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Abstract. A computerized workflow management system may enforce a security policy, specified in terms of authorized actions
and constraints, thereby restricting which users can perform particular steps in a workflow. The existence of a security policy
may mean that a workflow is unsatisfiable, in the sense that it is impossible to find a valid plan (an assignment of steps to
authorized users such that all constraints are satisfied). Work in the literature focuses on the workflow satisfiability problem, a
decision problem that outputs a valid plan if the instance is satisfiable (and a negative result otherwise).

In this paper, we introduce the BI-OBJECTIVE WORKFLOW SATISFIABILITY PROBLEM (BO-WSP), which enables us to
solve optimization problems related to workflows and security policies. In particular, we are able to compute a “least bad” plan
when some components of the security policy may be violated. In general, BO-WSP is intractable from both the classical and
parameterized complexity point of view (where the parameter is the number of steps). We prove that computing a Pareto front
for BO-WSP is fixed-parameter tractable (FPT) if we restrict our attention to user-independent constraints. This result has
important practical consequences, since most constraints of practical interest in the literature are user-independent.

Our proof is constructive and defines an algorithm, the implementation of which we describe and evaluate. We also present
a second algorithm to compute a Pareto front which solves multiples instances of a related problem using mixed integer pro-
gramming (MIP). We compare the performance of both our algorithms on synthetic instances, and show that the FPT algorithm
outperforms the MIP-based one by several orders of magnitude on most instances.

Finally, we study the important question of workflow resiliency and prove new results establishing that known decision
problems are fixed-parameter tractable when restricted to user-independent constraints. We then propose a new way of modeling
the availability of users and demonstrate that many questions related to resiliency in the context of this new model may be
reduced to instances of BO-WSP.
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1. Introduction

It is increasingly common for organizations to computerize their business and management processes.
The co-ordination of the tasks or steps that comprise a computerized business process is managed by
a workflow management system (or business process management system). A workflow is defined by

1A preliminary version of this work appeared in [12]. Details about differences between the two versions are given at the end
of the Introduction section.
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the steps in a business process and the order in which those steps should be performed. A workflow is
executed multiple times, each execution being called a workflow instance. Typically, the execution of
each step in a workflow instance will be triggered by a human user, or a software agent acting under the
control of a human user. As in all multi-user systems, some form of access control, typically specified
in the form of policies and constraints, should be enforced on the execution of workflow steps, thereby
restricting the execution of each step to some authorized subset of the user population.

Policies typically specify the workflow steps for which users are authorized (what Basin et al. call
history-independent authorizations [2]). Constraints restrict which groups of users can perform sets of
steps. It may be that a user, while authorized by the policy to perform a particular step s, is prevented
(by one or more constraints) from executing s in a specific workflow instance because particular users
have performed other steps in the workflow (hence the alternative name of history-dependent authoriza-
tions [2]). The concept of a Chinese wall, for example, limits the set of steps that any one user can per-
form [3], as does separation-of-duty, which is a central part of the role-based access control model [1]. We
note that policies are, in some sense, discretionary, as they are defined by the workflow administrator in
the context of a given set of users. However, constraints may be mandatory (and independent of the user
population), in that they may encode statutory requirements governing privacy, separation-of-concerns,
or high-level organizational requirements.

A simple, illustrative example for purchase order processing [10] is shown in Figure 1. In the first step
of the workflow, the purchase order is created and approved (and then dispatched to the supplier). The
supplier will submit an invoice for the goods ordered, which is processed by the create payment step.
When the supplier delivers the goods, a goods received note (GRN) must be signed and countersigned.
Only then may the payment be approved and sent to the supplier.

In addition to defining the order in which steps must be performed, the workflow specification includes
constraints to prevent fraudulent use of the purchase order processing system. In our purchase order
example, these constraints restrict the users that can perform pairs of steps in the workflow (illustrated
in Figure 1b): the same user may not sign and countersign the GRN, for example. In addition, we may
specify an authorization policy, in this case using roles (Figures 1d and 1e).

It is well known that a workflow specification may be “unsatisfiable” in the sense that the combina-
tion of policies and constraints means that there is no way of allocating authorized users to workflow
steps without violating at least one constraint. Informally, an instance of the Workflow Satisfiability
Problem (WSP) asks whether a particular workflow specification is satisfiable or not. This problem is
NP-hard [28], although relatively efficient algorithms have been developed [8,13,20,28] (assuming that
the number of workflow steps is much smaller than the number of users that may perform steps in the
workflow and that all constraints are user-independent).1

Of course, the objectives of the business process associated with a workflow specification can never
be achieved if the WSP instance is unsatisfiable. Hence, it is interesting to consider an extended version
of WSP that seeks a “best” allocation of users to steps in the event that the instance is unsatisfiable.
We might, for example, decide that the “cost” of breaking a binding-of-duty constraint is lower than
that associated with breaking a separation-of-duty constraint, and wish to find a plan, based on this
assumption, in the event that the workflow is not satisfiable. Alternatively, if we have to assign a step to
an unauthorized user, we might well wish to associate different costs with those unauthorized users: in

1The satisfaction of a user-independent constraint – defined formally in Section 2 – does not depend on the identity of the
users.



population), in that they may encode statutory requirements governing privacy, separation-of-concerns,
or high-level organizational requirements.

A simple, illustrative example for purchase order processing [10] is shown in Figure 1. In the first
step of the workflow, the purchase order is created and approved (and then dispatched to the supplier).
The supplier will submit an invoice for the goods ordered, which is processed by the create payment step.
When the supplier delivers the goods, a goods received note (GRN) must be signed and countersigned.
Only then may the payment be approved and sent to the supplier.

In addition to defining the order in which steps must be performed, the workflow specification includes
constraints to prevent fraudulent use of the purchase order processing system. In our purchase order
example, these constraints restrict the users that can perform pairs of steps in the workflow (illustrated
in Figure 1b): the same user may not sign and countersign the GRN, for example. In addition, we may
specify an authorization policy, in this case using roles (Figures 1d and 1e).
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Figure 1: A simple constrained workflow for purchase order processing

It is well known that a workflow specification may be “unsatisfiable” in the sense that the combination
of policies and constraints means that there is no way of allocating authorized users to workflow steps
without violating at least one constraint. Informally, an instance of the Workflow Satisfiability Problem
(WSP) asks whether a particular workflow specification is satisfiable or not. This problem is NP-hard [28],
although relatively e�cient algorithms have been developed [8, 13, 20, 28] (assuming that the number of
workflow steps is much smaller than the number of users that may perform steps in the workflow and
that all constraints are user-independent).1

Of course, the objectives of the business process associated with a workflow specification can never
be achieved if the WSP instance is unsatisfiable. Hence, it is interesting to consider an extended version
of WSP that seeks a “best” allocation of users to steps in the event that the instance is unsatisfiable.
We might, for example, decide that the “cost” of breaking a binding-of-duty constraint is lower than
that associated with breaking a separation-of-duty constraint, and wish to find a plan, based on this
assumption, in the event that the workflow is not satisfiable. Alternatively, if we have to assign a step
to an unauthorized user, we might well wish to associate di↵erent costs with those unauthorized users:
in our purchase order example, the cost of assigning the create-payment step to a user in the accountant
role will presumably be less than that of assigning the step to a user in the marketingClerk role.

Accordingly, in this paper we study the Bi-Objective Workflow Satisfiability Problem (BO-WSP)
with (weighted) user-independent constraints. Informally, we associate each constraint and authorization
violation with a cost, which may, for example, be regarded as an estimate of the risk associated with
allowing those violations. We then consider BO-WSP as a bi-objective optimization problem and identify
three approaches to BO-WSP optimization, including the computation of a so-called Pareto front that
generalizes the other two. A Pareto front is a maximal set of incomparable BO-WSP solutions, allowing

1The satisfaction of a user-independent constraint – defined formally in Section 2 – does not depend on the identity of
the users.
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our purchase order example, the cost of assigning the create-payment step to a user in the accountant
role will presumably be less than that of assigning the step to a user in the marketingClerk role.

Accordingly, Crampton, Gutin and Karapetyan introduced the Valued WSP [12] in which each plan
is associated with two costs, which are determined, respectively, by the authorization policy violations
and constraint violations induced by the plan. To make the Valued WSP a single-objective optimization
problem, the two costs were aggregated into one total cost by summing the two costs. For a satisfiable
instance of WSP there will exist at least one plan with zero cost. However, if an instance is unsatisfiable,
Valued WSP will return a plan of minimum total cost.

While this is a step in the right direction, the output of Valued WSP is rather crude, in that it simply
generates a plan that minimizes the total cost. In many situations, it may be appropriate to consider the
cost of authorization policy violations and constraint violations separately. As we noted above, autho-
rization policy is typically a matter of local, "discretionary" configuration, whereas constraints may be
mandated by statutory requirements. Thus, we may want to find a plan that, for example, ensures the cost
of constraint violations is zero and and the cost due to policy violations is minimized.

In this paper, we study the Bi-Objective Workflow Satisfiability Problem (BO-WSP) with (weighted)
user-independent constraints. Informally, we associate each constraint and authorization violation with a
cost, which may, for example, be regarded as an estimate of the risk associated with allowing those viola-
tions. We then consider BO-WSP as a bi-objective optimization problem and identify three approaches
to BO-WSP optimization, including the computation of a so-called Pareto front that generalizes the
other two. A Pareto front is a maximal set of incomparable BO-WSP solutions, allowing practitioners to
choose the most suitable of those solutions. In a sense, our work is related to recent work on risk-aware
access control [5,6,15,24], which seeks to compute the risk of allowing a user to perform an action, rather
than simply computing an allow/deny decision, and ensure that cumulative risk remains within certain



limits. However, unlike related work, we focus on computing user-step assignments of minimal costs,
rather than access control decisions.

Workflow resiliency is a property related to workflow satisfiability [28]: informally, a workflow spec-
ification is resilient if it remains satisfiable even if some authorized users are not available to perform
steps. It is known that decision problems related to resiliency are PSPACE-complete [28, Theorems 14–
15]. Recent work has investigated quantitative resiliency, which seeks to measure the extent to which
a workflow is resilient, rather than simply deciding whether it is resilient or not [22]. In this paper, we
study the decision problems of Wang and Li [28] from the perspective of fixed-parameter tractability. We
also demonstrate that some questions regarding quantitative resiliency can be reduced to BO-WSP.

We now summarize the main contributions of our paper:

– to define BO-WSP as a bi-objective optimization version of WSP;
– to prove that computing a Pareto front admits a fixed-parameter tractable (FPT) algorithm2 for

weighted user-independent constraints;
– to prove that the running time is the best we can hope for in theory (see Theorem 2 and remarks

afterwards);
– to show how to implement this result efficiently by presenting an algorithm called Pattern Branch

and Bound (PBB);
– to provide a second algorithm for computing a Pareto front for BO-WSP, based on mixed-integer

programming (MIP);
– to prove that BO-WSP can be used to solve (a generalized version of) the Cardinality-Constrained

Minimum User Problem [26];
– to provide a parameter-driven instance generator for BO-WSP, which may be of independent

interest;
– to use this generator to compare the performance of our two methods for solving BO-WSP, and

conclude that PBB demonstrates significantly better performance on most of the test instances;
– to prove that decision problems for workflow resiliency that are known to be PSPACE-

complete [28] are FPT;
– to introduce a new model for reasoning about workflow resiliency, and
– to show how BO-WSP can be used to solve problems related to workflow resiliency.

In the next section, we review relevant concepts from the literature concerning the workflow satisfi-
ability problem, user-independent constraints and resiliency in workflows. In Section 3, we define the
bi-objective problem BO-WSP, and describe three ways in which the problem could be addressed. Then
we give a fixed-parameter algorithm that can be used to solve BO-WSP in the case of user-independent
constraints. We also describe a generalization of a problem introduced by Roy et al. [26] and how our
fixed-parameter algorithm can be applied to the generalized problem. In Section 4, we describe the im-
plementation of two algorithms for computing a Pareto front of BO-WSP, one relying on the FPT ap-
proach described in the previous section, the other using mixed integer programming. We then describe
an experimental framework for generating random instances of BO-WSP, and compare the performance
of the two implementations. In Section 5, we study the resiliency problem in workflow systems. We re-
view the model of resiliency of Wang and Li [28] and give a fixed-parameter algorithm deciding whether
a workflow is resilient up to t unavailable users, when only UI constraints are considered. We then define
a new model allowing an organization to encode the availabilities of users in terms of probabilities, and

2fixed-parameter tractability is discussed in the next section.



then reduce this problem to BO-WSP in order to find a plan with the highest likelihood of success,
using the algorithm presented in Section 3. We conclude the paper with a discussion of related work, a
summary of contributions and some suggestions for future work.

A preliminary version of this work was presented at the 20th ACM Symposium on Access Control
Models and Technologies (SACMAT 2015) [12]. The main additional contributions of the present paper
are (i) to formally state the BO-WSP as a bi-objective optimization problem (only a single-objective
problem, a special case of BO-WSP, was introduced in [12]); (ii) to give a fixed-parameter algorithm
and an MIP-based algorithm for computing a Pareto front for BO-WSP, thus generalizing the algorithms
of [12]; (iii) to compare experimentally the performances of both algorithms using a richer generator
of synthetic test instances; (iv) to study resiliency in workflow systems, first as a decision problem, by
giving the first positive results (using fixed-parameter algorithms) with respect to the model of [28], and
secondly by introducing a new model relying on probabilities of user availabilities. We then illustrate
one application of BO-WSP by showing that the proposed algorithm can be used to find a most resilient
plan with respect to this new model.

2. Definitions and related work

In this section we recall the definition of the workflow satisfiability problem and user-independent
constraints. We also review related work.

2.1. The workflow satisfiability problem

Definition 1. A workflow specification is defined by a partially ordered set (S,<), where S is a set of
steps. Given a workflow specification (S,<) and a set of users U , an authorization policy for a workflow
specification is a relation A ⊆ S×U . A workflow authorization schema is a tuple ((S,<), U,A), where
(S,<) is a workflow specification, U the set of users, and A an authorization policy.

A workflow specification describes a set of steps and restricts the order in which they must be per-
formed when the workflow is executed, each such execution being called a workflow instance. In particu-
lar, if s < s′ then s must be performed before s′ in every instance of the workflow. User u is authorized3

to perform step s only if (s, u) ∈ A. We assume that for every step s ∈ S there exists some user u ∈ U
such that (s, u) ∈ A (otherwise the workflow is trivially unsatisfiable).

Definition 2. A workflow constraint has the form (T,Θ), where T ⊆ S and Θ is a family of functions
with domain T and range U . T is the scope of the constraint (T,Θ). A constrained workflow authoriza-
tion schema is a tuple ((S,<), U,A,C), where ((S,<), U,A) is a workflow authorization schema and
C is a set of workflow constraints.

In the example of Figure 1, the constraint requiring that s1 and s3 are assigned the same user can be
written as (T ′,Θ′), where T ′ = {s1, s3} and Θ′ = {T ′ → {ui} : i = 1, 2, . . . , 8}.

Given π : S′ → U , where S′ ⊆ S, and T ⊆ S′, we define π|T : T → U , where π|T (s) = π(s) for all
s ∈ T .

3In practice, the set of authorized step-user pairs, A, will not be defined explicitly. Instead, A will be inferred from other
access control data structures. In our purchase order workflow, for example, it is straightforward to infer A (Figure 1f) from the
role-step and user-role assignment relations (Figures 1d and 1e). We prefer to use A in order to simplify the exposition.



Definition 3. Let ((S,<), U,A,C) be a constrained workflow authorization schema. A (partial) plan is
a function π : S′ → U , where S′ ⊆ S. A plan π is complete if S′ = S. Given S′ ⊆ S, we say a plan
π : S′ → U :

– is authorized if for all t ∈ S′, (t, π(t)) ∈ A;
– satisfies a workflow constraint (T,Θ) if T 6⊆ S′ or π|T ∈ Θ; and
– is valid if it is authorized and satisfies every constraint in C.

Informally, a workflow constraint (T,Θ) limits the users that are allowed to perform a set of steps T in
any given instance of the workflow. In particular, Θ identifies authorized (partial) assignments of users
to workflow steps in T . The objective of the workflow satisfiability problem is to find a valid complete
plan (if one exists). More formally, we have the following definition [28]:

WORKFLOW SATISFIABILITY PROBLEM (WSP)
Input: A constrained workflow authorization schema ((S,<), U,A,C)

Output: A valid plan π : S → U (WSP is satisfiable) or an answer that WSP is not satisfiable

Consider a pair τ, τ ′ of complete plans in our purchase order workflow defined as follows: τ(s1) =

τ(s3) = u1, τ(s2) = τ(s5) = u6, τ(s4) = u2, τ(s6) = u8, τ ′(s1) = τ ′(s3) = u2, τ ′(s2) = τ ′(s5) =

u6, τ
′(s4) = u1, and τ ′(s6) = u7. Since τ is a valid plan, the purchase order workflow is satisfiable. Plan

τ ′ is not valid as u7 is not authorized for s6. If we add the constraint that s5 and s6 must be performed
by different users and u6 and u7 become unavailable, then the workflow becomes unsatisfiable as only
u8 is authorized to perform either of s5 and s6.

WSP may be used in a number of ways. First, it may be used as a form of static analysis, prior to
deployment, to ensure that the workflow specification is useful, in the sense that there exists at least one
“execution path” through the workflow. Second, it may be used to generate plans for workflow instances,
where a plan assigns steps to users for each instance of the workflow specification when it is instantiated.
Finally, it may be used in a more dynamic way, when steps in a workflow instance are not assigned to
users in advance. Instead, a user would select a “ready” step in a workflow instance to execute. A ready
step is any step t such that all steps s such that s < t have been performed. We may model a partially
complete workflow instance as a workflow specification in which the set of authorized users for any step
that has been performed is a singleton, containing the user that performed the step. Then a request by
user u to perform t is evaluated by the workflow management system: the request is permitted if: (i) u
is authorized to perform t; and (ii) the updated workflow specification in which the only authorized user
for step t is u is satisfiable.

It is worth noting that constraints are defined in terms of sets and functions, and a plan is also defined
to be a function. That is, constraint satisfaction is (assumed to be) independent of the ordering on steps.
Moreover, the authorization policy is fixed and independent of the ordering on steps. In other words,
the ordering on steps, for the “standard” applications of WSP described above, is only relevant to the
sequence in which the steps of a workflow instance are executed, not in determining whether there exists
a valid plan (or the construction of a valid plan). However, in Section 5, we will see that we may model
workflow resiliency problems using authorization policies that vary over time. In this context, the order
in which steps are performed is relevant to satisfiability.



2.2. Constraint specification and user-independent constraints

In practice, we do not define constraints by enumerating all possible elements of Θ. Instead, we define
families of constraints that have “compact” descriptions. Thus, for example, we might define the family
of simple separation-of-duty constraints, each of which could be represented by a set {t1, t2} ⊆ S, the
constraint being satisfied by a plan π if and only if π(t1) 6= π(t2). More generally, for any binary relation
∝ defined on U , constraint (s1, s2,∝) is satisfied by any plan π such that π(s1) ∝ π(s2). (In particular,
we may represent a binding-of-duty constraint in the form (s1, s2,=) and a separation-of-duty constraint
in the form (s1, s2, 6=).)

A constraint (T,Θ) is said to be user-independent (UI, for short) if, for every θ ∈ Θ and every
permutation φ : U → U , we have φ ◦ θ ∈ Θ, where (φ ◦ θ)(s) = φ(θ(s)). Informally, a constraint is UI
if it does not depend on the identity of the users. It appears most constraints that are useful in practice
are UI [8]. In particular, cardinality constraints, separation-of-duty and binding-of-duty constraints are
UI. In our experiments (Section 4), we will consider two particular types of UI constraints:

– an at-least-r counting constraint has the form atleast(T, r), where r 6 |T |, and is satisfied pro-
vided at least r users are assigned to the steps in T ;

– an at-most-r counting constraint has the form atmost(T, r), where r 6 |T |, and is satisfied pro-
vided at most r users are assigned to the steps in T .

Note that a separation-of-duty constraint (s1, s2, 6=) is the counting constraint atleast({s1, s2} , 2), and
a binding-of-duty constraint (s1, s2,=) is the constraint atmost({s1, s2} , 1).

It is important to stress that our approach works for any UI constraints. We chose to use counting
constraints because such constraints have been widely considered in the literature (often known as car-
dinality constraints [8]). Moreover, counting constraints can be efficiently encoded using mixed integer
programming, so we can use off-the-shelf solvers to solve WSP and thus compare their performance with
that of our bespoke algorithms.

2.3. Related work

A naïve approach to solving WSP would consider every possible assignment of users to steps in
the workflow. There are nk such assignments if there are n users and k steps, so an algorithm of this
form would have complexity Ω(mnk), where m is the number of constraints.4 Moreover, Wang and Li
showed that WSP is NP-hard, by reducing GRAPH k-COLORABILITY to WSP with separation-of-duty
constraints [28, Lemma 3].

2.3.1. Fixed-parameter tractability results for WSP
The importance of finding an efficient algorithm for solving WSP led Wang and Li to look at the

problem from the perspective of parameterized complexity [16,25]. Parameterized complexity is a two-
dimensional extension of classical complexity: in parameterized complexity an instance of a decision
problem is a pair consisting of an instance x ∈ Σ∗ of a classical decision problem and a parameter
κ ∈ N, where Σ is an alphabet. An algorithm is said to be fixed-parameter tractable (FPT) if it solves
a problem in time O(f(κ)p(|x|)), where |x| is the size of x, and f and p are respectively a computable
function and a polynomial. Normally, for applications κ is supposed to be relatively small and thus if f
is a moderately growing function, an FPT algorithm may provide an efficient solution for the problem

4We say that f = Ω(g) for two functions f, g : N→ N if there exist N0, d ∈ N∗ such that f(N) ≥ dg(N) for all N ≥ N0.



under consideration. If a problem can be solved using an FPT algorithm then we say that it is an FPT
problem and that it belongs to the class FPT.

Let us introduce a class W[1] of parameterized problems that includes all FPT problems, but whose
hardest problems (W[1]-complete problems) are widely believed not to be in FPT [16,25]. Consider two
parameterized problems P and P ′ (each problem is a set of two-dimensional instances, i. e. a subset of
Σ∗ × N, where Σ is a fixed alphabet). We say that P reduces to P ′ by a parameterized reduction if for
every (x, κ) ∈ Σ∗ ×N, one can compute (x′, κ′) ∈ Σ∗ ×N in time O(f(k)(|x|+ κ)c) for a computable
function f and a constant c such that (i) κ′ ≤ g(κ) for a computable function g, and (ii) (x, κ) ∈ P
if and only if (x′, κ′) ∈ P ′. Class W[1] consists of all parameterized problems that can be reduced to
INDEPENDENT SET parameterized by the size of the solution: given a graphG and a parameter κ, decide
whether G has an independent set of size κ.

Wang and Li observed that parameterized complexity is an appropriate way to study the WSP, because
the number k of steps is usually small and often much smaller than the number n of users;5 thus, k can
be considered as the parameter. Wang and Li [28] proved that, in general, WSP is W[1]-hard and thus
is highly unlikely to admit an FPT algorithm. However, they also proved WSP is FPT if we consider
only separation-of-duty and binding-of-duty constraints [28]. Henceforth, we consider special families
of constraints, but allow arbitrary authorizations. Crampton et al. [13] obtained significantly faster FPT
algorithms that were applicable to “regular” constraints, thereby including the cases shown to be FPT
by Wang and Li. Subsequent research has demonstrated the existence of FPT algorithms for WSP in
the presence of other constraint types [9,10]. Cohen et al. [8] introduced the class of UI constraints and
showed that WSP remains FPT if only UI constraints are included. Note that every regular constraint is
UI and all the constraints defined in the ANSI RBAC standard [1] are UI. Results of Cohen et al. [8]
have led to algorithms which significantly outperform the widely used SAT-solver SAT4J on difficult
instances of WSP with UI constraints [7,20].

2.3.2. Finding plans for unsatisfiable instances
There has been considerable interest in recent years in making the specification and enforcement of

access control policies more flexible. Naturally, it is essential to continue to enforce effective access
control policies. Equally, it is recognized that there may well be situations where a simple “allow” or
“deny” decision for an access request may not be appropriate. It may be, for example, that the risks of
refusing an unauthorized request are greater than the risks of allowing it. One obvious example occurs
in healthcare systems, where the denial of an access request in an emergency situation could lead to loss
of life. Hence, there has been increasing interest in context-aware policies, such as “break-the-glass” [4],
which allow different responses to requests in different situations. Risk-aware access control is a related
line of research that seeks to quantify the risk of allowing a request [15], where a decision of “0” might
represent an unequivocal “deny” and “1” an unequivocal “allow”, with decisions of intermediate values
representing different levels of risk.

Similar considerations arise very naturally when we consider workflows. In particular, we may specify
authorization policies and constraints that mean a workflow specification is unsatisfiable. Clearly, this is
undesirable from a business perspective, since the business objective associated with the workflow can
not be achieved. There are two possible ways of dealing with an unsatisfiable workflow specification:
modify the authorization policy and/or constraints; or find a “least bad” complete plan. Prior work by
Basin, Burri and Karjoth considered the former approach [2]. They restricted their attention to modifi-

5The SMV loan origination workflow studied by Schaad et al., for example, has 13 steps and identifies five roles [27]. It is
generally assumed that the number of users is significantly greater than the number of roles.



cation of the authorization policy, what they called administrable authorizations. They assigned costs to
modifying different aspects of a policy and then computed a strategy to modify the policy of minimal
cost. We adopt a different approach and consider minimizing the cost of “breaking” the policies and/or
constraints.

3. The bi-objective workflow satisfiability problem

Informally, given a workflow specification and a plan π, we assign two costs to π, determined by
the authorizations and constraints that π violates. The BI-OBJECTIVE WORKFLOW SATISFIABILITY

PROBLEM (BO-WSP) seeks to find a plan that minimizes these costs. WSP is a decision problem;
BO-WSP is a multi-objective optimization problem. Since it is not possible, in general, to minimize
both costs in BO-WSP simultaneously, we consider three different approaches to solving BO-WSP.
We show that all three approaches can be tackled by FPT algorithms for user-independent constraints
(Theorem 1).6

More formally, let (S,<) be a workflow, U a set of users, and C a set of constraints. Let Π denote the
set of all possible plans from S to U , and let Q+ be the set of non-negative rationals. For each c ∈ C, we
say that a function ωc : Π→ Q+ is a constraint weight function if, for all π ∈ Π:

ωc(π)

{
= 0 if π satisfies c,
> 0 otherwise.

The pair (c, ωc) is a weighted constraint. The intuition is that ωc(π) represents the extent to which π
violates c.

Consider the constraints c1 = ({s1, s2} , 6=) and c2 = ({s1, s3} ,=) from our purchase order work-
flow. Then we might define, for some x ∈ Q+,

ωc1(π) =

{
0 if π(s1) 6= π(s2),

10x otherwise;
and ωc2(π) =

{
0 if π(s1) = π(s3),

x otherwise.

In this example, we have assigned a greater weight to breaking the separation-of-duty constraint than
breaking the binding-of-duty constraint. These weights reflect the danger of fraud that exists when the
same user performs s1 and s2, compared to the relatively unimportant constraint that the same user
creates a purchase order and signs for the goods received. In a different workflow specification in which
different security considerations are relevant, these weights might be reversed.

Now consider the counting constraint atmost(T, r). Then ωc(π) depends only on the number of users
assigned to the steps in T (and the penalty should increase as the number of users increases). Let π(T )
denote the set of users assigned to steps in T . Then ωc(π) = 0 if |π(T )| ≤ r, and ωc(π) > 0 otherwise.
Further, if π and π′ are two plans such that |π(T )| < |π′(T )|, then ωc(π) ≤ ωc(π′).

6In Section 2.3.1, we defined FPT only for the decision problems, but the notion can be naturally extended to optimization
problems. In case of BO-WSP, an FPT algorithm runs in time O(f(k)poly(n)), where k and n are the numbers of steps and
users, respectively.



Having defined ωc for each constraint in the workflow specification, we define

ωC(π) =
∑

c∈C
ωc(π),

which we call the constraint weight of π. Note that ωC(π) = 0 if and only if π satisfies all constraints
in C. Note also that ωC(π) need not be defined to be the linear sum: ωC(π) may be defined to be an
arbitrary function computable in time polynomial in the input size of the tuple (ωc(π) : c ∈ C) and
Theorem 1 below would still hold. However, we will not use this generalization in this paper, but simply
remark that it is possible, if needed.

We say that a function ω : 2S × U → Q+ is a weighted set-authorization function if ω(∅, u) = 0
for all u ∈ U . Let π−1(u) = {s ∈ S : π(s) = u} denote the set of steps to which u is assigned by
plan π. Then, given a weighted set-authorization function ω, we define an authorization weight function
ωA : Π→ Q+ to be, for all π ∈ Π:

ωA(π) =
∑

u∈U
ω(π−1(u), u).

In the remainder of the paper, we assume that both ωA and ωC are computable in polynomial time.
Given a workflow (S,<), a set of users U , a set of weighted constraints Cω, and weighted set-

authorization function ω, we say that ((S,<), U, ω, Cω) is a weighted constrained workflow schema.

BI-OBJECTIVE WSP (BO-WSP)
Input: A weighted constrained workflow schema ((S,<), U, ω, Cω)
Output: A plan π : S → U
Goal: Minimize ωC(π) and ωA(π)

The alert reader will have noticed that the authorization relation is no longer included in the workflow
specification. This is because any authorization relation A can be encoded by an appropriate choice of
ω. The next result formalizes this claim and establishes that BO-WSP generalizes WSP.

Proposition 1. Given an instance of WSP ((S,<), U,A,C), let ω be a weighted set-authorization func-
tion such that for all T ⊆ S and all u ∈ U :

ω(T, u)

{
= 0 if (u, t) ∈ A for all t ∈ T ,
> 0 otherwise;

And, for each c ∈ C, let ωc be a constraint weight function. Then the BO-WSP instance ((S,<
), U, ω, Cω), where Cω = {(c, ωc) : c ∈ C}, has a plan π such that ωA(π) = ωC(π) = 0 if and only if
((S,<), U,A,C) is satisfiable.

In many cases, a weighted set-authorization function ω : 2S × U → Q+ satisfies the “linearity”
condition ω(T, u) =

∑
t∈T ω({t}, u) for every T ⊆ S and u ∈ U . However, ω does not necessarily

satisfy this condition. For example:



1. We can introduce a large penalty ω(T, u), effectively modeling simple “prohibitions” or “negative
authorizations” (for instance, that we prefer not to involve u in steps in T ). We use weights like
this in our experimental work, described in Section 4.
In our purchase order example, we might set different (non-zero) weights for ω({s5} , u3),
ω({s5} , u4) and ω({s5} , u5), depending on the relative seniority and/or experience of these three
users (each of whom is assigned to the marketingClerk role).

2. We can define a limit `u on the number of steps that can be executed by u, by setting a large penalty
ω(T, u) for all T of cardinality greater than `u.

3. The weights associated with the same user executing different steps may not increase linearly.
Once a user has performed one particular unauthorized step, the additional cost of executing a
related unauthorized step may be reduced, while the additional cost of executing an unrelated
unauthorized step may be the same as the original cost.
In our purchase order example, we might set ω({s1} , u) = M , where M is a large constant, for
any user not authorized for step s1. However, we would then set ω({s1, s3} , u) = M , since the
binding-of-duty constraint in s1 and s3 requires the same user performs the two steps.

4. We can implement separation-of-duty on a per-user basis, which is not possible with UI constraints.
In particular, it may be acceptable for u1 to perform steps s1 and s2, but not u2, in which case
ω({s1, s2}, u1) would be small, while ω({s1, s2}, u2) would be large.
In our purchase order example, we would set ω({s4, s6} , u8) < ω({s4, s6} , u7) < ω({s4, s6} , u1),
because of the relative seniority of the respective roles to which these users are assigned.

5. We can minimize the cost of involved users, see Section 3.2.

And in certain cases, it may be that ω(T, u) > 0 for all pairs (T, u). We see an example of a set-
authorization function with this property in Section 3.2.

3.1. Optimizing bi-objective WSP

By analogy to the satisfiability constraint, a weighted constraint (c, ωc) is called user-independent if,
for every permutation θ of U , ωc(π) = ωc(θ ◦ π). Thus, a weighted UI constraint does not distinguish
between users. Any (weighted) counting constraint, for which the weight of plan π is defined in terms of
the cardinality of the image of π, is UI.

Given a plan π : S′ → U , where S′ ⊆ S, we define an equivalence relation ∼π on S′ as follows:
s ∼π s′ if and only if π(s) = π(s′). This equivalence relation partitions set S′ into (non-empty) subsets,
called blocks; the set of blocks is called the pattern P (π) of π. We say that two plans π and π′ are
equivalent if they have the same pattern. Consider the following plans for our purchase order workflow.

s1 s2 s3 s4 s5 s6
τ u1 u6 u1 u2 u6 u5
τ ′ u2 u6 u2 u1 u6 u8

Then τ and τ ′ are equivalent as both have pattern {{s1, s3}, {s4}, {s2, s5}, {s6}}. Observe that if all
constraints are UI and plans π and π′ are equivalent, then ωC(π) = ωC(π′). Note, however, that ωA(π)
is not necessarily equal to ωA(π′), because ωA(π) is determined by the set-authorization function, which
does depend on the particular users assigned to steps by a plan. A pattern is said to be complete if S′ = S.
Plans τ and τ ′ above are complete.

Ideally, we would like to minimize both weights of BO-WSP simultaneously, but, in general, this
is impossible as a plan which minimizes one weight will not necessarily minimize the other. Thus, we



will consider BO-WSP as a bi-objective optimization problem. There are three standard approaches to
solving bi-objective optimization problems [23]:

1. We consider a single objective function defined as a linear combination of ωC(π) and ωA(π): that
is, we consider an objective function of the form aωC(π) + bωA(π), where a and b are constants.
Since we can incorporate a and b into ωC and ωA, we obtain an optimization problem in which we
wish to find a plan π of minimum total weight ωC(π) + ωA(π). This problem was introduced in
[12], where it was called the VALUED WSP.
Henceforth, we will call this problem BO-WSP-LC (the LC standing for “linear combination”).

2. A complete plan π is called Pareto optimal if there is no complete plan π′ such that

ωC(π) ≥ ωC(π′), ωA(π) ≥ ωA(π′) and ωC(π) + ωA(π) > ωC(π′) + ωA(π′).

In this approach, we minimize one weight subject to the other being upper bounded. More pre-
cisely, given an upper bound B to the constraint (resp. authorization) weight, we aim to find a
Pareto optimal plan among all plans π such that ωC(π) ≤ B (resp. ωA(π) ≤ B).
Henceforth, we call this problem BO-WSP-PO (the PO standing for “Pareto optimal”).

3. A pair of complete plans π and π′ are called weight-equal if

ωC(π) = ωC(π′) and ωA(π) = ωA(π′).

In this approach, we compute the Pareto front, which is a maximal set of non-weight-equal Pareto
optimal plans.
Henceforth, we call this problem BO-WSP-PF (the PF standing for “Pareto front”).

It is not hard to see that optimal plans obtained by solving BO-WSP-LC and BO-WSP-PO are Pareto
optimal. Thus, BO-WSP-PF generalizes BO-WSP-LC and BO-WSP-PO. It is known that replacing a
single objective with multiple objectives (and computing a Pareto front) usually increases the complex-
ity class of the problem [23]. However, for BO-WSP-PF with UI constraints, we have the following
theorem.

Theorem 1. Given a weighted constrained workflow schema ((S,<), U, ω, Cω) in which all constraints
are UI, we can solve BO-WSP-PF in time7 O∗(2k log2 k), where k is the number of steps.

Proof. We show how to calculate the Pareto front, which we store in the set P and initialize to the
empty set. Recall that for equivalent complete plans π and π′, we have ωC(π) = ωC(π′). However,
ωA(π) =

∑
u∈U ωA(π−1(u), u) is, in general, different from ωA(π′).

Let π be a complete plan. Observe that if there is a complete plan π′, which is Pareto optimal and
equivalent to π, then ωA(π′) is minimum among all equivalent complete plans equivalent to π. Let
P (π) = {T1, . . . , Tp}. Then to find such a plan π′ efficiently, we construct a weighted complete bipar-
tite graph Gπ with partite sets {1, . . . , p} and U and define the weight of edge {q, u} to be ω(Tq, u).
(Henceforth, for a positive integer x, we write [x] to denote {1, . . . , x}.)

Now observe that Gτ = Gπ for every pair π, τ of equivalent complete plans and that ωA(π) equals the
weight of the corresponding matching of Gπ covering all vertices of [p]. Hence, it suffices to find such

7O∗(.) suppresses any polynomial factors and terms.



a matching of Gπ of minimum weight, which can be done by the Hungarian method [21] in time O(n3)
for a graph with n vertices.

Let Bk be the number of partitions of the set [k] into non-empty subsets: that is, Bk denotes the kth Bell
number. Observe thatBk is smaller than k! and there are algorithms of running timeO(Bk) = O(2k log2 k)
to generate all partitions of [k] [17]. Thus, we can generate all patterns in time O(2k log2 k). For each
pattern we compute the corresponding complete plan π of minimum authorization weight, and add π to
P unless P already has a plan τ such that

ωC(π) ≥ ωC(τ) and ωA(π) ≥ ωA(τ) and ωC(π) + ωA(π) > ωC(τ) + ωA(τ).

The total running time is O∗(2k log2 k).

As we noted above, an algorithm that solves BO-WSP-PF can be used to solve BO-WSP-LC and
BO-WSP-PO. We thus have the following two corollaries of Theorem 1:

Corollary 1. We can compute, in timeO∗(2k log2 k), a plan π for BO-WSP with UI constraints such that
ωC(π) + ωA(π) is minimum.

Corollary 2. For any B ∈ N, we can compute, in time O∗(2k log2 k), a plan π for BO-WSP with UI
constraints such that ωA(π) (resp. ωC(π)) is minimum among all plans τ such that ωC(τ) ≤ B (resp.
ωA(τ) ≤ B).

For the sake of completeness, we state the following result whose proof can be found in Appendix A.

Theorem 2. There exist instances of BO-WSP with UI constraints with a Pareto front consisting of Bk
points.

This result implies that the algorithm described in the proof of Theorem 1 has an optimal8 asymptotic
worst-case running time, as any such algorithm must output all points from the Pareto front (recall that
the running time of the algorithm is actually O∗(Bk)).

In addition, note that Gutin and Wahlström [18] recently proved that WSP with UI constraints cannot
be solved in time O∗(2ck log2 k) for any c < 1, unless the Strong Exponential Time Hypothesis (SETH)9

fails. Hence, even concerning Approach 1 only (and even with 0-1 weights only), the algorithm in the
proof of Theorem 1 has an optimal asymptotic running time possible, under SETH.

3.2. Minimizing user cost

The aim of this subsection is to demonstrate that an interesting and applicable problem, the Cardinality-
Constrained Minimum User Problem (CMUP) [26], can be reduced to multiple instances of WSP or an
instance of BO-WSP. Moreover, we can solve CMUP in the presence of arbitrary UI constraints. CMUP
asks, given a satisfiable instance of WSP, what is the minimum number of users required to obtain a
valid plan. Roy et al. [26] motivate their study of CMUP by noting that many companies and other
organizations are interested in cost-cutting in their businesses. However, CMUP can be useful in other
scenarios, such as when a smaller number of users increases security.

8One may possibly improve only the polynomial factors.
9The Strong Exponential Time Hypothesis claims there is no algorithm of running time O∗(2cn) for SAT on n variables, for

any c < 1 [19].



For CMUP, Roy et al. [26] used only constraints of the form at-most-r and at-least-r′ and suggested
using either an Integer Programming Solver (they used CPLEX) or a bespoke greedy-like heuristic gen-
eralizing a greedy-like heuristic for coloring hypergraphs.

Note, however, that one can solve CMUP using any WSP solver that can deal with at-most-r con-
straints, which are UI for any integer r. In particular, the WSP solver developed by Cohen et al. [7,20]
for solving WSP with UI constraints can be used. First note that no plan for a satisfiable instance re-
quires more than k users. Hence, we can use binary search, with repeated calls to the WSP solver, to
solve CMUP. Before making the first call to the WSP solver, we add the constraint atmost(S, k/2)
to W , and test whether the resulting instance is satisfiable or not. If it is satisfiable, we then replace
atmost(S, k/2) with atmost(S, k/4) and call the WSP solver; otherwise we replace atmost(S, k/2) with
atmost(S, 3k/4) (and call the WSP solver). By iterating this process at most dlog2 ke times, we obtain
the minimum number of users (recall that the CMUP instance is required to be satisfiable).

In contrast, the BO-WSP algorithm can solve CMUP directly. In fact, BO-WSP allows us to model
and solve the following generalization of CMUP. We will allow any weighted UI constraints. Assume
that the users’ costs vary (salaries, costs of additional training, etc.) and let µu > 0 be the cost of user u.
Then we can define a weighted set-authorization function as follows:

ω(T, u) =

{
µu if (u, t) ∈ A for all t ∈ T ,
M otherwise,

where M is a constant such that M >
∑

u∈U µu. (Note here that ω(T, u) > 0 for all T 6= ∅.) By
definition of BO-WSP, the algorithm will find a valid plan involving a set of users of minimum cost
(the CMUP case corresponds to µu = 1 for every user u). We may also consider decreasing the cost by
allowing some “minor” constraints to be violated.

4. BO-WSP algorithms and experimental results

In this section, we describe two concrete algorithms we have developed to solve BO-WSP and study
their performance on a range of BO-WSP instances. The first, which we call Pattern Branch and Bound,
solves BO-WSP-PF directly; the algorithm is FPT and based on patterns. The second algorithm, which
we call MIP-based, solves BO-WSP-PF by solving multiple instances of BO-WSP-PO expressed as a
mixed integer programming (MIP) problem.

Note that a Pareto front of BO-WSP may include plans with very large authorization or constraint
weights despite the fact that such plans are of little practical interest. For that reason we introduce two
parameters, BA and BC , which bound the authorization and constraint weights, respectively. Both of our
solution methods ignore plans π such that ωA(π) > BA or ωC(π) > BC . These upper bounds not only
reduce the size of the Pareto front, thereby reducing the number of choices that an end-user would need
to evaluate, but, as we will show later, also speed up the algorithms.

4.1. Pattern backtracking algorithm

Pattern Branch and Bound (PBB) is an efficient implementation of the algorithm described in the proof
of Theorem 1. The algorithm explores the space of patterns in a depth-first search like manner and, for
each complete pattern, computes an optimal complete plan. The algorithm maintains a set P of Pareto
optimal plans found so far. When the search is completed, P is the full Pareto front.



The search tree of the algorithm is formed as follows. Each node of the search tree corresponds to
a (partial) pattern. Branching in PBB is based on extending the parent pattern with one step. Let P ={
T1, T2, . . . , T|P |

}
be the (partial) pattern in some node of the search. Then PBB will select some step

s ∈ S \ (T1 ∪ T2 ∪ . . . ∪ T|P |) and extend P with s in every possible way, i.e.

{
T1 ∪ {s} , T2, . . . , T|P |

}
,

{
T1, T2 ∪ {s} , . . . , T|P |

}
,

. . .
{
T1, T2, . . . , T|P | ∪ {s}

}
,

{
T1, T2, . . . , T|P |, {s}

}
.

Like most tree-search algorithms, PBB uses pruning when it can guarantee that the current branch
of the search contains no new Pareto optimal solutions. Since all weights are non-negative, extending a
pattern can only increase the weight of a pattern. Thus, if we can establish that P already includes a plan
that is weight-equal to or dominated by every plan in the current branch of the search, we may terminate
the search of the sub-tree rooted at P . More specifically, for a given pattern P defined over steps T ⊆ S,
we define

ωc(P )
def
= min {ωc(π) : π is a complete plan such that P (π|T ) = P} .

For example, suppose c is an at-least-3 constraint with scope T , where |T | = 5, and four of the steps in
T are already assigned the same user (by pattern P ). Then ωc(P ) is equal to the penalty for assigning
two users to the steps in T (since we may assume that this penalty will be no greater than the penalty for
assigning a single user to all five steps in T ). We then compute lower bounds for P :

ωA(P )
def
=
∑

B∈P
min
u∈U

ω(B, u) and ωC(P )
def
=
∑

c∈C
ωc(P ).

Then we may prune the branch rooted at P if one of the following conditions holds:

– there exists a plan π′ in P such that ωA(π′) ≤ ωA(P ) and ωC(π′) ≤ ωC(P );
– ωA(P ) > BA;
– ωC(P ) > BC .

The size of the search tree depends on the order of steps by which the pattern is extended. This order
is determined dynamically by a heuristic which selects the constrained step s most likely to reduce the
average branching factor. The implementation of the heuristic depends on particular types of constraints
and users, and in our case was adjusted by automated parameter tuning, as we describe in more detail in
Appendix B.

4.2. MIP-based algorithm

Modern, general-purpose MIP solvers are convenient and powerful tools that can be used to tackle
many hard combinatorial optimization problems, thereby reducing costs resulting from the development



and maintenance of bespoke systems. In this section we show how an MIP solver can be used to solve
BO-WSP-PF.

Current MIP solvers can only return a single solution in a run. BO-WSP-PF, however, is a bi-objective
problem with multiple Pareto optimal solutions in general. Thus, to solve BO-WSP-PF, we need a
control algorithm that calls an MIP solver multiple times with different parameters. We now describe the
construction of such an algorithm in more detail.

4.2.1. Computing a Pareto Front
Given an instance of BO-WSP and integers a, b, c and d, suppose we have a function mipMini-

mizeWeight that can be evaluated using an MIP solver and returns a plan π such that (i) either the autho-
rization weight or constraint weight of π is minimized, (ii) ωA(π) ∈ [a, b], and (iii) ωC(π) ∈ [c, d]. We
explain how to construct the required MIP formulation for mipMinimizeWeight in Section 4.2.2.

Let us assume that mipMinimizeWeight(0, a, b, c, d) returns a plan π such that the authorization
weight is minimized, and mipMinimizeWeight(1, a, b, c, d) returns a plan such that the constraint
weight is minimized. Then we can compute the Pareto optimal plan π` such that ωA(π`) ≤ ωA(τ) for
any Pareto optimal plan τ using the following computations:

π ← mipMinimizeWeight(0, 0, BA, 0, BC) (1)

π` ← mipMinimizeWeight(1, ωA(π), ωA(π), 0, BC). (2)

The method is illustrated schematically in Figure 2. (The black dot in each sub-figure indicates the
optimal plan, subject to the particular weight being minimized, which is indicated by a black arrow. The
gray area in each sub-figure indicates the region within which we are seeking a plan.)
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Given an instance of BO-WSP and integers a, b, c and d, suppose we have a function mipMinimizeWeight
that can be evaluated using an MIP solver and returns a plan ⇡ such that (i) either the authorization
weight or constraint weight of ⇡ is minimized, (ii) !A(⇡) 2 [a, b], and (iii) !C(⇡) 2 [c, d]. We explain how
to construct the required MIP formulation for mipMinimizeWeight in Section 4.2.2.

Let us assume that mipMinimizeWeight(0, a, b, c, d) returns a plan ⇡ such that the authorization
weight is minimized, and mipMinimizeWeight(1, a, b, c, d) returns a plan such that the constraint weight
is minimized. Then we can compute the Pareto optimal plan ⇡` such that !A(⇡`)  !A(⌧) for any Pareto
optimal plan ⌧ using the following computations:

⇡  mipMinimizeWeight(0, 0, BA, 0, BC) (1)

⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC). (2)

The method is illustrated schematically in Figure 2. (The black dot in each sub-figure indicates the
optimal plan, subject to the particular weight being minimized, which is indicated by a black arrow. The
gray area in each sub-figure indicates the region within which we are seeking a plan.)
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Figure 2: Computing a Pareto optimal plan having minimum authorization weight

Similarly, computing

⇡  mipMinimizeWeight(1, 0, BA, 0, BC) (3)

⇡r  mipMinimizeWeight(0, 0, BA, !C(⇡), !C(⇡)) (4)

will compute a Pareto optimal plan ⇡r having the smallest constraint weight (among all Pareto optimal
plans).

These steps form the basis for computing the entire Pareto front, as illustrated by the pseudo-code
in Algorithm 1. Informally, we compute the “extremal” Pareto optimal plans ⇡` (lines 1–2) and ⇡r

(lines 6–7).9 Having done that, we iteratively shrink the (two-dimensional) objective space, moving the
bottom-right hand corner towards the top left-hand corner, and find the remaining Pareto optimal plans
within those successively smaller regions (lines 12–13). The operation of the algorithm is illustrated
schematically in Figure 3.

4.2.2 The function mipMinimizeWeight

In order to formulate mipMinimizeWeight as an MIP problem, we define a matrix of binary decision
variables x = (xsu) to represent a plan: specifically, if xsu = 1 then step s 2 S is assigned to user u 2 U ;

9In line 6, we wish to find plan ⇡r such that !C(⇡r) < !C(⇡`). However, MIP does not allow strict inequality constraints;
thus we must use a constraint !C(⇡r)  !C(⇡`)� ✏ for a small ✏ > 0. Since all the weights in our experiments are integers,
we can set ✏ = 1 without loss of correctness. Analogous comments hold for !C(⇡r) and !A(⇡r).
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maintenance of bespoke systems. In this section we show how an MIP solver can be used to solve
BO-WSP-PF.

Current MIP solvers can only return a single solution in a run. BO-WSP-PF, however, is a bi-
objective problem with multiple Pareto optimal solutions in general. Thus, to solve BO-WSP-PF, we
need a control algorithm that calls an MIP solver multiple times with di↵erent parameters. We now
describe the construction of such an algorithm in more detail.

4.2.1 Computing a Pareto Front

Given an instance of BO-WSP and integers a, b, c and d, suppose we have a function mipMinimizeWeight
that can be evaluated using an MIP solver and returns a plan ⇡ such that (i) either the authorization
weight or constraint weight of ⇡ is minimized, (ii) !A(⇡) 2 [a, b], and (iii) !C(⇡) 2 [c, d]. We explain how
to construct the required MIP formulation for mipMinimizeWeight in Section 4.2.2.

Let us assume that mipMinimizeWeight(0, a, b, c, d) returns a plan ⇡ such that the authorization
weight is minimized, and mipMinimizeWeight(1, a, b, c, d) returns a plan such that the constraint weight
is minimized. Then we can compute the Pareto optimal plan ⇡` such that !A(⇡`)  !A(⌧) for any Pareto
optimal plan ⌧ using the following computations:

⇡  mipMinimizeWeight(0, 0, BA, 0, BC) (1)

⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC). (2)

The method is illustrated schematically in Figure 2. (The black dot in each sub-figure indicates the
optimal plan, subject to the particular weight being minimized, which is indicated by a black arrow. The
gray area in each sub-figure indicates the region within which we are seeking a plan.)

BA

BC

⇡

!A

!C

(a) Step 1 (see (1))

!A(⇡) BA

BC

⇡`

!A

!C

(b) Step 2 (see (2))

Figure 2: Computing a Pareto optimal plan having minimum authorization weight

Similarly, computing

⇡  mipMinimizeWeight(1, 0, BA, 0, BC) (3)

⇡r  mipMinimizeWeight(0, 0, BA, !C(⇡), !C(⇡)) (4)

will compute a Pareto optimal plan ⇡r having the smallest constraint weight (among all Pareto optimal
plans).

These steps form the basis for computing the entire Pareto front, as illustrated by the pseudo-code
in Algorithm 1. Informally, we compute the “extremal” Pareto optimal plans ⇡` (lines 1–2) and ⇡r

(lines 6–7).9 Having done that, we iteratively shrink the (two-dimensional) objective space, moving the
bottom-right hand corner towards the top left-hand corner, and find the remaining Pareto optimal plans
within those successively smaller regions (lines 12–13). The operation of the algorithm is illustrated
schematically in Figure 3.

4.2.2 The function mipMinimizeWeight

In order to formulate mipMinimizeWeight as an MIP problem, we define a matrix of binary decision
variables x = (xsu) to represent a plan: specifically, if xsu = 1 then step s 2 S is assigned to user u 2 U ;

9In line 6, we wish to find plan ⇡r such that !C(⇡r) < !C(⇡`). However, MIP does not allow strict inequality constraints;
thus we must use a constraint !C(⇡r)  !C(⇡`)� ✏ for a small ✏ > 0. Since all the weights in our experiments are integers,
we can set ✏ = 1 without loss of correctness. Analogous comments hold for !C(⇡r) and !A(⇡r).
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Fig. 2. Computing a Pareto optimal plan having minimum authorization weight

Similarly, computing

π ← mipMinimizeWeight(1, 0, BA, 0, BC) (3)

πr ← mipMinimizeWeight(0, 0, BA, ωC(π), ωC(π)) (4)

will compute a Pareto optimal plan πr having the smallest constraint weight (among all Pareto optimal
plans).



These steps form the basis for computing the entire Pareto front, as illustrated by the pseudo-code in
Algorithm 1. Informally, we compute the “extremal” Pareto optimal plans π` (lines 1–2) and πr (lines 6–
7).10 Having done that, we iteratively shrink the (two-dimensional) objective space, moving the bottom-
right hand corner towards the top left-hand corner, and find the remaining Pareto optimal plans within
those successively smaller regions (lines 12–13). The operation of the algorithm is illustrated schemati-
cally in Figure 3.

Algorithm 1: MIP-based algorithm to compute a Pareto front
1 π ← mipMinimizeWeight(0, 0, BA, 0, BC);
2 π` ← mipMinimizeWeight(1, ωA(π), ωA(π), 0, BC);
3 if π` = (none) then
4 return ∅;
5 P ←

{
π`
}

;
6 π ← mipMinimizeWeight(1, ωA(π`) + 1, BA, 0, ωC(π`)− 1);
7 πr ← mipMinimizeWeight(0, ωA(π`) + 1, BA, ωC(π), ωC(π));
8 if πr = (none) then
9 return P;

10 P ← P ∪ {πr};
11 while ωA(πr)− ωA(π`) > 1 and ωC(π`)− ωC(πr) > 1 do
12 π ← mipMinimizeWeight(1, ωA(π`) + 1, ωA(πr)− 1, ωC(πr) + 1, ωC(π`)− 1);
13 πc ← mipMinimizeWeight(0, ωA(π`) + 1, ωA(πr)− 1, ωC(π), ωC(π));
14 if πc = (none) then
15 return P;

16 P ← P ∪ {πc};
17 πr ← πc;

18 return P;

4.2.2. The function mipMinimizeWeight
In order to formulate mipMinimizeWeight as an MIP problem, we define a matrix of binary decision

variables x = (xsu) to represent a plan: specifically, if xsu = 1 then step s ∈ S is assigned to user u ∈ U ;
otherwise step s is assigned to some other user. Then the constraint weight ωC(x) and the authorization
weight ωA(x) of the plan defined by x are

ωA(x)
def
=
∑

u∈U
ωu(x) and ωC(c)

def
=
∑

c∈C
ωc(x),

10In line 6, we wish to find plan πr such that ωC(πr) < ωC(π`). However, MIP does not allow strict inequality constraints;
thus we must use a constraint ωC(πr) ≤ ωC(π`) − ε for a small ε > 0. Since all the weights in our experiments are integers,
we can set ε = 1 without loss of correctness. Analogous comments hold for ωC(πr) and ωA(πr).



Algorithm 1: MIP-based algorithm to compute a Pareto front

1 ⇡  mipMinimizeWeight(0, 0, BA, 0, BC);

2 ⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC);

3 if ⇡` = (none) then
4 return ;;
5 P  

�
⇡`
 
;

6 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, BA, 0, !C(⇡`)� 1);

7 ⇡r  mipMinimizeWeight(0, !A(⇡`) + 1, BA, !C(⇡), !C(⇡));
8 if ⇡r = (none) then
9 return P;

10 P  P [ {⇡r};

11 while !A(⇡r)� !A(⇡`) > 1 and !C(⇡`)� !C(⇡r) > 1 do
12 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡r) + 1, !C(⇡`)� 1);

13 ⇡c  mipMinimizeWeight(0, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡), !C(⇡));
14 if ⇡c = (none) then
15 return P;

16 P  P [ {⇡c};
17 ⇡r  ⇡c;

18 return P;
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Figure 3: Schematic representation of the computation of the Pareto front using our MIP-based algorithm

otherwise step s is assigned to some other user. Then the constraint weight !C(x) and the authorization
weight !A(x) of the plan defined by x are

!A(x)
def
=

X

u2U

!u(x) and !C(c)
def
=

X

c2C

!c(x),

where the encodings of !u(x) and !c(x) depend on user and constraint types (and may require the
introduction of additional decision variables).10 We describe the encoding of !u(x) and !c(x) for the

10For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable
pc, where pc � xsu + xtu � 1. Thus, pc = 0 if and only if s and t are assigned to di↵erent users. If the violation of c is
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(a)

Algorithm 1: MIP-based algorithm to compute a Pareto front

1 ⇡  mipMinimizeWeight(0, 0, BA, 0, BC);

2 ⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC);

3 if ⇡` = (none) then
4 return ;;
5 P  

�
⇡`
 
;

6 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, BA, 0, !C(⇡`)� 1);

7 ⇡r  mipMinimizeWeight(0, !A(⇡`) + 1, BA, !C(⇡), !C(⇡));
8 if ⇡r = (none) then
9 return P;

10 P  P [ {⇡r};

11 while !A(⇡r)� !A(⇡`) > 1 and !C(⇡`)� !C(⇡r) > 1 do
12 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡r) + 1, !C(⇡`)� 1);

13 ⇡c  mipMinimizeWeight(0, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡), !C(⇡));
14 if ⇡c = (none) then
15 return P;

16 P  P [ {⇡c};
17 ⇡r  ⇡c;

18 return P;
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Figure 3: Schematic representation of the computation of the Pareto front using our MIP-based algorithm

otherwise step s is assigned to some other user. Then the constraint weight !C(x) and the authorization
weight !A(x) of the plan defined by x are

!A(x)
def
=

X

u2U

!u(x) and !C(c)
def
=

X

c2C

!c(x),

where the encodings of !u(x) and !c(x) depend on user and constraint types (and may require the
introduction of additional decision variables).10 We describe the encoding of !u(x) and !c(x) for the

10For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable
pc, where pc � xsu + xtu � 1. Thus, pc = 0 if and only if s and t are assigned to di↵erent users. If the violation of c is

13

(b)

Algorithm 1: MIP-based algorithm to compute a Pareto front

1 ⇡  mipMinimizeWeight(0, 0, BA, 0, BC);

2 ⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC);

3 if ⇡` = (none) then
4 return ;;
5 P  

�
⇡`
 
;

6 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, BA, 0, !C(⇡`)� 1);

7 ⇡r  mipMinimizeWeight(0, !A(⇡`) + 1, BA, !C(⇡), !C(⇡));
8 if ⇡r = (none) then
9 return P;

10 P  P [ {⇡r};

11 while !A(⇡r)� !A(⇡`) > 1 and !C(⇡`)� !C(⇡r) > 1 do
12 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡r) + 1, !C(⇡`)� 1);

13 ⇡c  mipMinimizeWeight(0, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡), !C(⇡));
14 if ⇡c = (none) then
15 return P;

16 P  P [ {⇡c};
17 ⇡r  ⇡c;

18 return P;
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Figure 3: Schematic representation of the computation of the Pareto front using our MIP-based algorithm

otherwise step s is assigned to some other user. Then the constraint weight !C(x) and the authorization
weight !A(x) of the plan defined by x are

!A(x)
def
=

X

u2U

!u(x) and !C(c)
def
=

X

c2C

!c(x),

where the encodings of !u(x) and !c(x) depend on user and constraint types (and may require the
introduction of additional decision variables).10 We describe the encoding of !u(x) and !c(x) for the

10For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable
pc, where pc � xsu + xtu � 1. Thus, pc = 0 if and only if s and t are assigned to di↵erent users. If the violation of c is

13

(c)

Algorithm 1: MIP-based algorithm to compute a Pareto front

1 ⇡  mipMinimizeWeight(0, 0, BA, 0, BC);

2 ⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC);

3 if ⇡` = (none) then
4 return ;;
5 P  

�
⇡`
 
;

6 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, BA, 0, !C(⇡`)� 1);

7 ⇡r  mipMinimizeWeight(0, !A(⇡`) + 1, BA, !C(⇡), !C(⇡));
8 if ⇡r = (none) then
9 return P;

10 P  P [ {⇡r};

11 while !A(⇡r)� !A(⇡`) > 1 and !C(⇡`)� !C(⇡r) > 1 do
12 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡r) + 1, !C(⇡`)� 1);

13 ⇡c  mipMinimizeWeight(0, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡), !C(⇡));
14 if ⇡c = (none) then
15 return P;

16 P  P [ {⇡c};
17 ⇡r  ⇡c;

18 return P;
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Figure 3: Schematic representation of the computation of the Pareto front using our MIP-based algorithm

otherwise step s is assigned to some other user. Then the constraint weight !C(x) and the authorization
weight !A(x) of the plan defined by x are

!A(x)
def
=

X

u2U

!u(x) and !C(c)
def
=

X

c2C

!c(x),

where the encodings of !u(x) and !c(x) depend on user and constraint types (and may require the
introduction of additional decision variables).10 We describe the encoding of !u(x) and !c(x) for the

10For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable
pc, where pc � xsu + xtu � 1. Thus, pc = 0 if and only if s and t are assigned to di↵erent users. If the violation of c is
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(d)

Algorithm 1: MIP-based algorithm to compute a Pareto front

1 ⇡  mipMinimizeWeight(0, 0, BA, 0, BC);

2 ⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC);

3 if ⇡` = (none) then
4 return ;;
5 P  

�
⇡`
 
;

6 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, BA, 0, !C(⇡`)� 1);

7 ⇡r  mipMinimizeWeight(0, !A(⇡`) + 1, BA, !C(⇡), !C(⇡));
8 if ⇡r = (none) then
9 return P;

10 P  P [ {⇡r};

11 while !A(⇡r)� !A(⇡`) > 1 and !C(⇡`)� !C(⇡r) > 1 do
12 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡r) + 1, !C(⇡`)� 1);

13 ⇡c  mipMinimizeWeight(0, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡), !C(⇡));
14 if ⇡c = (none) then
15 return P;

16 P  P [ {⇡c};
17 ⇡r  ⇡c;

18 return P;
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Figure 3: Schematic representation of the computation of the Pareto front using our MIP-based algorithm

otherwise step s is assigned to some other user. Then the constraint weight !C(x) and the authorization
weight !A(x) of the plan defined by x are

!A(x)
def
=

X

u2U

!u(x) and !C(c)
def
=

X

c2C

!c(x),

where the encodings of !u(x) and !c(x) depend on user and constraint types (and may require the
introduction of additional decision variables).10 We describe the encoding of !u(x) and !c(x) for the

10For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable
pc, where pc � xsu + xtu � 1. Thus, pc = 0 if and only if s and t are assigned to di↵erent users. If the violation of c is
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(e)

Algorithm 1: MIP-based algorithm to compute a Pareto front

1 ⇡  mipMinimizeWeight(0, 0, BA, 0, BC);

2 ⇡`  mipMinimizeWeight(1, !A(⇡), !A(⇡), 0, BC);

3 if ⇡` = (none) then
4 return ;;
5 P  

�
⇡`
 
;

6 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, BA, 0, !C(⇡`)� 1);

7 ⇡r  mipMinimizeWeight(0, !A(⇡`) + 1, BA, !C(⇡), !C(⇡));
8 if ⇡r = (none) then
9 return P;

10 P  P [ {⇡r};

11 while !A(⇡r)� !A(⇡`) > 1 and !C(⇡`)� !C(⇡r) > 1 do
12 ⇡  mipMinimizeWeight(1, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡r) + 1, !C(⇡`)� 1);

13 ⇡c  mipMinimizeWeight(0, !A(⇡`) + 1, !A(⇡r)� 1, !C(⇡), !C(⇡));
14 if ⇡c = (none) then
15 return P;

16 P  P [ {⇡c};
17 ⇡r  ⇡c;

18 return P;
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Figure 3: Schematic representation of the computation of the Pareto front using our MIP-based algorithm

otherwise step s is assigned to some other user. Then the constraint weight !C(x) and the authorization
weight !A(x) of the plan defined by x are

!A(x)
def
=

X

u2U

!u(x) and !C(c)
def
=

X

c2C

!c(x),

where the encodings of !u(x) and !c(x) depend on user and constraint types (and may require the
introduction of additional decision variables).10 We describe the encoding of !u(x) and !c(x) for the

10For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable
pc, where pc � xsu + xtu � 1. Thus, pc = 0 if and only if s and t are assigned to di↵erent users. If the violation of c is
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where the encodings of ωu(x) and ωc(x) depend on user and constraint types (and may require the
introduction of additional decision variables).11 We describe the encoding of ωu(x) and ωc(x) for the
users and constraints used in our experiments in Appendix C.

Having defined the functions ωA(x) and ωC(x), we formulate the MIP problem as follows:

minimize (1− α)ωA(x) + αωC(x) (5)

subject to a ≤ ωA(x) ≤ b, (6)

c ≤ ωC(x) ≤ d, (7)
∑

u∈U
xsu = 1 ∀s ∈ S, (8)

xsu ∈ {0, 1} ∀s ∈ S,∀u ∈ U. (9)

The parameter α determines the relative importance of the authorization and constraint weights. In par-
ticular, if α = 0 then the problem is to minimize the authorization weight only; and if α = 1 then it is
to minimize the constraint weight only. Constraint (9) ensures that each variable xsu takes binary values.

11For example, a separation-of-duty constraint c with scope {s, t} requires the introduction of a binary decision variable pc,
where pc ≥ xsu + xtu − 1. Thus, pc = 0 if and only if s and t are assigned to different users. If the violation of c is associated
with weight x, say, then we define ωc(x) = xpc.



Constraints (6) and (7) restrict the search space to the bounds defined by a, b, c and d. Finally, con-
straint (8) ensures that each step is assigned to exactly one user. The solution x can be trivially translated
into the plan π to be returned by mipMinimizeWeight : π(s) = u if and only if xsu = 1.

4.3. Testbed

We use a pseudo-random instance generator to produce benchmark instances. Our generator is an
extension of generators for WSP [20] and Valued WSP [12].

For ease of reference, we define the authorization density of a WSP instance to be the average number
of permitted steps per user, where a step is said permitted if its corresponding cost is not prohibitive,
i.e. is smaller than a given constant M (see later). Similarly, we define the separation-of-duty constraint
density to be the ratio of the number of separation-of-duty constraints to

(
k
2

)
, since there are at most

(
k
2

)

choices for pairs of steps in a separation-of-duty constraint.
Our BO-WSP instance generator takes the following parameters: (i) number of steps k, (ii) authoriza-

tion density d, (iii) separation-of-duty constraint density e, and (iv) seed value for the pseudo-random
number generator. All the constraints are generated randomly. In particular, the scopes are produced ran-
domly and uniformly such that no two constraints of the same type have identical scopes; penalties (i.e.,
weights) are also selected randomly and uniformly, with allowed ranges given in Figure 4. Our choice
of penalties is based on the fact that we view at-most-3 constraints as soft constraints (i.e., constraints
that a plan may violate, if needed) and we wish the penalty of assigning four users to the scope of such a
constraint to be smaller than assigning five. We view at-least-3 constraints as “semi-soft”, i.e., we issue a
small penalty for assigning just two users, but basically forbid assigning just one (so that we forbid “dic-
tators”). We view separation-of-duty constraints as hard constraints, i.e. constraints that a plan must sat-
isfy. The values of parameters and penalty functions used in our generator are obtained empirically such
that the instances are relatively hard to solve. The generator produces

⌊
e
(
k
2

)
+ 1

2

⌋
separation-of-duty

constraints, k at-most-3 constraints and k at-least-3 constraints.

Distinct users Penalty

1 0
2 0
3 0
4 3–5
5 10–15

(a) At-most

Distinct users Penalty

1 1,000,000
2 1–3
3 0
4 0
5 0

(b) At-least

Distinct users Penalty

1 1,000,000
2 0

(c) Separation-of-duty constraints

Fig. 4. Penalties associated with constraints produced by our BO-WSP instance generator; where a range is given, the penalty
is selected from the range uniformly at random

The generator creates 10k + 10 users, based on the assumption that the number of users will be an
order of magnitude greater than the number of steps. In particular, it produces 10k staff members and
10 (external) consultants. The weight function for these two types of users are different. In particular,
consultants are not authorized for any steps, so there is always a non-zero penalty associated with any
plan that assigns a consultant to a step.

We assume that each member of staff u is authorized for some subset Au of S and, in the absence of
authorized users, could be assigned to some subset Bu of S (thereby incurring a modest penalty). Thus,



each staff member u is assigned two non-intersecting sets of steps, Au, Bu ⊂ S, where |Au| has Poisson
distribution12 with λ = d, and |Bu| = 2. Then the penalty function ω(T, u) for a staff member u is
defined to be

ω(T, u) = σu · |T ∩Bu|+M · |T \ (Au ∪Bu)|,

where σu ∈ [5, 15] is selected for each member of staff randomly and uniformly, and M is a large
constant (1,000,000 in our implementation).

Similarly, each consultant u is assigned a set Bu such that |Bu| has Poisson distribution (capped
artificially by k) with λ = d. This set represents steps that a consultant could perform in the absence
of authorized users without incurring too large a penalty. Then the penalty function for consultants is
defined to be

ω(T, u) =





0 if T = ∅,
σu if T ⊆ Bu,
M otherwise,

where σu ∈ [10, 30] is selected randomly and uniformly.
The MIP encodings of the (weighted) constraints used in our experiments are described in Appendix C.

The source code of our instance generator can be found at [11].

4.4. Computational experiments

In this section we report the results of our computational experiments with BO-WSP. Our algorithms
are implemented in C#, and the MIP solver used by the MIP-based algorithm is CPLEX 12.6. Our test
machine is based on two Intel Xeon CPU E5-2630 v2 (2.6 GHz) and has 32 GB RAM installed. Hyper-
threading is enabled, but we never run more than one experiment per physical CPU core concurrently,
and concurrency is not exploited in any of the tested solution methods.

In Figure 5, we show examples of optimal solutions (full Pareto fronts) of four BO-WSP instances
with various authorization densities d and separation-of-duty constraint densities e. The objective upper
boundsBA andBC are set to 1000 in all four cases. The relatively lightly constrained instance (d = 20%
and e = 10%) is almost satisfiable; it has only two Pareto optimal solutions (0, 1) and (5, 0), where each
tuple gives the objectives (ωA(π), ωC(π)). All other instances used in this experiment do not have plans
that would satisfy all the constraints (at least for ωA(π) ≤ BA), but they all have plans that satisfy all
the authorizations. As we noted earlier, given at least one user is authorized for each step s ∈ S, there
necessarily exists a plan π such that ωA(π) = 0; ωC(π), however, may well be very large.

In Figure 6, we compare the performance of the PBB (solid lines) and MIP-based algorithms (dashed
lines) as the number k of steps grows. Each experiment is repeated 100 times (on 100 different instances
obtained by varying the pseudo-random number generator seed value); median running times have been
reported; and BA = BC = 1000. PBB shows a slightly super-exponential growth, consistent with the
worst case time complexity O∗(Bk) = O∗(2k log2 k). The scaling factor is roughly the same for all the
classes of instances, but the constant factor is higher for the more constrained instances.

12We artificially cap the size |Au| by k − 2.
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and BC can significantly improve the performance of PBB (recall that in all the previous experiments we
used relatively large values BA = BC = 1000).

5 Resiliency

If we assume that all users are available at all times and that all constraints are UI, then the authorization
relation A is fixed for the duration of a workflow instance. Moreover, the construction of a plan is
independent of the order in which the steps are executed in any workflow instance. However, in practice,
users may be unavailable for a wide variety of reasons, which means, essentially, that the authorization
relation varies over time. If a user u has been assigned to a step s by a plan ⇡ for a workflow instance I
and that user is absent, then I cannot complete until u becomes available again. Similarly, if users are
not pre-assigned to steps in a workflow instance J but the only users authorized for the steps that are
ready to be performed in J are unavailable, then the execution of the workflow instance is suspended
until one or more of those users becomes available.

Resiliency is the study of workflow satisfiability under the assumption that the user population may
vary over time. It was first studied by Wang and Li [28] and a number of results are known about
the computational complexity of decision problems associated with workflow resiliency. In this section,
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The MIP-based algorithm is significantly slower than PBB on most of the instances, but shows better
scaling than PBB on instances with low authorization density. This suggests that the branching heuristic
of PBB will need to be improved in the future to better account for authorizations. On the other hand,
PBB is an FPT algorithm and, thus, its running time scales polynomially with the number of users n
(see Section 2.3.1), whereas the MIP-based algorithm scales exponentially with n. Indeed, our MIP
formulation does not exploit the FPT nature of BO-WSP, and it is very unlikely that an MIP solver
will be able to discover the FPT nature of the problem itself. The exponential scaling of the MIP-based
algorithm’s running time was also confirmed empirically (the results are not reported here). As a result,
the MIP-based algorithm is particularly weak when n is large relative to k.

We have seen in Figure 5 that most of the Pareto-optimal plans in our instances have moderate au-
thorization and constraint weights. Nevertheless, parameters BA and BC play an important role in the
performance of our algorithms. Figure 7 shows how the running times of PBB and the MIP-based al-
gorithm depend on BA and BC . Here we are solving instances with parameters k = 20, d = 10% and
e = 30%. Each experiment is repeated 100 time (on 100 different instances) and the median running
time is reported. It is easy to see that both approaches are sensitive to the values of BA and BC , but PBB
is particularly good at exploiting tight upper bounds. This suggests that setting realistic values for BA
and BC can significantly improve the performance of PBB (recall that in all the previous experiments
we used relatively large values BA = BC = 1000).

5. Resiliency

If we assume that all users are available at all times and that all constraints are UI, then the authoriza-
tion relation A is fixed for the duration of a workflow instance. Moreover, the construction of a plan is
independent of the order in which the steps are executed in any workflow instance. However, in practice,
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and BC can significantly improve the performance of PBB (recall that in all the previous experiments we
used relatively large values BA = BC = 1000).

5 Resiliency

If we assume that all users are available at all times and that all constraints are UI, then the authorization
relation A is fixed for the duration of a workflow instance. Moreover, the construction of a plan is
independent of the order in which the steps are executed in any workflow instance. However, in practice,
users may be unavailable for a wide variety of reasons, which means, essentially, that the authorization
relation varies over time. If a user u has been assigned to a step s by a plan ⇡ for a workflow instance I
and that user is absent, then I cannot complete until u becomes available again. Similarly, if users are
not pre-assigned to steps in a workflow instance J but the only users authorized for the steps that are
ready to be performed in J are unavailable, then the execution of the workflow instance is suspended
until one or more of those users becomes available.

Resiliency is the study of workflow satisfiability under the assumption that the user population may
vary over time. It was first studied by Wang and Li [28] and a number of results are known about
the computational complexity of decision problems associated with workflow resiliency. In this section,
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Fig. 6. A comparison of running times for the PBB and the MIP-based algorithms. We use dashed lines for the MIP algorithm
and solid for PBB.
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we establish the first FPT results for these decision problems. Then, acknowledging the argument that
knowing the answer to these decision problems is unlikely to be of practical use [22], we introduce a new
model for resiliency and relate problems associated with this model to BO-WSP.

Before proceeding further, it is useful to introduce the notions of order ideals and linear extensions in
a partially ordered set. An order ideal Y in a partially ordered set (X,<) is a subset of X such that for
any y 2 Y and any x 2 X, x < y implies x 2 Y . A partially complete instance of a workflow specification
W = ((S, <), U, A, C) may be modeled as a pair (W,⇡), where ⇡ is a partial plan ⇡ : T ! U for some
order ideal T in the partial order defined by (S, <). The set T models the steps that have been executed
in the workflow instance.

The set of steps {x 2 S : {x}[T is an order ideal in S} denotes the set of ready steps. Thus a complete
instance defines a sequence of order ideals [T1, . . . , Tk], where |T1| = 1, Ti ✓ Ti+1 and |Ti+1| = |Ti| + 1
for all i 2 {0, . . . , k � 1}; equivalently, a complete instance defines a sequence of steps [s1, . . . , sk], where
{si} = Ti \ Ti�1 (with T0 being assumed to be ;) for i 2 [k]. It is easy to show that for any such
sequence we have si < sj for all i  j (as the contrary would mean that a non-ready step had been
executed during the workflow instance). A sequence of steps with this property is said to be a linear
extension of (S, <) [14]. Every linear extension represents a possible order of execution of the steps in
S. The linear extensions for the workflow depicted in Figure 1, for example, are [s1, s2, s3, s4, s5, s6],
[s1, s2, s3, s5, s4, s6], and [s1, s2, s4, s3, s5, s6].

5.1 The work of Wang and Li

Wang and Li introduced the notion of workflow resiliency to reason about situations in which one or
more users might not be available to execute steps in a workflow [28]. Essentially, workflow resiliency
asks whether a workflow remains satisfiable even if some users are not available. Wang and Li considered
three di↵erent scenarios of user availability over the lifetime of a workflow instance:

• static resiliency is concerned with the scenario that some fixed subset of users is unavailable;

• decremental resiliency is concerned with the scenario that the set of available users decreases mono-
tonically; and

• dynamic resiliency is concerned with the scenario that an arbitrary set of users is unavailable at
any given point in time.

More formally, we have the following definitions [28]. In Section 5.2, we present equivalent and, arguably,
more intuitive definitions in order to prove our FPT results.

Definition 4. Given an integer t � 0, a constrained workflow authorization schema ((S, <), U, A, C) is
statically t-resilient if, for all U 0 ✓ U such that |U 0| � n� t, ((S, <), U 0, A, C) is satisfiable.

Definition 5. Given an integer t � 0, a constrained workflow authorization schema ((S, <), U, A, C)
is decrementally t-resilient if and only if Player 1 can always win the following two-person game when
playing optimally:
Initialization: U0  U , S0  S, t0  t and i 1
Round i of the game:
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users may be unavailable for a wide variety of reasons, which means, essentially, that the authorization
relation varies over time. If a user u has been assigned to a step s by a plan π for a workflow instance I
and that user is absent, then I cannot complete until u becomes available again. Similarly, if users are not
pre-assigned to steps in a workflow instance J but the only users authorized for the steps that are ready
to be performed in J are unavailable, then the execution of the workflow instance is suspended until one
or more of those users becomes available.

Resiliency is the study of workflow satisfiability under the assumption that the user population may
vary over time. It was first studied by Wang and Li [28] and a number of results are known about the
computational complexity of decision problems associated with workflow resiliency. In this section,
we establish the first FPT results for these decision problems. Then, acknowledging the argument that



knowing the answer to these decision problems is unlikely to be of practical use [22], we introduce a new
model for resiliency and relate problems associated with this model to BO-WSP.

Before proceeding further, it is useful to introduce the notions of order ideals and linear extensions in a
partially ordered set. An order ideal Y in a partially ordered set (X,<) is a subset of X such that for any
y ∈ Y and any x ∈ X , x < y implies x ∈ Y . A partially complete instance of a workflow specification
W = ((S,<), U,A,C) may be modeled as a pair (W,π), where π is a partial plan π : T → U for some
order ideal T in the partial order defined by (S,<). The set T models the steps that have been executed
in the workflow instance.

The set of steps {x ∈ S : {x} ∪ T is an order ideal in S} denotes the set of ready steps. Thus a
complete instance defines a sequence of order ideals [T1, . . . , Tk], where |T1| = 1, Ti ⊆ Ti+1 and
|Ti+1| = |Ti|+1 for all i ∈ {0, . . . , k−1}; equivalently, a complete instance defines a sequence of steps
[s1, . . . , sk], where {si} = Ti\Ti−1 (with T0 being assumed to be ∅) for i ∈ [k]. It is easy to show that for
any such sequence we have si < sj for all i ≤ j (as the contrary would mean that a non-ready step had
been executed during the workflow instance). A sequence of steps with this property is said to be a linear
extension of (S,<) [14]. Every linear extension represents a possible order of execution of the steps in
S. The linear extensions for the workflow depicted in Figure 1, for example, are [s1, s2, s3, s4, s5, s6],
[s1, s2, s3, s5, s4, s6], and [s1, s2, s4, s3, s5, s6].

5.1. The work of Wang and Li

Wang and Li introduced the notion of workflow resiliency to reason about situations in which one or
more users might not be available to execute steps in a workflow [28]. Essentially, workflow resiliency
asks whether a workflow remains satisfiable even if some users are not available. Wang and Li considered
three different scenarios of user availability over the lifetime of a workflow instance:

– static resiliency is concerned with the scenario that some fixed subset of users is unavailable;
– decremental resiliency is concerned with the scenario that the set of available users decreases

monotonically; and
– dynamic resiliency is concerned with the scenario that an arbitrary set of users is unavailable at

any given point in time.

More formally, we have the following definitions [28]. In Section 5.2, we present equivalent and, ar-
guably, more intuitive definitions in order to prove our FPT results.

Definition 4. Given an integer t ≥ 0, a constrained workflow authorization schema ((S,<), U,A,C) is
statically t-resilient if, for all U ′ ⊆ U such that |U ′| ≥ n− t, ((S,<), U ′, A,C) is satisfiable.

Definition 5. Given an integer t ≥ 0, a constrained workflow authorization schema ((S,<), U,A,C)
is decrementally t-resilient if and only if Player 1 can always win the following two-person game when
playing optimally:
Initialization: U0 ← U , S0 ← S, t0 ← t and i← 1
Round i of the game:

1. Player 2 selects a set of unavailable users U ′i−1 such that |U ′i−1| ≤ ti−1
Ui ← (Ui−1 \ U ′i−1) and ti ← (ti−1 − |U ′i−1|)

2. Player 1 selects a ready step si ∈ Si−1 and a user u ∈ Ui
π(si)← u and Si ← Si−1 \ {si}
if π is not a valid partial plan with respect to s1, . . . , si, then Player 1 loses.

3. if Si = ∅, then Player 1 wins; otherwise, let i← i+ 1 and the game goes on to the next round.



Definition 6. Given an integer t ≥ 0, a constrained workflow authorization schema ((S,<), U,A,C)
is dynamically t-resilient if and only if Player 1 can always win the following two-person game when
playing optimally:
Initialization: S0 ← S, and i← 1
Round i of the game:

1. Player 2 selects a set U ′i−1 such that |U ′i−1| ≤ t
Ui ← (U \ U ′i−1)

2. Player 1 selects a ready step si ∈ Si−1 and a user u ∈ Ui
π(si)← u and Si ← Si−1 \ {si}
if π is not a valid partial plan with respect to s1, . . . , si, then Player 1 loses.

3. if Si = ∅, then Player 1 wins; otherwise, let i← i+ 1 and the game goes on to the next round.

Wang and Li established the following results [28, Theorems 13–15]:

– determining whether a workflow is statically t-resilient is NP-hard (and is in coNPNP);
– determining whether a workflow is decrementally t-resilient is PSPACE-complete; and
– determining whether a workflow is dynamically t-resilient is PSPACE-complete.

The proof of the first result follows from the fact that WSP itself corresponds to the special case t = 0.
The remaining results are proved by establishing a reduction from the QUANTIFIED SATISFIABILITY

problem, which is known to be PSPACE-complete. Note that if a workflow is dynamically t-resilient then
it is decrementally t-resilient; and if a workflow is decrementally t-resilient then it is statically t-resilient.

5.2. Fixed-parameter tractability results

The moves of Player 1 in Definitions 5 and 6, after an execution of the game, give a linear extension
[s1, . . . , sk] of (S,<). On the other hand, the moves of Player 2 give a particular sequence of user sets.
Using these ideas, we now give equivalent definitions of t-resiliency that are more suitable for developing
the algorithm we present in Theorem 6. To do so, we first introduce the notion of a t-close userset family
and then define what it means for a plan to be compatible with a linear extension and a t-close userset
family.

Definition 7. Let W = ((S,<), U,A,C) be a constrained workflow authorization schema, and t ≤ |U |.
A family F = {Ui}i∈[k] is called a t-close userset family of U if Ui ⊆ U and |U | − |Ui| ≤ t for all
i ∈ [k].

Definition 8. Let W = ((S,<), U,A,C) be a constrained workflow authorization schema, t ≤ |U |,
F = {Ui}i∈[k] be a t-close userset family of U and ` = [s1, . . . , sk] be a linear extension of (S,<). We
say that a plan π : S → U is (F, `)-compatible if for every i ∈ [k], π(si) ∈ Ui.

The following result demonstrates that dynamic t-resiliency can be defined in terms of compatible
plans and linear extensions (rather than two-player games). This turns out to be a more convenient for-
mulation for determining whether a workflow is dynamically t-resilient.

Theorem 3. Let W = ((S,<), U,A,C) be a constrained workflow authorization schema, and t ≤ |U |.
W is dynamically t-resilient if and only if for every t-close userset family F = {Ui}i∈[k] of U , there
exists a linear extension ` = [s1, . . . , sk] of (S,<) and a valid plan for W which is (F, `)-compatible.



Proof. Suppose thatW is dynamically t-resilient, and suppose we are given a t-close userset family F =
{Ui}i∈[k] of U . Then by assumption, if we run the game with Player 2 making choices corresponding to
F , then there exists a sequence of moves for Player 1, that is, a linear extension ` = [s1, . . . , sk] of (S,<)
together with a valid plan π : S → U such that π(si) ∈ Ui. In other words, π is (F, `)-compatible.

Conversely, moves of Player 2 can be represented by a t-close userset family F = {Ui}i∈[k]. By
hypothesis, there exists a linear extension ` = [s1, . . . , sk] of (S,<) and a valid plan π : S → U which
is (F, `)-compatible, i.e. such that Player 1 can win by picking step si at iteration i.

It is easily seen that similar statements can be made for static and decremental resiliency by selecting
appropriate conditions on the t-close userset families.

Theorem 4. Let W = ((S,<), U,A,C) be a constrained workflow authorization schema, and t ≤ |U |.
W is statically t-resilient if and only if for every t-close userset family F = {Ui}i∈[k] of U such that
Ui = Uj for all i, j ∈ [k], there exists a linear extension ` = [s1, . . . , sk] of (S,<) and a valid plan for
W which is (F, `)-compatible.

Theorem 5. Let W = ((S,<), U,A,C) be a constrained workflow authorization schema, and t ≤ |U |.
W is decrementally t-resilient if and only if for every t-close userset family F = {Ui}i∈[k] of U such that
Ui+1 ⊆ Ui for all i ∈ [k − 1], there exists a linear extension ` = [s1, . . . , sk] of (S,<) and a valid plan
for W which is (F, `)-compatible.

A naïve approach for deciding whether a workflow is t-resilient would be to enumerate all possible
scenarios (i.e. all possible t-close userset families and all linear extensions of (S,<)), and then test
whether a valid plan is compatible with this scenario. However, such an enumeration would be highly
inefficient from a computational point of view, as it would lead to an algorithm running in time O∗(ntk).

We now show that it is sufficient to enumerate all t-close userset families of a subset of users whose
size depends on k and t only. Using this result, we are able to prove that deciding whether a workflow
is (statically, decrementally or dynamically) t-resilient is FPT parameterized by k + t. In other words, if
both the number of steps and the maximum number of unavailable users are small, we obtain an efficient
algorithm. It seems reasonable to assume that t will be small relative to n in practice.

Theorem 6. We can decide whether a constrained workflow authorization schemaW = ((S,<), U,A,C)
is dynamically t-resilient for some t ∈ N in time O∗(f(k, t)) for some computable function f if all
constraints in C are UI.

It is important to note that all constraints considered by Wang and Li are UI. In fact, the class of UI
constraints is far larger than the constraints considered by Wang and Li in their work.

Proof of Theorem 6. The first step of the algorithm consists of reducing the set of users to a size depend-
ing on k and t only. To do so, for any p ≤ k and any partition P of S into p non-empty disjoint subsets
{T1, . . . , Tp}, we construct a bipartite graph GP with partite sets {T1, . . . , Tp} and U . The adjacencies
are defined by the authorization policy: for any i ∈ [p] and any u ∈ U , we connect Ti and u if and only
if (u, s) ∈ A for all s ∈ Ti. Moreover, for all i ∈ [p], we note N(Ti) = {u ∈ U : ∀s ∈ Ti, (u, s) ∈ A}.
We then proceed to a marking step, which results in a set of marked users Um ⊆ U : for every i ∈ [p],
if |N(Ti)| < k + t, then mark all users in N(Ti). Otherwise, mark an arbitrarily chosen set of k + t
users of N(Ti). Doing this for any partition P , it is clear that the total number of marked users is at most
k(k + t)Bk, and thus |Um| = O(2k log2 kk(k + t)).

For the remainder of the proof, let Am be the restriction of A to Um, i.e. Am = A ∩ (Um × S), and
W ′ = ((S,<), Um, Am, C). We also denote Ūm = U \ Um.



Lemma 1. W is dynamically t-resilient if and only if W ′ is dynamically t-resilient.

Proof. Suppose that W is dynamically t-resilient, and let F = {Ui}i∈[k] be a t-close userset family of
Um. We set U ′i = Ui ∪ Ūm for each i ∈ [k], and F ′ = {U ′i}i∈[k]. One can see that F ′ is a t-close userset
family of U , and thus there exists a linear extension ` of (S,<) and a valid (F ′, `)-compatible plan π for
W . Let us denote by P (π) = {T1, . . . , Tp} the pattern of π, with p ≤ k. For all i ∈ [p], if π(Ti) ∈ Um,
then define π′(Ti) = π(Ti). If π(Ti) /∈ Um, then it means that π(Ti) ∈ U ′i ∩ Ūm, and, by construction of
the marking algorithm, it implies that |N(Ti) ∩ Um| = k + t, and thus |N(Ti) ∩ Ui| ≥ k. Hence, there
must exist u ∈ N(Ti) ∩ Ui such that π(Tj) 6= u for all j 6= i, and we set π′(Ti) = u. By doing this, we
can check that π′ is a valid plan for W ′ that is (F, `)-compatible.

Conversely, suppose that W ′ is dynamically t-resilient, and let F = {Ui}i∈[k] be a t-close userset
family of U . In this case, we define U ′i = Ui ∩ Um for every i ∈ [k], and F ′ = {U ′i}i∈[k]. One can
verify that |U ′i | ≥ |Um| − t, and thus F ′ is a t-close userset family of Um. Thus, there must exist a linear
extension ` of (S,<) together with a valid plan π for W ′ which is (F, `)-compatible, and it is easily seen
that this plan is both valid for W and (F ′, `)-compatible.

Since the size of Um now depends on k and t only, we can enumerate all t-close userset families of
Um: for each such family F , we test whether there exists a linear extension ` of (S,<) (by enumerating
all of them) and a valid plan for W ′ which is (F, `)-compatible in time O(g(k, t)) for some computable
function g. Since the marking algorithm runs in time O∗(Bk), the total running time is O∗(f(k, t)) for
some computable function f . Correctness of the algorithm is ensured by Lemma 1.

It is easily seen that the previous algorithm can be adapted to the decremental and static notions of
resiliency. Hence, we have the following:

Theorem 7. We can decide whether a constrained workflow authorization schemaW = ((S,<), U,A,C)
is decrementally t-resilient (resp. statically t-resilient) in time O∗(f(k, t)) for some computable function
f if all constraints in C are UI.

5.3. A new model for resiliency

Mace et al. argue that knowing whether a workflow is dynamically t-resilient or not is unlikely to be
of much use in the real world [22]. They suggest it would be more valuable to quantify the extent to
which a workflow was resilient. Accordingly, they introduce metrics for “quantitative resiliency” and
used Markov decision processes to compute these metrics. Informally, they consider every pair of t-close
userset family and plan to compute these metrics, making their approach computationally expensive.
Their approach also appears to assume that the set of unavailable users is selected uniformly at random
from all possible subsets of available users. This means, in particular, that the probability of no users
being unavailable is the same as t specific users being unavailable – an assumption that seems unlikely
to hold in practice.

While agreeing with the motivation for studying quantitative resiliency, we adopt a different approach
and one which enables us to treat questions about quantitative resiliency as instances of BO-WSP.
Our basic approach is to identify three aspects that affect resiliency: the authorization policy, “known”
unavailability of users, and “unknown” unavailability of users. We start with a constrained workflow
authorization schema W = ((S,<), U,A,C), where A is given as a function from S × U to {0, 1} (i.e.
A(s, u) = 1 if and only if user u is authorized to perform step s). We are also given a description of



user availability, comprising a deterministic component (the “known” unavailability) and a probabilistic
component (the “unknown unavailability”).

The deterministic component is specified as a function α : S × U → {0, 1}, where α(s, u) = 1 if
and only if u is available to execute step s. Such a component may be derived from inspection of user
calendars and take into account activities such as holidays and time away from the office on business. (Of
course, defining α will also require some assumptions to be made about when the steps in a workflow
instance will be executed, which may not always be possible. In such cases, we can simply set α(s, u) =
1 for all s and u.)

The probabilistic component is specified as a function ρ : S × U → [0, 1], where ρ(s, u) denotes the
probability that u is not available to execute step s. Values of ρ(s, u) could be derived from historical
information about user availability, such as (unplanned) absences from work. Given W , α, A and ρ, we
define

ω(s, u) =

{
M if A(s, u) · α(s, u) = 0,

ρ(s, u) otherwise,

where M is a large positive constant. Finally, for a plan π, we define

ωA(π) =
∑

s∈S
ω(s, π(s)).

In other words, assigning an unauthorized or unavailable user results in a weight of at least M , while as-
signing an authorized user incurs a weight corresponding to the likelihood of the user being unavailable.

Clearly ωA respects the definition of an authorization weight function as described in Section 3. In
addition to this authorization function, we can define a constraint weight function ωC : Π→ Q+, as we
did in Section 3. We may now solve the resulting instance of BO-WSP with one of the three approaches
mentioned earlier.

We now consider how the result of solving such an instance of BO-WSP may be interpreted and
provide useful information to workflow administrators. For a plan π, let X(π) be a random variable
equal to the number of unexecuted steps due to users being unavailable. Notice that by definition of
expectation, if ωA(π) is less than M , then E[X(π)] = ωA(π) and thus by Markov’s inequality13 and the
fact that X(π) is integer-valued, the probability that all steps will be executed by π is

P(X(π) = 0) = 1− P(X(π) ≥ 1)

≥ 1− ωA(π).

Now consider our purchase order workflow example. For simplicity, we will assume that ρ(s, u) does
not depend on s; that is, ρ(s, u) = ρ(s′, u) for all s, s′ ∈ S and we may simply write ρ(u). Illustra-
tive values of ρ(u) are shown in Figure 8a, and the function ω derived from those probabilities (using
Figures 1f and 8a) is shown in Figure 8b.

For ease of illustration we assume that the penalty of breaking each constraint is the same and that we
allow at most one constraint to be violated. We also assume that α(s, u) = 1 for all s and u. Then it makes

13Markov’s inequality states that if X is a non-negative random variable and a > 0, then P(X ≥ a) ≤ E[X]/a [29].



u1 u2 u3 u4 u5 u6 u7 u8
0.01 0.06 0.03 0.05 0.07 0.05 0.06 0.01

(a) ρ : U → [0, 1]

s1 s2 s3 s4 s5 s6
u1 0.01 M 0.01 0.01 M M
u2 0.06 M 0.06 0.06 M M
u3 0.03 M 0.03 M M M
u4 0.05 M 0.05 M M M
u5 0.07 M 0.07 M M M
u6 M 0.05 0.05 M 0.05 M
u7 M M 0.06 0.06 0.06 M
u8 M M M M 0.01 0.01

(b) ω : S × U → Q+

Fig. 8. Assigning probabilistic weights

sense to seek a Pareto optimal plan (since the above assumptions essentially fix the maximum penalty due
to the violation of constraints). The plan τ that minimizes ωA is given by τ(s1) = τ(s3) = τ(s4) = u1,
τ(s2) = u6, τ(s5) = τ(s6) = u8 and the expected value of the number of unexecuted steps ωA(τ)
equals 0.10. Thus, the probability that all steps will be executed is at least 0.90.14 Now assume that we
do not allow any constraint to be violated. Then τ ′(s1) = τ ′(s3) = u3, τ ′(s4) = u1, τ ′(s2) = u6,
τ ′(s5) = τ ′(s6) = u8 is a minimum authorization weight plan and the expected value of the number of
unexecuted steps equals 0.14, implying that the probability that all steps will be executed is at least 0.86.
Notice that the probability that all steps will be executed is lower when we don’t allow any constraints
to be violated (as one would expect). Hence, we believe that the model presented in this section may fit
well to many practical situations, and that the results provided by a solution to BO-WSP may provide
useful information to workflow administrators.

6. Concluding remarks

In this paper, we have generalized the VALUED WSP problem [12], by defining the BI-OBJECTIVE
WSP (BO-WSP). In doing so, we have introduced a tool for analyzing a variety of problems relating
to workflow satisfiability. Moreover, we have developed fixed-parameter tractable algorithms to solve
BO-WSP. This means that we are able to solve many instances of BO-WSP in which the parameters
take values that one would expect to see in practice (namely, the numbers of users is large compared to
the number of steps).

Our work improves on existing work in a number of ways and provides a single framework within
which a variety of problems may be analyzed and solved. In particular, we are able to solve VALUED
WSP (and generalizations thereof), the Cardinality-Constrained Minimum User Problem [26] (and gen-
eralizations thereof), and questions about workflow resiliency. We have also established that the decision
problems associated with resiliency due to Wang and Li are fixed-parameter tractable.

14Markov’s inequality is known to provide only a rough bound and so the probability that all steps will be executed is likely
to be even larger.



We have taken inspiration from the work of Mace et al. [22] by developing a new model for quantifying
workflow resiliency in terms of the expected number of steps that will be executed for a given plan, based
on probabilities associated with the (un)availability of users. We believe our model for user unavailability
is more realistic than that of Mace et al. It is certainly the case that our approach leads to more efficient
methods of computing the expected number of steps that will be executed. Nevertheless, Mace et al.
introduced a number of useful metrics that cannot be computed using BO-WSP. Unfortunately, these
metrics are very expensive to compute, because it is necessary to consider every possible plan and every
possible sequence of usersets that may be available.

There are several opportunities for further research in this area. For most workflow specifications it
is not necessary to consider the control flow (specified in our model by the partial ordering on the set
of steps) [10]. However, some workflow specifications may contain sub-workflows that are iterated and
problems analogous to WSP in this context are known to be hard [2]. We intend to investigate whether
our methods can be extended to cater for such workflows.

We also hope to extend our research into quantitative workflow resiliency. In particular, we would
like to develop metrics that provide useful information in practice (like those of Mace et al.) but can be
computed using BO-WSP (for appropriate choices of weight functions).
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Appendix

A. Proof of Theorem 2

Proof. Let S be the set of k steps, and consider all unordered pairs of steps in an arbitrary order
c1, . . . , c(k2)

. We define a separation-of-duty constraint for every such pair, and define ωci(π) = 2i for

all i ∈ {1, . . . ,
(
k
2

)
} and all plans π not satisfying ci. Then, for all T ⊆ S, introduce a user uT , and

denote by U the set of all such users. To define the authorization weights, we introduce, for all T ⊆ S,
cut(T ) = {{s, s′} : s ∈ T, s′ ∈ S \ T}. We then define, for all T,Q ⊆ S:

ω(Q, uT ) =

{
1
2

∑
ci∈cut(T ) 2i if Q = T ,

∞ otherwise.

And, finally, recall that ωA(π) =
∑

u∈U ω(π−1(u), u) for any plan π : S → U . It is easy to see that,
by construction, all patterns have different constraint weights; and for a fixed pattern P = {T1, . . . , Tq},
q ≤ k, there exists a unique complete plan πP with a finite authorization weight (the one that assigns uT
to steps in T ). Moreover, remark that ωC(πP ) equals the sum of the weights of all constraints whose both
steps are withing the same set, while ωA(πP ) equals the sum of the weights whose steps lie in different

sets. In other words, we have ωA(πP ) = M − ωC(πP ), where M =
∑(k2)

i=1 2i. Hence, the Pareto front
consists of one point per pattern, and is thus of size Bk.

B. The branching heuristic

Recall that the branching heuristic of PBB is responsible for selecting step s in each node of the search
tree; this step is then used to generate children of the current pattern. As is typical in tree search methods,
the aim is to select a step such that the most constrained parts of the solution are defined as early as
possible. This tends to dramatically reduce the size of the search tree and hence the running time of the
algorithm.

Let P be the current pattern, and S′ ⊂ S be the set of currently assigned steps. Let C(s) be the set of
constraints that include step s in their scope Tc. Let C 6=(s), C≤(s) and C≥(s) be the sets of separation-
of-duty, at-most and at-least constraints that include step s in their scopes. Then the branching heuristic
of PBB selects a step s 6∈ S′ that maximizes the following function:

ρ(P, s) = φ(s) +
∑

c∈C(s)

ρc
(
| {B ∈ P : B ∩ Tc 6= ∅} |, |S′ ∩ Tc|

)
, (10)

where Tc is the scope of constraint c ∈ C, ρc(m, t) is a table function and φ(s) is a precalculated value
reflecting the relative importance of a step (in the absence of knowledge about the current pattern):

φ(s) =
∑

c∈C(s)

ψc + 50 · |
{
c ∈ C 6=(s), c′ ∈ C≤(s) : Tc ⊂ Tc′

}
|

+ 50 · |
{
c ∈ C≤(s), c′ ∈ C≥(s) : |Tc ∩ Tc′ | ≥ 3

}
|+ | {u ∈ U : ω({s} , u)) > 0} |. (11)



The value ψc depends on the type of constraint c; for a separation-of-duty constraint it is 1, and for
at-most or at-least constraints it is 5. The table function ρc(m, t) reflects the degree of constraintness
of constraint c if t of its steps are already assigned, and the number of already assigned users is m;
Figure 9 provides illustrative values of ρc(m, t) for at-most-3 out of 5 and at-least-3 out of 5 constraints
respectively, where m is the number of distinct users assigned to the scope of constraint c, and t is the
number of already assigned steps in the scope of c. ρc(m, t) = 0 for all the separation-of-duty constraints.

m \ t 1 2 3 4

1 0 0 0 0
2 – 0 20 0
3 – – 500 500
4 – – – 200

m \ t 1 2 3 4

1 0 0 10 5
2 – 0 0 20
3 – – 0 0
4 – – – 0

Fig. 9. Examples of constraint penalties for at-most-3 and at-least-3 constraints

While it is difficult to justify every term in ρ(P, s) and therein referenced functions, the idea is to
account for each easy-to-compute interaction between step s and constraints and authorizations, while
keeping as many of the terms as possible in φ(s) because φ(s) can be precomputed before the tree search.
Each of the terms is provided with a coefficient which is then obtained by automated parameter tuning,
an approach in which we formulate an optimization problem of finding the optimal parameter values and
then solve it heuristically.

C. MIP encodings

Here we describe how the constraints and users present in our test instances can be encoded for the
MIP-based algorithm. The encoding for a staff member u is straightforward:

ωu(x) = σu
∑

s∈Bu

xsu +M
∑

s∈T\(Au∪Bu)

xsu .

The encoding for a consultant u requires additional binary decision variables pu and qu, where pu is 1 if
and only if at least one step is assigned to u, and qu is 1 if and only if at least one step from outside Au
is assigned to u:

pu ≥ xsu ∀s ∈ S and qu ≥ xsu ∀s /∈ Au .

Then ωu(x) for a consultant is defined as

ωu(x) = σupu + (M − σu)qu .

For a separation-of-duty constraint c with scope {s, t} we also need an additional binary decision
variable p:

pc ≥ xsu + xtu − 1 ∀u ∈ U ,



which is then used in the objective function as follows:

ωc(x) = Mpc .

Let c be an at-least-3 constraint with scope T . We introduce binary variables zu, u ∈ U , such that
zuc = 1 if and only if user u is assigned to at least one step in T :

zuc ≤
∑

s∈T
xsu ∀u ∈ U .

We also need binary variables pic for i = 1, 2 such that pic = 1 if and only if there are no more than i
users assigned to all the steps in T :

∑

u∈U
zuc +

2∑

i=1

pic ≥ 3 and p1c ≤ p2c .

Then

ωc(x) = (σ1 − σ2) · p1c + σ2 · p2c ,

where σi is the penalty for assigning exactly i users to the scope T .
Encoding of an at-most-3 constraint c with scope T also requires variables zu, but since we are now

maximizing them, they need to be constrained from above:

zuc ≤ xsu ∀s ∈ T, ∀u ∈ U .

We again use binary variables pic but for i = 4, 5:

∑

u∈U
zuc −

5∑

i=4

pic ≤ 3 and p5c ≤ p4c .

Then

ωc(x) = (σ5 − σ4) · p5c + σ4 · p4c ,

where σi is the penalty for assigning exactly i users to the scope T .
Notice that some of the auxiliary variables introduced above can actually be made continuous without

loss of correctness. Normally this will allow MIP solver to perform more efficiently.


