
for i := 1 to N do

States[i] := {c′ ∈ SAsf | ∃c ∈ States[i− 1]. c →Asf c′ ∧ (c, c′) Re T [i− 1]};
for each c ∈ States[N] do

current := c;
for i := N − 1 to 0 do

Take c′ ∈ States[i] ∧ (c′, current) Re T [i];
T ′[i] := (c′, current);
current := c′;

(Ti,Ti+1). We implement an array States of size N+1, where each element States[i]
is a set of states of Asf , i.e., States[i] ⊆ SAsf .

Traces of A can be derived easily, since we assumed that states are numbered and
the transition relation between states is accessible.

6. Related work

The idea of observational determinism originates from the notion of noninterfer-
ence, which only considers the leakages in the final states of program traces. We
refer to [24,35] for a more detailed description of noninterference, its verification,
and a discussion why it is not appropriate for multi-threaded programs.

Roscoe [34] was the first to state the importance of determinism to ensure secure
information flow of multi-threaded programs. Intuitively, observational determinism
expresses that a multi-threaded program is secure when its publicly observable traces
are independent of its confidential data. In the literature, many formal definitions
have been proposed [24,40,44], but none of these earlier definitions captures exactly
this intuition.

The first formal definition of observational determinism was proposed by
Zdancewic and Myers [44]. It states that a program is observationally determinis-
tic iff given any two initial low-equivalent states, any two traces of each low variable
are equivalent up to stuttering and prefixing. Zdancewic and Myers only consider
traces of each single low variable. They also argue that prefixing is a sufficiently
strong relation, as this only causes external termination leaks of one bit of informa-
tion [44]. In 2006, Huisman, Worah and Sunesen showed that allowing termination
leaks might reveal more than one bit of information. Thus, they strengthened the
definition of observational determinism by requiring that traces of each low variable
must be stuttering equivalent [24]. In 2008, Terauchi showed that an attacker might
derive secret information by observing the relative order of low variable updates [40].
Therefore, he proposed another variant of observational determinism, requiring that
all traces should be equivalent up to stuttering and prefixing w.r.t. all low variables.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 295

The main difference between this definition and the two previous ones is that instead
of dealing with each low variable separately, this one considers all of them together.
However, Terauchi’s definition still accepts programs that reveal secret information.
Moreover, it rejects too many innocuous programs, since it requires the complete set
of low variables to evolve in a deterministic way [23].

Besides, these definitions of observational determinism claim that they are
scheduler-independent. However, in [23], we show that this claim is not correct.
SSOD is the only one to consider the effect of schedulers on confidentiality. In [23],
we also discuss the properties of SSOD, and claim that SSOD approximates the intu-
itive notion of security more precisely than the earlier definitions of observational de-
terminism, which either accept insecure programs, or are overly restrictive. In [23],
we also propose a definition of scheduler-independent observational determinism.
We show that given the uniform scheduler, for any two initial low-equivalent states
I and I ′, if all possible traces starting in I and I ′ are stuttering equivalent w.r.t. all
low variables, this program is secure under any scheduling policy.

Mantel et al. [29] also consider the effect of schedulers on confidentiality. How-
ever, their observational model is different from ours. They assume that the attacker
can only observe the initial and final values of low variables on traces. Thus, their
definitions of confidentiality are noninterference-like.

SSOD is a possibilistic secure information flow property: it only considers the
nondeterminism that is possible in an execution, but it does not consider the probabil-
ity that an execution will happen. When a scheduler’s behavior is probabilistic, some
threads might be executed more often than others, which opens up the possibility of a
probabilistic attack. To prevent information leakage under probabilistic attacks, sev-
eral notions of probabilistic noninterference have been proposed, e.g., by Volpano et
al., Sabelfeld and Sands, and Smith [36,38,42]. However, in [31], we show that these
definitions have limitations. We introduce the notion of scheduler-specific proba-
bilistic observational determinism (SSPOD), together with an algorithmic technique
to verify it. Basically, a program respects SSPOD if (SSPOD-1) for any initial state,
each public variable individually behaves deterministically with probability 1, and
(SSPOD-2) for any two initial low-equivalent states I and I ′, for every trace starting
in I , there exists a trace that is stuttering equivalent w.r.t. all public variables, starting
in I ′, and the probabilities of these two matching traces are the same. This definition
extends SSOD, and makes it usable in a larger context.

Sabelfeld and Sands’s definition of probabilistic noninterference also takes into
account the role of schedulers on confidentiality [36]. This definition is based
on a probabilistic low-bisimulation, which requires that given any two initial
low-equivalent states, for any trace that starts in an initial state, there exists a
trace that starts in the other initial state and passes through the same equiva-
lence classes of states at the same time, with the same probability. This defi-
nition is too restrictive w.r.t. timing, i.e., it cannot accommodate threads whose
running time depends on high variables. Thus, it rejects many harmless pro-
grams, while our definitions, both SSOD and SSPOD, accept, such as if (h > 0)
then {l1 := 3; l1 := 3; l2 := 4} else {l1 := 3; l2 := 4}.

296 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

To overcome the restriction on timing, Smith proposes to use a weak probabilistic
bisimulation [38]. Weak probabilistic bisimulation allows two traces to be equivalent
when they reach the same outcome, but one runs slower than the other. However, this
still demands that any two bisimilar states must reach indistinguishable states with
the same probability. This probabilistic condition of bisimulation is more restrictive
than SSPOD.

Notice that all bisimulation-based definitions mentioned above do not require the
deterministic behavior of each low variable. However, we insist that a multi-threaded
program must enforce a deterministic orderings on the accesses to low variables,
see [23].

Palamidessi et al., Chen et al., Smith, and Zhu et al. [2,3,5,13,39,45], and also we
[30] investigate a quantitative notion of information leakage for probabilistic sys-
tems. Quantitative analysis offers a method to compute bounds on how much infor-
mation is leaked. This information can be used to compare with the threshold, and
thus suggesting whether the program is accepted or not. Therefore, we can tolerate
the minor leakage. Thus, this line of researches is complementary to this work.

To verify confidentiality, Zdancewic and Myers, Sabelfeld and Sands, Terauchi,
Smith, and Kobayashi [25,36,38,40,44] use type systems. As discussed in [23], type
systems are not suited to verify existential properties, as the one in SSOD and
SSPOD. Besides, type systems that have been proposed to enforce confidentiality
for multi-threaded programs are often very restrictive. This restrictiveness makes the
application programming become impractical; many intuitively secure programs are
rejected by this approach, i.e., h := l;l := h.

Recently, dynamic monitoring is emerging as an approach to gain better preci-
sion than type systems [27,28,37,43]. This approach follows the precise control flow
of a program, and thus, calculation of control dependences can be more accurate.
However, this approach is often runtime overhead.

Huisman et al. use a different approach [24] based on self-composition [7,16], and
in particular, on the temporal logic characterization of non-interference by Barthe
et al. Developing a temporal logic characterization allows to use a standard model
checker to verify the information flow property. Huisman et al. characterize observa-
tional determinism in CTL*, using a special non-standard synchronous composition
operator, and also in the polyadic modal μ-calculus (a variation of the modal μ-
calculus) [24]. In an attempt to make the result more generally applicable, Huisman
and Ngo [22,23] characterize stuttering equivalence as a conjunction of an LTL and a
CTL formula. However, the result is still a complicated formula, where states have to
maintain a queue of the difference in changes between two threads, and actually us-
ing a model checker to verify this is not realistic. Therefore, in this paper, instead of
giving a temporal logic characterization, we propose to use algorithmic techniques.
This has an additional advantage that we can use the negative results of the algo-
rithms to generate attacks. It should be also stressed that our algorithmic verification
techniques could easily be adapted to verify other formalizations of observational

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 297

determinism, including our scheduler-independent definition in [23], since they are
all based on stuttering equivalence.

Giffhorn et al. [18] propose a verification method based on program dependence
graphs to check observational determinism. Program dependence graph models in-
formation flow through a program where nodes are program statements, and edges
are data dependences or control dependences. Their definition of observational de-
terminism is similar to our definition of scheduler-independent observational deter-
minism [23]. However, in their approach, there is no global security classification of
variables, i.e., a variable at one program point may contain a low value, but at another
point a high value. Thus, their trace definition is based on low operations, i.e., read
or write on a low variable, instead of low values as in the traditional approaches.
This work also allows prefixing if traces are finite. This verification method has a
rather high time complexity, i.e., O(n3), while our algorithm to check all-trace stut-
tering equivalence has a linear time complexity in the size of the graph modeling the
program.

Alur et al. [1] enrich the traditional tree model with labeled edges that capture
observational indistinguishability between nodes. This enriched model is expres-
sive enough to specify information flow properties in temporal logics. In later work,
Černý and Alur [11] then consider a weaker class of properties, so-called conditional
confidentiality properties, and develop a sound automated analysis for this, based on
a combination of under- and over-approximations. The practical impact of this work
is illustrated by applying it on Java2ME. However, their properties are for sequential
programs, i.e., they do not consider multiple threads. Finally, Van der Meyden and
Zhang [41] develop algorithmic verification techniques on state-based models for
a number of different noninterference notions, and characterize the computational
complexity of the associated verification problems.

7. Conclusion

Summary. This paper discusses the efficient verification of scheduler-specific ob-
servational determinism. This formalization captures the intuitive idea of observa-
tional determinism more precisely than other formalizations in the literature, i.e.,
a program is accepted by SSOD, no secret information can be derived from the
publicly observable traces and the relative order of updates of low variables. The
verification uses a combination of new and existing algorithms. The new algorithm
solves a standard problem, i.e., checking all-trace stuttering equivalence and stut-
tering trace equivalence of Kripke structures, which makes them applicable also in
a broader context. The advantage of using model checking algorithms is that they
can generate counter examples when the verification fails. We extend our algorithms
for this purpose, i.e., presenting counter examples to synthesize information leaking
attacks.

298 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

Future work. The implementation of our verification algorithms has been done in
the symbolic model checker LTSmin [10]. Currently, we are applying the tool to case
studies.

As future work, we would like to understand if the verification algorithms can
be further optimized for particular classes of schedulers, e.g., for all round robin
schedulers. We also would like to run the attack synthesis for scheduler, i.e., find a
set of schedulers that might break the confidentiality of a given program.

Finally, we believe that the same approach of adapting existing model checking
algorithms will also be appropriate to efficiently and precisely verify other security
properties, such as integrity and availability.

Acknowledgments

Our work is supported by the Netherlands Organization for Scientific Research
under grant 612.067.802 (SLALOM) and grant Dn 63-257 (ROCKS). In addition,
the authors would like to thank Stefan Blom for many fruitful discussions and the
anonymous reviewers for useful feedback of an earlier version of this paper.

References

[1] R. Alur, P. Černy and S. Chaudhuri, Model checking on trees with path equivalences, in: Proceedings
of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’07, Springer-Verlag, 2007, pp. 664–678.

[2] M.S. Alvim, M.E. Andrés, K. Chatzikokolakis and C. Palamidessi, On the relation between differen-
tial privacy and quantitative information flow, in: Proceedings of the 38th International Conference
on Automata, Languages and Programming, ICALP’11, Part II, Springer-Verlag, 2011, pp. 60–76.

[3] M.S. Alvim, M.E. Andrés, K. Chatzikokolakis and C. Palamidessi, Quantitative information flow
and applications to differential privacy, in: Foundations of Security Analysis and Design VI,
Springer-Verlag, 2011, pp. 211–230.

[4] M.E. Andrés, P. D’Argenio and P. Rossum, Significant diagnostic counterexamples in probabilistic
model checking, in: Proceedings of the 4th International Haifa Verification Conference on Hard-
ware and Software: Verification and Testing, HVC’08, Springer-Verlag, 2009, pp. 129–148.

[5] M.E. Andrés, C. Palamidessi, P. van Rossum and A. Sokolova, Information hiding in probabilistic
concurrent systems, Theor. Comput. Sci. 412(28) (2011), 3072–3089.

[6] C. Baier and J.P. Katoen, Principles of Model Checking, Representation and Mind Series, The MIT
Press, 2008.

[7] G. Barthe, P.R. D’Argenio and T. Rezk, Secure information flow by self-composition, in: Proceed-
ings of the 17th IEEE Workshop on Computer Security Foundations, CSFW’04, IEEE Computer
Society, 2004, pp. 100–114.

[8] G. Barthe and L.P. Nieto, Formally verifying information flow type systems for concurrent and
thread systems, in: Proceedings of the 2004 ACM Workshop on Formal Methods in Security Engi-
neering, FMSE’04, ACM, 2004, pp. 13–22.

[9] S. Blom and S. Orzan, A distributed algorithm for strong bisimulation reduction of state spaces, Int.
J. Softw. Tools Technol. Transf. 7 (2005), 74–86.

T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs 299

[10] S. Blom, J. van de Pol and M. Weber, LTSmin: distributed and symbolic reachability, in: Proceedings
of the 22nd International Conference on Computer Aided Verification, CAV’10, Springer-Verlag,
2010, pp. 354–359.

[11] P. Černý and R. Alur, Automated analysis of java methods for confidentiality, in: Proceedings of
the 21st International Conference on Computer Aided Verification, CAV’09, Springer-Verlag, 2009,
pp. 173–187.

[12] M. Chechik and A. Gurfinkel, A framework for counterexample generation and exploration, Int. J.
Softw. Tools Technol. Transf. 9 (2007), 429–445.

[13] H. Chen and P. Malacaria, Quantitative analysis of leakage for multi-threaded programs, in: Pro-
ceedings of the 2007 Workshop on Programming Languages and Analysis for Security, PLAS’07,
ACM, 2007, pp. 31–40.

[14] E.M. Clarke, O. Grumberg, K.L. McMillan and X. Zhao, Efficient generation of counterexamples
and witnesses in symbolic model checking, in: Proceedings of the 32nd Annual ACM/IEEE Design
Automation Conference, DAC’95, ACM, 1995, pp. 427–432.

[15] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, in: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC’87, ACM, 1987, pp. 1–6.

[16] A. Darvas, R. Hähnle and D. Sands, A theorem proving approach to analysis of secure information
flow, in: Proceedings of the Second International Conference on Security in Pervasive Computing,
SPC’05, Springer-Verlag, 2005, pp. 193–209.

[17] W. Du and Y. Deng, A quasi-local algorithm for checking bisimilarity, in: Proceedings of the
2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE’11,
Vol. 2, 2011, pp. 1–5.

[18] D. Giffhorn and G. Snelting, Probabilistic noninterference based on program dependence graphs,
Technical report, Karlsruhe Institute of Technology, 2012.

[19] J.A. Goguen and J. Meseguer, Security policies and security models, in: IEEE Symposium on Secu-
rity and Privacy, 1982, pp. 11–20.

[20] T. Han, J.P. Katoen and D. Berteun, Counterexample generation in probabilistic model checking,
IEEE Trans. Softw. Eng. 35 (2009), 241–257.

[21] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, 1st
edn, Addison-Wesley Longman, 1990.

[22] M. Huisman and T.M. Ngo, Scheduler-specific confidentiality for multi-threaded programs and
its logic-based verification, Technical Report TR-CTIT-11-22, CTIT, University of Twente, The
Netherlands, 2011.

[23] M. Huisman and T.M. Ngo, Scheduler-specific confidentiality for multi-threaded programs and its
logic-based verification, in: Proceedings of the 2011 International Conference on Formal Verifica-
tion of Object-Oriented Software, FoVeOOS’11, Springer-Verlag, 2012, pp. 178–195.

[24] M. Huisman, P. Worah and K. Sunesen, A temporal logic characterisation of observational deter-
minism, in: Proceedings of the 19th IEEE Workshop on Computer Security Foundations, CSFW’06,
IEEE Computer Society, 2006, pp. 3–15.

[25] N. Kobayashi, Type-based information flow analysis for the pi-calculus, Acta Informatica 42(4)
(2005), 291–347.

[26] S.A. Kripke, Semantical considerations on modal logic, Acta Philosophica Fennica 16 (1963), 83–
94.

[27] G. Le Guernic, Automaton-based confidentiality monitoring of concurrent programs, in: Proceed-
ings of the 20th IEEE Computer Security Foundations Symposium, CSF’07, IEEE Computer Society,
2007, pp. 218–232.

[28] G. Le Guernic, Precise dynamic verification of confidentiality, in: Proceedings of the 5th Interna-
tional Verification Workshop, 2008.

[29] H. Mantel and H. Sudbrock, Flexible scheduler-independent security, in: Proceedings of the 15th
European Conference on Research in Computer Security, ESORICS’10, Springer-Verlag, 2010,
pp. 116–133.

300 T.M. Ngo et al. / Effective verification of confidentiality for multi-threaded programs

[30] T.M. Ngo and M. Huisman, Quantitative security analysis for multi-threaded programs, in: CoRR,
2013, abs/1306.2693.

[31] T.M. Ngo, M. Stoelinga and M. Huisman, Confidentiality for probabilistic multi-threaded programs
and its verification, in: Proceedings of the 5th International Conference on Engineering Secure
Software and Systems, ESSoS’13, Springer-Verlag, 2013, pp. 107–122.

[32] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16(6) (1987),
973–989.

[33] D. Peled and T. Wilke, Stutter-invariant temporal properties are expressible without the next-time
operator, Inf. Processing Letters 63 (1997), 243–246.

[34] A.W. Roscoe, CSP and determinism in security modeling, in: IEEE Symposium on Security and
Privacy, IEEE Computer Society, 1995, p. 114.

[35] A. Sabelfeld and A. Myers, Language-based information flow security, IEEE Journal on Selected
Areas in Communications 21 (2003), 5–19.

[36] A. Sabelfeld and D. Sands, Probabilistic noninterference for multi-threaded programs, in: Proceed-
ings of the 13th IEEE Workshop on Computer Security Foundations, CSFW’00, IEEE Computer
Society, 2000, pp. 200–214.

[37] P. Shroff, S. Smith and M. Thober, Dynamic dependency monitoring to secure information flow, in:
Proceedings of the 20th IEEE Computer Security Foundations Symposium, CSF’07, IEEE Computer
Society, 2007, pp. 203–217.

[38] G. Smith, Probabilistic noninterference through weak probabilistic bisimulation, in: Proceedings of
the 16th IEEE Workshop on Computer Security Foundations, CSFW’03, IEEE Computer Society,
2000.

[39] G. Smith, On the foundations of quantitative information flow, in: Proceedings of the 12th Interna-
tional Conference on Foundations of Software Science and Computational Structures, FOSSACS’09,
Springer-Verlag, 2009, pp. 288–302.

[40] T. Terauchi, A type system for observational determinism, in: Proceedings of the 2008 21st IEEE
Computer Security Foundations Symposium, CSF’08, IEEE Computer Society, 2008, pp. 287–300.

[41] R. van der Meyden and C. Zhang, Algorithmic verification of noninterference properties, Electron.
Notes Theor. Comput. Sci. 168 (2007), 61–75.

[42] D. Volpano and G. Smith, Probabilistic noninterference in a concurrent language, J. Comput. Secur.
7 (1999), 231–253.

[43] S. Yoshihama, T. Yoshizawa, Y. Watanabe, M. Kudoh and K. Oyanagi, Dynamic information flow
control architecture for web applications, in: Proceedings of the 12th European Conference on Re-
search in Computer Security, ESORICS’07, Springer-Verlag, 2007, pp. 267–282.

[44] S. Zdancewic and A.C. Myers, Observational determinism for concurrent program security, in: Pro-
ceedings of 16th IEEE Computer Security Foundations Workshop, CSFW’03, IEEE Computer Soci-
ety, 2000, pp. 29–43.

[45] J. Zhu and M. Srivatsa, Quantifying information leakage in finite order deterministic programs, in:
CoRR, 2010, abs/1009.3951.

