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Abstract. We derive bounds on the expected loss for authentication protocols in channels which are constrained due to noisy
conditions and communication costs. This is motivated by a number of authentication protocols, where at least some part of the
authentication is performed during a phase, lasting n rounds, with no error correction. This requires assigning an acceptable
threshold for the number of detected errors and taking into account the cost of incorrect authentication and of communication.
This paper describes a framework enabling an expected loss analysis for all the protocols in this family. Computationally simple
methods to obtain nearly optimal values for the threshold, as well as for the number of rounds are suggested and upper bounds
on the expected loss, holding uniformly, are given. These bounds are tight, as shown by a matching lower bound. Finally, a
method to adaptively select both the number of rounds and the threshold is proposed for a certain class of protocols.
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1. Introduction

Traditionally, authentication is assumed to be taking place on an error-free channel [1,2], and error
analysis is performed separately from cryptographic analysis of protocols. However, a number of authen-
tication protocols have been proposed [3–14], where at least some part of the authentication is performed
during a challenge-response phase lasting n rounds with no error correction. These protocols are known
as distance-bounding protocols and are employed as the main countermeasure against relay attacks by
timing transmission delays. However, channel noise necessitates the acceptance of some responses which
are not perfectly correct. In addition, increasing n carries a significant cost. The problem is to strike an
optimal balance between the increased number of rounds, the probability of falsely authenticating an
illegitimate party, and failing to authenticate a legitimate party.

For example the rapid-bit exchange phase in an RFID distance-bounding protocol (i.e. [9]), satisfies
these criteria. This is a phase, lasting n rounds, where an equal number of challenges and responses,
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consisting of single bits, are sent. Since there is no error correction during that phase, some responses
received from a legitimate user may be erroneous, due to transmission errors in either direction. This ne-
cessitates the use of a tolerance threshold τ , such that if the number of erroneous responses is lower than
τ , the communicating party is nevertheless authenticated. Unfortunately, while increasing the number
of rounds decreases the probability of incorrect authentication, it also increases communication costs,
which is particularly undesirable in power-constrained devices such as RFID tags. The problem then is
how to select n, τ in an optimal manner and how to define optimality in the first place.

This paper performs an expected loss analysis of the authentication problem. This is necessary, because
of the non-trivial cost of increasing the number of rounds n, the lack of an error-free channel and the
need to trade off optimally the costs of incorrectly authenticating an illegitimate entity, or failing to
authenticate a legitimate one.

We place the problem in a decision-theoretic framework. We assign a loss ℓA to the event that we
authenticate a malicious party A—which we call the attacker—a loss ℓU to the event that we fail to
authenticate a valid party U—which we call the user—and a loss ℓB for each round of the challenge-
response phase, such that the total communication cost is nℓB . Adding a non-negligible cost to the
communications is of fundamental importance in resource-constrained environments. Otherwise, n can
be made as large as necessary to make the probability of authentication mistakes infinitesimal. Our goal
is to select n and τ so as to minimise the expected loss EL of the authentication system. This is achieved
through a finite sample analysis.

We should note here that a preliminary version of this paper was presented at INFOCOM [15] and
as a technical report at [16]. The current paper features corrections, an extended theoretical analysis,
additional experiments and a more realistic attacker model. The main differences are that we consider a
stronger attacker model, present an improved choice for the threshold when the gap between the attacker
and user is large, as well as new experimental results where we detail the effect of parameters on the
choice of threshold and number of rounds. Finally, we present a more extensive experimental comparison
with a likelihood-ratio threshold and the exact minimax solution.

The paper is organised as follows. Section 2 introduces notation and our framework. Section 3 con-
tains the expected loss analysis under noise. In particular, Sec. 3.1 suggests a method to calculate the
threshold accompanied by finite sample upper loss bounds and a matching lower bound, while Sec. 3.2
provides a further loss bound by selecting a near-optimal number of rounds n. These results only require
two reasonable assumptions: that the expected error of the attacker is higher than that of the user and
that the errors are independent in each round, something that can be achieved by appropriate protocol
design. In particular, we analyse methods for selecting a nearly-optimal threshold and number of rounds,
prove bounds on the expected loss for our choices, show their dependence on the problem parameters
and discuss their relation with the optimal (minimax) solution. Section 4 applies the above analysis to
two existing RFID protocols, and shows the effect of channel noise on the expected loss, as well as on
our bounds. Since the above analysis requires bounds on the errors made by users and attackers to be
known, Section 5 suggests a high-probability method for estimating the channel noise in order to obtain
them, under a powerful attacker model. Section 6 presents two sets of simulation experiments. In the
first, we investigate the stability of the noise evaluation method under varying noise. This is done both
for our method of selecting the threshold with a Bayesian likelihood ratio test, which requires additional
assumptions. In the second set of experiments, we directly compare the performance of those two meth-
ods as noise and the other problem parameters vary with the minimax solution. Finally, Sec. 7 concludes
the paper with a discussion of related work. For completeness, the appendix provides known auxiliary
results for the finite sample and the Bayesian likelihood ratio test derivations.
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2. Preliminaries

We consider sequences x = x1, . . . , xn with all xi in some alphabet X and x ∈ X n. We write X ∗ ≜∪∞
n=0X n for the set of all sequences. We use ≜ to indicate a definition. P(A) denotes the probability

of event A, while E denotes expectations so that E(X | A) =
∑

u∈Ω uP(X = u | A) denotes the
conditional expectation of a random variable X ∈ Ω when A is true. In addition, I {A} is an indicator
function equal to 1 when A is true and 0 otherwise. Finally, we use [k] ≜ {0, 1, . . . , k} to denote the set
of integers up to k.

We consider additive-error challenge-response authentication protocols. In such protocols, a verifier V
grants access to a prover P , if the latter can demonstrate its identity via possession of a shared secret.
The protocol has three phases: (i) An initialisation phase. (ii) A challenge-response phase, lasting n
rounds, performed without error correction under noisy conditions. (iii) A termination phase. During
the challenge-response phase the verifier V sends n challenges c1, . . . , cn, with ck ∈ X , to the prover
P , which responds by transmitting n responses r1, . . . , rn, with rk ∈ X . We use c = (ck)

n
k=1, and

r = (rk)
n
k=1 to denote the complete challenge and response sequences respectively. The verifier V uses

an error function E : X × X → [0, 1] to calculate an error εi = E(ri, ci) for the i-th round. The errors
when interacting with a valid user may be non-zero due to noise constraints in the channel. However, as
the attacker has to resort to guessing the responses, the expected error of the attacker should be higher
than that of the user.

In order to trade off false acceptances with false rejections, we use a threshold value τ , such that a
prover is accepted if and only if the total error observed is smaller than τ . The verifier V calculates the
total error ε ≜

∑n
i=1 εi, and rejects the prover P , if and only if ε ≥ τ .

The relation of ε to the challenge and response strings c and r strongly depends on the protocol. In
order to make our analysis generally applicable, we make the following assumption about the protocol.

Assumption 1. We assume there exists some pA ≤ E(εi | A), a lower bound on the expected per-round
error of the attacker and some pU ≥ E(εi | U), an upper bound on the error of a legitimate user.
In addition, we assume that the protocol is such that all errors are independently (but not necessarily
identically) distributed.

These bounds depend on the noise during the challenge-response phase and on the protocol under
consideration. The independence assumption can be satisfied for the interaction with the user when the
channel noise is independent. The interaction with the attacker requires constructing an appropriate pro-
tocol, so that learning attackers are precluded. We shall return to this issue in section 4, which discusses
specific protocols.

3. Expected loss analysis

In order to perform an expected loss analysis, we must specify the potential losses arising from every
aspect of the decision process defined by the protocol. For every round of the challenge-response phase,
we suffer loss ℓB , due to the cost in time and energy of transmission. In addition, we suffer a loss of ℓA
for each false acceptance and a loss ℓU for each false rejection.1 Given that we perform n rounds, we

1These losses are subjectively set to application-dependent values. Clearly, for cases where falsely authenticating an attacker
the impact is severe, ℓA must be much greater than ℓU . In addition, ℓB must be sufficiently low that running the protocol at all
is worthwhile.
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define the total loss when the prover P is either the legitimate user U or the attacker A as given by:

L =


nℓB + ℓU , if ε ≥ τ and P = U

nℓB + ℓA, if ε < τ and P = A

nℓB, otherwise.
(1)

Armed with this information, we can now embark upon an expected loss analysis. We wish to devise an
algorithm that guarantees an upper bound on the expected loss EL of the authentication system. To start
with, we note that the expected loss when the communicating party is an attacker A or the user U , is
given respectively by:

E(L | A) = nℓB + P(ε < τ | A) · ℓA + P(ε ≥ τ | A) · 0 (2)

E(L | U) = nℓB + P(ε < τ | U) · 0 + P(ε ≥ τ | U) · ℓU (3)

The expected loss is in either case bounded by the worst-case expected loss:

L ≜ max {E(L | A),E(L | U)} ≥ EL (4)

If we can find an expression that bounds both E(L | A) and E(L | U), we automatically obtain a bound
on the expected loss, EL. First, we shall see how to select a near-optimal threshold, given a fixed number
of rounds of the protocol. Then we shall look at two approximate methods for selecting the number of
rounds itself. These will be compared with the optimal (but computationally more expensive) solution.

3.1. Choice of threshold

We want a threshold τ such that no matter whether the prover P is the attacker A or the legitimate
user U the expected loss E(L | P) is as small as possible. As we increase the threshold τ , E(L | P =
U) decreases, while E(L | P = A) increases and vice-versa. Intuitively, to minimise the worst-case
expected loss, we can use τ such that E(L | P = A, τ) = E(L | P = U, τ), which corresponds to an
equalising strategy. We shall define a threshold τ minimising an upper bound on the worst-case expected
loss in Theorem 1 on page 6. As an intermediate step, we obtain a bound on the worst-case expected loss
for any given threshold τ . Formally, we can show the following:

Lemma 1. Let εi ∈ [0, 1] be the error of the i-th round. If, for all i > 0, it holds that E(εi | A) ≥ pA
and E(εi | U) ≤ pU , for some pA, pU ∈ [0, 1] such that npU ≤ τ ≤ npA, then:

L(n; τ) ≜ nℓB +max
{
e−

2
n
(npU−τ)2ℓU , e

− 2
n
(npA−τ)2ℓA

}
≥ max {E(L | A),E(L | U)} ≥ EL (5)
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Proof of Lemma 1. The expected loss when P = A, is simply:

E(L | A) = nℓB + P

(∑
i

εi < τ
∣∣∣ A) ℓA

≤ nℓB + P

(∑
i

εi − nE(εi | A) < τ − npA

∣∣∣ A) ℓA

≤ nℓB + e−
2
n
(npA−τ)2ℓA,

the last two steps used the fact that E(εi | A) ≥ pA and the Hoeffding inequality (21). Specifically, in our
case, Lemma 3 (page 19) applies with Xi = ϵi. Then, it is easy to see that µi = E(εi | A) for all i and
bi − ai = 1, so P(ϵ < npA + nt | A) ≤ e−2nt2 . By setting τ = npA + nt, we obtain t = (τ − npA)/n,
which we can plug into the above inequality, thus arriving at the required result.

The other case, P = U , is handled similarly and we conclude that E(L | U) ≤ nℓB +e−
2
n
(npU−τ)2ℓU .

The given upper bound is tight, as can be seen by the following lemma, which proves a matching lower
bound for the example of Bernoulli-distributed errors.

Lemma 2. Modifying our assumptions slightly, let εi ∈ {0, 1} be the Bernoulli-distributed error of the
i-th round, such that, for all i > 0, it holds that P(εi | A) = pA and P(εi | U) = pU , for some
pA, pU ∈ [0, 1] such that npU ≤ τ ≤ npA, then:

EL ≥ min {E(L | A),E(L | U)}

≥ nℓB +
(n
τ

)τ
min

{
ℓAp

τ
A(1− pA)

n−τ , ℓUp
τ
U (1− pU )

n−τ
}

(6)

Proof of Lemma 2. The expected loss when P = U , is simply:

E(L | U) = nℓB + P

(∑
i

εi ≥ τ
∣∣∣ U) ℓU

≥ nℓB + P

(∑
i

εi = τ
∣∣∣ U) ℓU

= nℓB +

(
n

τ

)
pτU (1− pU )

n−τ ℓU

≥ nℓB +
(npU

τ

)τ
(1− pU )

n−τ ℓU

The other case, P = A, is handled similarly and we conclude that E(L | A) ≥ nℓB +
(npA

τ

)τ
(1 −

pA)
n−τ ℓA
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To see that the upper and lower bounds match, consider that P = U and τ = nc with c < 1. Then
Lemmas 1 and 2 give us:

nℓB + e−
2
n
(npU−τ)2ℓU ≥ nℓB +

(npU
τ

)τ
(1− pU )

n−τ ℓU

e−
2
n
(npU−τ)2 ≥

(npU
τ

)τ
(1− pU )

n−τ

e−2(pU−c)2n ≥ e[c ln
pU
c
+(1−c) ln(1−pU )]n

Thus, the upper and lower bounds given for the expected loss (EL) are of the same order with regard to
n.

Having bounded the loss suffered when choosing a specific threshold, we now choose a threshold
τ̂∗n that minimises the above bound for fixed n. In fact, we can show that such a threshold results in a
particular upper bound on the expected loss.

Theorem 1. Let ρ ≜ ℓA/ℓU and select

τ = τ̂∗n ≜ n(pA + pU )

2
− ln ρ

4∆
(7)

If npU ≤ τ ≤ npA, then the expected loss EL is bounded by:

E(L | n, τ̂∗n) ≤ L1(n) ≜ nℓB + e−
n
2
∆2 ·

√
ℓAℓU . (8)

with ∆ ≜ pA − pU .

Proof of Theorem 1. Substitute (7) in the first exponential of (5) to obtain:

e−
2
n
(npU−τ̂∗)2ℓU = e−

n
2
∆2

e−
ln2 ρ

8n∆2
√

ℓAℓU .

It is easy to see that the exact same result is obtained by substituting (7) in the second exponential of
(5). Thus, both E(L | A) and E(L | U) are bounded by the same quantity and consequently, so is
max {E(L | A),E(L | U)}. Thus,

L(n, τ̂∗n) ≤ nℓB + e−
n
2
∆2√

ℓAℓU ,

where we simplified the bound by noting that ln2 ρ
8n∆2 > 0.

The intuition behind the algorithm and the analysis is that it is possible to bound the probability that
A makes less errors than expected, or that U makes more than expected. For this reason, the τ̂∗n chosen
in the theorem must lie between npU and npA. We now shall find choices for n which upper bound the
overall loss.
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3.2. Choice of the number of rounds

Using similar techniques to those employed for obtaining a suitable value for the threshold, we now
indicate two choices for the number of rounds n and provide a matching bound on the expected loss. The
first, originally mentioned in [15,16] can be used for any value of ∆. In this paper, we also introduce a
significantly improved one, which can be used as long as ∆ is not too small.

The first choice of n approximately minimises a simple upper bound on the worst-case expected loss.
In fact, the following theorem shows that this choice guarantees a specific amount of loss.

Theorem 2. Assume ℓA, ℓU , ℓB > 0. If we choose τ = τ̂∗n and

n = n̂∗ ≜
√
1 + 2CK − 1

C
, (9)

where C = ∆2 and K =
√
ℓAℓU/ℓB , then the expected loss EL is bounded by:

E(L | τ̂∗n, n̂∗) ≤ L2 ≜
√

8K/C · ℓB =

√
8ℓB(ℓAℓU )

1/4

∆
. (10)

Proof of Theorem 2. We shall bound each one of the summands of (8) by
√

2K/C ·ℓB . For the first term
we have:

nℓB =

√
1 + 2CK − 1

C
ℓB ≤

√
1 + 2CK

C
ℓB

≤
√
2CK

C
ℓB =

√
2K

C
ℓB.

For the second term, by noting that ex ≥ 1 + x, we have:

√
ℓUℓA · e−

n
2
∆2 ≤

√
ℓUℓA

1 + n
2∆

2
=

KℓB

1 + nC
2

=
2KℓB

1 +
√
1 + 2CK

≤ 2KℓB√
1 + 2CK

≤ 2KℓB√
2CK

=

√
2K

C
ℓB.

Summing the two bounds, we obtain the required result.

In particular, this theorem proves that our worst-case expected loss L grows sublinearly both with
increasing round cost (with rate O(ϵ1/2)) and with increasing authentication costs (with rate O(ϵ1/4)).
Furthermore, the expected loss is bounded symmetrically for both user and attacker access. Finally, there
is a strong dependence on the margin ∆ between the attacker and the user error rates, which is an expected
result.
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ñ∗

.

τ̂∗

(c) ℓA = 10, ℓB = 10−3

..

101

.

102

.

103

.

104

.
0

.
0.05

.
0.1

.
0.15

.
0.2

.
0.25

. ∆.

n̂∗

.

ñ∗
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Fig. 1. Effect of gap ∆ on the threshold and number of rounds, for different choices of ℓA, ℓB , with ℓU = 1.

3.2.1. Improved choice for large ∆
As the above value is somewhat too conservative, especially for large values of ∆, we can obtain

instead a value for the number of rounds by directly minimising (8). Observe that by differentiating the
right hand side, we have:

ℓB =
∆2

√
ℓAℓU
2

e−n∆2

2

n =
2

∆2
ln

∆2
√
ℓAℓU

2ℓB
, ∆ >

√
2eℓB(ℓAℓU )

−1/4.

This is a good choice for the number of rounds as long as ∆ is not too small. We can now prove a bound
for this choice.

Theorem 3. Assume ℓA, ℓU , ℓB > 0 and ∆ >
√
2eℓB(ℓAℓU )

−1/4. If we choose τ = τ̂∗n and

n = ñ∗ ≜
⌈

2

∆2
ln

∆2
√
ℓAℓU

2ℓB

⌉
, (11)

then the expected loss is bounded by

E(L | ñ∗, τ̂∗n) ≤ L3 ≜ ℓB

[
1 +

2

∆2

(
1 + ln

∆2
√
ℓAℓU

2ℓB

)]
. (12)
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Proof of Theorem 3. Plugging n = ñ∗ into (8), we obtain

E(L | ñ∗, τ̂∗n) ≤ ñ∗ℓB + e−
ñ∗
2
∆2 ·

√
ℓAℓU .

Taking the first term, we have:

ñ∗ℓB ≤ ℓB +
2ℓB
∆2

ln
∆2

√
ℓAℓU

2ℓB

where we used the fact that ⌈x⌉ ≤ x+ 1.
Taking now the second term, and using fact that ⌈x⌉ ≥ x, we have:

e−
∆2

2
ñ∗ ·

√
ℓAℓU ≤ e

− ln
∆2√ℓAℓU

2ℓB ·
√

ℓAℓU =
2ℓB
∆2

.

Adding together the two terms, we obtain the required result.

In order to measure the quality of those bounds, we shall now compare them, by applying them to a
family of RFID protocols.

3.2.2. The effect of problem parameters on the security variables
Since different choices for the three losses, as well as different amounts of distinguishability ∆ have

a direct effect on the number of rounds and threshold, it is instructive to show how these change. In
particular, Figure 1 shows how the threshold, and two choices for the number of rounds, change as a
function of ∆, for four different combinations of ℓA, ℓB , when ℓU = 1.

In all settings, both the number of rounds and the threshold decrease as ∆ increases. However, we
also observe that they all increase when ℓB decreases (compare. Fig 1a and 1c), or when ℓA increases
(compare Fig. 1a and Fig. 1b). Indeed, the number of rounds is highest in Fig. 1d, which intuitively makes
sense, since the threshold is generally proportional to the number of rounds, while the latter increases
when the ratio ℓA/ℓB increases. Finally, note that although the improved number of rounds is initially
quite close to the original choice, there is a significant difference for larger ∆.

In the following sections, rather than working with abstract values of ∆ and with the direct expected
loss calculations and bounds, we shall consider a specific family of protocols which implements such
a challenge-response phase. Under assumptions on the noise and the protocol implementation, we shall
show that our analysis is applicable, and we shall provide simulated experiments which compare our
choices of threshold with the optimal choice, as well as a Bayesian variant.

4. Analysis of RFID thresholded protocols

Currently, the most well-known protocols employing an authentication phase without any error cor-
rection and under resource constraints are RFID distance bounding protocols. These are used for authen-
tication between a reader (the verifier) and an RFID tag (the prover). These challenge-response proto-
cols use a rapid-bit exchange phase in order to ensure that the tag is at an appropriate distance from the
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reader. This way, then can avoid man-in-the-middle relay attacks, due to the time delay that these attacks
introduce.

For illustrative purposes, we shall examine the properties of two such protocols, for which it is possible
to derive simple expressions for pA, pU , given symmetric channel noise.2 In general, our derivations will
be biased towards simplicity of expression rather than accuracy.

We consider an exchange between the verifier V and the prover P , which in case of an RFID protocol
are embodied as an RFID reader and an RFID tag respectively. As tags are generally underpowered (or
completely unpowered) communication normally has limited range and can suffer from significant noise.
To model noise in the physical medium, we assume that in any exchange between V and P , the former
may send a symbol x ∈ X , while the latter may receive a symbol x̂ ∈ X such that x ̸= x̂. We shall
denote the probability of erroneous transmission in the data layer as: ω ≜ P(x̂ = j | x = i) for i ̸= j. For
simplicity, we shall only treat the case of symmetric channel noise such that: P(x̂ = y | x ̸= y) = 1

|X |−1 ,
∀y ̸= x, x, y ∈ X . However, all our results carry over for the case of asymmetric channel noise ω1, ω2

for each direction, by taking ω = maxj ωj . The noise is particularly important for distance-bounding
protocols, as they include a challenge-response phase where single-bit messages are exchanged rapidly
between the reader and tag, so as to verify that the tag is in close proximity, by taking advantage of
the bounded speed of light. This phase, called the rapid-bit exchange phase, closely corresponds to our
analysis in the previous section.
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ω. The lowest line depicts the worst case expected loss when the number of rounds is chosen optimally, while the second line
depicts the same thing according to our first choice of number of rounds. The alternative line L3 is only valid for large ∆ and
hence small amounts of noise. Thus, the region of small ∆ is depicted with a thinner line.

2The asymmetric case results in more involved expressions[17] and additional parameters, but is not particularly interesting
to study.
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In particular, two RFID distance bounding protocols, the SWISS-KNIFE protocol [11] and the vari-
ant HITOMI [7] are additive-error authentication protocols satisfying our assumptions. Both protocols
include an initialisation and a termination phase with error correction, as well as a distance-bounding
(rapid-bit exchange) phase without error correction. In the initialisation phase, the session keys are
agreed. The distance bounding phase is an n-round phase where a sequence of challenges (ct)nt=1 and re-
sponses (rt)nt=1 are exchanged without error correction. This is also called the rapid-bit exchange phase.
However, the received challenges and responses ĉt, r̂t may differ from the ones sent due to noise. Let r∗t
denote the correct response to the i-th challenge. Then the error at time t is simply equal to 1 whenever
the received response does not match the correct response, i.e. εt ≜ I {r̂t ̸= r∗t }. During the termination
phase, the challenges and responses are sent over the error corrected channel to the verifier, who checks
if they match those used in the rapid-bit exchange.

In order to satisfy Assumption 1 for both the user and attacker, we need the actual channel noise to be
independent, but not necessarily identically distributed for every challenge and response. We also require
the protocol to be constructed in such a way that it holds:

P(ct = i | c1, . . . , ct−1) =
1

2
, P(rt = j | r1, . . . , rt−1, c1, . . . , ct) =

1

2
, (13)

in order to ensure that the attacker has no advantage when trying to guess future challenges and responses
from previous ones. The first part can be achieved by ensuring that the challenges are uniformly dis-
tributed in {0, 1}. The second part is slightly more involved, as the correct response depends both on a
shared secret and on a cryptographic hash function using a random nonce. The hash function must be
such that a uniform distribution of nonces results in a uniform bit distribution for each hash. In practice,
this assumption must be relaxed to that of computational indistinguishability of the actual distributions
from the uniform one. Finally, these probabilities must be independent of previous runs of the protocol,
in order to prevent learning attackers (i.e. attackers that build knowledge by observing multiple runs of
the protocol).

4.1. Noise-dependent bounds on the error probabilities

Similarly to [7] we can show that, for those two protocols, under symmetric channel noise ω, we can
obtain the following simple bounds on the expected error: pA = 1

2 and pU = 2ω, where we note in
passing that since we need pA ≥ pU , so ω ≤ 1

4 . The user probability of error pU follows from a simple
union bound:

P(εt) ≤ P(r̂t ̸= rt ∨ ĉt ̸= ct) ≤ P(r̂t ̸= rt) + P(ĉt ̸= ct) = 2ω.

The analysis of the attacker error rate is quite straightforward.

Threat model: A naive man-in-the-middle attack would simply relay the messages between the reader
and tag in the initialisation and termination phases, but would not be able to do so for the rapid-bit
exchange phase, because the time delay would be too great. Instead, he would simply try and guess the
correct responses, thus achieving an error rate of 1/2. In a more sophisticated man-in-the-middle attack,
the adversary may send a random string of challenges to the tag before the rapid-bit exchange phase
begins, for which he collects the correct responses. Due to the assumptions explained in the previous
section, the attacker can only guess the challenges with probability 1/2 in each round, even if he tries to
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delay guessing until he has seen some of the challenges. During the actual communication with the reader
(verifier), he can replay the collected responses, if and only if the challenges happen to coincide. This
would reduce his error rate to 1/4. However, the analysed protocols also include a final verification phase,
where both the challenges and responses used by the attacker are checked over a secure error-correcting
channel. Even if the attacker uses the tag as an oracle to obtain responses for a random sequence of
challenges, this is cannot decrease the error rate. This is because, during the verification phase, the prover
will send the stream of challenges and responses it had received and sent in the rapid bit exchange phase
to the verifier. These will differ in all those cases where the attacker has guessed the wrong challenge.
Consequently, the attacker’s error rate is at least 1/2 also in this case.

4.2. Validation experiments

In this section, we experimentally validate our theoretical analysis for the above protocols. In the
results shown here, we chose the following values for the losses: ℓA = 10, ℓU = 1, ℓB = 10−2 for
illustrative purposes.

More specifically, Figure 2 depicts the worst-case expected loss for different choices of the number
of rounds, and our near-optimal threshold, as well as the values of theoretical bounds. For the optimal
number of rounds n∗ we obtain the loss E(L | n∗). This is of course smaller than E(L | n̂∗), the loss
suffered by choosing n̂∗, with the gap becoming smaller for larger error rates. Since when this occurs,
the expected loss is very close to L1, this implies that the bound of Theorem 1 can be further tightened
for small ω. Indeed, we see that the improved bound L3 obtained for the improved number of roudns ñ∗

almost matches the bound L1(n̂
∗), but it fails to hold for large ω, i.e. for small ∆, as expected.

5. Estimating ω

One potentially major problem with the above approach is that knowledge of ω is necessary, at least in
order to calculate a bound on the error probabilities for the user. In this section, we discuss how this can
be done leveraging the coding performed during the initial and final phases of the protocol.

We assume some coding function Φ : Xm → X k, with k > m, and a metric γ on X k (where usually
X = {0, 1} and γ is the Hamming distance) such that:

γmin ≜ min {γ(Φ(x),Φ(y)) : x, y ∈ Xm, x ̸= y} (14)

is the minimum (Hamming) distance between valid codewords. For a given x ∈ Xm, the source transmits
ϕ = Φ(x) and the sink receives ϕ̂, with ϕ, ϕ̂ ∈ X n. As before, we assume that the physical channel
has a symmetric error rate ω = P(ϕ̂i ̸= ϕi), where ϕi denotes the i-th bit of ϕ. This is then decoded as
x̂ ≜ argmin

{
γ(ϕ̂,Φ(y)) : y ∈ Xm

}
. Let θ be the number of errors in the string ϕ̂, or more precisely

θ = γ(ϕ, ϕ̂). Let θ̂ ≜ γ(Φ(x̂), ϕ̂) be the distance between the closest valid codeword Φ(x̂) and the
received ϕ̂. If θ < (γmin − 1)/2, then θ = θ̂.

The crux of our method for estimating ω relies on the number of errors θ being less than (γmin− 1)/2,
in which case, the estimated number of errors θ̂ will equal θ. Let ω̂ ≜ θ̂

n be our empirical error rate. In
that case, the expected empirical error rate equals the true error rate. More formally:

E (ω̂ | θ ≤ (γmin − 1)/2) = ω. (15)
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If θ > (γmin − 1)/2 then the protocol fails in any case, due to decoding errors in the initial or final
phases. If not, then the above equation holds and we can obtain high probability bounds for ω via the
Hoeffding inequality (Appendix, Lemma 3). In particular, it is easy to show that, for any δ ∈ [0, 1]:

P

(
|ω̂ − ω| ≥

√
ln 2/δ

2k

)
≤ δ, (16)

by substituting the square-root term into (21), and setting µi = ω,
∑

Xi = θ̂, ai = 0, bi = 1. Conse-
quently, for the SWISS-KNIFE family of protocols the following values for pA and pU hold with proba-
bility 1− δ:

pA =
1

2
, pU = 2ω̂ −

√
2 ln 2/δ

k
. (17)

Experimental investigations presented in the next section indicate that this choice has good performance
in terms of expected loss.

Remark 1. It is possible for an attacker to manipulate the noise estimation phase. However, doing so
would only increase the security of the protocol.

This follows directly from Theorems 1 and 2 and the fact that an increased estimated noise results in a
smaller value for ∆. More precisely, the number of rounds is decreasing with ∆, and so a decrease in ∆
leads to an increase in the number of rounds. The threshold itself is proportional to the number of rounds,
with offset − ln ρ

4∆ . Consequently, when ρ > 1, meaning that ℓA > ℓU , any increase in ∆ would lead to a
decrease in the threshold. Consequently, we would tolerate a smaller number of errors.

6. Evaluation Experiments

In this section, we describe some experiments where we evaluate the different components of the
proposed approach. In these experiments, we measure the expected loss for varying noise conditions
while varying three different aspects of the challenge response protocol. The first is the method used
to calculate the threshold, where we compare the proposed bound with a simple likelihood ratio test.
The second is the method used to estimate the channel noise, where we compare the method described
in Section 5, with an arbitrary selection of noise and a simple empirical estimate. Finally, we vary the
problem parameters, such as the cost per bit ℓB and the cost of successful attack ℓA, and see if we obtain
qualitatively different solutions. In the latter experiment, we also compare against the minimax choice of
threshold and number of rounds, which can perform much better than the approximation. On the other
hand, it can be difficult to compute.

Experimental setup. As previously mentioned, the attacker has an error rate of at least 1
2 per bit. The

user’s error rate depends on the channel noise. In our simulations, we model all channels as symmetric
channels with uniform error rate ω. All the phases are executed through those channels, and the error
rate is estimated through the errors made in the initial phase.3 In all cases, performance is in terms of the

3If there are more errors than can be corrected by the error correcting code, then the protocol usually fails because the session
keys do not match.
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worst-case expected loss. We estimate this by measuring the loss incurred when a legitimate user U is
trying to get authenticated and when an adversary A is trying to perform a mafia fraud attack[18]. We
have estimated the worst-case expected loss by running 104 experiments for each case, obtaining a pair
of estimates Ê(L | A), Ê(L | U) by averaging the loss L, as defined in (1), incurred in each experiment
and taking the maximum of the two. In all of the experiments shown in this section, we chose ℓU = 1 for
the user loss and we used k = 210 for the coded messages in the initialisation phase.
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Fig. 3. The worst-case expected loss as a function of noise. We plot the evolution of the loss as noise changes, for a number
of different cases. Firstly, for the case where we arbitrarily assume a noise value ω̂ ∈ {10−1, 10−2, 10−3}. Secondly, for an
empirically estimated ω̂ = k̂/n, and finally for pA, pU calculated via equation (17) with δ ∈ {10−1, 10−2}.

6.1. Evaluation of noise estimation

The actual values pA, pU depend on ω, which is unknown. We compare three methods for choosing
pA, pU . Firstly, guessing a value ω̂ for the channel noise. Secondly, using the maximum likelihood noise
estimate ω̂ = θ̂/k. In both cases, we simply use ω̂ as described at the beginning of Sec. 4 to obtain
pA, pU . In the third case, we use the high-probability bounds (17) for pA, pU , with an arbitrary value of
δ. For those experiments, we ue ℓA = 10, ℓU = 1, ℓB = 10−2, while we used k = 210 for the coded
messages in the

In the first experiment, shown in figure 3a, we use the nearly-optimal threshold and number of rounds
that we have derived in our analysis. In the second experiment, shown in figure 3b, we replace our
choice of threshold with a choice similar to that of Baignères et al. [19]. Their threshold is derived via
a likelihood ratio test, which is asymptotically optimal (c.f. [20,21]) but they do not consider specific
losses. Since in our case we have unequal losses ℓA and ℓU , we re-derive their threshold via a Bayesian
test (to which a Bayesian formulation of the Neymann-Pearson lemma [20] applies) to obtain:

τ̃ =
n ln 1−pU

1−pA
− ln ρ

ln 1−pU
1−pA

− ln pU
pA

. (18)
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For equal losses, ρ = 1, and τ̃ equals the threshold used in [19]. Such tests have good asymptotic
properties [20,22]. Interestingly, for small ∆, the form of τ̃ is similar to τ̂∗n: Let p̄ such that pA = p̄+∆/2

and pU = p̄ − ∆/2. Then (18) can be approximated by τ̃∗ = np̄ − p̄(1−p̄)
∆ ln ρ. More details on the

derivation of (18) are given in Appendix B on page 19.
Figure 3 depicts the worst-case expected loss L as a function of the actual noise ω. Figure 3a shows

L using the threshold τ derived from our expected loss analysis (7), while in Figure 3b we use the
asymptotically optimal threshold of (18). In both cases, we plot L, while the actual noise ω is changing,
for a number of different cases. Initially, we investigate the evolution of L for three arbitrarily chosen
values ω̂ ∈ {10−1, 10−2, 10−3}. Additionally, we examine the evolution of the worst-case expected loss,
when the noise is empirically estimated ω̂ = θ̂/n and finally when pA and pU are calculated via equation
(17) with δ ∈ {10−1, 10−2}.

As it can be seen in Figure 3, in all cases (using ours Figure 3a or Baignères et al. [19] threshold
Figure 3b) the worst-case expected loss is very low for small values of the actual noise and increases
sharply when the actual noise approaches the value of 10−1. It is interesting to see that when we use the
optimistic4 high probability estimates for pA, pU , we obtain almost always better performance than sim-
ply guessing the noise, or using the plain empirical estimate ω̂ directly. Furthermore, using the asymp-
totically optimal threshold (18), we observe a deterioration in the results. Thus, our approach results in a
clearly dominating performance over other methods.

As mentioned in Sec. 7, the choice of the threshold by Baignères et al. [19] is only asymptotically
optimal. Ours, while not optimal, gives a worst-case expected loss guarantee for any finite sample size.
Thus, it has better performance when the asymptotic approximation is not sufficiently good, which occurs
when both the number of rounds n and the gap ∆ are small. In addition, it is much less sensitive to the
estimate of ω than the likelihood ratio threshold.

6.2. Comparison with the minimax solution

When computational considerations are not an issue, i.e. when we can perform an exhaustive search,
it is possible to optimise directly for the minimax solution. That is, given particular parameters χ ≜
{pA, pU , ℓA, ℓU , ℓB} we can find a threshold τ and number of rounds n minimising the worst-case ex-
pected loss, that is:

min

{
max

P∈{A,U}
E(L | P, τ, n,χ) : n ∈ [nmax], t ∈ [n]

}
(19)

Note here that for any decision rule such that n > nmax ≜ min{ℓA, ℓU}/ℓB , then our cost is trivially
larger than either rejecting or accepting immediately. Consequently, we only need to consider a finite
set of number of rounds to recover the minimax solution. In particular, the complexity of the solution
includes O(n2

max) evaluations of the maximum expected loss, with each evaluation requiring the compu-
tation of the binomial cumulative probability function. This in turn has quadratic complexity, giving an
overall complexity of O(n4

max).
We performed a thorough experimental comparison between the minimax solution, our suggested

threshold and number of rounds, and the threshold chosen via the likelihood ratio test. In all cases, the

4Experiments with pessimistic high probability estimates for the noise showed a significant increase in the number of rounds
used, which resulted in a higher expected loss.
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Fig. 4. Comparison of the worst-case expected loss, for: (i) the approximate number of rounds and threshold, (ii) the threshold
given by the likelihood ratio test, as well (iii) the exact minimax solution for both the threshold and the number of rounds. We
show results for four different cases, where we vary the bit cost ℓB and the attack cost ℓA.

noise was estimated with k = 210 and using the high-probability bound for pA, pU . The user loss was
fixed to ℓA = 1, while we varied the bit cost ℓB and the attacker loss ℓA.

The results for four different choices of those parameters, as ω varies, are shown in Figure 4. It can
be seen that our choice always dominates the likelihood ratio, while of course the minimax solution is
clearly the best. It can also be seen that whenever the ratio between the attack cost ℓA and the bit cost ℓB
is small, the three methods are closer together.

7. Conclusion

To the best of our knowledge, we have performed the first expected loss analysis of additive error
challenge-response authentication protocols under channel constraints. Such an analysis is necessary,
because of the inherent cost of increasing the number of rounds n and the need to trade off optimally the
costs of incorrectly authenticating an illegitimate entity, or failing to authenticate a legitimate one, as well
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as the lack of an error-free channel. In order to achieve this, we made the assumption of bounds on the
expected errors of a user and an attacker. In addition, we assumed that these are independent from errors
in the previous rounds.5 The present paper is an extension of the results originally presented in [15,16],
by the inclusion of improved bounds for the choice of number of rounds, as well as new empirical results.

The rapid-bit exchange phase considered in parts of this paper was introduced in [3] to compute an
upper bound on the distance of the prover P from the verifier V . This is composed of n challenge-
response rounds, used to calculate a round-trip time and thus place a bound on the distance. Subsequently,
a broad range of distance bounding protocols were proposed, both for RFID [5,7,9–11], as well as other
wireless devices [6,24,25].

Hancke and Kuhn [9] were the first to indicate that since the rapid-bit exchange phase is taking place
in a noisy channel, challenges and responses may be corrupted. Thus, a legitimate user may fail to get
authenticated. Their protocol (henceforth HAKU), employed n rounds and authenticated any prover who
made a number of mistakes ε less than an acceptance threshold τ , so as to reduce the number of false
rejections. Using the binomial distribution and an assumption on the error rates they give expressions for
the false accept and false reject probability as a function of n and τ , but they provide no further analysis.
Nevertheless, they indicate that the number of challenge-response rounds n in the rapid bit exchange
phase should be chosen according to the expected error rate. Kim et al. [11] extend this approach with
the SWISS-KNIFE protocol by considering three types of errors. Finally [5], rather than using a threshold
τ , proposed a protocol (henceforth ECMAD) using an error correcting code (ECC). ECMAD, which
extends the MAD protocol [24], uses only k of the n total rounds for the challenges and responses. The
remaining n − k rounds are used to transmit the (n, k) ECC. This has the effect of achieving better
security (in terms of false acceptance rates) with the same number of rounds n.

All these approaches use n rounds in the noisy authentication phase. However, they do not define the
optimal n. They simply state that the probability of authenticating a user becomes much higher than
the probability of authenticating an attacker as n increases. However, a large value of n is incompatible
with the requirements of many applications and devices (i.e. high value of n leads to high overhead for
resource-constrained devices). This can be modelled by assigning an explicit cost to every round, which
should take into account the transmission energy, computation and time overhead. This cost has so far
not been explicitly taken into consideration.

Another work that is closely related to ours is [26], which, given a required false acceptance and false
rejection rate, provides a lower bound on the number of required rounds. This analysis is performed for
both HAKU and ECMAD. However, it assumes that the number of rounds n would be large enough for
the binomial distribution of errors to be approximately normal. Our analysis is more general, since it uses
finite-sample bounds that hold for any bounded error function.

Recently, Baignères et al. [19] have given an analysis on the related topic of distinguishing between a
real and a fake solver of challenge-response puzzles. More precisely, they study CAPTCHA-like proto-
cols and provide a threshold which minimizes the probability of error in these protocols. The main differ-
ences between the analysis presented in this paper and [19] can be summarised below: (a) We perform
an expected loss analysis rather than an error analysis. (b) Our bounds hold uniformly, while [19] uses an
asymptotically optimal distinguisher. (c) We consider bounded errors rather than {0, 1} errors for each
challenge-response. (d) We additionally propose a method to estimate channel noise. This is of course
not applicable in the context of [19], due to the different setting.

5Consequently, error probabilities drop exponentially fast, unlike the examples given in [23].
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A more general work on authentication under noisy conditions was presented in [27]. This provided
tight information-theoretic upper and lower bounds on the attacker’s success in impersonation and sub-
stitution attacks, proving that it decreased with noise. However, this is somewhat misleading, as it ignores
the efficiency of the protocol. Our analysis shows that, when one considers losses due to communication
overhead and false rejections of users, the expected loss increases, which is a natural result.

In this paper, we perform a detailed expected loss analysis for a general class of additive-error authen-
tication protocols in a noisy channel. The analysis is performed by assigning a loss ℓB to each round, and
losses ℓA, ℓU to false acceptance and false rejection respectively.

We show how a nearly-optimal threshold τ̂∗n for a given number of rounds n can be chosen and give
worst-case bounds on the expected loss for that choice. Thus, the bounds hold no matter if the party that
attempts to get authenticated is either a legitimate user U or an attacker A. This extends our previous
work [7], which proposed a new distance bounding protocol (HITOMI) and only calculated a value for
the threshold τ , without providing any bounds.

We also show how a nearly-optimal number of rounds n̂∗ can be chosen and give further bounds
on the expected loss. The bounds hold for any bounded error function, and not only for {0, 1} errors.6

Furthermore, they are valid for any n, since they are based on probability inequalities for a finite number
of samples.7 Thus, they are considerably more general to the bounds of [26].

Finally, we provided high-probability estimates for the current noise level in the channel by leveraging
the coding performed in the initial and final phases of the protocol, which takes place in a coded channel.
This enables us to significantly weaken assumptions on knowledge of the noise level in the channel
and in turn, provide an authentication algorithm which has low expected loss with high probability.
Experimentally, we obtain uniformly superior results to guessing or direct empirical noise estimates.
Finally, we repeated those experiments with an asymptotically optimal threshold similar to that used
by Baignères et al.[19]. Our results indicate a significant improvement through the use of a threshold
with uniform, rather than asymptotic, guarantees. Consequently, it is our view that algorithms motivated
by an asymptotic analysis should be avoided in the finite-sample regime of most challenge-response
authentication protocols.

Our analysis is particularly significant for areas of communications where challenges and responses
are costly and where there exists significant uncertainty about the correctness of any single response.
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Appendix

A. Useful formulas

If X1, . . . , Xn are independent Bernoulli random variables with Xk ∈ {0, 1} and P(Xk = 1) = µ for
all k, then

P

(
n∑

k=1

Xk ≥ u

)
=

u∑
k=0

(
n

k

)
µk(1− µ)n−k. (20)

Lemma 3 (Hoeffding). For independent random variables X1, . . . , Xn such that Xi ∈ [ai, bi], with
µi ≜ EXi and t > 0:

P

(
n∑

i=1

Xi ≥
n∑

i=1

µi + nt

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)

P

(
n∑

i=1

Xi ≤
n∑

i=1

µi − nt

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
. (21)

B. On Bayesian hypothesis tests

One way to obtain an asymptotically minimax optimal threshold is to employ a Bayesian hypothesis
test [20]. This requires defining a prior probability on the possible hypotheses. In our case, the hypothesis
set is H = {A,U}, on which we define a prior probability π. For {0, 1} errors, the probability of
observing ε errors out of n observations is given by P(ε | A) and P(ε | U) for the attacker and user
respectively. For concreteness, we shall assume that this follows a binomial distribution with parameters
pA, pU in each case. Given an observed error x, the posterior probability of any hypothesis h ∈ H is:

π(h | ε = x) =
P(ε = x | h)π(h)∑

h′∈H P(ε = x | h′)π(h′)
.

We then define a decision set G = {gA, gU}, where gA means we decide that the prover is an attacker
and gU means we decide that the prover is a user. Finally, we define a loss function L : G×H → R, such
that L(g, h) is our loss when we decide g and h is the correct hypothesis. The expected loss of decision
g ∈ G, under our prior and given ε errors out of n is:

Eπ(L | ε, g) =
∑
h∈H

L(g, h)π(h | ε),

where Eπ denotes expectation with respect to the prior π. Now define the decision function q :
{0, 1, . . . , n} → G:

q(ε) ≜
{
gU , if Eπ(L | ε, gU ) ≤ Eπ(L | ε, gA)
gA, if Eπ(L | ε, gU ) > Eπ(L | ε, gA).

(22)
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This decision function minimises Eπ L by construction (c.f. [20] ch. 8). The following remark is appli-
cable in our case:

Remark 2. Assume i.i.d errors with εi ∈ {0, 1}, so that we can use a binomial probability for P(ε | h).
Set the loss function L to be L(gU , A) = ℓA, L(gA, U) = ℓU and 0 otherwise. Then the decision
function (22) becomes equivalent to:

q(ε) ≜
{
gU , if ε < τb

gA, if ε ≥ τb,

where

τb ≜
n ln 1−pU

1−pA
− ln[ρπ(A)

π(U) ]

ln 1−pU
1−pA

− ln pU
pA

Proof. We start by calculating the expected loss for either decision. First:

Eπ(L | ε, gA) = ℓUπ(U | ε) = ℓUπ(U)P(ε | U)

π(A)P(ε | A) + π(U)P(ε | U)
,

due to our choice of L and π. Similarly,

Eπ(L | ε, gU ) = ℓAπ(A | ε) = ℓAπ(A)P(ε | A)
π(A)P(ε | A) + π(U)P(ε | U)

.

Combining the above expressions, the decision function (22) can then be written so that we make decision
gU if and only if:

ℓAπ(A)P(ε | A) ≤ ℓUπ(U)P(ε | U).

Finally, replacing (20) with means pA, pU respectively and taking logarithms we obtain:

ln[ρπ(A)/π(U)] + ε ln
pA
pU

≤ (n− ε) ln
1− pU
1− pA

,

as a condition for deciding gU . With some elementary manipulations, we arrive at the required result.

Given the conditions of the previous remark, it is easy to see (c.f. [20] ch. 8) that the decision function
q minimises the Bayes risk:

Eπ(L | q) = π(A)P(ε < τb | A)ℓU + π(U)P(ε ≥ τb | U)ℓA. (23)

Furthermore, for π(A) = π(U) = 1/2, we obtain (18). In addition, this choice also minimises an upper
bound on the worst-case expected loss since:

max
h∈H

E(L | h, q) ≤
∑
h∈H

E(L | h, q) = 2Eπ(L | q).
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for uniform π.
Finally, the asymptotic optimality of Bayesian testing generally follows from Bayesian consistency

(c.f. [20] ch. 10). More specifically, [22] has proved the asymptotic optimality of Bayes solutions for
hypothesis testing of the type examined here.
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