
Security Analysis for Temporal Role Based
Access Control

Emre Uzun, Vijayalakshmi Atluri, Jaideep Vaidya, Shamik Sural,
Anna Lisa Ferrara, Gennaro Parlato, P. Madhusudan

Abstract

Providing restrictive and secure access to resources is a challenging and so-
cially important problem. Among the many formal security models, Role Based
Access Control (RBAC) has become the norm in many of today’s organizations for
enforcing security. For every model, it is necessary to analyze and prove that the
corresponding system is secure. Such analysis helps understand the implications
of security policies and helps organizations gain confidence on the control they
have on resources while providing access, and devise and maintain policies.

In this paper, we consider security analysis for the Temporal RBAC (TR-
BAC), one of the extensions of RBAC. The TRBAC considered in this paper al-
lows temporal restrictions on roles themselves, user-permission assignments (UA),
permission-role assignments (PA), as well as role hierarchies (RH). Towards this
end, we first propose a suitable administrative model that governs changes to tem-
poral policies. Then we propose our security analysis strategy, that essentially
decomposes the temporal security analysis problem into smaller and more man-
ageable RBAC security analysis sub-problems for which the existing RBAC se-
curity analysis tools can be employed. We then evaluate themfrom a practical
perspective by evaluating their performance using simulated data sets.

1 Introduction

Access control facilitates controlled sharing and protection of resources in an enter-
prise. Today, there exist a variety of formal authorizationmodels to meet the wide
needs of requirements in specifying access control policies. These include, but not
limited to, Discretionary Access Control (DAC), MandatoryAccess Control (MAC)
and Role Based Access Control (RBAC). Due to its flexibility,ease of administration
and intuitiveness, RBAC has been successfully adopted as a means to enforce security
by many organizations. Recognizing the industry needs, RBAC has been widely de-
ployed in most commercial software including operating systems, database systems,
enterprise resource planning and workflow systems. Under RBAC, roles represent or-
ganizational agents that perform certain job functions, and permissions to access ob-
jects are grouped as roles. Users, in turn, are assigned appropriate roles based on their
responsibilities and qualifications [25, 10]. This featureimmediately reduces the oper-
ational costs of the system since the number of roles is usually much smaller than that

1

of the permissions.
The success of RBAC led the development of some useful extensions to satisfy

new application domains. In particular, researchers preserve the basic idea of having
roles in the model and add some additional dimensions, like time and space. Temporal
RBAC (TRBAC) [8], Generalized Temporal RBAC [20], Spatio-Temporal RBAC [2]
are some examples of these extensions.

Analysis is essential to understand the implications of security policies. Although
each policy may appear innocent in isolation, their cumulative effect may lead to an
undesirable authorization state [27]. A study of the formalbehavior of RBAC models
helps organizations gain confidence on the level of control they have on the resources
they own. Moreover, security analysis helps them set policies so that owners do not un-
knowingly lose their control on resources, and aids them make changes to the policies
only if the analysis yields no security property violations.

One major advantage with RBAC is that, unlike in DAC where users can grant
access privileges at their own discretion, organizations have central control over their
resources. Since the security configuration need not be changed when users leave or
join the organization, RBAC simplifies security administration. Administrative activi-
ties include user to role assignment (UA), permission to role assignment (PA) and role
to role assignment (RH, the role hierarchies). Such administration is typically per-
formed by a system security officer (SSO). For large organizations, it is normal to have
roles in the order of thousands and users in the order of tens of thousands [28]. Typ-
ically, security administration is decentralized by delegating administrative activities,
as it is overwhelming for a single SSO to administer all roles. While decentralized
RBAC administration enhances the flexibility and scalability, an obvious side effect
of it is reduced organizational control over its resources.Therefore, certain security
guarantees are essential to ensure controlled delegation and to retain the desired level
of control. Such guarantees can only be ensured through a formalsecurity analysisof
the properties of the RBAC system.

An RBAC system can be viewed as a state transition system where state changes
occur via administrative operations. Given an initial authorization state and a set of
security policies specified by authorization rules, a security analysis is a query the
administrator makes on the set of reachable authorization states. Oftentimes, a security
analysis is a simple query that asks whether there is an unintended reachable state,
and hence requires determining the set of reachable authorization states. Such a query
allows the administrator to determine if any of a set of unintended states could possibly
occur as the system evolves, and is extremely important to determine if the system
meets its security policies.

Exclusion of unintended authorization states, known as thesafety problem, was
first identified by Harrison, Ruzzo and Ullman [14], and can beformulated as testing
the following: “Whetherthere exists a reachable authorization state in which a partic-
ular subject possesses a particular privilege for a specificobject.” (Note that subjects
include users as well as processes (invoked by users.) Whilesafety is one of the funda-
mental requirements to be analyzed, the security properties to be analyzed in this paper
will be more comprehensive than those studied in prior literature. We will study several
security properties: safety, availability, liveness, andmutual exclusion of privileges for
TRBAC.

2

Specifically, in this paper, we develop a security analysis methodology for Tempo-
ral RBAC. The analysis deals with thereachability problem, which seeks to determine
whether a potentially untrusted user will ever get access toconfidential objects. Protect-
ing the confidentiality of the data and the integrity of the system requires this analysis.
In our model we have user to role, permission to role and role to role assignments (role
hierarchy) defined as temporal relations. The extent of the temporal notion in the role to
role assignment relation is unique in terms of the flexibility that is achieved in the role
hierarchy structure. We propose an administrative model that allows us to modify the
above mentioned temporal relations. This administrative model is extensive in terms
of its ability to modify the more flexible role hierarchy structure. In addition to our
proposed administrative model, we provide a 3-stage analysis approach that is capable
of conducting thereachability analysisfor a given TRBAC configuration. The analysis
is customizable in order to fit the specific needs of the security question of interest. We
propose a novel approach for security analysis of TRBAC. Themain strategy we use
while performing the security analysis is to decompose the TRBAC analysis problem
into multiple subproblems similar to RBAC. Essentially, wedecompose the problem
into simpler RBAC subproblems so that deciding whether a particular target state is
reachable or not can be potentially simpler. Additionally,it lends itself to employ the
analysis techniques developed for traditional RBAC. We propose decomposition based
on the type of the relations as well as based on time. We present two different strate-
gies for decomposition based on time – (1) Decomposition using rule schedules and
(2) Decomposition using role schedules. We perform computational experiments using
the proposed analysis to demonstrate its run time performance. We also provide a dis-
cussion about how our newly defined role hierarchy structureshould physically be kept
in order to achieve maximum performance in terms of access decisions and hierarchy
modifications.

The rest of the paper is organized as follows: In Section 2, weprovide background
information necessary to follow the models and analysis strategies proposed in the pa-
per. In Section 3 we provide our Temporal RBAC model, along with its administrative
model and in Section 4 we present our security analysis methodology. In Section 5,
we demonstrate the runtime performance of our proposed approach. In Section 6, we
provide an insight about the data structure that the dynamictemporal role hierarchies
should be kept to improve the performance. In Section 7, we briefly review the related
work done in the literature. Finally in Section 8, we summarize our contributions in
this paper and discuss our future work.

2 Preliminaries

In this section, we introduce the preliminary definitions and concepts that are needed to
develop the approaches presented in this paper. Specifically, we present the definitions
for Role Based Access Control model, the extensions and the administrative model of
RBAC, and the reachability problem.

Definition 1. Role Based Access Control Configuration.An RBAC configuration
[11] is a tuple〈U, R, PRMS, UA, PA, RH〉 whereU , R andPRMS are finite sets of

3

users, roles, and permissions, respectively,UA ⊆ U ×R is the user to role assignment
relation,PA ⊆ PRMS × R is the permission to role assignment relation andRH ⊆
R × R is the role to role assignment (role hierarchy) relation.

A tuple(u, r) ∈ UA represents that useru belongs to roler. Similarly,(p, r) ∈ PA

represents that members of roler are granted permissionp. A tuple (r1, r2) ∈ RH

denotesr1 is superior tor2, so that any user who hasr1 assigned, also hasr2 assigned,
and hence the permissions that are assigned tor2.

The Administrative RBAC(ARBAC97) [24] model specifies rules to modify an
RBAC configuration. It is composed of three modulesURA user to role administration,
PRA permission to role administration, andRRA role hierarchy administration.

TheURA module allows to make changes toUA by using assignment / revocation
rules performed by administrators. Administrators are those users that belong to ad-
ministrative roles. We denote the set of administrative roles asAR. Some policies
consider the setAR to be disjoint from the set of rolesR. Those policies are said to
meet theseparate administrationconstraint [30]. A user can be assigned to a role if
she satisfies thepreconditionassociated to that role. Apreconditionis a conjunction of
literals, where each literal is either in positive formr or in negative form¬r, for some
role r ∈ R. Following [12], we represent preconditions by two sets of rolesPos and
Neg. A useru satisfies a precondition(Pos ,Neg) if u is member of all roles inPos

and does not belong to any role ofNeg .
Rules to assign users to roles are specified by the set [24]:

can assign ⊆ AR × 2R × 2R × R.

A can assign tuple (admin ,Pos ,Neg, r) ∈ can assign allows a member of the
administrative roleadmin to assign a useru to rolesr providedu’s current role mem-
berships satisfies the precondition(Pos ,Neg).

Rules to revoke users from roles are specified as follows:

can revoke ⊆ AR × R.

If (admin , r) ∈ can revoke, a member of the administrative roleadmin ∈ AR, can
revoke the membership of any user from roler ∈ R.

PRA is the module to control the permission to role assignments.The rules are
similar to those inURA. These are defined as follows:

can assignp ⊆ AR × 2R × 2R × R

can revokep ⊆ AR × R

Finally the ARBAC97 hasRRA component to perform operations on roles and role
hierarchies. The rule defined for this context is the following:

can modify ⊆ AR × 2R

Using this rule, authorized administrators can create and remove roles and also they
can modify the relationships between the roles.

A URA can be seen as a state-transition system defined by the tupleS = 〈U, R,UA,

can assign, can revoke〉. A configurationof S is any user to role assignment re-
lation UR ⊆ U × R. A configurationUR is initial if UR = UA. Given twoS

4

configurationsc = UR andc′ = UR′, there is atransition(or move) from c to c′ with
rulem ∈ (can assign∪can revoke), denotedc

τm−−→ c′,if there exists anadministra-
tiveuserad and administrative roleadmin with (ad , admin) ∈ UR and a useru ∈ U ,
and one of the following holds:

can-assign move:m = (admin , P, N, r), P ⊆ {r′ | (u, r′) ∈ UR}, N ⊆ R \ {r′ |
(u, r′) ∈ UR}, andUR′ = UR ∪ {(u, r)};

can-revoke move:m = (admin , r), (u, r) ∈ UR, andUR′ = UR \ {(u, r)}.

A run (or computation) of S is any finite sequence ofS transitionsπ = c1
τm1−−→

c2
τm2−−→ . . . cn

τmn−−−→ cn+1 for somen ≥ 0, wherec1 is theinitial configuration ofS.
An S configurationc is reachableif c is the last configuration of a run ofS.

Definition 2. Reachability Problem: Given aURA systemS over the set of roles
R and a rolegoal ∈ R and a useru, the role-reachability problemasks whether a
configurationc with (u, goal) ∈ c is reachable inS.

The reachability problem seeks to answer certain questionsincluding and not lim-
ited to the following [22]:

• Simple Safety: Is there a reachable state in which useru belongs to a user set
s? Eventually, this can also be stated as: Can useru ever get access to the roles
assigned to users that belong to sets?

• Simple Availability: In each reachable state, does a useru always belong to
a user sets? Hence this analysis questions whether useru will lose his/her
privileges in the future.

• Bounded Safety: In each reachable state, is the user sets always bounded by
{u1, u2, ..., un}?

• Liveness: In every reachable state, does user sets always have at least one user?

• Containment: In every reachable state, does a user sets1 always cover user set
s2.

For example, if the analysis of interest isSimple Safety, then one should set thegoal

to the target role and check whether that state is reachable,whereas, if the analysis
of interest isSimple Availability, then thegoal should be set to the state where the
desired roles are unavailable. ALivenessquery can be handled by performing aSimple
Availability check on the users in sets to see whether there exist at least one user in
s always remain assigned to the particular role(s). Similar queries can be set for the
other analysis questions.

Temporal RBAC: The basis of the temporal RBAC models in the literature relies
on aCalendardefinition, which is a periodic and duration expression given in terms of
some calendars as follows [7]:

P =
n∑

i=1

Oi · Ci ⊲ r · Cd

5

This expression is composed of two different calendar expressions split by⊲. The
first part is the periodic expression which denotes the starting points of the time inter-
vals represented by the expression. EachCi, Ci ⊑ Ci−1 is a calendar that represents
a different time unit (days, weeks, minutes) so that for eachCi ⊑ Ci−1 Ci−1 can be
covered by a finite number of intervals ofCi (for instance 24 hours is 1 day). The
Oi’s are the frequency components associated with the calendars, which are defined
asO1 = all, Oi ∈ 2N ∪ {all}. The second part of the expression is the duration
constraint which describes the time interval that the expression covers once stared with
the periodic expression given in the first part. Here,r ∈ N andCd ⊑ Cn, meaning
that the duration cannot exceed the maximum periodic time interval. An example for
this expression is thatall.Y ears + {3, 7}.Months ⊲ 2.Months means a two month
interval that starts every year at the beginning of the thirdand the seventh months.

The TRBAC model [8] supports role enabling, which is a tuple composed of roles
and calendar expression. In GTRBAC model [20], user to role and permission to role
assignments are also proposed to be temporal with the calendar expression in addition
to some other components like role triggers.

Previous studies propose temporal role hierarchies [18, 19, 20] that focus on the
permission and activation inheritance in the presence of temporal constraints on role
enabling and disabling. Particularly, the role hierarchy is still static, but the other
temporal components of the system have a governing effect onwhether the hierarchies
will provide inheritance relation at a given time. These studies propose three different
types of hierarchies for temporal domain:

1. Inheritance-Only Hierarchy(≥): In this relation, the permissions in the junior
role can be acquired by any user who activated a senior role, without activating
the junior role. This hierarchy becomes restricted, if the enabling times of the
roles are taken into account. There are two types of restrictions possible: Weak
and Strong. When a hierarchy is weakly restricted, then the permission acqui-
sition through the junior role is possible regardless of that role being enabled at
that time. However, in the case of strongly restricted hierarchy, the junior role
must be enabled to perform permission acquisition.

2. Activation-Only Hierarchy(�): In this relation, a user who activated a senior
role can activate a junior role even if she is not explicitly assigned to it. This
hierarchy becomes restricted, if the enabling times of the roles are taken into
account. Similar to the Inheritance-Only case, there are two types of restrictions
possible: Weak and Strong. When a hierarchy is weakly restricted, then the role
activation of the junior role is possible regardless of thatrole being enabled at
that time. However, in the case of strongly restricted hierarchy, the junior role
must be enabled in order to be activated through the senior role.

3. Inheritance and Activation (General Inheritance) Hierarchy (≫): This relation
is a combination of above two hierarchies. Senior roles can activate junior roles
or just inherit some of the permissions of them. Lastly, aHybrid Hierarchyexists
when the pairwise relations among different roles are of different types. Hence,
there can be an inheritance only relation between two roles,and an activation
only relation between two other roles in the same hierarchy.

6

3 Temporal RBAC Model and Security Questions

The security analysis in temporal domain requires determining how the time is em-
bedded into the model and which components of the model are affected by this. Fur-
thermore, an administrative model is necessary to allow certain changes in the role
assignments. Then, a security analysis is possible for the TRBAC model.

3.1 Temporal Components in Temporal RBAC Model

In RBAC models with temporal components that are proposed inthe literature, the
majority of them focus extensively on the temporal user to role assignment relation
and role enabling and the benefits of having temporal constraints on them. In this
paper, we not only cover these two relations, but also focus on two other relations,
namely, permission to role assignment and role hierarchies, as well. Now, we discuss
potential benefits of having temporal permission to role assignments and temporal role
hierarchies.

Temporal Permission to Role Assignments, captures the changes inPA with re-
spect to time, hence, a role can have different permission assignments in different time
intervals. This concept, although look similar to temporalUA, can have different ap-
plications in a TRBAC model, including reducing the number of roles necessary. Let
us explain this with an example:

Example 1. Consider a manufacturing company has two different production plants in
different cities, one also has the headquarters of the company. The company has a CEO
and a General Manager (GM) who works at both the plants; an Accounting Manager
(AM), a Manufacturing Manager (MM), and a Human Resources Manager (HR) for
each plant. Although the CEO works at the headquarters, GM works in both of the
plants in different days of the week. When he is present at a plant, he manages the
operations and audits the actions of the AM of that plant. However, when he is away
(at the other plant), MM has the responsibility to audit the operations of AM without
completely assuming the GM role, which is considered to havemany additional per-
missions. In this case a TRBAC model without TemporalPA must have two different
roles for each MM: Regular MM and Extended MM, and in TemporalUA the nec-
essary assignments are done. However, presence of TemporalPA allows the model
to have only one MM role that has different permission assignments that captures the
auditing process whenever necessary.

In the Temporal RBAC model, role hierarchies can also be temporal in nature, in
other words, they may change with time. Although role hierarchies in prior temporal
extensions of RBAC have been specified, they do not allow temporal constraints to
be specified on RH that not onlyrestrict the timeduring which the hierarchy is valid,
but alsochange its structureby shifting the position of the roles in the hierarchy. An
immediate effect of this is that permission inheritance does not always hold. Essentially
this means that a senior level role cannot always inherit thepermissions of a junior level
role. Furthermore, a role may change its level in the hierarchy, for example, a junior
level role may be elevated to a higher level role during certain time periods.

7

Figure 1: The Role Hierarchy of the Manufacturing Company

Although enterprises usually specify a static hierarchy, adynamic temporal role
hierarchy(DTRH) comes into play in some temporary or periodical exceptional situ-
ations that are required for operational purposes. In the following, we provide such a
motivating example.

Example 2. Consider once again the manufacturing company given in the previous ex-
ample. The auditing tasks of MM can be modeled with DTRH, if the tasks required for
auditing can be acquired through the role hierarchy given inFigure 1. A policy which
makes the Manufacturing Manager move to the second level, ontop of the Accounting
Manager only on the days when the General Manager is away willprovide permissions
needed for auditing the AM to MM.

Nevertheless, it is still possible to represent the scenario in the example above using
a static role hierarchy. However, lack of temporal role hierarchies will force the sys-
tem administrators to create a dummy role, like “Manager andAuditor”, that is only
enabled when necessary. Also, this role should have the required permission and hi-
erarchy assignments that Manufacturing Manager needs. This newly created role does
not essentially represent a regular job function since the Manufacturing Manager can-
not assume this role all the time. Moreover, the Manufacturing Manager should be
assigned to two separate roles which are enabled and disabled in regular time intervals.
The situation might get even more complicated in the case of temporary changes in
the system. Suppose that this auditing position is applied only when the General Man-
ager is on vacation. Then the newly created dummy role and thenecessary permission
assignments are performed just for a single and temporary occurrence. Even worse,
the administrators must undo the changes in the system, by revoking and deleting this
role when the General Manager returns. Skipping this step would create serious safety
problems. Clearly, creation of these redundant dummy rolesincreases the administra-
tive burden [13].

Role delegation, which has been studied extensively in the literature [1, 5, 6, 9, 17,
33, 34, 35], is another way of handling scenarios like this. Users are delegated to the
necessary roles of the users that are away. Even though our example scenario can be
modeled using role delegation without imposing significantoverhead, using temporal
role hierarchies has still an advantage in terms of performing safety analysis. Whether
handling the temporal role hierarchies is done using the specification of DTRH, using
dummy roles or delegation, none of the prior work on safety analysis considers RBAC
models with temporal constraints on role hierarchies.

8

3.2 TRBAC and its Administrative Model

Although temporal role based access control models have been proposed in the litera-
ture, none of them addresses the security analysis of policies. The temporal dimension
of the model makes it even harder to perform security analysis, which is already proved
to be intractable for the non-temporal case. Therefore, while preserving the core idea of
having the temporal notion embedded into the RBAC components as in [8, 20], we sim-
plify the model to allow for a manageable security analysis.Although, our simplified
model does not completely represent the previous temporal models, such as TRBAC
or GTRBAC as a whole, we call this model Temporal RBAC (or TRBAC, in short) for
notational simplicity. Therefore, the model referred as TRBAC for the remainder of
the paper represents our simplified model, unless otherwisenoted. Now, we explain
our TRBAC model in detail. We first define how thetime is represented in the model:

Let TMAX be a positive integer. Atime slotof Times is a pair(a, a + 1), wherea

is an integer, and0 ≤ a < a + 1 ≤ TMAX . A time slot(a, a + 1) represents the set
of all times in the set[a, b), i.e.,{t | a ≤ t < b}. We use atime interval, consisting
of a pair(a, b) wherea, b are two integers and0 ≤ a < b ≤ TMAX , to represent the
set of corresponding time slots{(a, a + 1), (a + 1, a + 2), . . . (b− 1, b)} succinctly. A
scheduleoverTMAX is a set of time slots.

For instance, consider a hospital that works for 24 hours with three shifts (between
9 am and 5 pm, between 5 pm and 1 am, and between 1 am and 9 am). If we want to
have the precision of hours, we chooseTMAX = 24, and a schedules that covers shifts
9 am–5 pm and 5 pm–1 am is represented ass = {(9, 10), (10, 11) . . . , (23, 24), (24, 1)}.
The schedule definition is a simplified version of the Calendar definition in Bertino et
al. [8], where we have simpler periodic constraints and do not have duration constraints.

We assume that the system is periodic, thus the schedules repeat themselves after
anyTMAX ; in the hospital example above, time intervals are repeatedeach 24 hours.
Given a schedules overTMAX and an real numbert, we say thatt belongs tos, denoted
t ∈ s, if there is a time interval(a, b) ∈ s such thatt′ ∈ [a, b), wheret′ = t mod TMAX .

Definition 3. TRBAC Configuration. Let S be the set of all possible schedules over
TMAX . A TRBAC configuration overTMAX is a tupleM = 〈U, R,PRMS ,TUA,TPA,

RS ,DTRH 〉 whereU , R andPRMS are finite sets ofusers, roles, andpermissions,
respectively,TUA ⊆ (U × R × S) is thetemporal user to role assignmentrelation,
TPA ⊆ (PRMS × R × S) is the temporal permission to role assignmentrelation,
RS ⊆ (R × S) is the role-statusrelation andDTRH is thedynamic temporal role
hierarchyrelation.

A tuple(u, r, s) ∈ TUA represents that useru is a member of the roler only during
the time intervals of schedules. During the life time of the system, a role can be either
enabled or disabled. A tuple(r, s) ∈ RS imposes that roler is enabledonly during
the time intervals ofs (and therefore it can be assumed to be a member ofr only at
these times), anddisabledotherwise. A tuple(p, r, s) ∈ TPA means that permissionp
is associated to roler only in the time intervals denoted bys. Thus, a useru is granted
permissionp at timet ∈ [0, TMAX] provided that there exists a roler ∈ R such that
(u, r, s1) ∈ TUA, (r, s2) ∈ RS, (p, r, s3) ∈ PA, andt ∈ (s1 ∩ s2 ∩ s3), for some time
intervalss1, s2 ands3.

9

We assume that relationRS for each roler ∈ R contains always exactly one pair
with first componentr. Similarly, the relationTUA contains exactly one tuple for each
pair in U × R. Thus, if a roler is disabled in any time interval, we require thatRS

relatesr with the empty schedule. Similarly, if a useru does not belong to a roler
in any time interval, the pair(u, r) is associated to the empty schedule by the relation
TUA.

Permission inheritance and role activation through role hierarchies require addi-
tional definitions. In our model,DTRH is represented as a collection of dynamic
temporal role hierarchy policies, which are tuples consisted of a pair of roles associ-
ated with a schedule that denotes the time slots that the policy is valid. In our model,
we have dynamic temporal role hierarchy for inheritance only relationDTRHI , for
activation only relationDTRHA and for general inheritance relationDTRHIA, all
comprises asDTRH = DTRHI ∪ DTRHA ∪ DTRHIA.

Definition 4. A dynamic temporal role hierarchy policy(r1 ≥s,weak r2) ∈ DTRHI

between rolesr1 andr2 is aninheritance-only weak temporal hierarchy relation, that
is valid in the time slots specified by a schedules. Under this policy, a useru who
can activater1 can inherit permissions ofr2 at time t if (1) (u, r1, s1) ∈ TUA (2)
(r1, s2) ∈ RS and (3)t ∈ (s1 ∩ s2 ∩ s), provided that there exists scheduless1 ands2

that determine the time slots thatu is assigned tor1 andr1 is enabled, respectively.

Definition 5. A dynamic temporal role hierarchy policy(r1 �s,weak r2) ∈ DTRHA

between rolesr1 andr2 is anactivation-only weak temporal hierarchy relation, that is
valid in the time slots specified by a schedules. Under this policy, a useru can activate
r2 at timet if (1) (u, r1, s1) ∈ TUA (2) (r2, s2) ∈ RS and (3)t ∈ (s1 ∩ s2 ∩ s),
provided that there exists scheduless1 ands2 that determine the time slots thatu is
assigned tor1, andr2 is enabled, respectively.

Definition 6. A dynamic temporal role hierarchy policy(r1 ≫s,weak r2) ∈ DTRHIA

between rolesr1 andr2 is ageneral weak temporal hierarchy relation, that is valid in
the time slots specified by a schedules. Under this policy, a useru can activater2 at
time t, or inherit permissions ofr2 if (1) (u, r1, s1) ∈ TUA (2) (r2, s2) ∈ RS and (3)
t ∈ (s1 ∩ s2 ∩ s), provided that there exists scheduless1, ands2 that determine the
time slots thatu is assigned tor1 andr2 is enabled, respectively.

In the above three definitions, the relations become strong,(i.e: r1 ≥s,strong r2) ∈
DTRHI , (r1 �s,strong r2) ∈ DTRHA and(r1 ≫s,strong r2) ∈ DTRHIA), when
(2) is replaced with(r1, s2), (r2, s3) ∈ RS and (3) is replaced witht ∈ (s1∩s2∩s3∩s)
wheres3 is the schedule that determine the time slots thatr2 is enabled.

Presence of more than one type of relation makesDTRH a hybrid hierarchy.
Dynamic temporal role hierarchy policies(r1 ≥s,weak r2) ∈ DTRH satisfy the

following properties for a given schedules:

1. Reflexive:(r1 ≥s,weak r1) ∈ DTRH

2. Transitive: If (r1 ≥s,weak r2), (r2 ≥s,weak r3) ∈ DTRH , then(r1 ≥s,weak

r3) ∈ DTRH .

10

3. Asymmetric:If (r1 ≥s,weak r2) ∈ DTRH then(r2 ≥s,weak r1) 6∈ DTRH .
These properties apply for both strong and the other types ofrelations (�,≫) as
well.

Different policies among different roles create derived relations. As discussed in
[19] derived relations determine the scope of activation orinheritance privileges upon
activating a role. We adopt these derived relations to the case of dynamic temporal role
hierarchies as follows:

Definition 7. A derived relation among rolesx, y1, y2, ..., yn, z ∈ R holds under any
of the following conditions:

1. (x〈F〉s0,typey1)∧(y1〈F〉s1,typey2)∧...∧(yn−1〈F〉sn−1,typeyn)∧(yn〈F〉sn,typez) →
(x〈F〉s,typez) if F ∈ {≥,�,≫}∧ s = s0 ∩ ... ∩ sn,

2. (x ≥s0,type y1)∧(y1〈F〉s1,typey2)∧...∧(yn−1〈F〉sn−1,typeyn)∧(yn〈F〉sn,typez) →
(x ≥s,type z) if F ∈ {≥,≫}∧ s = s0 ∩ ... ∩ sn,

3. (x ≫s0,type y1)∧(y1〈F〉s1,typey2)∧...∧(yn−1〈F〉sn−1,typeyn)∧(yn〈F〉sn,typez) →
(x〈F〉s,typez) if F ∈ {≥,≫}∧ s = s0 ∩ ... ∩ sn,

4. (x ≫s0,type y1) ∧ (y1 �s1,type y2) ∧ ... ∧ (yn−1 �sn−1,type yn) ∧ (yn �sn,type

z) → (x �s,type z) if s = s0 ∩ ... ∩ sn.

The other rules stated in [19] hold as in the above definition provided thats =
(s1 ∩ s2 ∩ ... ∩ sn) 6= ∅.

According to Definition 7, if all of the linked hierarchy policies are of same type,
the derived policy is also of the same type. If the first policyis an inheritance only
relation, then regardless of the other linked policies being activation only or general
inheritance hierarchy, the derived relation will be an inheritance-only policy. Simi-
larly, if the first policy is a general inheritance relation and the remaining policies are
activation-only, the derived relation is an activation-only policy. Finally, if the first
policy is a general inheritance relation and the other linked policies being activation
only or general inheritance relations, the derived relation will be of the type of linked
policies.

Now, we can present our administrative model that allows administrators to make
changes to the role-status relationRS ,temporal user to role assignment relationTUA,
temporal permission to role assignment relationTPA and the dynamic temporal role
hierarchy relationDTRH by using enable / disable, assignment / revocation and mod-
ify rules, respectively. The goal of these rules is to updatethe time intervals of the
schedules associated to the corresponding relation.

In the analysis of the TRBAC model, we assume that the analysis for TPA can
be made separately, since it is not directly related to the analysis of other components
in terms of the security questions in consideration. More specifically, the security
questions ask whether it is possible for a user to get access to a role, which requires
determining whether it is possible for the goal role to be assigned to the target user
directly, or indirectly via the role hierarchy in a time interval and if the role is enabled
during any portion of this time interval. On the other hand, the analysis forTPA is

11

needed to discover if there is a possibility for a permissionto appear in a particular goal
role. Therefore, we define the TemporalURA and TemporalPRA systems separately to
observe the state transitions.

Definition 8. Temporal User to Role Administration A TURA system is a tupleS
T

=
〈M, can enable, can disable, t can assign, t can revoke, t can modify〉
whereM = 〈U, R,PRMS ,TUA,TPA,RS ,DTRH 〉 is a TRBAC policy overTMAX ,
andcan enable, can disable, t can assign, t can revoke ⊆ (R × S × 2R ×
2R × S × R) andt can modify ⊆ (R × S × 2R × 2R × 2R × 2R × S × R × R ×
{strong, weak} × {≥,�,≫}).

Definition 9. Temporal Permission to Role AdministrationA TPRA system is a tu-
pleS

T
= 〈M, t can assignp, t can revokep〉 whereM = 〈U, R,PRMS ,TUA,

TPA,RS ,DTRH 〉 is a TRBAC policy overTMAX , andt can assignp, t can revokep ⊆
(R × S × 2R × 2R × S × R).

A configurationof S
T

for TURA is a triple(RS, TUA, DTRH), which isinitial if
RS = RS0, TUA = TUA0 andDTRH = DTRH0. Similarly, aconfigurationof
S

T
for TPRA is a singleton(TPA), which is initial if TPA = TPA0. Given twoS

T

configurationsc = (RS, TUA, DTRH) andc′ = (RS′, TUA′, DTRH ′) for TURA’
andc = (TPA) andc′ = (TPA′) for TPRA, we describe below the conditions under
which there is atransition(or move) from c to c′ at timet ∈ N with rulem ∈ MALL =
(can enable ∪ can disable ∪ t can assign ∪ t can revoke ∪ t can modify ∪

t can assignp∪ t can revokep), denotedc
(τm,t)
−−−−→ c′.

Before defining the transition relation, we first describe the components of move
m = (admin , srule , Pos ,Neg, srole , r). Movem can be executed only by a user, say
ad , belonging to theadministrative roleadmin ∈ R.

The timest in which ad can executem are all those in whichad is assumed to
be a member of roleadmin , and furthermore,t must also belong to the schedulesrule

which denotes the time intervals whenm can be fired (or we sayvalid): t ∈ (sad ∩
sadmin ∩ srule) where(ad , admin , sad) ∈ TUA and (admin , sadmin) ∈ RS. In
the rest of the section we say thatm can beexecutedat timet whenevert fulfills the
above condition. The componentsrole is used to update the schedule of a role, or the
membership of a user to a role, depending on the kind of rule ofm. The pair of disjoint
role sets(Pos ,Neg) is called thepreconditionof m whose fulfillment depends by the
kind of the rulem.

The fulfillment of the precondition of a can-enable and can-disable rule depends
on the current status of the other roles. Letŝ ⊆ srole . A can-enable or can-disable
rulem = (admin , srule ,Pos ,Neg, srole , r) satisfies its precondition(Pos ,Neg) w.r.t.
candidate schedulês, if for every time slotα ∈ ŝ, if (1) for every rolepos ∈ Pos ,
α ⊆ spos where(pos , spos) ∈ RS, (2) for every roleneg ∈ Neg, α ∩ sneg = ∅, where
(neg, sneg) ∈ RS, and (3)α satisfies all preconditions. In other words, a candidate
schedulês ⊆ srole satisfies a precondition only if each time slotα ∈ ŝ satisfies the
precondition individually. Let(r, s) ∈ RS .
Enabling Rules: A can-enable rule adds a new schedule to a specific role. A tuple
(admin , srule , Pos , Neg, srole , r) ∈ can enable allows to update the tuple(r, s) ∈
RS to (r, s ∪ ŝ) for some schedulês, provided thatm can be executed at timet and

12

also satisfies its precondition. Formally, rulem is executable at timet, m satisfies its
precondition(Pos ,Neg) w.r.t. schedulês, RS′ = (RS \ {(r, s)}) ∪ {(r, s ∪ ŝ)}, and
TUA′ = TUA.
Disabling Rules:A can-disable rule removes a schedule from a designed role. Atuple
m = (admin , srule , Pos , Neg, srole , r) ∈ can disable allows to update the tuple
(r, s) ∈ RS to (r, s \ ŝ), for some schedulês, provided thatm can be executed at time
t, and satisfies its precondition. Formally,m is executable at timet, m satisfies its
precondition(Pos ,Neg) w.r.t. schedulês, RS′ = (RS \ {(r, s)}) ∪ {(r, s \ ŝ)}, and
TUA′ = TUA.

The next two rules are similar to those given above with the difference that we
now update the schedules associated to each element of the user to role assignment
relation. Another difference is that can-assign and can-revoke rules have a different se-
mantics to fulfill their preconditions. A useru ∈ U satisfies a precondition(Pos ,Neg)
w.r.t. a schedulês if for every time slotα ∈ ŝ, (1) for every(u, pos , spos) ∈ TUR

with pos ∈ Pos , α ⊆ spos , (2) for every(u,neg, sneg) ∈ TUA with neg ∈ Neg,
α ∩ sneg = ∅, and (3)α satisfies all preconditions. Let(u, r, s) ∈ TUA.

Assignment Rules: A tuple (admin , srule ,Pos ,Neg, srole , r) ∈ t can assign al-
lows to update the user to role assignment relation for the pair (u, r) as follows. Let̂s
be a schedule overTMAX with ŝ ⊆ srole . Then, ifm can be executed at timet, and
useru satisfies the precondition(Pos ,Neg) w.r.t. schedulês, then the tuple(u, r, s)
is updated to(u, r, s ∪ ŝ), i.e. TUA′ = (TUA \ {(u, r, s)}) ∪ {(u, r, s ∪ ŝ)}, and
RS′ = RS.
Revocation Rules:A tuple(admin , srule ,Pos ,Neg, srole , r) ∈ t can revoke allows
to update the user to role assignment relation for the pair(u, r) as follows. Letŝ be
a schedule overTMAX with ŝ ⊆ srole . Then, if m can be executed at timet, and
useru satisfies the precondition(Pos ,Neg) w.r.t. schedulês, then the tuple(u, r, s)
is updated to(u, r, s \ ŝ), i.e. TUA′ = (TUA \ {(u, r, s)}) ∪ {(u, r, s \ ŝ)}, and
RS′ = RS.

The rules for updating the permission to role assignment is again similar to the user
to role assignments rules, with the difference of assigningpermissions and precondi-
tions checked against the assigned permissions. The structure of the move definition
is similar to the existing model, but the assignment semantics for permissions are dif-
ferent. Hence, the existing move definition,m = (admin , srule , Pos ,Neg, srole , r)
remains the same, but it applies to permissions rather than users.

Intuitively, a precondition in the permission level is a verification procedure of the
existing role assignments of a given permission. For instance, a positive precondition
(negative, resp.) can state a permission can only be added toa given role if it has al-
ready been (has not been, resp.) assigned to another role. More formally, a permission
p ∈ PRMS satisfies a precondition(Pos ,Neg) w.r.t. a schedulês if for every time
slot α ∈ ŝ, (1) for every(p, pos , spos) ∈ TPA with pos ∈ Pos , α ⊆ spos , (2) for
every(p,neg , sneg) ∈ TPA with neg ∈ Neg, α ∩ sneg = ∅, and (3)α satisfies all
preconditions. Let(p, r, s) ∈ TPA.
Assignment Rules:A tuple (admin , srule ,Pos ,Neg, srole , r) ∈ t can assignp al-
lows to update the permission to role assignment relation for the pair(p, r) as follows.
Let ŝ be a schedule overTMAX with ŝ ⊆ srole . Then, ifm can be executed at timet,

13

and permissionp satisfies the precondition(Pos ,Neg) w.r.t. schedulês, then the tuple
(p, r, s) is updated to(p, r, s ∪ ŝ), i.e. TPA′ = (TPA \ {(p, r, s)}) ∪ {(p, r, s ∪ ŝ)},
TUR′ = TUR andER′ = ER.
Revocation Rules: A tuple (admin , srule ,Pos ,Neg, srole , r) ∈ t can revokep al-
lows to update the permission to role assignment relation for the pair(p, r) as follows.
Let ŝ be a schedule overTMAX with ŝ ⊆ srole . Then, ifm can be executed at timet,
and permissionp satisfies the precondition(Pos ,Neg) w.r.t. schedulês, then the tuple
(p, r, s) is updated to(p, r, s \ ŝ), i.e. TPA′ = (TPA \ {(p, r, s)}) ∪ {(p, r, s \ ŝ)},
TUR′ = TUR andER′ = ER.

The rule structure fort can modify is different from the other rules. This rule
updates the valid time slots of the dynamic temporal role hierarchy policies. Also, in
contrast to precondition structures that have been proposed in the literature for other
administrative rules (likecan assign), it has two sets of preconditions, one for senior
and one for junior role in order to protect the integrity of the hierarchy. The rule
is composed of eight parameters that should be satisfied to execute the rule. Three
of these parameters are similar to the above mentioned moves, namely,admin , srule

andshierarchy which is declared assrole in other rules defined above, but has similar
semantics. Lett be the time slot that the rule is required to be executed.

• type ∈ {strong, weak} denotes the type of the hierarchy relation.

• rsr is the senior role of the hierarchy policy.

• rjr is the junior role of the hierarchy policy.

• SR(Pos, Neg) denotes the positive and negative preconditions of the senior
role rsr . The preconditions are satisfied in the following way: Letŝ denote the
time slots that are intended to be modified by the rule (ŝ ⊆ shierarchy). For each
r ∈ Pos, there must be a role hierarchy policy(r ≥ŝ,type rsr) ∈ DTRH and for
eachr ∈ Neg, there must not be a hierarchy policy(r ≥ŝ,type rsr) ∈ DTRH .

• JR(Pos, Neg) denotes the positive and negative preconditions of the junior role
rjr . The preconditions are satisfied in the following way. Letŝ denote the time
slots that are intended to be modified by the rule (ŝ ⊆ shierarchy). For each
r ∈ Pos, there must be a role hierarchy policy(rjr ≥ŝ,type r) ∈ DTRH and for
eachr ∈ Neg, there must not be a hierarchy policy(rjr ≥ŝ,type r) ∈ DTRH .

Modification Rule: Under these parameters, a tuple:(admin , srule , SR(Pos, Neg),
JR(Pos, Neg), shierarchy, rsr , rjr , type) ∈ t can modify allows to update the role
hierarchy relationrsr ≥s,type rjr as follows: Letŝ be a schedule overTMAX with
ŝ ⊆ shierarchy . Then, if this rule can be executed at timet, and the preconditions are
satisfied w.r.t. schedulês, then the tuplersr ≥s,type rjr is updated torsr ≥s∪ŝ,type

rjr or rsr ≥s\ŝ,type rjr , depending on the intended modification. This definition
is for inheritance only hierarchies, but it also applies to activation only and general
inheritance hierarchies, by replacing≥ with � and≫.

Example 3. Let us now consider an example of a TRBAC system deployed in a hos-
pital. Assume that there are 7 different roles, namely, Employee (EMP), Day Doctor

14

(DDR), Night Doctor (NDR), Practitioner (PRC), Nurse (NRS), Secretary (SEC)
and Chairman (CHR). Hospital works for 24 hours and there are three different shifts
(time slots) from 8 am to 4 pm (Time Slot 1), 4 pm to 12 am (Time Slot 2) and 12 am
to 8 am (Time Slot 3). Only the Chairman role (CHR) has administrative privileges.

1. (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)}, PRC)∈ can enable: At time slots 1 and
2, a chairman can enable the rolePractitioner for the first time slot if the role
Day Doctoris also enabled during this time slot.

2. (CHR, {(0, 3)}, {EMP , NDR}, {(2, 3)}, NRS) ∈ can disable: At time slots
1, 2 and 3, a chairman can disable the roleNursefor the third time slot if the
rolesEmployeeandNight Doctorare enabled at this time slot.

3. (CHR, {(0, 2)}, {EMP}, {NRS}, {(0, 2)}, DDR) ∈ t can assign: At time
slots 1 and 2, a chairman can assign the roleDay Doctor for the first and the
second time slots to any user that hasEmployeerole and does not haveNurse
role during these time slots.

4. (CHR, {(0, 3)}, ∅, ∅, {(0, 3)}, SEC) ∈ t can revoke: At time slots 1, 2 and
3,a chairman can revoke the roleSecretaryfor all time slots of any user that has
Secretaryrole assigned in these slots.

5. (CHR, {(2, 3)}, {EMP}, {NRS}, {(2, 3)}, NDR) ∈ t can assignp: At time
slot 3, a chairman can assign a permission to the roleNight Doctorfor the third
time slot if that permission is also assigned toEmployeenot assigned toNurse
role during this time slot.

6. (CHR, {(0, 2)}, ∅, ∅, {(0, 3)}, NRS) ∈ t can revokep: At time slots 1 and 2,
a chairman can revoke a permission from the roleNursefor all time slots.

7. (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)}, PRC)∈ t can assign: At time slots 1
and 2, a chairman can assign the rolePractitioner for the first time slot of any
user that hasDay Doctorrole during this time slot.

8. (CHR, {(0, 3)},{NDR}, ∅, {(2, 3)}, PRC)∈ t can assign: At time slots 1, 2
and 3, a chairman can assign the rolePractitioner for the third time slot to any
user that hasNight Doctorrole during this time slot.

Reachability problems: A run (or computation) of S
T

is any finite sequence ofS
T

transitionsπ = c1
(τm1

,t1)
−−−−−→ c2

(τm2
,t2)

−−−−−→ . . . cn

(τmn
,tn)

−−−−−−→ cn+1 for somen ≥ 0, where
c1 is an initial configuration ofS

T
, t1 = 0, andti ≤ ti+1 for everyi ∈ [n − 1]. An

S
T

configurationc is reachable within timet, if there exists a runπ in whichcn+1 = c

andtn ≤ t. Furthermore,c is simplyreachableif c is reachable within timet, for some
t ≥ 0.

Let S
T

be aTURA system overTMAX , u andr be a user and a role ofS
T

, respec-
tively, ands be a schedule overTMAX . Given a timet, thetimed reachability problem
for (S

T
, u, r, s, t) asks whether there is a reachable configuration within timet of S

T

in which useru is a member of roler in the schedules either explicitly or implicitly
through the role hierarchy. Similarly, thereachability problemfor (S

T
, u, r, s) is de-

fined as above where there is no constraint on timet. In all of the time slots ofs, r

must also be enabled.

15

For aTPRA system overTMAX which is identified byS
T

, andp andr are a per-
mission and a role ofS

T
, respectively, ands be a schedule overTMAX . Given a time

t, the timed reachability problemfor (S
T
, p, r, s, t) asks whether there is a reachable

configuration within timet of S
T

in which useru is a member of roler in the schedule
s. Similarly, thereachability problemfor (S

T
, u, r, s) is defined as above where there

is no constraint on timet.
In our analysis, we assume Separate Administration, in which there is an adminis-

trative user who is assigned to the required administrativeroles which are enabled all
the time. Hence, the times to fire a rule is only restricted bysrule.

3.3 Security Analysis Questions

In Temporal RBAC, the security problem is slightly different than that of RBAC. The
model can have two different ranges of temporal coverage: Safety until a given period
of time (or called short term safety), and the ultimate safety (or called long term safety).
In short term safety, we are only interested in the safety of the system until a given
fixed time. Practically, this type of an analysis is useful totrack users that will have
temporary presence in the system. Whereas, the long term safety is more concerned
about the regular users which are likely to be active in the system for relatively longer
periods of time. This analysis will yield an ultimate safetyof the system in the long
run. Furthermore, changes allowed in the role hierarchy require additional security
questions related to implicit assignments that are possible in the future. There is no
problem of this sort in the case of static role hierarchies, however a simple manipulation
in the hierarchy could create a security breach, and should be detected in advance to
prevent any such occurrence. Considering these definitions, some example security
questions for the temporal domain can be stated as follows:

1. Safety:

(a) (Explicit Assignment - Short Term)Will there be no reachable state in which
a useru is assigned to a roler at timet?

(b) (Explicit Assignment - Long Term)Will a useru ever get assigned to a role
r?

(c) (Role Enabling - Long Term)Will an enabled roler eventually be disabled?

(d) (Implicit Assignment - Short Term)Will a useru get implicitly assigned to
roler at timet?

(e) (Implicit Assignment - Long Term)Will a useru ever getimplicitly assigned
to roler in the future?

(f) (Permission Assignment - Long Term)Will a permissionp ever get assigned
to roler in the future?

2. Liveness:

(a) (Role Enabling - Short Term)Will an enabled role remain enabled at time
t?

16

(b) (Implicit Assignment - Short Term)Will a useru lose privileges of any role
that he isimplicitly assigned until timet?

(c) (Explicit Assignment - Long Term)Will a useru ever lose any role that he
is assigned in the future?

(d) (Permission Assignment - Short Term)Will a permissionp remain assigned
to roler at timet?

3. Mutual Exclusion:

(a) (Explicit Assignment - Long Term)Will a useru be assigned to rolesr1 and
r2 at the same time (i.e., do the time intervals during whichu is assigned
to rolesr1 andr2 overlap?

(b) (Implicit Assignment - Short Term)Will usersu1 andu2 get implicitly as-
signed to roler at the same time slot until timet?

Regarding these security questions, our aim is to analyze TRBAC model to verify
that the configuration is safe in terms of the questions stated above.

4 TRBAC Security Analysis

Given an initial configurationc0, rules of an administrative model,MALL and the
target useru, who is being analyzed against the security questions of interest, our
proposed security analysis methodology provides answers to various security questions
outlined in Section 3.3.

Our security analysis depends on a customizable three stagedecomposition strat-
egy. First we decompose the problem into four steps based on the temporal relation that
is modified (TUA,RS ,TPA,DTRH). Then, we further decompose each of these sub-
problems into smaller ones using the time dimension in whichwe have two different
strategies to address different security questions – Rule Schedule and Role Schedule.
Finally, combining the results obtained from each of these decomposed problems pro-
vide the complete analysis.

4.1 Stage 1: Relation Based Decomposition

TheTURA andTPRA systems are composed of a set of different type of rules that are
used to generate new configurations for a security analysis.The interactions among
these rules, however, have certain properties. Consider the rules grouped according to
the relations that they modify, i.e,t can assign, t can revoke; can enable, can disable;
t can assignp, t can revokep; andt can modify are the four groups of rules that
modify different relations in TRBAC. Assuming that the administrator role and rule
schedule requirements are satisfied, the execution of rolesof each group is deter-
mined by the relations that they modify. For instance, the preconditions to satisfy
for t can assign andt can revoke are checked against the current status ofTUA,
whereas, it isTPA for t can assignp, t can revokep, RS for can enable, can disable

andDTRH for t can modify. Therefore, the execution rules of different groups are

17

independent of each other. However, this property does not imply that therelations
that are modifiedwith these rules are also independent semantically. For instance, role
assignments and revocations can be performed for a user, butthese assignments are
useful only if the roles are enabled. Similarly, an inheritance through the role hierar-
chy is only possible if the senior role of the policy is enabled. Therefore, we perform
independent analysis on four different components of the TRBAC model and then we
combine the results obtained from each of these four sub-analysis problems in order to
interpret them correctly in Stage 3.

Hence, regarding this property, our security analysis procedure is composed of four
steps (Table 1). In each of these steps, the state configurations and the administrative
rule sets of the analysis problems are shaped with differentrelations.

Table 1: Subproblems, Initial Configurations and the Relations Used
Analysis State Configuration Initial Configuration

Performed Represented By of the Analysis
1. User Assignment TUA TUA Relation of the target user

2. Role Enabling RS RS Relations of all roles
XExplicit Role Assignment Analysis is complete.

3. Role Hierarchy DTRH DTRH policies
XImplicit Role Assignment Analysis is complete.

4. Permission Assignment TPA TPA Relation of the target role
XFull Analysis is complete.

For each different analysis, the rule set is composed of the following rules:

1. User Assignment:t can assign, t can revoke

2. Role Enabling:can enable, can disable

3. Role Hierarchy:t can modify

4. Permission Assignment:t can assignp, t can revokep

This four step procedure depicted in Table 1 might be customized with respect to
the scope of the security analysis. At the end of first step, the analysis generates all
possible configurations for the target user under the administrative rules. The second
step declares the time slots that the roles can get enabled. Combining the results of
the first and the second step produces the analysis that answers the security questions
related to explicit role assignments. If the implicit assignments are also considered, the
third step should be performed. In the third step, possible role hierarchy relations are
generated. Combining these results with the ones from the earlier steps will determine
the possibility of an implicit assignment to a role. Finally, the fourth step determines
the possible permission assignments to a role (or roles), which could also be conducted
as an independent analysis determining whether there is a possibility for a set of per-
missions to appear in a role. In summary, one can choose different combinations of the
steps outlined in Table 1. For example one can choose to carryout steps 1 and 2, steps
1, 2 and 3, steps 1, 2 and 4, or steps 1, 2, 3 and 4, based on the analysis they would like
to perform.

18

4.2 Stage 2: Time Based Decomposition

Time Based Decomposition further simplifies the decomposedanalysis problems in
the first stage. Since the time dimension is discrete, we decompose each of the four
security analysis problems above into multiple subproblems, so that each instance can
be treated similar to an RBAC model. We employ two different alternative decompo-
sition strategies – therule schedule strategyand thethe role schedule strategy. These
strategies, although can analyze the same problem, provideanswers to different se-
curity questions. Rule schedule strategy provides analysis for short term reachability,
whereas role schedule strategy provides analysis for long term reachability. Each of the
four steps of Stage 1 can be analyzed by these strategies under the state configuration
and administrative rule settings depicted in Table 1. The time based decomposition
strategies provide flexibility so that different RBAC analysis procedures can be em-
ployed as given in Table 2.

Table 2: Time Based Decomposition and Available Analyzers
Analysis Rule Role

Performed Schedule Schedule
User Assignment SA Any RBAC Analyzer

Role Enabling SA Any RBAC Analyzer
Role Hierarchy MSA1 MSA

Permission Assignment SA Any RBAC Analyzer

Before we provide details of these two strategies, we give the steps for each stage
to be performed for some of the example security questions that we discuss in Section
3.3 in Table 3.

Table 3: The steps of analysis to be performed for different security questions given in
Section 3.3

Security Question Stage 1 Stage 2
1-a 1,2 Rule Schedule
1-c 2 Role Schedule
1-d 1,2,3 Rule Schedule
1-f 4 Role Schedule
2-c 1,2 Role Schedule
3-b 1,2,3 Rule Schedule

4.2.1 Rule Schedule Strategy

Rule Schedule Strategy is a state space exploration approach utilizing rule schedules
(srule) to decompose the analysis into smaller problems and analyze them serially with
respect to time. In this strategy, we use the RBAC analysis approach by Stoller et al.
[30] extensively to explore potential states reachable in different time instances.

1Details given in Section 4.2.3

19

Let m ∈ Mc ⊆ M be a subset of the rules in the analysis problem. Aconstant
regionC(a, b,Mc) is a bounded time interval betweent = a andt = b, a ≤ b such
that∀m ∈ Mc, (a, b) ⊆ sm

rule and 6 ∃m′ 6∈ Mc such thatsm′

rule ⊆ (a, b). Informally,
if a rule m is included in a constant regionC then it should be valid in all time slots
α ∈ (a, b), and there should not be any other rulem′ that is valid in some but not all of
the time slots of(a, b). In the rule schedule approach, we split the timeline from 0 to
TMAX into non overlapping constant regionsCi w.r.t thesrule of the roles.

In the analysis, we traceconstant regions C1, C2, ... serially with respect to time.
These regions can be seen as separate RBAC systems. However,Ci+1 depends on
Ci, ∀i, which implies the output of an RBAC reachability analysis at Ci is an input (or
initial configuration) toCi+1. Since an RBAC analysis could result in multiple configu-
rations, then, in eachconstant region , a separate RBAC analysis should be performed
for each configuration generated by the analysis done in the previousconstant region .

Rule 6

Rule 7

Rule 8

Rule 3

Rule 4

Rule 5

0 1 2 3

Rule 1

Rule 2

Figure 2: Rule Schedules

Example 4. Now, let us consider the hospital example given in Section 3.2. There are
eight different administrative rules with different validperiods as depicted in Figure
2, where the bars indicate their respective rule schedules.As can be seen from the
figure, the set of valid rules does not change in interval (0,2) C1 and (2,3) (C2). More
specifically, the valid rules forC1 are 1, 2, 3, 4, 6, 7, 8 and the valid rules forC2 are 2, 4,
5, 8. Essentially, we decompose the analysis problem of TRBAC into two subproblems
which are similar to RBAC problems pertaining to theseconstant regions.

There are other issues related to role schedules that are assigned by the rules. Re-
call that all of the rules have a role schedule which denotes the time intervals that the
role can be assigned. But, according to the rule definitions,the administrators are free
to choose a sub schedule of the role schedule and assign / revoke, enable / disable
and modify the role (hierarchy) schedules only for some of the designated time inter-
vals. This further complicates the reachability analysis,since in a serial fashion, one
should keep all of the possible schedule combinations for the subsequent time intervals.
Therefore we make the following assumption to simplify the analysis:
Sub-schedule Assumption:For each rule, the role (or hierarchy) schedule modifica-
tion operations are performed using the entire schedulesrole (shierarchy, resp.). This
means that an administrator may use a rule to assign the associated roler to a useru all

20

of the subsets of the schedulesrole (as long as the preconditions are satisfied). In our
analysis, we assume thatsrole (shierarchy, resp.) is assigned or revoked completely -
no sub schedule assignments are allowed. Hence, this assumption ensures that a rule
can only generate at most one (new) configuration.

Here we provide a sketch of the algorithm. The TRBAC reachability analysis starts
with an initial configurationc0 andconstant region C1. The state space is expanded
using Stoller et al.’s algorithm [30] (we refer this algorithm as SA) and the rules that
are valid at timet = 0 2. At the end of this step, a set of reachable configurations,
S1 = {c1, c2, ..., cm} are obtained. Afterwards, the analysis moves toC2. For each
distinct configuration obtained so far, SA is used to expand these configurations using
the valid rules in this constant region. At the end of this step, we obtain an updated set
of reachable configurationsS2 ⊇ S1. The algorithm then moves toC3 and the trace
goes in this fashion for a specified number of cyclesP of lengthTMAX (The algorithm
returns toC1 wheneverTMAX is reached). SinceTURA tuple ST is finite and since
the iterations are bounded by the number of cycles, the algorithm is guaranteed to
terminate. However since this approach is a greedy heuristic, we are not guaranteed to
get an optimal solution.

4.2.2 Role Schedule Strategy

In this approach, we split the TRBAC security analysis problem into smaller RBAC
security analysis subproblems using the role schedules of the rules. The main idea is to
generate subproblemsT (α,Ms) for each time slotα ∈ (0, TMAX) with nontemporal
administrative rules, so that the system can be treated likean RBAC.

Example 5. Consider Figure 3, which shows the role schedules of the rules in the
hospital example given in Section 3.2. Here, we have three distinct time slots (Time
Slot 1: (0,1), Time Slot 2: (1,2), Time Slot 3: (2,3)) with different rules. The rules for
Time Slot 1 are Rule 1, 3, 4, 6, and 7; for Time Slot 2 are Rule 3, 4and 6; for Time
Slot 3 are Rule 2, 4, 5, 6, and 8.

Rule 6

Rule 7

Rule 8

Rule 3

Rule 4

Rule 5

Rule 6

0 1 2 3

Rule 1

Rule 2

0 1 2 3

Figure 3: Role Schedules

2For the analysis of Dynamic Temporal Role Hierarchies, certain modifications are required as given in
Section 4.2.3

21

In order to achieve nontemporal administrative rules, (andhence an RBAC sys-
tem for each time slot), we need to remove two components: Rule Schedules and
Role Schedules (Hierarchy Schedules) and we need to show theinter-time slot inde-
pendency. The removal of the role schedules follows the definition of subproblems
T (α,Ms). For the rule schedules, we observe the Long Run Behavior property of the
administrative model that we propose.
Long Run Behavior: In the long run, rule schedules of the rules can be neglected,if
the system is periodic.

Here we give the intuition of this result. Rule schedules restrict the times that a
particular rule can be fired. This means that if a rulem is valid in at least one time slot
and if the assignment/revocation (or enabling/disabling)operation that is going to be
performedm is necessary for the other rulesm′, one can wait untilm becomes valid,
and perform the necessary operation. The other rulesm′ can be fired next time when
the system periodically repeats itself. For example, suppose that we have two roles,r1

andr2 and twot can assign rules(..., (4, 10), {}, r1, ...) and(..., (1, 3), {r1}, r2, ...).
The first rule states that we can use it only within(4, 10); the second rule states that we
can only use it within(1, 3). Notice that if the rules are serially applied with respect
to time, then since the second rule has a precondition ofr1, we cannot fire second
rule if we do not haver1 already assigned. It means that first we need to wait until
first rule becomes valid (untilt = 4) and assignr1. Then we should wait until the
system restarts fromt = 0 (since it is periodic) to fire second rule. Then the Long
Run Behavior property ensures that for the reachability analysis purposes, if one waits
sufficient amount of time then the effects of these kind of rule conflicts can safely be
neglected. This property allows us to treat all of the rules valid on the entire time line.
Hence, thesrule restrictions can be relaxed from the rules.

In order to handle the independency issues among different time slots, we need to
consider preconditions. Recall that we define the preconditions as(Pos ,Neg) relations
to be satisfied in order to execute a rule. Now consider a rulem ∈ M which belongs
to T (α,M), andŝ = α. In order to executem, the precondition relations declared
by (Pos ,Neg) of m must be satisfied for̂s. For each rolepos ∈ Pos (neg ∈ Neg,
resp.) ŝ ⊆ spos (ŝ ∩ spos = ∅, resp.) must be satisfied, which simply depends on the
corresponding (single) time slot inspos (sneg , resp.). Then it is sufficient to check the
schedule only for time slotα for each rule. This implies that the preconditions do not
depend on other time slots, hence the time slots are independent.

So, using the Long Run Behavior property and the independency of time slots,
one can perform an RBAC reachability analysis using the rules m ∈ M for time
slot α. Then, the whole TRBAC system can be analyzed by a series of independent
RBAC systemsTi traced separately. This reduction provides usability of any RBAC
reachability analysis procedure proposed in the literature.

The computational complexity of the algorithm depends on the RBAC analyzer.
Suppose that the RBAC analyzer has the complexityO(·) then our approach yields
a complexity ofO(TMAX ·) since we utilize the RBAC analyzer for each time slot
(Totally we haveTMAX of them). Since the algorithm runs forTMAX iterations and
given that the RBAC analyzer terminates, our algorithm is guaranteed to terminate.

22

4.2.3 Modified SA for Hierarchy Analysis

The RBAC Analysis algorithm proposed by Stoller et al. [30] is a state space explo-
ration algorithm which is proved to be fixed parameter tractable. In our decomposition
approach, the subproblems obtained by the decomposition can be analyzed by SA for
Role Enabling, User to Role and Permission to Role assignment relations. However,
due to the precondition structure and SA not capable of handling thecan modify rule,
SA is unable to analyze the Temporal Role Hierarchy subproblem. In this section, we
make certain modifications on SA to fit the requirements of therole hierarchy analysis
strategy that we propose for aTURA analysis instance. We call this modified algorithm
as MSA, which is still a state space exploration algorithm, specifically designed for
role hierarchies. The purpose of MSA is to generate different possible static role hi-
erarchies given a set oft can modify rules. This algorithm can be used in both Rule
Schedule and Role Schedule strategies.

The state space is composed of the TRBAC configurationsc, represented byDTRH ,
generated by movesm, and authorized by the rulesM. In the configurations, the pre-
condition statements are crucial to determine the relationship among different rules. A
role ishierarchy negative, if it appears negated in either junior or senior preconditions
of a t can modify rule. The other roles are calledhierarchy non-negative. A role is
hierarchy positive, if it appears positive in either junior or senior preconditions of a
t can modify rule. The other roles are calledhierarchy non-positive. Any movem

related to a DTRH policy with hierarchy non-negative or hierarchy non-positive roles
is called an invisible transition, the others are called visible transition. Any invisible
transition that creates a conflict with the anti-symmetric property of DTRH in Sec-
tion 3.2 generates a new state. Any visible transition that creates a conflict with the
anti-symmetric property of DTRH in Section 3.2 is prohibited.

In the analysis for role hierarchies, there is no goal state to be achieved, rather all
possible hierarchy configurations are constructed to be used to interpret the implicit
role assignments of the other steps of the analysis.

4.3 Stage 3: Interpretation of the Results

The final step of the security analysis is to interpret the results obtained to conclude
whether the access control configuration is vulnerable based on the analysis of inter-
est. In our analysis methodology, each step of the four step analysis procedure outputs
results for a different relation in TRBAC. However, these results are not sufficient indi-
vidually to answer the security questions. The results of different steps of the analysis
should be utilized together to obtain the correct result. For instance, Role Assignment
analysis could state that the goal role would be assigned to the target user, but that
role might not get enabled at that time instance, meaning that it is not possible for that
particular user to exercise the goal role. This step is crucial to interpret the security
properties correctly.

Suppose that all four steps of the analysis is done. Each stepoutputs a set of state
configurations denoted asC1, C2, C3 andC4 respectively for the four steps. Each con-
figuration c ∈ C1 is composed ofTUA, c ∈ C2 is composed ofRS, c ∈ C3 is
composed ofDTRH andc ∈ C4 is composed ofDTRH policies. For notational sim-

23

Algorithm 1 The Modified Stoller et al.’s Algorithm (MSA)

1: SetST = {c0} as temporary ,SP = ∅ as permanent set
2: Determine the non-positive and non-negative roles
3: while ST 6= ∅ do
4: Get a statec ∈ ST

5: Create a temporary statectemp = c

6: for all Rulesm ∈ ST that generate an invisible transitiondo
7: Check for hierarchy conflicts inctemp

8: if There exists any violationthen
9: Create a new statec′

10: Apply rulem on c′

11: SetST = ST ∪ c′

12: else
13: Apply rulem on ctemp

14: end if
15: end for
16: Setc = ctemp

17: for all Rulesm ∈ ST that generate a visible transitiondo
18: Create a new statec′

19: Check for hierarchy conflicts inc′

20: if There exists any violationthen
21: Discardc′

22: else
23: SetST = ST ∪ c′

24: end if
25: end for
26: SetST = ST \c
27: SetSP = SP ∪ c

28: end while

24

plicity, we denote the relations as configurations. Under these settings a given TRBAC
policies and rules create a security violation if they satisfy the following criteria for
different security questions of interest:

• Explicit Role Assignment:∃TUA ∈ C1, RS ∈ C2 : (u, r, s1) ∈ TUA ∧
(r, s2) ∈ RS ∧ s1 ∩ s2 6= ∅.

• Implicit Role Assignment:∃TUA ∈ C1, RS ∈ C2, DTRH ∈ C3 : (u, r1, s) ∈
TUA∧(r1〈F〉si1

r2), ..., (rn〈F〉sin
r) ∈ DTRH∧(r1, sj1), (r2, sj2), ..., (r, sjn

) ∈

RS ∧ s ∩ si1 ∩ ... ∩ sin
∩ sj1 ∩ ... ∩ sjn

6= ∅ 3

• Role Enabling∃RS ∈ C2 : (r, s) ∈ RS ∧ s 6= ∅

• Permission Assignment∃TPA ∈ C4 : (p, r, s) ∈ TPA ∧ s 6= ∅

• Liveness for Explicit Role Assignment:∀s1, s2, 6 ∃TUA ∈ C1, RS ∈ C2 :
(u, r, s1) 6∈ TUA ∨ (r, s2) 6∈ RS.

• Mutual Exclusion for Explicit Role Assignment:∃TUA ∈ C1, RS ∈ C2 :
(u1, r, s1) ∈ TUA ∧ (u2, r, s2) ∈ TUA ∧ (r, s3) ∈ RS ∧ s1 ∩ s2 ∩ s3 6= ∅

5 Computational Experiments

We have performed computational experiments for the analysis of TRBAC using Rule
and Role Schedule Approaches. In our experiments we demonstrated the performance
of the Role Assignment (Step 1) and Role Hierarchy (Step 3), since the other steps are
analogous to Step 1. In the experiments we employ SA and MSA for Role Assignment
and Role Hierarchy components.

We implement our algorithm with C programming language and run it on a com-
puter with 3 GB RAM and Intel Core2Duo 3.0 GHz processor running Debian Linux
operating system. In the experiments, the initial state is set to be an empty state (mean-
ing that there are no role assignments), and the rules and thegoal are created randomly
by the code with respect to the corresponding parameter values for the number of rules,
number of roles, number of time slots and the number of cycles. As we discussed be-
fore, we assume separate administration. Also, for role hierarchies, we assume a gen-
eral hierarchy relation. The parameter settings are shown on Table 4. 10 replications
are done for each parameter setting and their average is reported. The results are in
Figure 4(a),4(b) and 4(c).

5.1 User to Role Assignment Experiments

The complexity of therule schedule approachalgorithm depends not only on the
number of roles and rules but also depends on the number of time slots, and the sched-
ules (rule-role) that are assigned to the roles. The state space that is generated by this

3Depending on the type of role hierarchy, role enabling criteria must satisfy the DTRH properties given
in Definitions 4,5,6,7.

25

10

12

14

se
co

n
d

s) 100-100

100-500

100-900

Rules - Time Slots

2

4

6

8

R
u

n
n

in
g
 T

im
e

(i
n

 s

500-100

500-500

500-900

900-100

900-500

0

2

100 500 900

R

Number of Roles

900-900

(a) Effect of Number of Roles

10

12

14

se
co

n
d

s) 100-100

100-500

Roles - Time Slots

2

4

6

8

R
u

n
n

in
g
 T

im
e

(i
n

 s

100-900

500-100

500-500

500-900

900-100

0

2

100 500 900

R

Number of Rules

900-500

900-900

(b) Effect of Number of Rules

10

12

14

se
co

n
d

s) 100-100

100-500

Roles - Rules

2

4

6

8

R
u

n
n

in
g
 T

im
e

(i
n

 s

100-900

500-100

500-500

500-900

900-100

0

2

100 500 900

R

Number of Time Slots

900-500

900-900

(c) Effect of Number of Time Slots

Figure 4: Rule Schedule Approach for Role Assignment

26

0 1

0.12

0.14

0.16

se
co

n
d

s) 100-100

100-500

Rules - Time Slots

0.04

0.06

0.08

0.1
R

u
n

n
in

g
 T

im
e

(i
n

 s
100-900

500-100

500-500

500-900

900-100

0

0.02

100 500 900

R

Number of Roles

900-500

900-900

(a) Effect of Number of Roles

0 1

0.12

0.14

0.16

se
co

n
d

s) 100-100

100-500

Roles - Time Slots

0.04

0.06

0.08

0.1

R
u

n
n

in
g
 T

im
e

(i
n

 s

100-900

500-100

500-500

500-900

900-100

0

0.02

100 500 900

R

Number of Rules

900-500

900-900

(b) Effect of Number of Rules

0 1

0.12

0.14

0.16

se
co

n
d

s) 100-100

100-500

Roles - Rules

0.04

0.06

0.08

0.1

R
u

n
n

in
g
 T

im
e

(i
n

 s

100-900

500-100

500-500

500-900

900-100

0

0.02

100 500 900

R

Number of Time Slots

900-500

900-900

(c) Effect of Number of Time Slots

Figure 5: Role Schedule Approach for Role Assignment

27

Table 4: Parameter Settings
Number of Roles|R| 100, 500, 900

Number of Rules|MALL| 100, 500, 900
Number of Time SlotsTMAX 100, 500, 900

Number of CyclesP 30 for all cases

algorithm tends to be exponential in the worst case since it is a brute force state space
exploration algorithm.

According to the results obtained for the rule schedule approach, the run time per-
formances of the algorithms do not tend to be exponential, especially for the number
of roles. A possible explanation to this situation is that the datasets are generated ran-
domly. Hence there does not exist any “pattern” among the rules. We mean pattern in
the sense that, the components that determine the usabilityof the rules, i.e., all of the
precondition relations, rule and role schedules of the moves are generated randomly –
so it might become probabilistically harder to satisfy all of these conditions. Neverthe-
less, the results give some insight about how the algorithm is likely to behave under
different parameter settings.

The effect of number of rules while all other parameters are constant is more signif-
icant and tends to be an increasing relationship as number ofrules increases (See Figure
4(b)). Moreover, the increasing tendency becomes more significant as the number of
roles and number of time slots increase. Furthermore, thereis a noticeable group for-
mation between the fixed parameters (number of roles and number of time slots). The
groups are formed by different number of time slots values indicating that the effect
of number of roles is comparably smaller. Finally, Figure 4(c) denotes the relationship
between different values of number of time slots parameter when the other two param-
eters are kept constant. The results show that for the majority of the cases, there is a
linearly increasing relationship with the increasing number of rules.

For therole schedule approach, we use SA. According to the results obtained,
there is a linear and increasing relationship with 100, 500 and 900 roles in the system
while all other parameters are constant (See Figure 5(a)). The effect of number of rules
while all other parameters are constant is very similar to the effect of roles. There is an
increasing relationship in the running time as the number ofrules increases (See Figure
5(b)).

Finally, Figure 5(c) denotes the relationship between different values of number
of time slots parameter when the other two parameters are kept constant. The results
show that there is a linearly increasing behavior as the number of time slots increase.
This result is expected since the complexity of the algorithm linearly depends on this
parameter.

5.2 Role Hierarchy Experiments

In the role hierarchy experiments, we observe that the running times of both of the
approaches increased significantly. Especially for higherparameter settings for Rule
Schedule Approach, running times of 10000 seconds, as opposed to a maximum of

28

8000

10000

12000

se
co

n
d

s) 100 100

100 500

Rules - Time Slots

2000

4000

6000

R
u

n
n

in
g
 T

im
e

(i
n

 s
100 900

500 100

500 500

500 900

900 100

0

2000

100 500 900

R

Number of Roles

900 500

900 900

(a) Effect of Number of Roles

8000

10000

12000

se
co

n
d

s) 100 100

100 500

Roles - Time Slots

2000

4000

6000

R
u

n
n

in
g
 T

im
e

(i
n

 s

100 900

500 100

500 500

500 900

900 100

0

2000

100 500 900

R

Number of Rules

900 500

900 900

(b) Effect of Number of Rules

8000

10000

12000

se
co

n
d

s) 100 100

100 500

Roles - Rules

2000

4000

6000

R
u

n
n

in
g
 T

im
e

(i
n

 s

100 900

500 100

500 500

500 900

900 100

0

2000

100 500 900

R

Number of Time Slots

900 500

900 900

(c) Effect of Number of Time Slots

Figure 6: Rule Schedule Approach for Role Hierarchy

29

12 seconds for User to Role Assignment experiments are observed. The underlying
reasoning for this drastic increase is the fact that the state space consists of a pair of
roles. Moreover, the process of determining whether an intended update in any of the
role hierarchy pairs require examining the existing role hierarchy pairs to make sure
that the newly imposed changes will not create a conflict.

When the run time performances of rule schedule and role schedule approaches are
compared, a similar pattern as in the User to Role Assignmentexperiments is observed.
Role Schedule approach is significantly faster than the RuleSchedule approach due
to the fact that the Rule Schedule approach is an exponentialstate space exploration
algorithm. The experimental results are given in Figures 6(a),6(b) and 6(c) for Rule
Schedule and Figures 7(a),7(b) and 7(c) for Role Schedule approach.

6 Temporal Role Hierarchies Execution Model

The dynamic temporal role hierarchy definition theoretically allows the access control
system to have a different hierarchy at each different time slot, hence users can po-
tentially acquire a totally different set of roles and permissions in each of these slots.
Recall that, the role hierarchy set is composed of role hierarchy policies. In fact, these
policies create a tree structure with roles as nodes and the policies as the directed edges.
So, the hierarchy can also be represented as a tree. In an application perspective, it is
necessary to determine exactly how the temporal role hierarchies are represented in the
system. There are two different ways: (1) Aseparate complete hierarchytree for each
time slot. Then, the role / permission acquisition at each time slot can be determined
by tracing the complete role hierarchy tree of that particular time slot. (2) Retaining
theHierarchy Policieswith embedded schedules, and the role / permission acquisition
decisions are made on demand. Both of these approaches are useful under different
circumstances. Now, we provide an insight about when to use which representation to
answer a query asking whether a role is senior to another rolein a given time slot. Hav-
ing a separate complete role hierarchy at each time slot provides faster response to any
query that checks for an implicit assignment. A simple search (like depth-first search)
done on this tree will provide an efficient answer inO(|R|log|R|) time. On the other
hand, a search in the partial hierarchies require an exponential O(|DTRH ||DTRH|)
time. However, the partial hierarchies can be beneficial if the system faces many alter-
ations in the role hierarchies. In this case a policy change for a single time slot requires
O(|DTRH |) time for the partial hierarchies, butO(|R|log|R|) for separate complete
hierarchy.

7 Related Work

The pioneering works for the security analysis of policies are done for protection
schemes with Discretionary Access Control, which is usually composed of an access
control matrix and some operators to modify the scheme. Harrison et al. [14] propose
a formal model for protection systems, which shows that there is an algorithm which
decides whether or not a given mono-operational protectionsystem and initial config-

30

2.5

3

3.5

se
co

n
d

s) 100 100

100 500

Rules - Time Slots

0 5

1

1.5

2
R

u
n

n
in

g
 T

im
e

(i
n

 s
100 900

500 100

500 500

500 900

900 100

0

0.5

100 500 900

R

Number of Roles

900 500

900 900

(a) Effect of Number of Roles

2.5

3

3.5

se
co

n
d

s) 100 100

100 500

Roles - Time Slots

0 5

1

1.5

2

R
u

n
n

in
g
 T

im
e

(i
n

 s

100 900

500 100

500 500

500 900

900 100

0

0.5

100 500 900

R

Number of Rules

900 500

900 900

(b) Effect of Number of Rules

2.5

3

3.5

se
co

n
d

s) 100 100

100 500

Roles - Rules

0 5

1

1.5

2

R
u

n
n

in
g
 T

im
e

(i
n

 s

100 900

500 100

500 500

500 900

900 100

0

0.5

100 500 900

R

Number of Time Slots

900 500

900 900

(c) Effect of Number of Time Slots

Figure 7: Role Schedule Approach for Role Hierarchy

31

uration is unsafe for a given generic right. However, it is undecidable whether a given
configuration of a given protection system is safe for a givengeneric right. Jones et
al. [16] state that the safety analysis of whether a user willgain an access right can be
answered in linear time (for a specific class of simple policies). Sandhu [26] proposes
the Schematic Protection Model (SPM) that has a high expressive power and provides
an analysis which is both decidable and tractable only if themodel is acyclic and at-
tenuating. Ammann et al. [3] propose ESPM to address the limitations of SPM. In
fact, the main outcome of the paper is that, it proves that ESPM is equivalent to HRU.
The benefits of having strong typing in the access control schemes as depicted in SPM
model can also be embedded into the basic HRU model. Sandhu [27] proposes Typed
Access Matrix (TAM) model to address this issue and shows that HRU is a special case
of TAM. Soshi [29] provides an extension of TAM, called Dynamic TAM (DTAM), in
which changes in object types are allowed and allowing a non monotonic scheme and
removing the restriction of strong typing can also provide adecidable safety analysis
under certain conditions.

For RBAC, there are some studies exploring the security analysis. Li and Tripuni-
tara [21, 22] develop the first approach to security analysisin RBAC. Jha et al. [15]
state that the security analysis problem on URA with a simplequery of whether a user
is a member of a particular role is PSPACE-Complete. Stolleret al. [30] consider ana-
lyzing the security problem in a parameterized complexity environment. The algorithm
provided for analysis is said to be fixed parameter tractablewith respect to the number
of roles. Ferrara et al. [12] proposes a set and numerical abstraction based reduction
of ARBAC97 policies into programs, so that a program verification tool can be used
to check the security properties. According to the results they obtain, the model scales
well to analyze security properties of large ARBAC policies.

The first model that embeds temporal data to access control isproposed by Bertino
et al. [7] and called the Temporal Authorization Model (TAM). The model is basi-
cally built on the Discretionary Access Control model usingdiscrete time. Atluri and
Gal [4] propose another model that embeds the temporal notion into access control.
The first temporal model developed on RBAC – Temporal RBAC – isproposed by
Bertino et al. [8] that has periodic role enabling and role triggers. Joshi et al. [20]
propose Generalized Temporal RBAC model which considers Temporal constraints on
role assignments, role activations, enabling and disabling constraints (like cardinality
constraints), and temporal role hierarchies and SOD constraints in addition to Tempo-
ral RBAC. Mondal et al. [23] provide a security analysis for Generalized Temporal
RBAC using timed automata to verify the safety and liveness security properties. This
real time verification process is PSPACE-Complete. The important observation is that
the verification process has a state space explosion for large number of users.

The work in this paper builds upon our prior work in [31, 32]. [31] provides an
analysis for Temporal RBAC model that considers only time based decomposition for
user to role assignment and role enabling relations. [32] introduces the problem of
security analysis for Dynamic Temporal Role Hierarchies. In this paper, we present
a comprehensive approach that takes all the components of TRBAC into account and
experimentally validate it with real data sets.

32

8 Conclusions and Future Work

Security analysis is vital for access control systems to capture any vulnerability that
the incorrectly configured policies might cause. In this paper, we emphasize this anal-
ysis on the temporal extension of RBAC. Although there are models for the temporal
extension of RBAC proposed in the literature before, none ofthem has an extensive
analysis that captures temporal user to role and permissionto role assignments, as well
as temporal role hierarchies and role enabling all together. We propose an administra-
tive model that is capable of handling authorized changes onthe temporal policies. The
security analysis methodology that we propose is structurally flexible to adopt itself to
various different security analysis purposes as to answer different security questions
of interest. Our three stage analysis procedure decomposesthe analysis into relation
based subproblems as well as time based sub-subproblems to obtain RBAC-like analy-
sis problems that are easier to handle. In addition to this, we also propose an approach
to analyze changes in role hierarchy in the presence ofcan modify type administra-
tive rules. We demonstrate the run time performances of these approaches on randomly
generated data sets to show the effects of different parameters on the running times.

Our future work is to further enhance our analysis with respect to its performance,
by providing anincremental security analysis. It is clear that the complexity of the
problems affects the running times of the analysis algorithms. An incremental analysis
enables faster analysis to minor modifications (introducing a new rule or a new role)
done on already analyzed security problems by utilizing thepreviously generated state
space. The help of the recycled states will eventually facilitate the analysis by generat-
ing fewer new states when compared to a security analysis with an empty initial state
space.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases.Proceedings of the 1993 ACM SIGMOD Conference,
1993.

[2] S. Aich, S. Sural, and A. K. Majumdar. Starbac: spatiotemporal role based access
control. InProceedings of the 2007 OTM confederated international conference
on On the move to meaningful internet systems: CoopIS, DOA, ODBASE, GADA,
and IS - Volume Part II, OTM’07, pages 1567–1582, Berlin, Heidelberg, 2007.
Springer-Verlag.

[3] P. Ammann and R. Sandhu. Safety analysis for the extendedschematic protection
model.Security and Privacy, IEEE Symposium on, 0:87, 1991.

[4] V. Atluri and A. Gal. An authorization model for temporaland derived data:
securing information portals.ACM Trans. Inf. Syst. Secur., 5(1):62–94, Feb. 2002.

[5] E. Barka and R. Sandhu. Framework for role-based delegation models. InCom-
puter Security Applications, 2000. ACSAC’00. 16th Annual Conference, pages
168–176. IEEE, 2000.

33

[6] E. Barka, R. Sandhu, et al. A role-based delegation modeland some extensions.
In Proceedings of the 23rd National Information Systems Security Conference,
volume 4, pages 49–58, 2000.

[7] E. Bertino, C. Bettini, and P. Samarati. A temporal authorization model. InPro-
ceedings of the 2nd ACM Conference on Computer and communications security,
CCS ’94, pages 126–135, 1994.

[8] E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A temporalrole based access
control model.ACM Transactions on Information and System Security, 4(3):191–
233, 2001.

[9] J. Crampton and H. Khambhammettu. Delegation in role-based access control.
Computer Security–ESORICS 2006, pages 174–191, 2006.

[10] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control.TISSEC, 2001.

[11] D. F. Ferraiolo, D. R. Kuhn, R. Chandramouli, and J. Barkley. Role-based access
control (RBAC). In15th National Computer Security Conference, pages 554–
563, 1992.

[12] A. L. Ferrara, P. Madhusudan, and G. Parlato. Security analysis of access control
policies through program verification. In25th IEEE Computer Security Founda-
tions Symposium, 2012.

[13] Q. Guo, J. Vaidya, and V. Atluri. The role hierarchy mining problem: Discovery
of optimal role hierarchies. InComputer Security Applications Conference, 2008.
ACSAC 2008. Annual, pages 237–246. IEEE, 2008.

[14] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protectionin operating systems.
Commun. ACM, 19(8):461–471, Aug. 1976.

[15] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough. Towards formal
verification of role-based access control policies.IEEE Trans. Dependable Secur.
Comput., 5(4):242–255, Oct. 2008.

[16] A. K. Jones, R. J. Lipton, and L. Snyder. A linear time algorithm for decid-
ing security. InProceedings of the 17th Annual Symposium on Foundations of
Computer Science, SFCS ’76, pages 33–41, Washington, DC, USA, 1976. IEEE
Computer Society.

[17] J. Joshi and E. Bertino. Fine-grained role-based delegation in presence of the
hybrid role hierarchy. InProceedings of the eleventh ACM symposium on Access
control models and technologies, pages 81–90, 2006.

[18] J. Joshi, E. Bertino, and A. Ghafoor. Hybrid role hierarchy for generalized tempo-
ral role based access control model. InComputer Software and Applications Con-
ference, 2002. COMPSAC 2002. Proceedings. 26th Annual International, pages
951–956. IEEE, 2002.

34

[19] J. Joshi, E. Bertino, and A. Ghafoor. Temporal hierarchies and inheritance se-
mantics for GTRBAC. InProceedings of the seventh ACM symposium on Access
control models and technologies, pages 74–83. ACM, 2002.

[20] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role based
access control model.IEEE Transactions on Knowledge and Data Engineering,
17(1):4–23, 2005.

[21] N. Li and M. V. Tripunitara. Security analysis in role-based access control. In
Proceedings of the ninth ACM symposium on Access control models and tech-
nologies, SACMAT ’04, pages 126–135, New York, NY, USA, 2004. ACM.

[22] N. Li and M. V. Tripunitara. Security analysis in role-based access control.ACM
Transactions on Information and System Security, 9(4):391–420, 2006.

[23] S. Mondal, S. Sural, and V. Atluri. Towards formal security analysis of GTR-
BAC using timed automata. InACM Symposium on Access Control Models and
Technologies, pages 33–42, 2009.

[24] R. Sandhu, V. Bhamidipati, and Q. Munawer. The arbac97 model for role-based
admisitration of roles.ACM Transactions on Information and System Security,
2(1):105–135, 1999.

[25] R. Sandhu et al. Role-based Access Control Models.IEEE Computer, pages
38–47, February 1996.

[26] R. S. Sandhu. The schematic protection model: its definition and analysis for
acyclic attenuating schemes.J. ACM, 35(2):404–432, 1988.

[27] R. S. Sandhu. The typed access matrix model. InResearch in Security and
Privacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium on, pages
122–136. IEEE, 1992.

[28] A. Schaad, J. Moffett, and J. Jacob. The role-based access control system of a
european bank: A case study and discussion.In Proceedings of ACM Symposium
on Access Control Models and Technologies, pages 3–9, May 2001.

[29] M. Soshi. Safety analysis of the dynamic-typed access matrix model. InCom-
puter Security - ESORICS 2000, volume 1895 ofLecture Notes in Computer Sci-
ence, pages 106–121. Springer Berlin / Heidelberg, 2000.

[30] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. Efficient policy
analysis for administrative role based access control.ACM, pages 445–455, 2007.

[31] E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A. L.Ferrara, and
M. Parthasarathy. Analyzing temporal role based access control models. In
Proceedings of the 17th ACM symposium on Access Control Models and Tech-
nologies, SACMAT ’12, New York, NY, USA, 2012. ACM.

35

[32] E. Uzun, V. Atluri, J. Vaidya, and S. Sural. Analysis of TRBAC with dynamic
temporal role hierarchies. InData and Applications Security and Privacy XXVII,
pages 297–304. Springer, 2013.

[33] J. Wainer and A. Kumar. A fine-grained, controllable, user-to-user delegation
method in rbac. InSymposium on Access Control Models and Technologies: Pro-
ceedings of the tenth ACM symposium on Access control modelsand technologies,
volume 1, pages 59–66, 2005.

[34] L. Zhang, G. Ahn, and B. Chu. A rule-based framework for role-based delegation
and revocation.ACM Transactions on Information and System Security (TISSEC),
6(3):404–441, 2003.

[35] X. Zhang, S. Oh, and R. Sandhu. Pbdm: a flexible delegation model in RBAC. In
Proceedings of the eighth ACM symposium on Access control models and tech-
nologies, pages 149–157. ACM, 2003.

36

