
Loose associations to increase utility in data
publishing 1

Sabrina De Capitani di Vimercati a,∗, Sara Foresti a, Sushil Jajodia b, Giovanni Livraga a,
Stefano Paraboschi c, and Pierangela Samarati a
a Dipartimento di Informatica, Università degli Studi di Milano - 26013 Crema, Italy
E-mail: firstname.lastname@unimi.it
b Center for Secure Information Systems, George Mason University - 22030-4422 Fairfax, VA, USA
E-mail: jajodia@gmu.edu
c Dipartimento di Ingegneria, Università degli Studi di Bergamo - 24044 Dalmine, Italy
E-mail: parabosc@unibg.it

Abstract. Data fragmentation has been proposed as a solution for protecting the confidentiality of sensitive associations when
releasing data for publishing or external storage. To enrich the utility of data fragments, a recent approach has put forward
the idea of complementing a pair of fragments with some (non precise, hence loose) information on the association between
them. Starting from the observation that in presence of multiple fragments the publication of several independent associations
between pairs of fragments can cause improper leakage of sensitive information, in this paper we extend loose associations to
operate over an arbitrary number of fragments.

We first illustrate how the publication of multiple loose associations between different pairs of fragments can potentially
expose sensitive associations, and describe an approach for defining loose associations among an arbitrary set of fragments. We
investigate how tuples in fragments can be grouped for producing loose associations so to increase the utility of queries executed
over fragments. We then provide a heuristics for performing such a grouping and producing loose associations satisfying a given
level of protection for sensitive associations, while achieving utility for queries over different fragments. We also illustrate the
result of an extensive experimental effort over both synthetic and real datasets, which shows the efficiency and the enhanced
utility provided by our proposal.
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1. Introduction

The amount of information being published, shared, and/or externally stored or processed in today’s
society is growing at an incredible pace everyday. Together with the praise for the benefits and conve-
nience of this scenario, comes however an ever increasing worry about the need to guarantee confidential-

1A preliminary version of this paper appeared under the title “Extending loose associations to multiple fragments,” in Proc.
of the 27th Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSec 2013), Newark,
NJ, USA, July 2013 [12].
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ity of sensitive information. The problem of protecting confidentiality of sensitive information in these
contexts has been receiving much attention by the research and development communities (as well as
end users and individuals) and many approaches have been proposed (e.g., [19,25]). An important aspect
to be taken into consideration in the development and application of protection techniques for ensuring
confidentiality of sensitive information is the need to maintain utility in the data, avoiding their over-
protection, where utility encompasses both the availability of certain information as well as the ability to
perform queries over the data. While confidentiality can be provided by wrapping data with an encryp-
tion layer, query evaluation over encrypted data requires to adopt either indexing techniques (e.g., [5]),
or specific encryption approaches such as homomorphic encryption (e.g., [18]), which however provide
only limited capabilities for querying (as they support evaluation of only specific conditions). The need
to maintain data in the clear to provide better support for queries has been, for example, one of the key
observations in the design of solutions relying on fragmentation for protecting sensitive associations in
data outsourcing (e.g. [1,7,13]). Fragmentation protects sensitive associations among data by splitting
them in different fragments (vertical data views) that are not linkable one to the other. The advantage of
fragmentation over data encryption is in fact the ability to query actual data (in contrast to indexes used
when data are completely encrypted) and therefore to provide more convenience in terms of data acces-
sibility and query performance. Fragmentation represents also a useful paradigm to enforce protection
requirements and to produce different views over data that can be publicly released without the risk of
disclosing sensitive information.

Along the same line of enhancing utility, loose associations have been recently proposed as a com-
plement to fragmentation [12,14]. In fact, providing complete protection to sensitive associations can, in
many cases, be considered an overdo and smaller protection guarantees (meaning uncertainty over the
associations among data) are considered acceptable. Loose associations complement then data fragmen-
tation by providing some information on the association among tuples in different fragments. Intuitively,
being fragments unlinkable without loose associations, a tuple in a fragment could have, as its corre-
sponding tuple, any tuple in another fragment. Loose associations provide information on the relation-
ships between tuples of different fragments at the granularity of groups of tuples (in contrast to individ-
ual tuples) thus maintaining some degree of protection over the association. The original definition of
loose associations operates assuming that a fragmentation includes two fragments only and a single loose
association is defined between this pair of fragments. A fragmentation may however include an arbitrary
number of fragments, and therefore multiple loose associations might need to be defined. The presence
of multiple loose associations may unfortunately open the door to privacy breaches. In fact, while the
associations released in loose form are protected, the publication of multiple loose associations could
indirectly expose other sensitive associations (i.e., a recipient could be able to reconstruct them).

In this paper, we present a general approach to define loose associations that operate on an arbitrary
number of fragments. With our approach, the data owner can specify multiple associations among dif-
ferent pairs of fragments with the assurance that their combination cannot introduce leakages. Also, it
allows specifying loose associations involving more than two fragments. Our approach is based on the
definition of a universal loose association, encompassing all the fragments and all the confidentiality
constraints. Any projection of this universal loose association (including the complete association itself)
provides a loose association involving a different subset of fragments and is guaranteed to maintain the
aimed degree of protection to the sensitive associations. In [12] we presented an early version of our
proposal that here is extended by introducing an approach that takes into account queries to be executed
so to build loose associations that enhance utility for them. We then provide a heuristic algorithm for the
computation of a loose association, and present the results of an extensive experimental analysis over



synthetic and real datasets aimed at evaluating the efficiency, efficacy, and scalability of our algorithm,
as well as the utility of the computed loose association.

The remainder of this paper is organized as follows. Section 2 introduces the basic concepts on which
our approach builds. Section 3 illustrates the privacy risks caused by the release of multiple loose asso-
ciations. Section 4 presents our definition of loose association, taking into account an arbitrary number
of fragments. This section also introduces the properties that need to be guaranteed to ensure that a loose
association satisfies a given privacy degree, and provides some observations on loose associations. Sec-
tion 5 discusses the utility of loose associations in terms of providing better response to queries. Section 6
illustrates a heuristic algorithm for the computation of a loose association. Section 7 presents our exper-
imental analysis, on synthetic as well as on real datasets, showing the efficiency of our approach and the
utility provided in query execution. Section 8 discusses related work. Finally, Section 9 concludes the
paper.

2. Basic concepts

We consider a scenario where a data owner wishes to release her data for publication or external stor-
age. Data, represented for convenience as a single relation s over relational schema S(a1, . . . , am), are
subject to confidentiality constraints stating that certain information (individual attributes or associa-
tions among them) is to be considered sensitive and should therefore not be disclosed. A confidentiality
constraint is formally defined as follows [1,7].

Definition 2.1 (Confidentiality constraint) Given a relation schema S(a1, . . . , am), a confidentiality
constraint c over S is a subset of the attributes {a1, . . . , am} in S.

Confidentiality constraints are enforced before release by avoiding disclosure of sensitive attributes
(singleton constraints), and fragmenting the relation into vertical views so to break sensitive attribute
associations (non-singleton constraints). Note that non-singleton constraints can also be enforced by non
releasing a subset of the attributes in the constraint. At the schema level, fragmentation splits then S
into a set F = {F1, . . . , Fn} of fragments. Each Fi corresponds, at the instance level, to the vertical
view fi obtained projecting s over Fi. Given a fragmentation F = {F1, . . . , Fn}, sensitive information
modeled by a set C of confidentiality constraints is protected by ensuring that: i) no individual fragment
F∈F contains all the attributes involved in a confidentiality constraint (i.e., ∀F∈F , ∀c∈C: c 6⊆F); and ii)
fragments are disjoint (i.e., ∀Fi,Fj∈F , i 6= j : Fi ∩ Fj = ∅). We assume data to be fragmented no more
than necessary to satisfy the constraints, and therefore fragmentations to be minimal, that is, merging
any two fragments would violate at least one constraint. Figure 1 illustrates an example of relation to be
released, of confidentiality constraints over it, and of a fragmentation satisfying the constraints. Note that
fragments could cover either all the attributes that are not sensitive by themselves (i.e., not appearing in
singleton confidentiality constraints) or only a subset of them, as in Figure 1(c). In this paper, we do not
impose any requirement on this, as our model is independent from such an assumption.

Fragmentation completely breaks the associations among attributes appearing in different fragments.
In fact, since attributes are assumed to be independent,1 any tuple appearing in a fragment could have,

1We maintain such an assumption of the original proposal to not complicate the treatment with aspects not related to loose as-
sociations. Dependencies among attributes can be taken into consideration simply by extending the requirement of unlinkability
among fragments to include the consideration of such dependencies (for more details, see [13]).



PATIENTS
Name YoB Edu ZIP Job MarStatus Disease Race InsCompany Salary InsAmount

t1 Alice 1974 B.Sc 90015 Assistant Married Flu Black BestCompany 1000 150
t2 Bob 1965 MBA 90038 Manager Widow Diabetes White BestCompany 5000 70
t3 Carol 1976 Ph.D 90001 Manager Married Calculi Black MyCompany 2000 100
t4 David 1972 M.Sc 90087 Doctor Divorced Asthma Asian HerCompany 4000 150
t5 Greg 1975 M.Sc 90025 Doctor Single Flu Indian MyCompany 1000 70
t6 Hal 1970 Th.D 90007 Clerk Single Calculi Indian BestCompany 2000 120
t7 Eric 1960 Primary 90025 Chef Divorced Diabetes White YourCompany 4000 110
t8 Fred 1974 Ed.D 90060 Teacher Widow Asthma Asian YourCompany 5000 60

(a)

C

c1 = {YoB,Edu}
c2 = {ZIP,Job}
c3 = {Name,Disease}
c4 = {YoB,ZIP,Disease}
c5 = {YoB,ZIP,MarStatus}

(b)

Fl

Name YoB
l1 Alice 1974
l2 Bob 1965
l3 Carol 1976
l4 David 1972
l5 Greg 1975
l6 Hal 1970
l7 Eric 1960
l8 Fred 1974

Fm

Edu ZIP
B.Sc 90015 m1

MBA 90038 m2

Ph.D 90001 m3

M.Sc 90087 m4

M.Sc 90025 m5

Th.D 90007 m6

Primary 90025 m7

Ed.D 90060 m8

(c)

Fig. 1. An example of relation (a), a set C of confidentiality constraints over it (b), and a fragmentation that satisfies the
confidentiality constraints in C (c)

as its corresponding part, any other tuple appearing in another fragment. In some cases, such protection
can be an overkill and a lower uncertainty on the association could instead be preferred, to mitigate
information loss. A way to achieve this consists in publishing an association among tuples in fragments
at the level of groups of tuples (in contrast to individual tuples), where the cardinality of the groups
impacts the uncertainty over the association, which therefore remains loose. Hence, group associations
are based on grouping of tuples in fragments, as follows.

Definition 2.2 (k-Grouping) Given a fragment Fi, its instance fi, and a set GIDi of group identifiers, a
k-grouping function over fi is a surjective function Gi:fi→GIDi such that ∀gi ∈ GIDi : |G−1i (gi)| ≥ k.

A group association is the association among groups, induced by the grouping enforced in fragments.
Looseness is defined with respect to a degree k of protection corresponding to the uncertainty of the
association among tuples in groups within the fragments (or, more correctly, among values of attributes
involved in confidentiality constraints whose attributes appear in the fragments). Group associations have
been introduced in [14] and defined over a pair of fragments. Given two fragment instances, fl and fm,
and a (kl,km)-grouping over them (meaning a kl-grouping over fl and a km-grouping over fm) group
association Alm contains a pair (Gl(t[Fl]),Gm(t[Fm])), for each tuple t ∈ s.

Figure 2(a) illustrates a (2,2)-grouping over fragments fl and fm in Figure 1(c), and the induced
group association over them. The group association, graphically represented by the edges among the
rectangles corresponding to groups of tuples in Figure 2(a), is released as a table containing the pairs of
group identifiers in Alm and by complementing fragments with a column reporting the identifier of the
group to which each tuple belongs (Figure 2(b)). In the following, for simplicity, given a tuple t in the
original relation, we denote with l (m, respectively) tuple t[Fl] (t[Fm], respectively) in fragment fl (fm,
respectively).

The degree of looseness guaranteed by a group association depends on the uncertainty given not only
by the cardinality of the groups, but also by the association among attribute values for those attributes
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Name YoB

Fl

Edu ZIP

Fm

(a)

Fl

Name YoB Gl

l1 Alice 1974 ny1
l2 Bob 1965 ny2
l3 Carol 1976 ny1
l4 David 1972 ny4
l5 Greg 1975 ny2
l6 Hal 1970 ny3
l7 Eric 1960 ny3
l8 Fred 1974 ny4

Alm

Gl Gm

ny1 ez1
ny1 ez2
ny2 ez1
ny2 ez3
ny3 ez2
ny3 ez4
ny4 ez3
ny4 ez4

Fm

Gm Edu ZIP
ez1 B.Sc 90015 m1

ez3 MBA 90038 m2

ez2 Ph.D 90001 m3

ez4 M.Sc 90087 m4

ez1 M.Sc 90025 m5

ez2 Th.D 90007 m6

ez4 Primary 90025 m7

ez3 Ed.D 90060 m8

(b)

Fig. 2. Graphical representation (a) and corresponding relations (b) of a 4-loose association between fragments Fl and Fm in
Figure 1(c)

appearing together in a confidentiality constraint c that is covered by the fragments (i.e., c⊆Fl∪Fm). For
instance, a looseness of k = 4 for the association in Figure 2 ensures that for each value of t[Fl∩c] there
are at least k = 4 different values for t[Fm ∩ c], for each confidentiality constraint c covered by Fl and
Fm. If the (kl,km)-grouping satisfies the heterogeneity properties given in [14], the association among
the fragments is ensured to be k-loose with k = kl ·km. These heterogeneity properties demand diversity
in the definition of the group association (i.e., no two groups can be associated more than once), as well
as in the values of attributes that appear in a confidentiality constraint for those tuples that belong to the
same group (in either Fl or Fm), or to groups in Fl (Fm, respectively) that are associated with the same
group in Fm (Fl, respectively).

Note that the release of a group association between Fl and Fm may only put at risk constraints
whose attributes are all contained in the fragments (i.e., all confidentiality constraints c such that c ⊆
Fl ∪Fm). For instance, the association in Figure 2 may put at risk only the sensitive association modeled
by confidentiality constraint c1={YoB, Edu}, and satisfies k-looseness for k = 4 (and therefore also for
any lower k). In fact, any value of YoB is associated with at least (exactly, in this case) four different
values of Edu and viceversa.

3. Problem statement

The proposal in [14] supports group associations between pairs of fragments. Given a generic fragmen-
tation F composed of an arbitrary number of fragments, different group associations can be published on
different fragments pairs. A simple example shows how such a publication, while guaranteeing protec-
tion of the specific associations released in loose form, can however expose other sensitive associations.
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Fl

Name YoB Gl

l1 Alice 1974 ny1
l2 Bob 1965 ny2
l3 Carol 1976 ny1
l4 David 1972 ny4
l5 Greg 1975 ny2
l6 Hal 1970 ny3
l7 Eric 1960 ny3
l8 Fred 1974 ny4

Fm

Gm1 Edu ZIP Gm2

m1 ez11 B.Sc 90015 ez22
m2 ez13 MBA 90038 ez23
m3 ez12 Ph.D 90001 ez22
m4 ez14 M.Sc 90087 ez24
m5 ez11 M.Sc 90025 ez21
m6 ez12 Th.D 90007 ez21
m7 ez14 Primary 90025 ez23
m8 ez13 Ed.D 90060 ez24

Fr

Gr Job MarStatus Disease
r1 jmd1 Assistant Married Flu
r2 jmd4 Manager Widow Diabetes
r3 jmd2 Manager Married Calculi
r4 jmd3 Doctor Divorced Asthma
r5 jmd1 Doctor Single Flu
r6 jmd2 Clerk Single Calculi
r7 jmd3 Chef Divorced Diabetes
r8 jmd4 Teacher Widow Asthma

Alm

Gl Gm1

ny1 ez11
ny1 ez12
ny2 ez11
ny2 ez13
ny3 ez12
ny3 ez14
ny4 ez13
ny4 ez14

Amr

Gm2 Gr

ez21 jmd1
ez21 jmd2
ez22 jmd1
ez22 jmd2
ez23 jmd3
ez23 jmd4
ez24 jmd3
ez24 jmd4

(b)

Fig. 3. Graphical representation (a) and corresponding relations (b) of a 4-loose association Alm between Fl and Fm, and a
4-loose association Amr between Fm and Fr , with Fl, Fm, and Fr three fragments of relation PATIENTS in Figure 1(a)

Consider the example in Figure 3, where relation PATIENTS in Figure 1(a) has been split into three
fragments Fl = {Name,YoB}, Fm = {Edu,ZIP}, and Fr = {Job,MarStatus,Disease}. The
(2,2)-grouping over Fl and Fm, and the (2,2)-grouping over Fm and Fr induce two 4-loose group associ-
ations: Alm between Fl and Fm, and Amr between Fm and Fr, respectively. The looseness of Alm guar-
antees protection with respect to constraint c1 = {YoB,Edu}, covered by Fl and Fm, ensuring that for
each value of YoB in Fl the group association provides at least four possible values of Edu in Fm (and
viceversa). The looseness of Amr guarantees protection with respect to constraint c2 = {ZIP,Job},
covered by Fm and Fr, ensuring that for each value of ZIP in Fm the group association provides at least
four possible values of Job in Fr (and viceversa). This independent definition of the two associations
does not take into consideration constraints expressing sensitive associations among attributes that are
not covered by the pairs of fragments on which a group association is specified (c3, c4, and c5 in our ex-
ample), which can then be exposed. Consider, for example, constraint c3 = {Name,Disease}. Alice
(tuple l1 in fl) is mapped to group ny1 which is associated by Alm with groups ez11 and ez12, that is,
tuples m1, m3, m5, and m6 in fm. These tuples are also grouped as ez22 and ez21, associated by Amr

with groups jmd1 and jmd2, that is, tuples r1, r3, r5, and r6 in fr. Hence, by combining the information
of the two associations, we know that l1 in fl is associated with one of these four tuples in fr. While an



uncertainty of four is guaranteed with respect to the association among tuples, such an uncertainty is not
guaranteed at the level of values, which could then expose sensitive associations. In particular, since the
disease in both r1 and r5 is Flu and the disease in both r3 and r6 is Calculi, there are only two possible
diseases associated with Alice, each of which has 50% probability of being the real one.

This simple example shows how group associations between pairs of fragments, while guaranteeing
protection of the associations between the attributes in each pair of fragments, could indirectly expose
other associations, which are not being released in loose form. To counteract this problem, group asso-
ciations should be specified in a concerted form. In the next section, we extend and redefine group asso-
ciations and the related properties to guarantee a given looseness degree to be enforced over an arbitrary
number of associations and fragments.

4. Loose associations

Our approach to ensure that the publication of different associations does not cause improper leakage
is based on the definition of a single loose association encompassing all the fragments on which the
data owner wishes to specify associations so to take into account all the confidentiality constraints. Any
projection over this “universal” group association will then produce different group associations, over
any arbitrary number of fragments, which are not exposed to linking attacks such as the one illustrated
in the previous section.

4.1. k-Looseness

We start by identifying the constraints that are potentially exposed by the release of group associations
involving a set T of fragments, as follows.

Definition 4.1 (Relevant constraints) Given a set T = {F1, . . . , Fn} of fragments and a set C of confi-
dentiality constraints, the set CT of relevant constraints for T is defined as CT = {c∈C:c⊆F1∪. . .∪Fn}.

Intuitively, the constraints relevant for a set of fragments are all those constraints covered by the frag-
ments (i.e., all confidentiality constraints that are a subset of the union of the fragments). For instance, the
only constraint among those reported in Figure 1(b) that is relevant for the set of fragments in Figure 1(c)
is c1; all constraints are instead relevant for the set of fragments in Figure 3.

The definition of a group association over different fragments is a natural extension of the case
with two fragments, where the association is induced by groupings enforced within the different frag-
ments. The consideration of the universal group association implies that only one grouping is applied
within each fragment. Hence, given a fragmentation F={F1, . . . , Fn}, a (k1, . . . , kn)-grouping is a set
{G1, . . . ,Gn} of grouping functions defined over fragments {f1, . . . , fn} (i.e., a set of ki-groupings
over fi, i = 1, . . . , n). Figure 4 illustrates a (2,2,2)-grouping over fragments Fl={Name,YoB},
Fm={Edu,ZIP} and Fr={Job,MarStatus,Disease} of relation PATIENTS in Figure 1(a), and
the induced group association Almr.

Like for the case of two fragments, a group association permits to establish relationships among the
tuples in the different fragments, while maintaining the uncertainty on which tuple in each fragment is
actually associated with each tuple in another fragment. Such an uncertainty is given by the cardinality
of the groups. The reconstruction made available by a group association, and obtained as the joins of
the fragments in F and A, generates in fact all possible combinations among the tuples of associated
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Fig. 4. Graphical representation (a) and corresponding relations (b) of a 4-loose association among three fragments Fl, Fm, and
Fr of relation PATIENTS in Figure 1(a)

groups. Let us denote with F./A such a join. Guaranteeing k-looseness for the sensitive associations
represented by relevant constraints requires ensuring that the reconstruction of tuples, made possible by
the association among groups, is such that: for each constraint c relevant for F and for each fragment F,
there are at least k tuples ta1, . . . , t

a
k in F./A such that, if ta1[F ∩ c] = . . . = tak[F ∩ c], then ta1[c \ F] 6=

. . . 6= tak[c \ F]. The k-looseness requirement must then take into consideration not only the number of
tuples in other fragments with which a tuple can be associated but also the diversity of their values for
the attributes involved in confidentiality constraints. In fact, different tuples that have the same values for
these attributes do not provide the diversity needed to ensure k-looseness. We then start by identifying
these tuples as follows.

Definition 4.2 (Alike) Given a fragmentation F={F1, . . . , Fn} with its instance {f1, . . . , fn}, and the
set CF of confidentiality constraints relevant for F , tuples ti,tj∈fz , z = 1, . . . , n, are said to be alike
with respect to a constraint c∈CF , denoted ti'ctj , iff c∩Fz 6=∅ and ti[c∩Fz]=tj [c∩Fz]. Two tuples are
said to be alike with respect to a set CF of relevant constraints, denoted ti'CF tj , if they are alike with
respect to at least one constraint c∈CF .

According to this definition, given a fragmentation F , two tuples in a fragment instance fi
of fragment Fi ∈ F are alike if they have the same values for the attributes in at least one
constraint relevant for F . For instance, with reference to the fragments in Figure 4, r4'c3r8 as



r4[Disease]=r8[Disease]=Asthma. Since we are interested in evaluating the alike relationship with
respect to the set CF of relevant constraints, in the following we omit the subscript of the alike relation-
ship whenever clear from the context (i.e., we write ti'tj instead of ti'CF tj).

Based on the definition of relevant constraints and alike relationship, we can now define k-looseness of
a group association. Intuitively, a group association A is k-loose if, for each relevant constraint c ∈ CF ,
each tuple ta in A represents at least k associations among sub-tuples in fragments including attributes
in c, and these associations correspond to at least k different combinations of values of the attributes in
c. In other words, ta represents k tuples that may belong to the original relation and that are not alike
with respect to c. Formally, k-looseness is defined as follows.

Definition 4.3 (k-Looseness) Given a fragmentation F = {F1, . . . , Fn} with its instance {f1, . . . , fn},
the set CF of confidentiality constraints relevant for F , and a group association A over {f1, . . . , fn}, A
is said to be k-loose with respect to CF iff ∀c∈CF , let Fc = {F∈F : F∩c 6=∅}, ∀Fi∈Fc and ∀gi∈GIDi

let T =
⋃

ta∈A{G
−1
j (ta[Gj ]) × . . .× G−1l (ta[Gl]) : t

a[Gi]=gi} with {Fj , . . . , Fl}=Fc\{Fi} =⇒ |T | ≥ k
and ∀tx,ty∈T , x 6= y, tx 6'cty.

As an example, consider the group association in Figure 4 and confidentiality constraint c5={YoB,
ZIP, MarStatus} in Figure 1. The first tuple in Almr represents 8 possible associations among sub-
tuples in Fl, Fr, and Fm (i.e., any possible combination of tuples from sets {l1,l2}, {m1,m3}, and
{r1,r4}). These associations correspond to the following 8 possible combinations of values of attributes
YoB, ZIP, and MarStatus that may belong to the original relation: 〈1974, 90015, Married〉, 〈1974,
90015, Divorced〉, 〈1974, 90001, Married〉, 〈1974, 90001, Divorced〉, 〈1965, 90015, Married〉, 〈1965,
90015, Divorced〉, 〈1965, 90001, Married〉, 〈1965, 90001, Divorced〉.
k-Looseness guarantees that none of the sensitive associations represented by relevant constraints can

be reconstructed with confidence higher than 1/k. Figure 4 illustrates a fragmentation of the relation
in Figure 1(a) and a group association Almr that guarantees 4-looseness for the sensitive associations
expressed by the confidentiality constraints in Figure 1(b).

Clearly, there is a correspondence between the size of the groupings and the k-looseness of the associ-
ation induced by them. Trivially, a (k1, . . . , kn)-grouping cannot provide k-looseness for a k >

∏n
i=1 ki.

Consider a constraint c, which includes attributes in Fi and Fj only. The (k1, . . . , kn)-grouping can pro-
vide uncertainty over the associations existing among the attributes in c for a k ≤ ki · kj . Indeed, any tu-
ple in fi is associated with at least ki ·kj tuples in fj , which have different values for the attributes in c if
groups are properly defined. With reference to the group association in Figure 4, the sensitive association
represented by constraint c1={YoB,Edu} enjoys a k-looseness of four: each value of YoB can be indis-
tinguishably associated with at least four possible values of Edu, and viceversa. A constraint c involving
more than two fragments may enjoy higher protection from the same (k1, . . . , kn)-grouping. Considering
the example in Figure 4, the sensitive association expressed by constraint c5={YoB,ZIP,MarStatus}
enjoys a k-looseness of eight: for each value of YoB there are at least eight possible different pairs of
(ZIP, MarStatus); for each value of ZIP there are at least eight possible different pairs of (YoB,
MarStatus); and for each value of MarStatus there are at least eight possible different pairs of
(YoB, ZIP). For instance, value 1965 for attribute YoB can be associated with 〈90015, Married〉, 〈90015,
Divorced〉, 〈90001, Divorced〉, 〈90001, Married〉, 〈90038, Widow〉, 〈90038, Single〉, 〈90025, Widow〉,
〈90025, Single〉. Since we consider minimal fragmentations, for each pair of fragments Fi, Fj in F there
exists at least a confidentiality constraint c relevant for Fi and Fj only (i.e., ∀{Fi,Fj}∈F , i 6= j, ∃c∈C s.t.
c⊆Fi∪Fj , Theorem A.2 in [14]), which enjoys a k-looseness of ki · kj . Hence, a (k1, . . . , kn)-grouping
can ensure k-looseness with k≤min{ki · kj : i, j = 1, . . . , n, i 6= j} for the constraints in CF . Whether



the (k1, . . . , kn)-grouping provides k-looseness for lower values of k depends on how the groups are de-
fined. In the following, we introduce three heterogeneity properties of grouping (revising and extending
those provided in [14]) whose satisfaction ensures k-looseness for k=min{ki ·kj : i, j = 1, . . . , n, i 6= j}.

4.2. Heterogeneity properties

The heterogeneity properties ensure diversity of the induced associations, which are defined as sensi-
tive by confidentiality constraints. They operate at three different levels: groupings, group associations,
and value associations.

The first property we introduce is group heterogeneity, which ensures diversity within each group
by imposing that groups in a fragment do not include tuples with the same values for the attributes in
relevant constraints. In this way, the minimum size ki of the groups in fragment Fi, i = 1, . . . , n, reflects
the minimum number of different values in the group for each subset of attributes that appear together in
a relevant constraint.

Property 4.4 (Group heterogeneity) Given a fragmentation F={F1, . . . , Fn} with its instance {f1,
. . . , fn}, and the set CF of confidentiality constraints relevant for F , grouping functions Gi over fi,
i = 1, . . . , n, satisfy group heterogeneity iff ∀tz ,tw∈fi with tz'tw =⇒ Gi(tz) 6=Gi(tw).

This property is a straightforward extension of the one operating on two fragments, as its enforcement
is local to each individual fragment to take into account all constraints relevant for F (not only those
relevant for a pair). For instance, in Figure 4 the grouping functions of the three fragments satisfy group
heterogeneity for CF={c1, . . . , c5} while the grouping function of fragment Fr in Figure 5(a) violates
it with respect to confidentiality constraint c4={YoB,ZIP,Disease}. In fact, fragment instance fr
includes a group with tuples assuming the same value for attribute c4 ∩ Fr =Disease (i.e., Diabetes).

The second property we introduce is association heterogeneity, which imposes diversity in the group
association. For a group association A between two fragments, this property requires that A does not
include duplicate tuples, that is, at most one association can exist between each pair of groups of the two
fragments. By considering the more general case of a group association among an arbitrary number of
fragments, this property requires that, for each constraint c in CF , each group in a fragment fi such that
Fi ∩ c 6= ∅ appears in at least k tuples in A that differ at least in the group of one of the fragments fj
storing attributes in c (i.e., c∩Fj 6=∅). In other words, the association heterogeneity property implies that
A cannot have two tuples with the same group identifier for all attributes Gij , j = 1, . . . , l corresponding
to fragments storing attributes that appear in a constraint. Since we consider minimal fragmentations,
there exists at least one relevant constraint for each pair of fragments inF . Therefore, a group association
A satisfies the association heterogeneity property if it does not have two tuples with the same group
identifier for any pair of group attributes Gi,Gj , i, j = 1, . . . , n, and i 6= j.

Property 4.5 (Association heterogeneity) A group association A satisfies association heterogeneity iff
∀(gi1 , . . . , gin), (gj1 , . . . , gjn) ∈A such that giz = gjz =⇒ giw 6= gjw , w = 1, . . . , n and w 6= z.

Figure 4 illustrates a group association that satisfies the association heterogeneity property, while the
group association in Figure 5(b) violates it since a group of fragment fl is associated twice with a group
in fragment fr.

The third property we introduce is deep heterogeneity, which captures the need of guaranteeing di-
versity in the associations of values behind the groups. Considering a pair of fragments fi and fj , deep
heterogeneity requires that a group in fi be associated with groups in fj that do not include duplicated
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Fig. 5. Examples of violations of heterogeneity properties with respect to constraint c4={YoB,ZIP,Disease}

values for the attributes in a constraint c⊆Fi∪Fj (i.e., tuples are not alike with respect to c). In fact, if
the groups in fj with which a group in fi is associated contain alike tuples with respect to c, the ki · kj
corresponding tuples do not contain ki · kj different values for the attributes in c, meaning that the group
association offers less protection than expected. For instance, groups jmd1 and jmd3 in Figure 4 have
the same values for attribute Disease (i.e., Flu and Asthma). Therefore, a group in fl cannot be as-
sociated with both jmd1 and jmd3 because of constraint c3={Name,Disease} (otherwise, the associ-
ation between Fl and Fr would be 2-loose instead of 4-loose). Considering the more general case of a
group association among an arbitrary number of fragments, and a constraint c composed of attributes



stored in fragments {F1, . . . , Fn}, deep heterogeneity requires a group fi (i = 1, . . . , n) be associated
with groups in {f1, . . . , fn} \ {fi} that do not permit to reconstruct (via the loose join F./A) possible
semi-tuples that have the same values for all the attributes in c. Note that deep heterogeneity does not
require diversity over all the fragments storing the attributes composing a constraint, since this condition
would be more restrictive than necessary to guarantee k-looseness. In fact, it is sufficient, for each tuple
in a fragment fi, to break the association with one of the fragments fj (j = 1, . . . , n, i 6= j) storing the
attributes in c. For instance, with reference to the example in Figure 4, it is sufficient that each group
in fl be associated with groups of non alike tuples in either fm or fr to guarantee a 4-looseness for the
sensitive association modeled by c4. The deep heterogeneity property is formally defined as follows.

Property 4.6 (Deep heterogeneity) Given a fragmentation F={F1, . . . , Fn} with its instance {f1, . . . ,
fn}, and the set CF of constraints relevant for F , a group association A over F satisfies deep hetero-
geneity iff ∀c∈CF ; ∀Fz ∈ F , Fz∩c 6= ∅; ∀ (gi1 ,gi2 . . . gin),(gj1 ,gj2 . . . gjn) ∈A the following condition
is satisfied: giz = gjz =⇒

∨
l=1,...,n, l 6=z

@tx,ty: tx∈G−1l (gil), ty∈G
−1
l (gjl), tx 'c ty.

Given a constraint c whose attributes appear in fragments {Fi1 , . . . , Fij}, deep heterogeneity is satis-
fied with respect to c if no two tuples t, t′ in A that have the same group gy in fiy are associated with
groups that include alike tuples with respect to c for all the fragments fix , x = 1, . . . , j and x 6= y. This
property must be true for all the groups in each fragment. This guarantees that, for each constraint, no
sensitive association can be reconstructed with confidence higher than 1/k. An example of group associ-
ation that satisfies deep heterogeneity is illustrated in Figure 4. Note that deep heterogeneity is satisfied
even though the two tuples in group ny2 for fl are associated with groups jmd1 and jmd2 in fr, which
include tuples r1'c5r3 and r4'c5r7. In fact, constraint c5 is not covered by Fl and Fr but by the three
fragments all together, and heterogeneity of the associations in which r1 and r3 (r4 and r7, respectively)
are involved is provided by the tuples in fm. Figure 5(c) illustrates an example of violation of the deep
heterogeneity property with respect to confidentiality constraint c4={YoB,ZIP,Disease}. In fact, the
groups in the instances fm and fr with which a group in fl is associated include tuples that are alike with
respect to confidentiality constraint c4 (i.e., two tuples in fm have the same value for attribute ZIP and
two tuples in fr have the same value for attribute Disease), clearly reducing the protection offered by
the association. In fact, the tuples that can be reconstructed by joining these two groups in fm and fr in-
clude occurrences of the same values for the attributes in c4 (i.e., ZIP=90025 and Disease=Asthma).
Hence, the association YoB=1972, ZIP=90025, and Disease=Asthma holds with probability higher
than 1/k.

If the three properties above are satisfied by a (k1, . . . , kn)-grouping and its induced group association,
then the group association is k-loose for any k≤min{ki · kj : i, j = 1, . . . , n, i 6= j}, as stated by the
following theorem.

Theorem 4.7 Given a fragmentation F={F1, . . . , Fn} with its instance {f1, . . . , fn}, the set CF of con-
straints relevant for F , and a (k1, . . . , kn)-grouping that satisfies Properties 4.4, 4.5, and 4.6, the group
association A induced by the (k1, . . . , kn)-grouping is k-loose with respect to CF (Definition 4.3) for
each k≤min{ki · kj : i, j = 1, . . . , n, i 6= j}.

PROOF: (SKETCH). To assess the protection offered by the release of a (k1, . . . , kn)-grouping that
satisfies Properties 4.4, 4.5, and 4.6, we first analyze the protection provided to the sensitive association
represented by an arbitrary confidentiality constraint c in CF .



By Definition 2.2, each group ga∈GIDi contains at least ki tuples, ∀Fi ∈ F . Each group ga∈GIDi

appears in at least ki tuples in A, each associating ga to a different group gb in GIDj , for each fragment
Fj in F by Property 4.5. Hence, each ga∈GIDi is associated with at least ki different groups in GIDj ,
∀Fj∈F : Fj∩c 6=∅, i 6= j. Each tuple ta in A having ta[Gi]=ga has at least

∏
jkj (with Fj∈F : Fj∩c 6=∅,

i 6= j) occurrences in the join F./A. Let us denote with groups_ai the tuples in F./A of the occurrences
of a tuple tai in A. Tuples in groups_ai are not alike with respect to c. In fact, by Properties 4.4, each
group in GIDj is composed of at least kj tuples that are not alike with respect to c, ∀Fj∈F such that
Fj∩c 6=∅. By Property 4.6, for each pair of tuples tax, tay in A with tax[Gi]=tay[Gi]=ga, the tuples in
groups_ax∪groups_ay are not alike with respect to c. Hence, F./A has at least ki·

∏
kj tuples, all with

ta[Gi]=ga, that are note alike with respect to c.
Then, a (k1, . . . , kn)-grouping satisfying Properties 4.4, 4.5, and 4.6 induces a group association that

is k-loose with respect to c for each k≤
∏
ki, ∀Fj∈F such that Fj∩c 6=∅.

Since we consider minimal fragmentations only, for each pair of fragments Fi,Fj in F there exists at
least a confidentiality constraint c that is relevant for Fi and Fj only. Hence, the (k1, . . . , kn)-grouping
satisfying Properties 4.4, 4.5, and 4.6 induces a group association that is k-loose with k=ki·kj between
Fi and Fj (i.e., it guarantees a protection degree ki·kj to the constraints relevant for Fi and Fj).

We can then conclude that the (k1, . . . , kn)-grouping satisfying Properties 4.4, 4.5, and 4.6 induces a
group association that is k-loose with respect to CF for each k≤min{ki · kj : i, j = 1, . . . , n, i 6= j}. �

We note that the protection degree offered by a (k1, . . . , kn)-grouping that satisfies Properties 4.4, 4.5,
and 4.6 may be different (but not less than k) for each confidentiality constraint c in CF . Indeed, the
protection degree for a constraint c is min{ki · kj : Fi, Fj ∈ F and Fi∩c 6= ∅ and Fj ∩ c 6= ∅}.

4.3. Some observations on k-looseness

The consideration of all the constraints relevant for the fragments involved in a group association
guarantees that no sensitive association can be reconstructed with a probability greater than 1/k. For
instance, confidentiality constraint c3={Name,Disease} is properly protected, for a looseness of 4, by
the group association in Figure 4 while, as already illustrated in Section 3, the two group associations in
Figure 3 grant only a 2-looseness protection to it.

Given a k-loose association A among a set F of fragments, the release of this loose association is
equivalent to the release of 2n−n, with n = |F|, k-loose associations (one for each subset of fragments
in F). Indeed, the projection over a subset of attributes in A represents a k-loose association for the
fragments corresponding to the projected group of attributes. This is formally captured by the following
observation.

Observation 1 Given a fragmentation F={F1, . . . , Fn}, a subset {Fi, . . . , Fj} of F , and a k-loose
association A(G1, . . . ,Gn) over F , group association A′(Gi, . . . ,Gj) is a k-loose association over
{Fi, . . . , Fj}.

For instance, with respect to the 4-loose association in Figure 4, the projection of A over attributes Gl
and Gm is a 4-loose association between Fl and Fm.

Since a k-loose association defined over a set F of fragments guarantees that sensitive associations
represented by constraints in CF be properly protected, the release of multiple loose associations among
arbitrary (and possibly overlapping) subsets of fragments in F provides the data owner with the same
protection guarantee. The data owner can therefore decide to release either one loose association A



encompassing all the associations among the fragments in F , or a subset of loose associations defined
among arbitrary subsets of fragments in F by projecting the corresponding attributes from A. This is
formally captured by the following observation.

Observation 2 Given a fragmentation F={F1, . . . , Fn} and a k-loose association A(G1, . . . ,Gn) over
it, the release of an arbitrary set of k-loose associations {A1(Gh, . . . ,Gi), . . . , Am(Gj , . . . ,Gk)}, with
{Gh, . . . ,Gk}⊆{G1, . . . ,Gn}, provides at least the same protection guarantees as the release of A.

For instance, the data owner can decide to release the group associations obtained projecting 〈Gl,Gm〉
and 〈Gm,Gr〉 from the group association in Figure 4. This solution does not suffer from the privacy breach
illustrated in Section 3, while providing associations between groups of the same size (i.e., the same
utility for data recipients).

According to the two observations above, the data owner can release more than one group association
among arbitrary subsets of fragments in F without causing privacy breaches. Note however that if the
group associations of interest operate on disjoint subsets of fragments (i.e., no fragment is involved in
more than one group association), they can be defined independently from each other without risks of
unintended disclosure of sensitive associations. This is formally captured by the following observation.

Observation 3 Given a fragmentationF , and a set {F1, . . . , Fn} of subsets of fragments inF , the release
of n loose associations Ai, i = 1, . . . , n does not expose any sensitive association if Fi∩Fj=∅, i, j =
1, . . . , n, i 6= j.

5. Queries and data utility with loose associations

The reason for publishing group associations among fragments, representing vertical views over the
original data, is to provide some (not precise) information on the associations among the tuples in the
fragments while ensuring not to expose the sensitive associations defined among their attributes (for
which the degree of uncertainty k should be maintained). Group associations then increase the utility of
the data released for queries involving different fragments. However, given a set of fragments, different
group associations might be defined satisfying a given degree k of looseness to be provided. There are
two different issues that have to be properly addressed in the construction of group associations: one is
how to select the size ki of the grouping of each fragment fi such that the product of any two ki is equal
to or greater than k; and one is how to group tuples within the fragments so to maximize utility.

With respect to the first issue of sizing the groups, there are different possible values of the different
ki that can satisfy the degree k of protection. For instance, for a group association between two frag-
ments, we can use (k,1), (d

√
ke, b
√
kc), and (1,k). In the case of multiple fragments, the best utility

can be achieved by distributing as much evenly as possible the sizing of the groups, hence imposing on
each group a size close to

√
k. An uneven distribution would in fact result in an over-protection of the

group associations over some of the fragments (a value of looseness much higher than the required k
for constraints covered by a subset of the fragments in F). Experiments show that this would lead to
a significant reduction in the precision of the queries (see Section 7). For instance, a looseness of 12
over three fragments could be achieved with a (3,4,4)-grouping; a solution creating a (1,12,12)-grouping
would indeed provide the required protection overall but would probably provide little utility for the as-
sociation between the second and third fragments (whose association would in fact be 144-loose for the
constraints that are relevant for the second and third fragment only).
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Fig. 6. An example of group association between two fragments Fm and Fr of relation PATIENTS in Figure 1(a) where tuples
are grouped taking into account the similarity of the values of attributes Race and Salary

With respect to the issue of grouping within a fragment, we first note that queries that involve a single
fragment (i.e., all the attributes in the query belong to the same fragment) are not affected by fragmenta-
tion as they can be answered exactly by querying the fragment. For instance, with respect to the fragments
in Figure 6, query q =“SELECT AVG(Salary) FROM PATIENTS GROUP BY Job” involves attributes
that belong to fragment Fr only. Hence, the execution of the query over fragment Fr returns exactly the
same result as its execution over the original relation PATIENTS in Figure 1(a). Om the following, we
focus our discussion on queries that involve two or more fragments, on which a group association is to
be defined, with the goal of determining how to group the tuples in fragments so that the induced group
associations maximize query utility. In particular, we consider aggregate queries of the form “SELECT
Att, AGGi(ai), . . . ,AGGj(aj) FROM S GROUP BY Att”, where AGGi, . . . ,AGGj are aggregation functions
(e.g., COUNT, AVG, MIN, MAX functions), and ai, . . . , aj as well as set Att (this latter optional in the
SELECT clause) are attributes that appear in fragments. For instance, with reference to Figure 6, query
q=“SELECT AVG(Salary) FROM PATIENTS GROUP BY Race” aims at computing the average salary
grouped by the race of patients. We measure utility of a group association as the average improvement
over the accuracy of the results (i.e., with less error) with respect to the results obtained in absence of
the group association. Intuitively, utility is obtained as 1 minus the ratio of the average difference with
respect to the real values in presence of group associations, and the average difference with respect to the
real values in absence of group associations.

The execution of queries over group associations brings in, together with the real tuples on which
the query should be executed, all the tuples together with them in their groups and the uncertainty – by
definition – of which sub-tuples in a fragment are associated with which sub-tuples in other fragments.
Our observation is therefore that groups within fragments should be formed so to contain as much as
possible tuples that are similar for the attributes involved in the queries (have close values for continuous
attributes). The intuition behind this is that, although the query is evaluated on a possibly larger number
of tuples included in the returned groups, such tuples – assuming similar values – maintain the query
result within a reasonable error, thus providing utility of the response. The more the attributes involved in
the query on which such an observation has been taken into account in the grouping, the better the utility
provided by the group association for the query. In fact, similarity of values within groups (even when
ensuring diversity of the values) might provide limited uncertainty of values within a group. We therefore
expect that not all the attributes involved in confidentiality constraints should be taken into account in
this process.

Let us see now an example of queries over our fragmentation involving attributes such that none,
some, or all of them have been subject to the observation above in the grouping (i.e., groups include



similar values for none of, some of, or all the attributes in the query). Consider the fragments and group
association in Figure 6, computed over relation PATIENTS in Figure 1(a), where the group association has
been produced grouping tuples with similar Race values for fragment fm and similar Salary values
for fragment fr. We can then see the following three different cases.

– A query qns involves none of the attributes whose similarity has been considered in the group-
ing. An example of such a query on the group association in Figure 6 is qns = “SELECT
Edu,AVG(InsAmount) FROM PATIENTS GROUP BY Edu”, requiring the average insurance
amount for the different education levels recorded. In this case, the utility of the association typically
remains limited. We note however that the utility for this kind of queries has always been positive
in our experimental analysis, reaching values close to 40% for some queries.

– A query qas involves also (but not only) attributes whose similarity has been considered in the
grouping. An example of such a query on the group association in Figure 6 is qas = “SELECT
InsCompany,AVG(Salary) FROM PATIENTS GROUP BY InsCompany,” requiring, for each
insurance company, the average salary of insurance holders. Enjoying the fact that the additional
tuples involved in the computation will typically have salary close to the values of real tuples,
this query provides quite appreciable utility with respect to the real result. As we will discuss in
Section 7, utility for queries of this type has typically shown values close to 80% in our experimental
evaluation.

– A query qos involves only attributes whose similarity has been considered in the grouping. An ex-
ample of such a query on the group association in Figure 6 is qos = “SELECT Race, AVG(Salary)
FROM PATIENTS GROUP BY Race” requiring the average salary of patients grouped by race. This
query can benefit from the fact that similarity has been considered for both the attributes involved,
which ensures that the additional tuples, brought-in in the evaluation because of the looseness of
the association, have values for the involved attributes close to the ones on which the computation
would have been executed if the query was performed on the original relation. As we will discuss in
Section 7, the utility for this kind of queries is very high, and has typically shown values near 100%
in our experimental evaluation.

Figure 7 shows the results of the queries above when executed over the the group association in Fig-
ure 6 or over the original relation in Figure 1(a).

6. Computing a k-loose association

Figure 8 illustrates our heuristic algorithm that computes a k-loose association aiming at providing
greater utility in query evaluation. The algorithm takes as input a relation s defined over relation schema
S(a1, . . . , am), a fragmentationF={F1, . . . , Fn} and its instance {f1, . . . , fn}, a set CF of confidential-
ity constraints relevant for F , privacy parameters k1, . . . , kn, and a set A of attributes often involved in
the expected queries. The algorithm returns a k-loose association (with k = min{ki · kj : i, j = 1, . . . , n,
i 6= j}), and the corresponding grouping functions G1, . . . ,Gn. Intuitively, the algorithm first identifies
an optimal group for each tuple – without considering heterogeneity properties – in such a way that
each group in a fragment contains tuples with similar values for attributes in A. Our solution to identify
such an optimal grouping is based on the observation that similarity can be conveniently translated into
an ordering of values within the attribute domains. Maximum similarity can in fact be guaranteed by
keeping in the same groups elements that are contiguous in the ordered sequence of attribute values. The



qns

Edu AVG(InsAmount)
B.Sc 110
Ed.D 97.5
MBA 97.5
M.Sc 104
Ph.D 110
Primary 97.5
Th.D 110

qas
InsCompany AVG(Salary)
BestCompany 2500
HerCompany 4500
MyCompany 1500
YourCompany 4500

qos
Race AVG(Salary)
Asian 4500
Black 1500
Indian 1500
White 4500

(a) Execution over the group association in Figure 6

qns

Edu AVG(InsAmount)
B.Sc 150
Ed.D 60
MBA 70
M.Sc 110
Ph.D 100
Primary 110
Th.D 120

qas
InsCompany AVG(Salary)
BestCompany 2666
HerCompany 4000
MyCompany 1500
YourCompany 4500

qos
Race AVG(Salary)
Asian 4500
Black 1500
Indian 1500
White 4500

(b) Execution over the original relation in Figure 1(a)

qns

Edu AVG(InsAmount)
B.Sc 104
Ed.D 104
MBA 104
M.Sc 104
Ph.D 104
Primary 104
Th.D 104

qas
InsCompany AVG(Salary)
BestCompany 3000
HerCompany 3000
MyCompany 3000
YourCompany 3000

qos
Race AVG(Salary)
Asian 3000
Black 3000
Indian 3000
White 3000

(c) Execution over the fragments in Figure 6 without group association

Fig. 7. Results of sample queries on a group association (a), on the original relation (b), and on fragments without group
association (c) for queries involving none (qns), some (qas), or all (qos) of the attributes that have been considered for similarity
in the grouping

algorithm first orders tuples in the fragment instances based on their values for attributes in A, and then
partitions the tuples in groups of size k. In this way, each optimal group will contain k tuples that, thanks
to the ordering, have similar values for attributes in A. Clearly, different ordering criteria can be applied
to different attributes, to properly model the similarity requirement. As an example, for numerical values,
we adopt the traditional ≥ order relationship. The groupings obtained by ordering the tuples according
toA are optimal with respect to similarity (and hence utility of query responses), but they do not provide
any guarantee with respect to the confidentiality of sensitive associations. Optimal groupings are then
used by the algorithm to drive the real allocation of tuples to groups: for each fragment, the algorithm
tries to assign the tuples to the group closest to the optimal group so that also the heterogeneity properties
are satisfied. In the assignment of tuples to groups, the algorithm follows two main criteria: i) it favors
groups close to the optimal group of each tuple; and ii) it prefers groups of size ki over larger groups. Our
heuristic algorithm implementing this approach is presented in details in the remainder of this section.



INPUT
s: relation defined over relation schema S(a1, . . . , am)
F : fragmentation composed of fragments {F1, . . . , Fn}
{f1, . . . , fn}: instances of fragments {F1, . . . , Fn}
CF : set of confidentiality constraints relevant for F
k1, . . . , kn: privacy parameters for {F1, . . . , Fn}
A: set of attributes to be considered for similarity

OUTPUT
A: k-loose association with k = min{ki · kj : i, j = 1, . . . , n, i 6= j}
G1,. . . ,Gn: grouping function for {F1, . . . , Fn}
MAIN

1: To_Place := s /* tuples that need to be allocated to groups */
2: A := ∅
3: /* Step 1: pre-calculate groups to which sub-tuples in fragments should be allocated */
4: for i = |F|. . .1 do
5: order s by A ∩ Fi /* order tuples according to the attributes in A in fragment Fi */
6: current := 0 /* current group identifier */
7: j := 0 /* number of tuples in gicurrent */
8: for each t∈s do /* pre-allocate each semi-tuple to a group */
9: OptimalGrouping[t][Fi] := gicurrent /* optimal assignment for t in Fi */
10: j := j + 1
11: if j = ki then /* create a new group */
12: current := current + 1
13: j := 0
14: /* Step 2: allocate tuples to groups without generating over-quota groups */
15: for each t∈To_Place do /* allocate t to a group in each fragment and define the corresponding tuple ta in A */
16: ta := Find_Assignment(t, NULL, 1, FALSE, OptimalGrouping)
17: if ta 6= NULL then /* t has been assigned to a group in each fragment */
18: A := A ∪ {ta}
19: To_Place := To_Place \ {t}
20: /* Step 3: allocate non-assigned tuples, possibly generating over-quota groups */
21: for each t∈To_Place do
22: ta := Find_Assignment(t, NULL, 1, TRUE, OptimalGrouping)
23: if ta 6= NULL then /* t has been assigned to a group in each fragment */
24: A := A ∪ {ta}
25: To_Place := To_Place \ {t}
26: /* Step 4: re-allocate tuples in under-quota groups and delete unassigned tuples */
27: To_Empty := {g∈GIDi, i = 1, . . . ,m : 0<|{ta∈A : ta[i]=g}|<ki} /* set of non-empty under-quota groups */
28: To_Place := To_Place ∪ Re_Assign(To_Empty)
29: for each Fi∈F do /* remove non-assigned tuples */
30: for each t∈To_Place do fi := fi \ {t[Fi]}

Fig. 8. Heuristic algorithm that computes a k-loose association

The algorithm starts by initializing variable To_Place, representing the set of tuples that still need to
be allocated to groups, to the tuples in s, and by creating an empty group association A (lines 1–2). The
algorithm then operates in four steps as follows.

Step 1: Ordered grouping. For each fragment Fi, the algorithm identifies the optimal grouping, allo-
cating tuples with similar values for the attributes in A ∩ Fi to the same group(s). To this purpose, the
algorithm orders the tuples in s according to the attributes in A ∩ Fi (line 5). It then partitions the or-
dered tuples in sets of ki contiguous tuples each, and assigns to each partition a different group identifier
gicurrent (lines 6–13). In this way, contiguous tuples in the ordered relation are ideally assigned to the
same group (or to contiguous groups). The result of this step is a matrix OptimalGrouping with one row



for each tuple t in s, one column for each fragment F in F , and where each cell OptimalGrouping[t][Fi]
contains the identifier of the optimal group for tuple t in fragment Fi.

Step 2: Under-quota grouping. The algorithm tries to assign each tuple to the group closest to the
optimal one that satisfies all the heterogeneity properties, but without generating over-quota groups
(i.e., groups in Fi with more than ki tuples) to maximize utility. In fact, large groups limit the util-
ity that can be obtained in query evaluation. For each tuple t in To_Place, the algorithm calls function
Find_Assignment in Figure 9 (lines 15–16), which allocates tuples to groups according to the hetero-
geneity properties.

Function Find_Assignment receives as input a tuple t, the candidate tuple assoc_tuple that repre-
sents t in the group association A (which is NULL when t has not been assigned to any group), a frag-
ment identifier i, a Boolean variable over_quota (which is TRUE only if over-quota groups are permit-
ted), and the array OptimalGrouping computed in Step 1. This function then tries to assign t to a group
in Fi close to the optimal one. Function Find_Assignment first checks whether t can be inserted into
OptimalGrouping[t][Fi], that is, it checks whether the heterogeneity properties are satisfied. If the het-
erogeneity properties are not satisfied, the function checks the groups of fragment Fi, denoted gicandidate ,
in increasing order of distance from OptimalGrouping[t][Fi] (lines 3–13). In fact, similar values are
ideally assigned by Step 1 to groups close to the optimal one. The satisfaction of the heterogeneity
properties is verified by calling function Try_Assignment in Figure 9 (line 9 and line 13). Function
Try_Assignment takes as input tuple t, the candidate tuple assoc_tuple that represents t in the group as-
sociation A, the fragment identifier i, and a group identifier g, and returns TRUE if t[Fi] can be assigned
to g; FALSE, otherwise. When a correct assignment of t to a group in Fi is found, if Fi is the last fragment
in F , function Find_Assignment returns tuple assoc_tuple representing the computed assignment of t
to groups (lines 14–15). Otherwise, function Find_Assignment recursively calls itself to assign t to a
group in fragment Fi+1 (line 16). If the recursive call succeeds (i.e., it returns a group association for t),
function Find_Assignment returns assoc_tuple; it tries to allocate t to a group at higher distance from
OptimalGrouping[t][Fi], otherwise (line 18–19). If t cannot be assigned to any group in Fi, the function
returns NULL (line 20).

If function Find_Assignment returns a tuple ta, the algorithm inserts ta into the group association A
and removes t from To_Place (lines 17–19).

Step 3: Over-quota grouping. If Step 2 could not allocate all the tuples in s, the algorithm tries to al-
locate the remaining tuples in To_Place to the existing groups, thus possibly creating over-quota groups.
To this purpose, for each tuple t in To_Place, the algorithm calls function Find_Assignment with vari-
able over_quota set to TRUE. The algorithm updates A and To_Place according to the result returned by
function Find_Assignment (lines 20–25).

Step 4: Re-assignment. Once tuples in s (or a subset thereof) have been allocated to groups, the al-
gorithm determines the set To_Empty of groups generated by Steps 2-3 that are under-quota, that is,
the groups that do not include the minimum number of tuples necessary to provide privacy guarantees
(line 27). The algorithm then calls function Re_Assign in Figure 9 (line 28).

Function Re_Assign receives as input the set To_Empty of non-empty but under-quota groups, and
tries to reallocate their tuples to other groups (lines 30–38). Tuples in under-quota groups that cannot
be reallocated will be removed from the fragmentation and are inserted into To_Remove (lines 39–40).
When a tuple t is inserted into To_Remove, the corresponding tuple ta in A is removed from the group
association and, for each fragment Fl, Gl(t) is set to NULL (lines 44–45). Due to the removal of t, the
group gl to which t belong in Fl loses a tuple and it might become under-quota with the consequence



FIND_ASSIGNMENT(t, assoc_tuple, i, over_quota, OptimalGrouping)
1: if over_quota = FALSE then max := ki else max := 2ki /* maximum number of tuples in groups */
2: allocated := FALSE /* variable that is TRUE if t has been allocated to a group in Fi */
3: gij := OptimalGrouping[t][Fi] /* optimal allocation for t in Fi */
4: distance := 0 /* distance from the optimal allocation */
5: num_groups :=

⌈
|s|
ki

⌉
/* number of groups for Fi */

6: while distance<b 1
2

num_groups c do
7: candidate := (j + distance) mod num_groups /* candidate allocation */
8: if |{ta∈A : ta[i]=gicandidate}| < max then /* the candidate group can allocate other tuples */
9: allocated := Try_Assignment(t, assoc_tuple, i, gicandidate )
10: if allocated=FALSE ∧ distance6= 0 then
11: candidate := (j − distance) mod num_groups /* alternative candidate allocation */
12: if |{ta∈A : ta[i]=gicandidate}| < max then
13: allocated := Try_Assignment(t, assoc_tuple, i, gicandidate )
14: if allocated = TRUE then
15: if i = |F| then return(assoc_tuple) /* the tuple has been allocated to a group in each fragment */
16: assoc_tuple := Find_Assignment(t, assoc_tuple, i+ 1, over_quota, OptimalGrouping) /* recursive call for Fi+1 */
17: if assoc_tuple 6= NULL then return(assoc_tuple)
18: Gi(t) := NULL /* try a different allocation at higher distance from the optimal one */
19: distance := distance + 1
20: return(NULL)

TRY_ASSIGNMENT(t, assoc_tuple, i, g)
21: assoc_tuple[i] := g /* insert t into group g for fragment Fi*/
22: Gi(t) := g
23: if g satisfies Definition 4.4 ∧ /* group heterogeneity */
24: A∪{assoc_tuple} satisfies Definition 4.5 ∧ /* association heterogeneity */
25: A∪{assoc_tuple} satisfies Definition 4.6 /* deep heterogeneity */ then
26: return(TRUE) /* correct assignment */
27: return(FALSE)

RE_ASSIGN(To_Empty)
28: To_Remove := ∅ /* tuples that need to be removed from the fragmentation */
29: while To_Empty 6= ∅ do
30: gi := Extract_Group(To_Empty)
31: let i be the fragment Fi of gi

32: for each ta∈A s.t. ta[i]=gi do
33: let t∈s be the tuple represented by ta
34: CandidateGroups := {g∈GIDi : |{ta∈A : ta[i]=g}|≥ki} /* set of over-quota groups of Fi */
35: allocated := FALSE
36: while (allocated=FALSE) ∧(CandidateGroups6=∅) do /* try to re-assign the semi-tuple */
37: gij := Extract_Group(CandidateGroups) /* candidate group */
38: allocated := Try_Assignment(t, ta, i, gij)
39: if allocated = FALSE then /* if the reassignment failed, the tuple must be removed */
40: To_Remove := To_Remove ∪ {t}
41: for l = 1 . . . |F| do
42: gl := ta[l] /* check whether the removal of t generates new under-quota groups */
43: if |{ta∈A : ta[l]=gl}|<kl+1 then To_Empty := To_Empty ∪ {gl}
44: ta[l] := NULL
45: Gl(t) := NULL
46: return(To_Remove)

Fig. 9. Pseudocode of functions Find_Assignment, Try_Assignment, and Re_Assign



that it should be removed. If this is the case, gl is inserted into To_Empty (line 43). Function Re_Assign
returns the set To_Remove of tuples to be removed from the fragmentation (line 46).

The algorithm then deletes from each fragment both the tuples that have never been assigned to groups
and the tuples returned by function Re_Assign (lines 29–30).

The utility of the k-loose association computed by this heuristic algorithm as well as its efficiency are
evaluated in Section 7.

7. Coverage, performance, and utility

We implemented a prototype, written in Python, of the algorithm described in the previous section,
and ran several sets of experiments to the aim of evaluating the ability of our approach to compute a
k-loose association, while limiting the number of suppressed tuples (i.e., tuples that cannot be included
in any group), and of assessing its performance (Section 7.2). We then analyzed the utility provided in
query evaluation (Section 7.3). We now present the experimental setting (Section 7.1) and then discuss
the experimental results.

7.1. Experimental setting

We considered both synthetic and real-world datasets. Synthetic data allow us to fully control all
the parameters used for data generation, such as the variability in the distribution of attributes val-
ues, leading to a robust analysis of the behavior of our technique. Real data allow us to assess the
applicability of our technique in a concrete setting. Synthetic datasets were generated starting from a
relation schema composed of 7 attributes PATIENTS(Name, YoB, Education, ZIP, MarStatus,
Disease, Salary), split over two fragments (Fl={Name, MarStatus, Salary} and Fm={YoB,
Education, ZIP, Disease}), to satisfy confidentiality constraints c1={Name, ZIP, MarStatus,
Disease} and c2={Name, YoB, Education, MarStatus}. The datasets were randomly generated
adopting distinct characterizing parameters for each attribute. A statistical correlation was introduced be-
tween Salary and Education; all the other attributes were set using independent distributions. This
allowed us to have knowledge of information in the protected data that we were interested in retrieving
through the query computing the average Salary of patients with the same Education level.

In our experiments we considered, as a base configuration, a dataset including 10, 000 tuples. We ana-
lyzed the behavior of the system varying several parameters. First, we considered the impact of variations
of k, with values ranging between 4 and 20 (k was equal to 12 for experiments that did not change this
parameter). Then, we considered changes on a parameter γ that drives the generation of the synthetic
dataset, guiding the distribution of the attribute values. Low values of γ produce compact ranges of values
for all the attributes and a high probability of similarity among tuples; high values of γ produce values
for the attributes covering a wider range, with small similarity among tuples. The interval we considered
in the experiments is between 4 and 12 (value 8 was used in experiments that did not consider variations
of this parameter). Finally, we considered the impact of the variations of parameters kl and km and, al-
ways choosing pairs of values such that kl·km=k, we considered several possible pairs (in experiments
that did not consider variations of these parameters, we chose the pair kl and km that had kl≥km and
minimum distance between kl and km; e.g., when k=12, kl=4 and km=3). As a real world dataset, we
considered the IPUMS dataset [23], which has been widely used in the literature to test anonymization
approaches. Among the attributes in the dataset, we considered the projection over attributes {Region,
Statefip, Age, Sex, MarSt, Ind, IncWage, IncTot, Educ, Occ, HrsWork, Health}, repre-
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Fig. 10. Percentage of tuples in the original relation that are not released, varying the number of tuples in the relation (a) and
the variability in the distribution of attribute values (b)

senting for each citizen: the region where she lives, the state where she lives, age, sex, marital status, the
type of industry for which she works, salary, annual total income, education level, occupation, the number
of hours she works per week, and health status rated on a five point scale. The relation includes 95, 000
tuples with a not null value for IncWage attribute. When considering the real dataset, we ran experi-
ments over two fragmentations: the first one is composed of two fragments Fl={Region, Statefip,
Age, Sex, MarSt, Ind, IncWage, IncTot} and Fm={Educ, Occ, HrsWork, Health} satisfying
constraints c1={Statefip, Ind, Educ, Occ, Health} and c2={Age, Sex, MarSt, Educ, Occ,
Health}; the second fragmentation has three fragments Fl={Region, Statefip, Ind, IncWage},
Fm={Age, Sex, MarSt, IncTot}, and Fr={Educ, Occ, HrsWork, Health} satisfying constraints
c1={Statefip, Ind, Educ, Occ, Health}, c2={Age, Sex, MarSt, Educ, Occ, Health}, and
c3={Statefip, Age, Sex, MarSt, Ind}. Experiments have been run on a server with two Intel(R)
Xeon(R) E5504 2.00GHz, 12GB RAM, one 240GB SSD disk, and Ubuntu 12.04 LTS 64bit operating
system. The reported results have been computed as the average of a minimum of 5 (for the largest con-
figurations) and a maximum of 120 (for more manageable configurations) runs of the same experiment.

7.2. Coverage and performance

We ran a first set of experiments on synthetic data aimed at assessing the coverage of the solution com-
puted by our algorithm, that is, the number of tuples of the original relation that could not be published
as they could not be allocated to any group without violating k-looseness. The experiments focused on
evaluating how the number of tuples in the relation (Figure 10(a)) and the variability in the distribution
of attribute values (Figure 10(b)) have an impact on the number of tuples that cannot be released, for
different values of k.

Figure 10(a) shows that the algorithm is more likely to suppress tuples when operating over small
datasets, as the number of candidate groups in each fragment is small. It is then harder to find an assign-
ment for each tuple that satisfies all the heterogeneity properties. As it can be expected, the percentage of
suppressed tuples grows with k, since it is harder to define larger groups of tuples (especially for small
datasets).

Figure 10(b) illustrates the impact of the variability in the distribution of attribute values on the number
of suppressed tuples. As visible from the figure, datasets characterized by low variability cause higher
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Fig. 11. Computational time necessary to determine a k-loose association, varying the number of tuples in the relation (a) and
the variability in the distribution of attribute values (b)

suppression. This is due to the fact that it is hard to assign tuples to groups when there is a higher
probability that some of them have the same values for attributes in relevant confidentiality constraints.
Indeed, two tuples with the same values for attributes in constraints cannot be assigned to the same group.
In the experiments performed on the IPUMS dataset, no tuple has been suppressed.

A second set of experiments on synthetic data evaluated the impact of the size of the original relation
and of the variability in the distribution of attribute values on the performance of our algorithm.

To prove the scalability of our approach, we ran our algorithm with large instances of the original
relation, with a number of tuples varying between 2, 000 and 100, 000. Figure 11(a) illustrates the time
necessary to compute a k-loose association and confirms the scalability of the proposed approach. In
fact, our prototype is able to find a k-loose association for relations with 100, 000 tuples in less than
one minute for k=16 (and we speculate that, according to publicly available Python/C performance
ratios [16], an optimized C implementation would take less than one second).
Figure 11(b) illustrates the impact of the variability in the distribution of attribute values on the time
necessary to compute a k-loose association, considering configurations with 10, 000 tuples. The figure
confirms that, as already noted, the lower the variability, the harder the task to find a k-loose association.
Both Figure 11(a) and Figure 11(b) also show that the computational time grows with the protection
degree offered by the k-loose association: higher values of k require a higher computational cost.
In the experiments on the IPUMS dataset, our algorithm always computed a solution in less than 90
seconds.

7.3. Utility

We ran a set of experiments specifically focused on assessing the gain provided by loose associations,
in terms of the utility of query results. We used as a reference the query that identifies the relationship
between the Education level of patients and their Salary (i.e., SELECT AVG(Salary) FROM PA-
TIENTS GROUP BY Education). We then defined a k-loose association that aims at keeping in the same
group patients with the same Education level in fragment Fm and with similar Salary in fragment
Fl.
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Fig. 12. Utility provided by a k-loose association, varying the number of tuples in the relation (a) and the variability in the
distribution of attribute values (b)

Figure 12(a) compares the utility provided by the release of a k-loose association with different values
for k, varying the number of tuples in the input dataset. The figure clearly shows that the release of a
k-loose association permits to obtain high utility in query evaluation. In most of the considered config-
urations, utility is nearly 100%, meaning that the result computed over fragmented data complemented
with loose associations is nearly the same obtained on the original relation. This figure also confirms that
the quality of the loose association computed by our algorithm improves with the number of tuples in
the dataset, as it becomes easier to have tuples with similar values for Education and Salary in the
same group.

Figure 12(b) illustrates the impact of the variability in the distribution of attribute values on the ob-
tained utility. Greater values of γ increase the variability and lead to a reduction in the probability for
an attribute to present the same values in different tuples. Conflicts arise in a group when tuples present
the same values on the attributes involved in a constraint. Then, the probability of conflicts decreases as
γ increases. The utility provided by the release of a k-loose association is always high, and increases as
the variability in the attribute values increases. Our experiments also clearly show that, in line with the
observation that utility and privacy are two contrasting requirements, utility decreases as k increases. It is
then expected that improvements in confidentiality guarantees of the solution correspond to worsening in
the utility of the released data. It is however worth noticing that, also for the worst case in which k=20, if
the size of the input dataset is not too limited (i.e., in the order of hundreds of tuples) the measured utility
was higher than 80%, implying a high utility in query evaluation also when adopting privacy parameters
higher than the values we expect to be used in real-world scenarios.

We ran a second set of experiments for evaluating the impact of keeping in the same group similar
values for an attribute (or a set thereof) of interest for query evaluation (see Section 5). To this aim, we
compared the utility of queries qos (operating on both Education and Salary), qas (operating only on
Education or only on Salary), and qns (operating on neither Education nor Salary). Figure 13
compares the utility obtained with 7 different queries (query q0 as representative for qos, queries q1, q2, q3
for qas, and queries q4, q5, q6 for qns) with k=12, varying kl and km. Each query is represented by a group
of bars, where each bar presents the utility obtained with one of the configurations for parameters kl and
km. The results clearly show that the query with highest utility (almost 100%) is q0, which benefits from
the ordering over both Education and Salary (i.e., query qos). Queries q2,q3, and q4 take advantage



Fig. 13. Utility provided by a k-loose association with ordering on Education and Salary

only of the ordering over one attribute, which however permits to obtain utility higher than 80% in all
the considered configurations. Our experimental evaluation shows that the release of a loose association
provides limited, but not null, utility also for queries qns. We can then conclude that keeping in the same
group tuples with similar values permits to achieve better results in the utility of query evaluation.

In the experiments performed on the IPUMS dataset, we first defined a k-loose association between
fragments Fl and Fm, and identified two representative sets of queries. The first set of queries operates
on the attributes on which fragments of the loose association have been ordered (i.e., qos, represented
by query q0, and qas, represented by queries q1, q2, q3). The second set of queries instead operates
only on attributes different from those on which the ordering was performed (i.e., qns, represented by
queries q4, . . . , q11). Figure 14(a) illustrates the utility obtained in executing these two sets of queries
over a k-loose association with k=12 and varying the values of kl and km. Each query is represented
by a group of bars in the figure. Queries involving at least one of the attributes on which the ordering
has been performed (i.e., queries q0, . . . , q3) showed excellent utility in the result, close to 100% for all
queries. As expected, the utility in executing queries operating on unordered attributes only (i.e., queries
q4, . . . , q11) is lower. It is however worth noticing that the results are still appreciable, with most of the
queries showing utility between 20% and 35%. Compared to the experiments on the synthetic dataset,
the queries of type qns exhibit better utility. In particular, Figure 14(a) shows that queries qas involving
both ordered and unordered attributes exhibit utility values similar to query q0 that involves ordered
attributes only. Our explanation for the higher utility obtained on IPUMS dataset is that real data are
more structured and present greater regularity and correlations among attribute values than the randomly
generated data in our synthetic dataset, which is characterized by one correlation only (the one between
attributes Education and Salary).

Figure 13 and Figure 14(a) describe configurations that, keeping k constant, progressively increase the
value of parameter kl (and reduce km accordingly). The utility remains relatively stable across all these
configurations, even if we can see that, for some queries, the utility decreases as kl increases, while for a
few queries the utility grows with kl. Overall, we consider as preferable the intermediate solutions, with
kl and km near to

√
k, because they are not associated with the lowest levels of utility and because this

criterion offers strong benefit when applied to fragmentations with more than two fragments, as observed
in the following.
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Fig. 14. Utility provided by a k-loose association over two (a) and three (b) fragments

To further evaluate our technique, we performed the same experimental analysis on the fragmentation
of IPUMS dataset composed of three (rather than two) fragments. Figure 14(b) reports the utility of
queries provided by the release of a k-loose association with k=12, comparing the results obtained with
a (1,12,12)-, (2,6,6)- and (3,4,4)-grouping. The crucial difference among these configurations is that
queries that combine the second and third fragment will operate on a k-loose association between the
two fragments with k equal to 144, 36, and 16 (for the constraints that are relevant for the second and
third fragment). As we already noticed, an increase in k leads to a reduction in utility. The graph in
Figure 14(b) clearly shows the increase in utility that occurs going from (1,12,12)- to (3,4,4)-grouping
for queries q0, . . . , q3. This result proves that, for fragmentations with more than two fragments, there is
a significant utility benefit in building loose associations with similar values for parameter ki on all the
fragments.

Figure 15 demonstrates in a different way the utility that can be obtained by the use of loose associa-
tions, analyzing query q0 of the previous experiments. The graph has on the x-axis the different values
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Fig. 15. Query results computed ordering on Educ and IncWage on a k-loose association among two (a) and three (b)
fragments

of attribute Educ, which represents the number of years of education reported in the census, and on the
y-axis the average salary (attribute IncWage) for the cohort of people with that level of education. In
essence, the graphs plot the result of query q0=“SELECT AVG(IncWage) FROM IPUMS_CENSUS GROUP
BY Educ”. The continuous green line (i.e., the line labeled “real”) reports the results obtained on the
real data. The dashed blue horizontal line (i.e., the line labeled “without loose associations”) in the mid-
dle is the result that we can obtain without loose associations, because IncWage and Educ belong to
different fragments and the global average salary will be returned for every education level. The con-
tinuous red line (i.e., the line labeled “with loose associations (ordered)”) describes the result obtained
with a k-loose association with k=12. Figure 15(a) shows the results obtained in the configuration with
two fragments and assuming a (4,3)-grouping, while Figure 15(b) illustrates the results obtained in the
configuration with three fragments and assuming a (3,4,4)-grouping. In both graphs, the green and red
lines are overlapping over most of the range, clearly showing the utility that can be obtained by loose
associations.

8. Related work

Several research efforts have addressed the problem of protecting privacy in data publishing, proposing
approaches based on either sanitizing (e.g., [9,15,17,20,21,22,24,30]) or fragmenting data (e.g., [1,2,7,
8,10,11]) before their release. Our approach bears some similarity with k-anonymity [26] for the notion
of grouping and more similarity with `-diversity [22] for the consideration of the different values that
are involved in the sensitive associations. Apart from this, our problem and solution are different from k-
anomymity-like approaches, which are typically based on generalization of quasi-identifying attributes.
By contrast, in our approach fragments contain the attribute values that appear in the original relation,
while it is the association among fragments that is obfuscated. Most fragmentation works, although
showing similarities with our proposal, address an orthogonal problem with respect to the one considered
in this paper, as they aim at breaking sensitive associations while maximizing the ability of recipients
of evaluating queries on fragments. Recent proposals have also considered the problem of improper
information leakage due to data dependencies, which can be exploited to link different fragments [3,13].



Our loose associations can nicely complement these proposals, thus increasing the utility of fragmented
data and ensuring proper protection of confidentiality constraints also in presence of data dependencies.

The works closest to our complement published (fragmented) data with information on their associ-
ation, without disclosing sensitive information [11,14,31]. Our proposal is however more general than
these solutions, since they operate on two fragments (or views/tables) only, while we consider an arbi-
trary number of fragments when defining loose associations. The work in [11] does not take into consid-
eration the possible existence of duplicate values for non-key attributes. Sensitive associations on non-
key attributes are therefore exposed to frequency-based attacks. Our heterogeneity properties overcome
this issue by preventing the presence of duplicates in the same group of tuples. Anatomy [31] considers
the specific problem of protecting the association between respondents’ quasi-identifiers and a sensitive
attribute while our solution permits to protect any association among attributes. Anatomy also partitions
the original relation in groups of ` tuples before splitting attributes in two disjoint fragments. Our ap-
proach provides more flexibility in defining groups of tuples because for each fragment Fi we can con-
sider a different privacy parameter ki (and a different grouping function) instead of a single ` value.
By comparing Anatomy with a loose association on two fragments, we can see that the two techniques
provide the same protection guarantees and the same utility [14]. Anatomy can then be considered as a
specific instance of our approach, where the original relation is partitioned in two fragments: Fl, storing
the quasi-identifier, Fr, storing the sensitive attribute, and kl=1 and kr=` (or viceversa).

Our work may also bring some resemblance with the proposals in [6,27,28]. The work in [28] adopts
horizontal and vertical fragmentation to protect privacy of sparse multidimensional data (e.g., transac-
tional data). The approach in [6] focuses instead on protecting recommendation data expressed by cus-
tomers (i.e., Netflix movie ratings). Besides operating on different data models, both these proposals dif-
fer from our work since they are specifically targeted at protecting respondents’ identities and their asso-
ciation with sensitive attributes. Also, they both adopt a dual approach with respect to loose associations,
requiring homogeneity of values in fragments. The work in [27] addresses the problem of destroying the
correlation between two disjoint subsets of attributes, preserving as much as possible the other correla-
tions. Our approach does not aim at destroying correlations among attributes, as our goal is to preserve
them as much as possible, while satisfying privacy constraints. Also, the solution in [27] adopts masking
techniques, while our approach maintains data truthfulness.

Alternative approaches to protect privacy in data release are based on differential privacy (e.g., [15,
17]). Although addressing a similar problem, approaches based on differential privacy are not directly
applied since they introduce noise in the dataset that depends on the expected users queries. Our approach
instead aims at releasing truthful data.

A different line of work is represented by Controlled Query Evaluation (CQE) (e.g., [2,4]). These
solutions provide the data owner storing a data collection with a technique for controlling whether users’
queries should be permitted or denied depending on both confidentiality constraints and the history of
past interactions. These approaches are not applicable to our scenario, since we publicly release a dataset.

9. Conclusions

We addressed the problem of extending loose associations to operate on multiple fragments. We first
described how the publication of multiple loose associations between pairs of fragments can expose
sensitive associations, and then presented an approach supporting the definition of a loose association
among an arbitrary number of fragments. We also described a heuristic algorithm for the computation of



a loose association, and showed the results of an extensive experimental evaluation aimed at analyzing
both the efficiency and the effectiveness of the proposed heuristics as well as the utility provided by
loose associations in query execution. Our work leaves space for further investigations, including the
consideration of external knowledge that data recipients can exploit to reconstruct sensitive associations
among attributes in different fragments, and of dynamic datasets, where data in the original relation
change over time.
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