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Abstract

Abstract

Network and host-based access controls, for example, firewall systems, are impor-
tant points of security-demarcation, operating as a front-line defence for networks
and networked systems. A firewall policy is conventionally defined as a sequence
of order-dependant rules, and when a network packet matches with two or more
policy rules, the policy is anomalous. Policies for access-control mechanisms may
consist of thousands of access-control rules, and correct management is complex
and error-prone. Policies may need to be reconfigured for highly dynamic envi-
ronments, as threats to, and access requirements for, resources behind a firewall
do not usually remain static. Misconfiguration is common, and correct policy
management is often reliant on the expert-knowledge of security administrators,
and drawing from best practice.

The thesis of this dissertation is that a firewall policy should be anomaly-free
by construction, and as such, there is a need for a firewall policy language that
allows for constructing, comparing, and composing anomaly-free policies. An
algebra is proposed for constructing and reasoning about anomaly-free firewall
policies. Based on the notion of refinement as safe replacement, the algebra
provides operators for sequential composition, union and intersection of policies.
The algebra allows a policy specifier to compose policies in such a way, that the
result of the composition upholds the access requirements of each policy involved,
and allows one to reason as to whether some policy is a safe (secure) replacement
for another policy.

This approach enables a common framework, whereby knowledge related to
detailed access control configurations and standards-based firewall policies can be
represented and reasoned about. This dissertation explores the effectiveness of
firewall policy specification and analysis, that extends the conventional five-tuple
rule to include stateful inspection, TCP flags, ICMP Types/Codes, and additional
filter condition attributes. The effectiveness of the algebra is demonstrated by its
application to anomaly detection, and standards compliance.

The effectiveness of the approach in practice is evaluated through a mapping
to/from iptables. The evaluation shows that the approach is practical for large
policies. The effectiveness is also evaluated through a mapping to OpenStack
network and host-based access controls, and the development of a policy man-
agement framework for the Android OS.
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Chapter 1

Introduction

1.1 Motivation

Network access control mechanisms, for example, firewalls, Virtual Private Net-
works (VPN) and Intrusion Prevention Systems (IPS), are configured in accor-
dance with high-level security requirements, and play an important role in pro-
visioning the security for networks and networked systems. While VPNs provide
end-to-end security for the packets traversing a network, the use of firewalls as
a front-line defence against unwanted network traffic is widespread. Firewalls
are used, for example, to mitigate network-based threats for enterprise, research
and home networks, and may be deployed throughout a network configuration
and at the end-points. For end-users, software-based firewalls come as standard
with most of the popular operating systems. In this chapter, we develop a simple
running example to illustrate challenges and complexities in managing a firewall
policy configuration, and present our approach.

1.1.1 Challenges to Effective Firewall Policy Management

A firewall enforces a policy, and a policy may comprise thousands of low-level and
order-dependant firewall rules. As a consequence, policy management is complex
and error-prone, and misconfiguration is common. A policy, or distributed policy
configuration, may be updated on an ad-hoc basis, possibly by multiple admin-
istrators. This can be problematic and may introduce anomalies, whereby the
intended semantics of the specified access controls become ambiguous. A miscon-
figuration may be inconsistent with the high-level security requirements, resulting
in accesses that were intended to be denied being permitted, and/or vice-versa.
There are a number of approaches available to an administrator for managing a
firewall policy configuration. For example, the goal of [6, 30, 37, 66, 159] is to

2



1. Introduction 1.1 Motivation

provide an administrator with the means to detect/resolve anomalies, and work
such as [47, 52, 88, 95] allows for querying a policy configuration with regard to
the filtering of specific network traffic. High-level specification languages such
as [3, 13, 39, 72, 84] allow an administrator to abstractly specify what would
otherwise be low-level rules. However, in general, the literature for policy man-
agement is focused on the conventional five-tuple firewall rule with a binary target
action of allow or deny, and few have considered stateful firewall configurations.

1.1.2 Anomaly-free Firewall Policy Composition

A firewall policy may be developed as a collection of independent or related spec-
ifications that an administrator will need to replace by a policy that adequately
captures the requirements of the individual specifications. A configuration may
need to be updated with additional policy specifications when a new threat is
identified, or when a new permissible access is required. Therefore, having a con-
sistent means of composing these specifications is desirable. The objective of this
dissertation is to develop a theory about composing anomaly-free firewall poli-
cies. When a policy is anomaly-free, there is no ambiguity as to whether a given
network packet is allowed or denied by the firewall. Having a consistent means
of anomaly-free firewall policy composition enables a means of anomaly-free, dy-
namic firewall policy reconfiguration, and thus, this is our goal.

Example 1 When configuring the rules that define a firewall policy, the specifier
must understand the relationship of each rule to every other rule in the policy.
Consider, as a running example, a company that employs a team of administrators
and a team of developers. There are two network security policy requirements,
whereby network traffic destined to the IP range [1 . .3] on ports [1 . .3] is to be al-
lowed from the administrators, and traffic destined to the IP range [2. .4] on ports
[2 . .4] is to be allowed from the developers. For ease of exposition, we give the IPs
as natural numbers, and the IP and port ranges as intervals of N. For simplicity,
we do not consider the source IP ranges for the administrators and the developers.

Specifying The Requirements. System Administrator Bob manages the net-
work access controls for the administration and development teams. He specifies
the network security policy requirement for the administration team as follows.

Index Dst IP Dst Port Action
1 [1 . . 3] [1 . . 3] allow

PolAdmin
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Similarly, for the development team, he specifies:

Index Dst IP Dst Port Action
1 [2 . . 4] [2 . . 4] allow

PolDev

Bob needs to combine PolAdmin and PolDev into a single firewall policy, and
security requirements may change. He requires a consistent means of composing
firewall policies, whereby the result is anomaly-free and upholds the enforcements
of each policy involved in the composition.

Sequential Composition. To specify the firewall policy for the company, he
tries sequentially composing PolAdmin and PolDev as follows.

Index Dst IP Dst Port Action
1 [1 . . 3] [1 . . 3] allow
2 [2 . . 4] [2 . . 4] allow

PolAdmin
a PolDev

This approach, however, does not does yield the desired result. That is, in the
above specification (PolAdmin

aPolDev), the rule at Index 1 allows some of the IP/-
port pairs allowed by the rule at Index 2 and vice-versa. Therefore, the policy is
anomalous. From this, we have that the näıve sequential composition of rules is
not a consistent operation when specifying an anomaly-free policy.

A Flattening Approach. To specify the firewall policy, Bob considers the ap-
proach whereby for each IP/port pair allowed by the company’s network security
policy requirements, there is a rule to allow each IP/port pair. He specifies:

Index Dst IP Dst Port Action
1 1 1 allow
2 1 2 allow
3 1 3 allow
. .

14 4 4 allow

This policy does provide the desired result, in that it is both anomaly-free and
consistent with the two network security policy requirements involved in the com-
position. We observe however, that this approach is tedious, error-prone and not
practical for large numbers of IPs/ports or large numbers of policy rules.
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A Different Approach. Bob is required to specify the firewall policy whereby
policy rules allow the IP/port-range pairs from either PolAdmin or PolDev. To
specify the policy for the company, he decides to compose the two requirements
into a single requirement as follows.

Index Dst IP Dst Port Action
1 [1 . . 4] [1 . . 4] allow

This approach, however, is inconsistent with the two network security policy re-
quirements outlined by the company. That is, the result of composition is an
overly-permissive firewall policy, whereby network traffic is permitted to IP 1 on
port 4, and to IP 4 on port 1. Conversely, this approach would result in an
overly-restrictive policy if the rules had a target action of deny.

A Better Approach. Bob is required to specify the firewall policy whereby
the desired result is the smallest number of anomaly-free rules that allow all the
IP/port pairs from either PolAdmin or PolDev. He specifies the policy:

Index Dst IP Dst Port Action
1 [1 . . 4] [2 . . 3] allow
2 [1 . . 3] [1 . . 1] allow
3 [2 . . 4] [4 . . 4] allow

In this case, the result is as desired, as it is the smallest number of anomaly-free
rules that allow all the IP/port pairs from either PolAdmin or PolDev.

Mutual Policy Enforcements. Bob receives a request to configure the policy
that allows the IP/port pairs from both PolAdmin and PolDev. He specifies:

Index Dst IP Dst Port Action
1 [2 . . 3] [2 . . 3] allow

In this case, the specification provides the desired result, and defines the smallest
number of anomaly-free rules that allow all the IP/port pairs from both PolAdmin

and PolDev. We observe that the resulting policy upholds the restrictions of both
PolAdmin and PolDev. 4

For an administrator, it may be relatively straightforward to understand pol-
icy composition where only a small number of rules are involved, however, this
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does not scale. We argue that to reason confidently a policy or distributed pol-
icy configuration is anomaly-free and adequately mitigates the identified threats;
a common framework is required, whereby knowledge related to detailed access
control configurations and standards-based firewall policies can be represented
and reasoned about.

1.2 Research Approach

The thesis of this dissertation is that a firewall policy should be anomaly-free by
construction, and as such, there is a need for a firewall policy language that allows
for constructing, comparing, and composing anomaly-free policies.

1.2.1 An Algebra for Firewall Policies

In this dissertation, a formal model for network access control policies is pro-
posed. It is important to have a consistent means of comparing firewall policies,
where we can give a precise meaning to the notion of one firewall policy being
superior to another firewall policy, with respect to the property of restrictiveness.
Therefore, it is necessary to define an ordering over firewall policies. An admin-
istrator may need to develop a policy as a collection of independent or related
specifications, that will need to be replaced by a policy that adequately captures
the requirements of the individual specifications. Therefore, we require a consis-
tent means of composing policy fragments. The proposed model is developed as
a lattice structure. The lattice consists of a partially ordered set of all firewall
policies, where every pair of policies have a unique lowest upper bound (lub) and
a unique greatest lower bound (glb). The glb of two policies defines the most
permissive replacement policy that enforces the restrictions of either policy, and
the lub of two policies defines the most permissive replacement policy that en-
forces the restrictions of both policies. Given that firewall policies are used to
specify complex access control restrictions, a significant challenge to the approach
is determining a suitable lattice. We construct a generic framework for firewall
policies that can be used to model policies for different network and host-based
access controls. The framework is extensible, and defines an n-tuple model for
firewall rule filter condition attributes that extends the conventional five-tuple
rule, used for example in [1, 5, 6, 30, 35, 73, 87, 159]. The proposed framework
defines a firewall policy algebra for constructing and reasoning over anomaly-free
policies, and provides sound and consistent lattice operators for policy compo-
sition. Based on the notion of refinement as safe replacement [56, 57, 77], the
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algebra provides operators for sequential composition, union and intersection of
policies. In this dissertation, when one policy is considered a safe (secure) re-
placement for another, then this means that the former is no less restrictive than
the latter. The effectiveness of the algebra is demonstrated by its application to
anomaly detection, and standards compliance.

Constructing The Policy Framework. We develop a model to describe what
it means to specify, compare and compose anomaly-free policies. The core fil-
ter condition attributes for firewall rules in the model define a partial mapping
of the iptables filter table. The specification defines formal constructs for fil-
tering at various OSI network layers. To demonstrate the utility of developing
an algebra for firewall policies supporting rules with complex range-based con-
straints, we firstly specify a simple model of firewall rules; FW0, whereby policies
are defined in terms of constraints on individual IP addresses, ports, protocols
and additional filter condition attributes. The proposed algebra FW0 provides
a semantics for firewall policies. While useful for the purposes of reasoning, it is
not efficient to näıvely implement the algebra, since a policy is defined in terms
of sets of rules constraining individual IP addresses and ports. For example, a
policy constraining access from a subnet range 172.16.*.* involves more than
65K individual packet rules, whatever about the impact of combining these with
further constraints on destination IPs and ports. Modelling a firewall rule as a
predicate that specifies the set of packets for which the rule evaluates to true re-
quires the conjunction/disjunction of predicates, or the union/intersection of the
sets of packets when composing firewall rules. Intersection and union operations
on sets of packets may be computationally-expensive due to the possible number
of network packets involved. In practice, firewall rules are defined in terms of
range-based attributes, and policy rules may match large numbers of packets.

Subsequently, we develop a model FW1, that defines a firewall policy in terms
of stateful and stateless firewall rules constraining range-based versions of the fil-
ter condition attributes used in the simple model. We argue that there is an
isomorphic mapping between policies in the FW0 and FW1 firewall algebras. A
benefit of developing the FW1 algebra is that we can reason about and com-
pose firewall policies comprising rules constraining range-based attributes, for
example ranges of IP addresses and ports, without having to map the rules to
individual packets, as this is not practical. We show (in both models), that the
set of policies form a lattice under safe replacement, and this enables consistent
operators for safe composition to be defined. Policies in each lattice are anomaly-
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free by construction, and the property of anomaly-freedom is upheld as a result
of composition under greatest lower bound and lowest upper bound operators.
While policies are anomaly-free by construction, we can however define anoma-
lies algebraically; by considering how a policy changes when composed with other
policies. The policy ordering relation allows one to reason whether one policy is
a safe replacement for another, and as such, we demonstrate its use as a means
to test for policy standards compliance. Firewall rules in FW0 and FW1 are
defined in terms of a binary target action of allow or deny. However, an exten-
sion to incorporate an additional firewall rule target action of log is described as
part of future work.

Evaluating The Policy Framework. We consider a number of different areas
and demonstrate the effectiveness of the approach in practice. A prototype policy
management toolkit that implements FW1 firewall policies for iptables is devel-
oped, and experiments are conducted for policy operators. Overall, the results are
promising. The cloud computing paradigm has become widely adopted, however,
there are security challenges. The OpenStack [63] cloud operating system avails
of multiple access control policies of varying types for a firewall deployment, and
the environment is highly dynamic due to platform and service migration. A
model is developed for OpenStack network and host-based access control poli-
cies. Devices such as smartphones operate in mobile network environments and
deploying a fixed security configuration for a global set of threats is not prac-
tical. Android [141] is used in a variety of domains, from personal devices, to
the Internet of Things, to enterprise, medical and military domains. However,
configuration of Android security mechanisms, for example, the firewall, and the
allocation of system-level permissions to requesting applications, is typically per-
formed by non-technical end-users. The threat-based model developed as part
of earlier work [55] is extended to include knowledge about the Android permis-
sion model, and a system policy algebra AndroidSys is proposed for the Android
OS. We show how the compliance-driven threat-based model can be used in con-
junction with the AndroidSys framework to dynamically manage the anomaly-free
security configuration of Android firewall policies and Android permission polices.

Catalogues of Best Practice. Compliance with best practice standards
and recommendations allows one to reason confidently that a policy mitigates
the identified threats. For example, RFC 5735 [33] recommends countermea-
sures that mitigate the threat of IP address spoofing from the IANA-assigned
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specialized/global-purpose IPv4 address blocks. Best practice standards, includ-
ing [79, 123, 125, 133, 152] for firewall access control have been encoded as part
of this work as collections of iptables rules. Excerpts of these catalogues are il-
lustrated in Appendix B, Tables B.1, B.2, B.3, B.4 and B.5. Compliance policies
are defined for use in the FW1 algebra in Chapter 5 and Chapter 8. In Chapter 8
we also consider policy compliance for permission policies on Android systems.
A best practice catalogue extract for permission policies from [112] is illustrated
in Appendix B Table B.6. The knowledge-base of defined compliance policies is
used to describe the dynamic synthesis of security configurations for Android.

1.3 Contributions

The contributions within this dissertation are summarised as follows.

• The primary contribution of this dissertation is a firewall policy algebra
FW1, in which anomaly-free firewall policies can be specified and reasoned
about. The algebra FW1 is defined over stateful and stateless firewall
policies constructed in terms of constraints on source/destination IP/port
ranges, the TCP, UDP and ICMP protocols, and additional filter condition
attributes. FW1 is a generic firewall algebra that can be used to model
different firewall systems, and an n-tuple firewall rule filter condition spec-
ification is supported by the model.

• A partial mapping of the iptables filter table. This mapping is used to define
the filter condition constraints for the firewall policy models.

• A policy model FWOpenStack is defined for OpenStack firewall policies us-
ing a derivation of FW1. FWOpenStack provides a uniform way to specify
and reason about OpenStack host-based and network access controls. In
particular, it gives a meaning for OpenStack security group policies and
perimeter firewall policies.

• A policy management framework for Android. The framework amalgamates
a threat-based model that represents catalogues of best practice standards
and a policy algebra AndroidSys for the Android OS. The AndroidSys algebra
incorporates FW1, and a simple algebra AndroidPerm for Android permis-
sion policies. The framework defines a model of dynamic security control
reconfiguration for Android.
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Publications. Early versions of the results in this dissertation have been re-
ported in peer-reviewed publications.

• U. Neville and S.N. Foley. Reasoning About Firewall Policies Through Re-
finement and Composition 1. In Data and Applications Security and Privacy
XXX: 30th Annual IFIP WG 11.3 Conference, DBSec 2016, Trento, Italy,
July 18-20, 2016. Proceedings, 2016.

• S.N. Foley and U. Neville. A Firewall Algebra for OpenStack. In 2015
IEEE Conference on Communications and Network Security, CNS 2015,
Florence, Italy, September 28-30, 2015, pages 541–549. IEEE, 2015.

• W.M. Fitzgerald, U. Neville, and S.N. Foley. MASON: Mobile Autonomic
Security for Network Access Controls. Journal of Information Security and
Applications (JISA), 18(1):14–29, 2013.

• W.M. Fitzgerald, U. Neville, and S.N. Foley. Automated Smartphone Secu-
rity Configuration. In Data Privacy Management and Autonomous Sponta-
neous Security, 7th International Workshop, DPM 2012, and 5th Interna-
tional Workshop, SETOP 2012, Pisa, Italy, September 13-14, 2012. Revised
Selected Papers, pages 227-242, 2012.

1.4 Layout of Dissertation

The remainder of this dissertation is structured as follows.

• Chapter 2, Network Access Control and Policy Management. In
this chapter, the background research is described, followed by a detailed
analysis of related work.

• Chapter 3, Attributes of a Linux-based Firewall. We develop a
formal model for various filter condition attributes of the Linux iptables
firewall. The attributes are used to construct packet-rules for the FW0

firewall policy algebra in Chapter 4, and are extended in Chapter 5 to
construct range-based rules for the FW1 algebra.

• Chapter 4, The FW0 Policy Model. A firewall policy algebra FW0 is
proposed for constructing and reasoning over anomaly-free policies. Firewall

1An extended version of this paper is currently being prepared for an invited selected
publication in the Journal of Computer Security (JCS IOS Press).
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rules in FW0 are constructed using the filter condition attributes defined
in Chapter 3. FW0 defines a simple model of iptables rules that do not
consider range-based filter condition attributes; the purpose of developing
FW0 is to demonstrate the utility of building such an algebra.

• Chapter 5, The FW1 Policy Model. We develop a firewall policy alge-
bra FW1, for constructing and reasoning over anomaly-free policies. The
policy algebra FW1 defines a firewall policy in terms of rules constraining
range-based versions of the filter condition attributes defined in Chapter 3.

• Chapter 6, Implementing The FW1 Policy Algebra. In this chapter,
a prototype policy management toolkit that implements the FW1 PolicyI
firewall policies defined in Chapter 5 Section 5.4.1 for iptables is described.
Experiments for policy operators are conducted and the results are reported.

• Chapter 7, A Firewall Policy Algebra For OpenStack. A firewall
policy algebra FWOpenStack for OpenStack is proposed. FWOpenStack is a
derivation of the FW1 algebra. We use the algebra FWOpenStack to provide a
uniform way to specify and reason about OpenStack host-based and network
access controls. A case study OpenStack deployment illustrates practical
use of the algebra.

• Chapter 8, A Policy Management Framework For Android. A
policy management framework for the Android OS is developed. A case
study deployment illustrates practical use of the FW1 algebra on Android
systems. A system policy algebra AndroidSys is proposed. AndroidSys uses
FW1, in conjunction with an algebra AndroidPerm, to manage Android fire-
wall policies and Android permissions. The policy management framework
incorporates a threat-based model with AndroidSys to enable a model of
dynamic security control reconfiguration for Android.

• Chapter 9, Conclusion and Future Research. This chapter concludes
the dissertation and considers some future research that may be undertaken.

The Z notation [135] is used to provide a consistent syntax for structuring
and presenting the definitions and examples in this dissertation. We use only
those parts of Z that can be intuitively understood and Appendix A gives a brief
overview of the notation used. Mathematical definitions have been syntax- and
type-checked using the fuzz tool [134].
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Chapter 2

Network Access Control and
Policy Management

This chapter examines the background research for the thesis and related work.
In Section 2.1 we consider network and host-based access control through the
concepts of the firewall and firewall policy. A classification for firewalls, and the
various mitigations they provide in terms of a collection of known network threats
is considered. Section 2.2 explores conflict resolution in access control policies.
In Section 2.3, current firewall policy management practice is reviewed, and we
consider how the work in this dissertation relates to several of the firewall policy
management approaches currently available. In Section 2.4 we consider some of
the challenges associated with firewall policy composition.

2.1 The Firewall and Firewall Policy

A firewall is an important network security mechanism, used to regulate network
access control; it operates as a front-line defence for networks and networked
systems. Cheswick et al. [27] give one of the earliest definitions of a firewall as:
“a collection of components placed between two networks that collectively have the
following properties:

1. All traffic from inside to outside, and vice-versa, must pass through the
firewall.

2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass.

3. The firewall itself is immune to penetration.”

12



2. Network Access Control and
Policy Management 2.1 The Firewall and Firewall Policy

In later work, Cheswick et al. describe a firewall as “any software, device, or
arrangement or equipment that limits network access” [28].

Security Policy. A security policy, for example, the Payment Card Industry
Data Security Standard (PCI-DSS) [34], is a high-level document that defines a
“set of rules and practices that specify or regulate how a system or organization
provides security services to protect sensitive and critical system resources” [132].
Table 2.1 illustrates an overview of the policy requirements from the PCI-DSS.

Build and Maintain a Secure Network
Requirement ID Requirement

req-1 Install and maintain a firewall configuration to protect
cardholder data.

. .

req-1.1.2 Current network diagram with all connections to
cardholder data, including any wireless networks.

. .

req-1.2
Build firewall and router configurations that restrict

connections between untrusted networks and any system
components in the cardholder data environment.

. .

req-1.4

Install personal firewall software on any mobile and/or
employee-owned computers with direct connectivity to the
Internet (for example, laptops used by employees), which

are used to access the organization’s network.

Table 2.1: PCI-DSS security policy excerpt

Network Security Policy. To administer network access control, a security pol-
icy is refined into a network security policy that “describes an organisation’s net-
work security concerns and specifies the way network security should be achieved
in that organisation’s environment” [105]. Table 2.2 illustrates an example ex-
cerpt of a network security policy for a company.

Policy ID Description

nsp-1 Allow administrators to ping the code revision control
system in the development subnet for liveness tests.

nsp-2 Allow developers FTP access to the production Web server.

nsp-3 Mitigate the threat of IP spoofing at the network perimeter,
in accordance with RFC 5735.

Table 2.2: Example network security policy excerpt
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2. Network Access Control and
Policy Management 2.1 The Firewall and Firewall Policy

Firewall Policy. A firewall policy, or distributed firewall policy configuration,
implements a network security policy. A firewall policy is conventionally defined
as a sequence of order-dependent rules. A rule is composed of filter conditions
and a target action. Filter conditions usually consist of fields/attributes from
IP, TCP/UDP packet headers. Table 2.3 illustrates the most commonly used
filter condition attributes at the various layers of the OSI and TCP/IP network
model architectures [40, 68].

OSI Model
Layer

TCP/IP Model
Layer

Network
Packet Attributes

Application
7

Presentation
6

Application
5

Application protocol
pattern matching

Presentation
Presentation

Session
5

Transport
4

Transport
4

TCP/UDP protocols,
TCP Flags,

Source and destination
network ports

Network
3

Internet
3

Source and destination
IP addresses,

ICMP (Type, Code)
Data Link

2
Network Access

2 Source MAC address

Physical
1

Physical
1

Table 2.3: Firewall filtering at different network layers

All packets traversing the firewall are filtered against policy rules. Both in-
bound and outbound filtering rules should be specified for resources behind the
firewall [152]. Rule target actions are usually allow, whereby the network packet
is permitted traversal of the firewall, or deny, whereby the packet is blocked by
the firewall. Firewall rules are matched in sequence starting at the first rule, the
packet is either allowed or denied when the packet header data is matched against
all the filtering fields of a rule within the firewall policy. If there is no rule that
matches the packet header information, a default rule is applied. The default rule
can be [148]:

• Default Deny: deny everything except that which is explicitly permitted.

• Default Allow: permit everything except that which is explicitly denied.
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The default deny rule is considered best practice [136, 152]. It is also considered
best practice to log relevant packets for auditing purposes [152], however, a rule
with a target action of log does not enforce the final decision to be taken on a
matching packet. That is, if the packet is not allowed or denied by a matching
rule at a later index, then the default rule is applied.

In this chapter, for ease of exposition, the table format depicted in Table 2.4 is
used to illustrate firewall policy examples. A table row specifies a firewall rule at a
given ‘Index’ in the policy. The wildcard value ‘*’ matches all possible values in a
given filter condition attribute, (or in a given octet in an IP address). For example,
a destination IP address specifying ‘*.*.*.*’ means all 232 possible IP values.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action
1 *.*.*.* * *.*.*.* * * deny

Table 2.4: A firewall policy example

Table 2.5 gives an explanation for the table format used for firewall policy exam-
ples. Filter condition attributes from Table 2.5 are used in constructing firewall
policy examples throughout this chapter. Note, policy examples will include only
filter condition attributes that are relevant to the example.

Column Name Description OSI Layer
Filtered

Index Rule position in firewall policy

Dir
Packet direction: inbound (ingress)

or outbound (egress), with respect to the
resources protected by the firewall

Iface Network interface on which a
packet was received

Src IP Source IP address Network
Dst IP Destination IP address Network
Type ICMP Type Network
Code ICMP Code Network

Protocol Network protocol Network
Transport

Src Prt Source port Transport
Dst Prt Destination port Transport
L7 Filter Packet payload pattern match Application
Action Target action to apply to network packet

Table 2.5: Firewall rule filter-field description
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Policy Management 2.1 The Firewall and Firewall Policy

In later chapters, we use different firewall syntaxes, where appropriate, for
specifying firewall policies. For example, in Chapter 3, we introduce the ipta-
bles [146] command-line syntax, and in Chapter 7 we specify policy rules using
the OpenStack [15] firewall syntax.

2.1.1 Firewall Classification

In this section, we examine the various classes of firewall, and consider their
effectiveness in terms of mitigating different types of known network threats.

2.1.1.1 Packet-filter Firewall

A packet-filter is a firewall that enforces a target action on a network packet
based only on information found in the packet header. Packet-filters have also
been referred to as stateless inspection firewalls [123], as each packet attempting
to traverse the firewall is filtered independently of all previously filtered network
traffic. Filter condition attributes for policy rules enforced by early packet-filter
firewalls are derived from the Network and/or Transport OSI layers [27, 105, 136].
More recent packet-filter firewalls permit an administrator to also specify policy
rules that filter at the OSI Data Link layer, and filter based on the network
interface a packet is arriving at/leaving through [40, 105, 138].

Example 1 A system’s attack surface is its number of reachable and exploitable
vulnerabilities [75]. An IP-based attack surface is the number of network-
accessible IP addresses reachable through the firewall for exploitation by an at-
tacker. Configuring the firewall to only permit access to the necessary/autho-
rized IPs will reduce the attack surface. The firewall policy example illustrated
in Table 2.6 implements the high-level network security policy goal nsp-1 from
Table 2.2, whereby the rule at Index 1 allows inbound ICMP Echo Request (ping)
packets from the administrator IP range to the code revision control server, while
the rule at Index 2 enables outbound responses from the server.

Index Dir Iface Src IP Dst IP Protocol Type Code Action
1 ingress eth0 adminRange gitIP ICMP 8 0 allow
2 egress * *.*.*.* *.*.*.* * * * allow

Table 2.6: A packet-filter policy specification for nsp-1

External threats to resources are often more easily perceived than the inter-
nal threats [148], and as a consequence, the policy may be overly-permissive to
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outbound network traffic. For example, the rule at Index 2 in Table 2.6 permits
all outbound traffic. When configuring the rules that define a firewall policy, the
specifier should consider the bi-directional nature of the traffic being filtered [24],
and where possible, apply a default deny rule to outbound traffic [152]. There-
fore, a revised specification for the packet-filter policy that implements nsp-1 is
given in Table 2.7, whereby the revised rule at Index 2 allows only the correct
ICMP reply to the authorized ICMP ping request enabled by the rule at Index 1.

Index Dir Iface Src IP Dst IP Protocol Type Code Action
1 ingress eth0 adminRange gitIP ICMP 8 0 allow
2 egress eth0 gitIP adminRange ICMP 0 0 allow

Table 2.7: Revised packet-filter policy specification for nsp-1

Enforcing a default deny rule supports the principal of least privilege [120],
and when considering outbound traffic, this can help to mitigate/reduce the flow
of Malware communication from infected systems. For example, a Remote Access
Trojan (RAT) may be running on the code revision control server at gitIP. The
default deny rule helps mitigate the RAT from indiscriminately making outbound
connections to an external Command and Control (C&C). RATs can also be ex-
plicitly blocked by filtering ports known to be used for C&C communication [26].
Best practice [33, 115, 152] recommends that filtering rules be applied to ingress
and egress traffic in order to mitigate the threat of IP spoofing. A packet’s source
IP address may be spoofed by an attacker in an attempt to get the firewall to
process the packet as if it had originated from the system hosting the firewall
itself, or from systems protected by the firewall [51]. Spoofing typically forms
part of a Denial of Service (DoS) attack [102]. 4

2.1.1.2 Stateful Firewall

A stateful firewall improves on packet-filter functionality, whereby the decision
to allow or deny a packet is also based on previous packets filtered by the fire-
wall [105, 123]. Stateful firewalls have also been classified as dynamic packet fil-
ters [28]. When a packet is filtered by the stateful firewall, if the packet matches
a rule in the firewall policy, then the packet’s state information is added to the
firewall’s state table [152]. A firewall’s state table will typically include source and
destination IP and port, network protocol, and connection state information such
as TCP flags [103]. The connection state information may indicate, for example,
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the successful establishment of a bi-directional communication channel after the
completion of the TCP three-way handshake.

Example 2 A port-based attack surface is the number of network ports reachable
through the firewall for exploitation by an attacker. Configuring the firewall
to only permit access to necessary ports will reduce the attack surface. The
initiator of a TCP connection is dynamically allocated a port in the unprivileged
port range (1024 . . 216 − 1) that only has significance for the lifetime of the
connection. A packet-filter firewall must allow traffic on all these ports in order to
permit TCP traffic, thereby unnecessarily exposing ports to potential attackers.
A stateful firewall dynamically manages the unprivileged ports as part of the
TCP connection [136]. 4

State information maintained by the firewall can be used to help mitigate
replay attacks [103]. State information for the UDP protocol can be managed in
terms of source and destination IPs and ports [152]. Some firewalls, for exam-
ple, Linux iptables can manage ICMP state information in terms of source and
destination IP addresses, where also an ICMP error message may be considered
related to an entry in the firewall’s state table. Table 2.8 illustrates a state table
entry for the Linux firewall Netfilter [68].

State Table Entry
tcp 6 ESTABLISHED src=192.168.1.5 dst=172.16.1.6 sport=56332

dport=21 src=172.16.1.6 dst=192.168.1.5 sport=21
dport=56332 [ASSURED] [active since 91s]

Table 2.8: Netfilter state table entry

Firewalls also provide an effective way to mitigate against invalid TCP packets
used in port scanning techniques. For example, the Nmap XMAS TCP port scan
where all TCP flags are simultaneously set [91]. A stateful firewall also provides
an effective way to mitigate against valid TCP packets that are forged. For
example, TCP packets forged to mimic the expected return packets for outbound
TCP traffic requests, such as the Nmap ACK port scan [91]. Packet-filters can
also enforce rules based on TCP flags, however, a stateful firewall automatically
manages TCP flags.

2.1.1.3 Application-layer Firewall

An application-layer firewall may incorporate stateful filtering functionality, how-
ever, the decision to allow or deny a packet is also based on the packet’s payload

Reasoning About Firewall Policies Through
Refinement and Composition

18 Ultan James Neville



2. Network Access Control and
Policy Management 2.1 The Firewall and Firewall Policy

at the OSI Application layer. This process is also referred to as Deep Packet
Inspection (DPI) [123]. Filtering packet-payload information allows for decisions
to be made on network packets containing certain keywords, for example, the
FTP “put” command [111], or on packets containing certain regular expressions.

Example 3 Table 2.9 gives a firewall policy specification for the high-level net-
work security policy goal nsp-2 from Table 2.2, whereby filtering by packet-
payload is used to allow all inbound traffic to the production Web server using
the FTP Application-layer protocol from the developer IP range.

Index Dir Src IP Src Prt Dest IP Protocol L7 Filter Action
1 ingress devRange ≥ 1024 webIP TCP ftp allow

Table 2.9: A policy specification for nsp-2 using Layer 7 filtering

The following regular expression [85]:

ˆ220[\x09-\x0d -˜]*ftp

is used by the Netfilter firewall to match packets that are part of FTP traffic. 4

Application-layer firewalls can filter malicious payloads. For example, Netfil-
ter provides OSI Layer 7 filtering support for executable file types, and some well
known worms such as Nimda and Code Red [98]. Application-layer firewalls can
also help mitigate the practice of tunnelling, that is, the encapsulation of data
from one protocol inside another protocol in order to evade the firewall [27]. For
example, using DNS tunnels to bypass captive portals for paid WiFi service [50].

2.1.1.4 Proxy Firewalls

A proxy is a an intermediary, that operates on behalf of two interacting network
principals/systems [103, 105]. An application-level gateway is a proxy system
with application-layer firewall filtering capabilities, and a circuit-level gateway is
a proxy that filters at lower layers of the network stack [28]. The application-level
proxy deals specifically with a particular application/service, while an advantage
of the circuit-level proxy is that it provides a proxy system for a wider variety of
services [24]. A proxy can be used to provide an additional level of security to an
organisation’s internal systems, whereby external clients may only communicate
through the proxy to access an organisation’s internal IP addresses not publicly
accessible from the Internet [103, 152]. Proxies can also make port scan recon-
naissance more difficult for an attacker, as the attacker will not receive packets
created directly by their target systems [103].

Reasoning About Firewall Policies Through
Refinement and Composition

19 Ultan James Neville



2. Network Access Control and
Policy Management

2.2 Access Control Policy Conflict
Resolution

2.2 Access Control Policy Conflict Resolution

An access control policy specifies the authorizations to be enforced regarding sys-
tem or network resources. In general, the authorizations are positive or negative,
and traditionally, an access control policy consisted of either positive or negative
authorizations under a Closed or Open policy model [121]:

• Closed Policy: specified authorizations are positive and signify access be
granted, all other accesses are denied.

• Open Policy: specified authorizations are negative and signify access be
denied, all other accesses are granted.

The specification of an access control policy that supports both positive and
negative authorisations may result in conflicts in policy decisions. That is, for
example, when there is both a positive and negative authorisation specified for
a given access in a policy. Whether the specified access should be granted or
denied must be decidable in order for an access control system to be useful.
There are various approaches to policy conflict resolution, however, there is not
a one-size-fits-all solution [78, 90]. Depending on the type of access restrictions
to be enforced, then there are different conflict resolution policies/methodologies
that can be applied. For example, the most-specific rule approach [90] means that
the authorization that is more-specific takes precedence, allowing for an exception
to be made of the less-specific authorization [113]. The denials-take-precedence
approach [90] supports the principle of least privilege, and means that negative
authorizations take precedence over positive authorizations in policy decisions.
The positional approach [131] is where authorizations are specified in an order-
dependant list, and the first occurrence of an authorization in a policy is the
authorization that gets enforced.

Policy models can incorporate a combination of conflict resolution policies in
order to deal with conflicting authorizations in a policy, for example, by firstly ap-
plying the most-specific rule approach, followed by denials-take-precedence [121].
The rules in a firewall policy are order-dependant, and therefore when making a
policy decision, we evaluate the rules in order and the first matching rule provides
the decision. Thus, the sequencing of firewall rules provides a semantics for deal-
ing with conflicts. However, the presence of conflicting rules in a policy results in
policy anomalies, whereby a policy is anomalous when a network packet matches
with two or more policy rules [5, 35]. Even though the sequencing of rules gives
a semantics for handling policy conflicts, we argue that a firewall policy should
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be anomaly-free by construction, and therefore conflict-free. In Section 2.3.1 we
explore classifications of firewall policy anomalies and several of the anomaly
management approaches available.

2.3 Firewall Policy Management

Firewall policy management is complex and error-prone [25, 156, 157]. In spec-
ifying a policy or distributed policy configuration, a high-level security policy is
translated into low-level rule syntax via a command line interface (CLI) or by us-
ing a Graphical User Interface (GUI) management console. A policy may consist
of thousands of firewall rules, and as the number of rules increase, so does diffi-
culty of modifying/updating the firewall policy. Typical errors range from invalid
syntax and incorrect rule ordering, to a failure to uphold a security policy due to
errors resulting from the poor comprehension of a firewall configuration [94, 152].
The GUI is the most common technique used to configure a firewall [41, 83],
however, GUIs often lack configuration granularity and only provide a limited
number of filter condition fields, thereby restricting an administrator from, for
example, specifying firewall rules that filter TCP Flags or ICMP Codes/Types.
An effective firewall policy may be further hampered by the poor understand-
ing and/or management of the overall high-level security requirements. In this
section, we consider firewall policy management practice.

2.3.1 Anomaly Management

Recall, a policy is anomalous when a network packet matches with two or more
policy rules. Managing anomalies involves determining the relationships between
rules in a policy, or between rules across a distributed policy configuration. This
structural analysis of policies is used to detect/resolve firewall policy anomalies.

Hari et al. [73] report some of the earliest research on conflict detection and
resolution in policies for packet-filters. A rule is referred to as a filter, and a filter
conflict occurs when “two or more filters overlap, creating an ambiguity in packet
classification”, whereby the target actions of the two filters are different. The
rule relationships are modelled in a directed graph, and the policy is conflict-
free if the graph is acyclic. They show that re-ordering conflicting rules does
not guarantee anomaly resolution, and a scheme is proposed that results in the
addition of resolve rules to the policy. However, the approach requires the manual
intervention of an administrator to decide if conflicting rules should be re-ordered,
or if a resolve rule is required and the position it should be inserted at in the policy.
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Al-Shaer et al. [4–6, 69] provide definitions for firewall policy anomalies. The
classifications are redundancy, shadowing, generalization, correlation, irrelevance
and spuriousness. In later chapters of this dissertation, we use a subset of these
classifications when reasoning about firewall policy anomalies. Al-Shaer et al.
use a form of Binary Decision Diagram (BDD) to represent a firewall policy,
and define relationships between pairwise rules. The Firewall Policy Advisor [5]
tool implements algorithms used to identify firewall rule anomalies using set the-
ory. Anomalies that occur in a single firewall policy are called intra-anomalies,
and anomalies that occur in a distributed policy configuration are called inter-
anomalies. Two additional anomaly classifications are considered in [69]. These
are the blocking existing service anomaly and the allowing traffic to a non-existing
service anomaly. However, these additional anomalies are detected by apply-
ing data mining techniques to firewall logs, as opposed to analysing the rules
in the policy configuration.

Intra-Redundancy Anomaly. A policy has intra-redundancy if there are two
policy rules with the same target actions filtering some of the same network
packets, such that the removal of the redundant rule does not change the filter-
ing semantics of the firewall policy. A redundant rule may be equivalent to, or
subsumed by a rule at an earlier index in the policy. For example, in Table 2.10
the rule at Index 2 is redundant to the rule at Index 1.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly
1 192.168.1.5 * 172.16.1.* * TCP allow

2 192.168.1.5 ≥ 1024 172.16.1.6 21 TCP allow Intra-redundant
to 1

Table 2.10: An intra-redundancy policy anomaly example

A rule may also be redundant to a rule occurring at a later index in the
policy, whereby the preceding rule is subsumed by the later rule, such that there
is no intermediary rule with a different target action filtering network packets also
filtered by the ‘redundant’ rule. For example, in Table 2.11 the rule at Index 1 is
redundant to the ‘superset’ rule at Index 2.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly

1 192.168.1.7 * *.*.*.* * UDP deny Intra-redundant
to 2

2 *.*.*.* * *.*.*.* * UDP deny

Table 2.11: An intra-redundancy policy anomaly example
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Redundant rules may decrease the performance of the firewall due to unnec-
essary rule lookup overhead.

Intra-Shadowing Anomaly. A policy has intra-shadowing if there are two
policy rules with different target actions filtering the same network packets, such
that the shadowed rule is never matched, whereby the target action of the rule at
the earlier index in the policy is applied to the network packets. A shadowed rule
may be equivalent to, or subsumed by a previous rule. For example, in Table 2.12
the rule at Index 2 is a ‘subset’ of the rule at Index 1, and is therefore shadowed
as the rules have contradictory target actions.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly
1 *.*.*.* * 172.16.1.7 80 TCP deny

2 192.168.1.5 ≥ 1024 172.16.1.7 80 TCP allow Intra-shadowed
by 1

Table 2.12: An intra-shadowing policy anomaly example

In general, an administrator might re-order the rules or remove the shadowed
rule to resolve the anomaly.

Intra-Generalization Anomaly. A policy has intra-generalization if there are
two policy rules with different target actions filtering the same network packets,
such that the rule at the earlier index in the policy is subsumed by a more general
rule at a later index. Al-Shaer et al. consider generalization as an anomaly
warning only, as an administrator may specify a rule that makes an exception of
a more general rule. For example, in Table 2.13 the rule at Index 1 makes an
exception of the rule at Index 2.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly
1 192.168.1.5 ≥ 1024 172.16.1.7 80 TCP allow

2 *.*.*.* * 172.16.1.7 80 TCP deny Intra-generalised
by 1

Table 2.13: An intra-generalization policy anomaly example

We observe that the intra-generalization defines a partial shadowing of the gen-
eral rule by the exception rule. Note, if an administrator re-ordered the rules
in Table 2.12 as an approach to resolving the intra-shadowing anomaly, then an
intra-generalization anomaly is the result, as illustrated in Table 2.13.
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Intra-Correlation Anomaly. A policy has intra-correlation if there are two
policy rules with different target actions, such that both rules can filter some
network packets filtered by the other. More formally, the rules are correlated,
if some of the filter fields in one of the rules are equivalent to, or subsumed by
the corresponding fields in the other rule, and the remaining fields in the former
rule are supersets of the corresponding fields in the later rule. For example, in
Table 2.14 the rules at Index 1 and Index 2 are correlated.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly

1 192.168.1.6 ≥ 1024 172.16.*.* 22 TCP deny Intra-correlated
with 2

2 192.168.1.* ≥ 1024 172.16.1.7 22 TCP allow Intra-correlated
with 1

Table 2.14: An intra-correlation policy anomaly example

The intra-correlation anomaly is analogous to the packet filter conflict defined
by Hari et al. [73], and in [73] it is considered a serious policy error. In contrast,
Al-Shaer et al. consider intra-correlation to be an anomaly warning only. Note,
Al-Shaer et al. do not consider intra-correlation for firewall rules with the same
target action, we observe that this type of anomaly defines a type of redundant
filtering in a policy.

Intra-Irrelevance Anomaly. A policy has intra-irrelevance if there is a policy
rule that cannot be matched based on the source and destination IP address of
the domains accessible through the firewall. For example, in Table 2.15 the rule
at Index 1 is irrelevant in a firewall policy where only the IP range 192.168.2.* is
reachable through the firewall.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly
1 192.168.1.3 ≥ 1024 172.16.1.10 80 TCP deny Intra-irrelevant

Table 2.15: An intra-irrelevance anomaly example

Intra-irrelevance is viewed as an administrator warning only, as it adds unnec-
essary overhead to rule filtering by the firewall but does not effect the semantics
of the firewall policy.

Inter-Redundancy Anomaly. An inter-redundancy anomaly exists between
an upstream and a downstream firewall policy if the downstream policy denies
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packets that are also denied by the upstream policy. A redundant rule in the
downstream firewall may be equivalent to or subsumed by a rule in the upstream
firewall. For example, in Table 2.16b the rule at Index 1 denies Skype traffic on
port 33033 from IPs 192.168.1.*, and is inter-redundant to the rule at Index 1 in
Table 2.16a. Al-Shaer et al. argue that the redundant rule in the downstream
firewall is unnecessary as all packets matching this rule are already denied in the
upstream firewall, and propose that the redundant rule can be removed.

Inter-Shadowing Anomaly. An inter-shadowing anomaly exists between an
upstream firewall policy and a downstream firewall policy if the upstream policy
denies packets that are allowed by the downstream policy. A shadowed rule in
the downstream firewall may be equivalent to, subsumed by or a superset of a
rule in the upstream firewall. For example, the rule at Index 2 in Table 2.16a
inter-shadows the rule at Index 2 in Table 2.16b, whereby intended permissible
SSH access from the 192.168.1.* IP addresses is not allowed to the server at
172.16.1.10 by the upstream firewall.

Inter-Spuriousness Anomaly. An inter-spuriousness anomaly exists between
an upstream firewall policy and a downstream firewall policy if the upstream pol-
icy allows packets that are denied by the downstream policy. A spurious rule in
the upstream firewall may be equivalent to, subsumed by or a superset of a rule in
the downstream firewall policy. For example, the rule at Index 3 in Table 2.16a of
the upstream firewall is allowing FTP traffic to the IP address 172.16.1.13, while
the rule at Index 3 in Table 2.16b of the downstream firewall is denying the same
network packets.

Inter-Correlation Anomaly. An inter-correlation anomaly exists between an
upstream and downstream firewall policy if there exists a rule from each policy,
such that both rules can filter some network packets filtered by the other, irre-
spective of the rule target actions. Inter-correlation between upstream and down-
stream firewalls can also create inter-shadowing and inter-spuriousness anoma-
lies. For example, the rule at Index 4 in Table 2.16a permits Telnet traffic from
192.168.1.3 to 172.16.1.*, however the same traffic is denied by the rule at In-
dex 4 in Table 2.16b. The rules are inter-correlated and this also results in an
inter-spuriousness anomaly.
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Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly

1 192.168.*.* ≥ 1024 *.*.*.* 33033 TCP deny Inter-shadowed
by Upstream 1

2 *.*.*.* * 172.16.*.* 22 TCP deny Inter-shadowed
by Upstream 1

3 192.168.1.* ≥ 1024 172.16.1.13 21 TCP allow
Inter-spurious

to
Downstream 3

4 192.168.1.3 ≥ 1024 172.16.1.* 23 TCP allow
Inter-correlated

with
Downstream 4

(a) Upstream

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly

1 192.168.1.* * *.*.*.* 33033 TCP deny Inter-redundant
to Upstream 1

2 192.168.1.* ≥ 1024 172.16.1.10 22 TCP allow Inter-shadowed
by Upstream 2

3 192.168.1.* ≥ 1024 172.16.1.13 21 TCP deny Inter-shadowed
by Upstream 1

4 192.168.1.* ≥ 1024 172.16.*.* 23 TCP deny
Inter-correlated

with
Upstream 4

(b) Downstream

Table 2.16: Inter-policy anomaly examples

Cuppens et al. [35–37] and Garćıa-Alfaro et al. [67], present MIRAGE (MIs-
configuRAtion manaGEr), and provide alternative definitions for intra- and inter-
anomalies. For example, a policy has (intra-)shadowing [35] if there is a policy
rule that cannot be matched due to a previous rule or a combination of previous
rules filtering the same network packets, regardless of rule target actions. For
example, in contrast to the view in [5, 6], the rule at Index 2 in Table 2.10 is
not intra-redundant to the rule at Index 1, rather it is (intra-)shadowed [35]. A
policy has (intra-)redundancy [35] if there is a policy rule that is not shadowed,
and removal of this rule does not change the filtering semantics of the firewall
policy. In contrast to [5, 6], rules with overlapping filter-fields are considered,
and given a firewall configuration, MIRAGE will automatically detect and remove
intra-redundant and intra-shadowed rules, and generate a semantically-equivalent
order-independent set of disjoint rules that are anomaly-free. In contrast to [73],
the approach incorporates the automatic re-writing of anomalous rules. The
inter-anomalies discovered by MIRAGE in a distributed policy configuration are
presented to the security administrator to determine a suitable resolution.
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Yuan et al. [159] present the FIREMAN (FIREwall Modelling ANalysis)
tool. Policy configurations are analysed for inconsistencies that consider intra-
shadowing, intra-generalisation and inter-shadowing anomalies [5, 6]. The defini-
tion given for intra-correlation allows for considering overlapping rules. Firewall
inefficiency in packet classification and memory consumption is also considered as
a result of intra-redundant rules, and ‘verbosities’, whereby a set of rules may be
summarized into a smaller number of rules without changing the filtering seman-
tics of the policy. The authors observe that in a distributed firewall configuration,
redundant rules with a target action of allow are required for a packet to be per-
mitted traversal of all firewalls on its path from source to destination. In contrast
to the opinion in [6] that inter-redundant rules with a target action of deny can
be removed, the view in [159] is that such rules are considered good practice, as
they enhance security by providing a defence in depth approach to a distributed
policy configuration. Yuan et al. also consider end-to-end security behaviour and
Cross-Path inconsistency [159] in a distributed firewall configuration, where there
may exist multiple data-paths from one host/network to another host/network,
and packets denied on one path may be accepted on another. The authors ob-
serve that data-paths are determined by the underlying routing protocol and a
given path may not always be available, and as such, the firewall configuration
should consider all possible paths.

Chomsiri and Pornavalai [30] propose a method of firewall policy analysis
using relational algebra. The definitions provided for intra-redundant and intra-
shadowed rules are analogous to [35, 36], and upon detection, such rules are
removed in order to reduce the size of the policy. Similar to the notion of ver-
bosities in [159], Chomsiri and Pornavalai propose combining rules that may be
‘summarized’ without changing the filtering semantics of the policy. The defi-
nition given for intra-generalization is analogous to [5, 6], however in contrast
to [5, 6], rules with overlapping filter-fields are considered through the definition
provided for intra-correlation. Intra-correlated and intra-generalized rules are
reported to the administrator as a result of policy analysis.

Abedin et al. [1] propose an algorithmic approach to detect and resolve anoma-
lies between pairwise rules in a firewall policy. The definitions provided for intra-
redundancy and intra-shadowing are analogous to [5, 6], and intra-generalization
is considered as an anomaly warning only. However, similar to [30, 35, 36, 159],
Abedin et al. consider rules with overlapping filter fields, and a definition of
intra-correlation is provided, whereby two policy rules are correlated if they are
“not disjoint, but neither is the subset of the other” [1].
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Fitzgerald et al. [53] propose an ontology engineering approach to model and
reason about firewall policy configurations. An iptables policy model ontology is
constructed, and policies are reasoned over for intra-redundancy, intra-shadowing,
intra-generalisation and intra-correlation anomalies [5, 6].

Regardless of the divergence in anomaly classification, the authors of [30,
35, 53, 159] all observe shortcomings in the work of Al-Shaer et al. [5, 6]. For
example, in [5, 6] rule anomaly analysis is performed only on a pairwise basis,
and therefore anomalies involving more than two rules are not considered. For
example, the rules at Index 1 and Index 2 of Table 2.17 deny SSH traffic from
the IPs 192.168.1.* to the servers at 172.16.1.7 and 172.16.1.8, respectively, how-
ever, the rule at Index 3 is intended to permit SSH access to both servers from
192.168.1.5. Performing pairwise analysis on the rules in Table 2.17 will not
detect an anomaly, however, considering the union of the rules at Index 1 and
Index 2; we have that all of the packets that match the rule at Index 3 have
already been matched [35, 36].

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly
1 192.168.1.* ≥ 1024 172.16.1.7 22 TCP deny
2 192.168.1.* ≥ 1024 172.16.1.8 22 TCP deny

3 192.168.1.5 ≥ 1024 172.16.1.7
172.16.1.8 22 TCP allow

Undetected
Intra-shadowing

by (1 ∪ 2)

Table 2.17: A shortcoming of pairwise rule analysis

Buttyán et al. [23] propose a tool based on FIREMAN [159] for managing
anomalies in stateful firewall policies. The authors argue that verifying a stateful
firewall for inconsistencies can be reduced to the problem of verifying a state-
less firewall for inconsistencies. Policies are analysed for intra-redundancy, intra-
shadowing and intra-generalization anomalies that are analogous to the defini-
tions given in [5, 6], and intra-correlation anomalies where rule overlap is consid-
ered. A limitation of the approach is that their model does not distinguish rules
with different state information, that is, for example, there is no differentiation
between the establishment and termination phase of a given stateful protocol,
and as a consequence, they do not consider more complex anomalies that may
occur specifically in the stateful case.

Cuppens et al. [38] and Garćıa-Alfaro et al. [66] propose an algorithmic ap-
proach to detect and resolve anomalies in a stateful firewall policy. A connection-
oriented protocol is modelled using general automata, whereby the permitted
protocol states and transitions are encoded. Intra-redundant and intra-shadowed
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rules [35, 36] are considered for the stateful firewall policy. Further definitions
are proposed, whereby an intra-state anomaly occurs in a stateful firewall policy
if there are policy rules that partially match (complete) the paths of the proto-
col automata. For example, if the connection establishment and/or connection
termination phase is permitted, and the remaining rules necessary to complete
the paths of the protocol automata are either missing or conflict with the earlier
rules. The proposed algorithms detect conflicting rules, and a modification is
applied “so that the resulting set gets consistent with the action with higher pri-
ority (e.g., accepting the termination phase if the establishment was accepted as
well)” [66]. In the case of missing rules, then covering-rules are suggested to the
administrator as a means of completing the path of the protocol automata. Their
work also considers invalid protocol states, and inter-state anomalies that may
occur in a firewall policy that filters packets against both stateful and stateless
rules. The work in [38, 66] also extends the MIRAGE [67] tool.

The work of Al-Shaer et al. [5, 6] and Cuppens et al. [35, 38] is focused on
firewall rules with a target action of either allow or deny. However, to permit
the logging of relevant packets for auditing purposes [152], then a firewall policy
should also allow for specifying rules with a target action of log. In terms of the
structural analysis of a policy, a rule with a target action of log may be shadowed
by a rule with a target action of allow or deny, however, a rule with a target
action of allow or deny cannot be shadowed by a rule with a target action of
log. Following the approaches taken by both [5, 6] and [35, 38], then the rule
at Index 2 in Table 2.18 will be falsely detected as intra-shadowed. Fitzgerald
et al. [53] consider rules with a target action of log when analysing a policy
for anomalies.

Index Src IP Src Prt Dst IP Dst Prt Protocol Action Anomaly [5, 35]
1 192.168.1.* ≥ 1024 *.*.*.* 6667 TCP log

2 192.168.1.* ≥ 1024 *.*.*.* 6667 TCP deny
Detected as

Intra-shadowed
by 1

Table 2.18: A false-positive anomaly detection

In this dissertation, an algebra is proposed for firewall policy configuration
management. While policies in the proposed model are anomaly-free by con-
struction, we can however define anomalies using the algebra; by considering how
a policy changes when composed with other policies. We use a number of anomaly
definitions from [5, 6], considered in this section, when reasoning about firewall
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policy anomalies in later chapters.

2.3.2 Query Systems

Firewall query analysis allows an administrator to pose questions of a policy
configuration, such as, for example, “does the policy permit SSH traffic from
system x to system y?” or “what network services are available on system x?”.

Mayer et al. [95], present Fang (Firewall ANalysis enGine). Based on graph
algorithms and a rule-base simulator, Fang parses vendor-specific firewall pol-
icy and configuration files, and constructs a model of the network topology and
a global firewall policy for the network. Fang interacts with the administrator
through a query-and-answer session, and queries are constructed as triples, con-
sisting of source IPs, destination IPs and endpoint services/ports. However, the
administrator is restricted to querying only the kinds of packets that are permit-
ted. The Lumeta Firewall Analyzer [96, 155], built as an improvement on Fang,
automates the process of specifying the topology configuration file by taking as
input a formatted routing table. The process of constructing the firewall queries
is also automated in [96, 155].

Eronen and Zitting [47] propose an expert system for query analysis, imple-
mented in constraint programming logic using ECLiPSe [153]. A query is con-
structed as a six-tuple, consisting of source and destination IP and port, network
protocol, and flags. The flags attribute is for TCP connections, however, only
the SYN and ACK flags are considered. Their model allows for querying both
allow and deny rules. Eronen and Zitting argue that in comparison to Fang [95],
the expert system is a more natural solution for query analysis.

Liu et al. [88] present the Structured Firewall Query Language (SFQL), an
SQL-like query language. Liu et al. state that constructing an expert system
such as [47] “just for analysing a firewall is overwrought and impractical” [88],
however, they do not give their reasoning for this assertion. SFQL queries can
be constructed over allow and deny rules for an arbitrary number of filter fields.
The authors show how SFQL can be mapped to natural language, however, the
example queries in [88] only consider network interface, source and destination
IP address, destination port and protocol. A study of Fang beta-testers in [96]
showed that a significant challenge to effective query analysis is that users often
do not know what to query of a policy.

Marmorstein and Kearns [93] present ITVal, a tool that enables query analysis
for iptables firewall policies. Firewall queries are constructed in terms of source
and destination IP and port, network protocol and connection state. Queries
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may also include the SYN, ACK, FIN, PSH, RST and URG TCP flags, or ICMP
packet type, depending on protocol. Querying firewall rules with a target action
of log is also considered. The authors note that a limitation of their approach
is that some queries may generate a large volume of results, and how results are
presented may be difficult for an administrator to reason over. In comparison
to [88], the query language proposed in [93] is closer to natural language.

While query analysis provides an administrator with a means of asking ques-
tions of a firewall policy, what can actually be queried is restricted by the col-
lection of filter condition attributes and target actions expressible in the query
language. Effective query analysis may be further hampered by the complexity
of the query language, or through an administrators inability to construct useful
queries [96]. The FIREMAN [159] toolkit, discussed in Section 2.3.1, can also
be used for query analysis, and provides an administrator with a predefined col-
lection of queries. A consequence of the algebra proposed in this dissertation is
that it enables an administrator to perform effective query analysis of a firewall
policy configuration. While we do not construct individual high-level queries, we
do however demonstrate in later chapters how policies in the algebra may be test-
ed/queried for compliance with best practice standards and recommendations.

2.3.3 High-level Specification Languages

High-level specification languages provides an administrator with the means to
reduce the complexity of constructing a firewall policy configuration.

Guttman [72] reported some of the earliest research in this area. The proposed
specification language has a Lisp-like syntax, and allows an administrator to spe-
cify a global access control policy for the routers of a network. Knowledge about
the network topology is incorporated in the approach, and a policy configuration
for individual routers is synthesised. Policy rules are conflict-free, however, the
proposed approach only considers rules with a target action of allow, and all other
traffic is denied by default. As a consequence, this restricts an administrator from
explicitly denying network traffic that may, for example, be spoofed, or consist of
packets with invalid combinations of TCP flags. Guttman notes a limitation of
the approach is that the generated policies only administer network access con-
trol for the systems beyond the routers themselves, and as such, policies do not
consider access control for services hosted locally by the router.

Bartal et al. [13] and Mayer et al. [96] present the Firmato toolkit. The
proposed specification language allows an administrator to specify the network
security policy and the topology for the network in terms of an entity-relationship
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(ER) model. Subsequently, a policy configuration for the Lucent Managed Fire-
wall is synthesised from the ER model. In contrast to [72], the modular separation
of the network security policy from the network topology provides an adminis-
trator with greater flexibility when managing the network configuration. For
example, the same high-level network security policy may reused with different
network topologies. A limitation of the work is that it only applies to packet-
filter policy configurations. Note, the Fang [95] query analysis tool, discussed in
Section 2.3.2 is a module of Firmato.

The High Level Firewall Language (HLFL) [84] translates high-level firewall
rules into usable rulesets for iptables, Cisco ACLs [31], IPFW [11] and others.
However, the generated rulesets are order-dependant and may contain anomalies,
and the approach does not provide support for incorporating knowledge about a
network topology when specifying the high-level rules.

Cuppens et al. [39] present a specification language based on XML syn-
tax. The language is supported by the Organization-Based Access Control (Or-
BAC) [2] model, and as such, policies are specified at a high level of abstraction.
Similar to [96], the network security policy is decoupled from the network topol-
ogy. An XSLT translation process is applied to the high-level Or-BAC rules to
synthesize a collection of firewall rules for iptables. The MIRAGE [67] tool, dis-
cussed in Section 2.3.1, incorporates the OrBAC model as a means of specifying
and deploying anomaly-free network security policies.

In a different vein, Liu and Gouda [87] propose a method of diverse firewall
design. The approach is inspired by N-version programming [8], whereby the
same network security policy is given to multiple teams who independently spe-
cify different versions of the firewall policy. The firewall policies are analysed
algorithmically for conflicts, and the different teams compare the results and dis-
cuss any conflicts across the specifications. Subsequently, all teams agree on the
policy that is to be synthesized. A firewall policy is modelled as a firewall deci-
sion diagram (FDD) [71], similar to a BDD. In [71], Gouda and Liu consider the
issues of consistency (correct rule ordering), completeness (matching all network
traffic), and compactness (no redundant rules) when specifying a firewall policy
as an FDD. A disadvantage of the approach is that specifying FDDs is complex.

Fitzgerald and Foley [52] propose using ontologies to represent knowledge
about firewall policy configurations. Policies are specified using Description Logic
and SWRL. Semantic Threat Graphs [60] are used to encode catalogues of best
practice firewall rules, and an automated synthesis of standards-compliant rules
for a policy configuration is considered. However, the administrator must manu-
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ally construct the rulesets for the catalogues then populate the Semantic Threat
Graphs, and this process is error-prone. The proposed model can also be used
for firewall policy query analysis.

Adão et al. [3] propose a declarative policy specification language, and present
Mignis (“murus ignis” (“a wall of fire” in Latin)), a tool that translates high-level
access control specifications into low-level policy configurations for Netfilter. An
abstract model of the Netfilter firewall is proposed, and definitions for Network
Address Translation and stateful filtering are encoded. The synthesised policies
consist of order-independent iptables firewall rules. However, the proposed ap-
proach is tightly coupled with Netfilter.

Similar to a shortcoming of query analysis, the policy that can be synthesized
using a high-level specification language is limited by the collection of filter condi-
tion attributes and rule target actions expressible in the language. Additionally,
work in this area in general has been focused on packet-filter firewalls.

2.4 Challenges of Policy Composition

An administrator may develop a firewall policy by specifying independent or re-
lated requirements, that need to be replaced by a policy that adequately captures
the requirements of the individual specifications. However, while the individual
specifications may themselves be consistent with the network security policy,
their composition may result in a policy that enables unauthorized traversal of
the firewall. Mismanagement of composition in a distributed policy architecture
may allow for an attacker to traverse the network configuration in order to reach
their intended target by following possibly direct or indirect paths that occur as
a result of composition.

Gong and Qian [70] considered the problem of secure interoperation in net-
works of heterogeneous access control systems. A graph-based model is used to
represent a secure access control system, whereby nodes are system entities and
arcs specify the direction of positive/negative access. System interoperation is
defined by composing graphs, and it is shown that the composition of individually
secure systems does not necessarily result in a secure system. That is, an unau-
thorized user may potentially gain access to a resource by following an indirect
path across the individually secure but now interoperating access control systems.
Gong and Qian show that in the graph-based approach, the optimal elimination of
interoperation vulnerabilities occurring as a result of composition/interoperation
is NP-complete. Bistarelli et at. [19] consider the problem in [70], and propose
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a constraint-based model to represent a secure access control system. System
reconfiguration for secure interoperation is expressed as a Constraint Satisfaction
Problem [97]. The advantage of the constraint-based approach, is that trade-offs
may be made over the set of all interoperation vulnerabilities that occur as a
result of composing the individually secure access control systems, in reasonable
time [19].

The cascade vulnerability problem [99] is concerned with secure interoperation
in networks of multilevel secure systems. The interconnection may be between
systems accredited with different levels of risk, and a cascade vulnerability occurs
when confidentiality requirements are threatened, whereby an attacker “can take
advantage of network connections to compromise information across a range of
security levels that is greater than the accreditation range of any of the component
systems he must defeat to do so” [99]. This is similar to the problem of security
violation due to indirect paths considered in [70]. Bistarelli et at. [20] propose
a constraint-based approach to model, detect and eliminate the cascade vulner-
ability problem in an arbitrary multilevel secure network. Cascading network
paths are detected and removed by breaking a minimum number of system links
in polynomial time.

Denning [42] reported some of the earliest work on lattice-based models for
secure information flow in systems. An information flow policy is concerned with
the flow of information between the different security classes in a system, and
the information flow policy in [42] consists of the finite set of security classes, a
binary ordering between security classes in terms of a “can flow” relation, and a
binary class combining (join) operator. Denning demonstrated that under certain
axioms, an information flow policy forms a finite lattice structure.

Jacob [77] considered the refinement of systems. It is shown how different
refinement relations can be used to capture different kinds of system properties.
When one system refines another, it is said to be “no worse with respect to some
property of interest” [77], corresponding to one definition of refinement from [7]
as “an added development or improvement”. However in [77], the notion of re-
finement does not imply one system is better than another, only no worse.

Foley [56] reinterprets the notion of refinement [77] for refinement of pol-
icy. In contrast to [42], an information flow policy is defined as a reflexive rela-
tion, whereby details about system entities are encoded along with their security
classes. The policy ordering relation captures the property of restrictiveness,
and when one policy refines another, the former is said to be “no less restric-
tive” [56] than the latter. Foley demonstrated that the set of all information flow
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policies [56] form a lattice under the refinement ordering, with a lowest upper
bound operator. In [57], Foley extends the model of policy refinement [56] to
allow for specifying and reasoning over integrity policies. The proposed approach
extends the Clark-Wilson (CW) integrity model [32] to allow for dynamic sepa-
ration of duty. The policy model forms a lattice under refinement with a lowest
upper bound operator for policies. The theory of reflexive relations is extended
to include ratings in [58], such that there is a degree of confidence that a given
policy is being upheld. The model is used to reason about a problem related to
synchronizing devices that is similar to the cascade vulnerability problem. How-
ever, Foley envisions that optimally eliminating the cascading paths using the
proposed approach is NP-complete, similar to the graph-based approach taken
in [70] for the optimal elimination of interoperation vulnerabilities in access con-
trol systems. This is in contrast to the later approach in [20] where cascading
paths can be eliminated in polynomial time.

Zhao and Bellovin [160, 161] propose a policy algebra framework for packet-
filter firewalls. The framework defines operators for addition, conjunction, sub-
traction, and summation, over rules and policies. Cost and risk functions asso-
ciated with policy enforcement are also specified. The proposed approach allows
for the detection of conflicts that arise as a result of composition, however, it does
not allow for preventing them. Instead, the authors propose a choice of conflict
resolution policies be presented to the administrator, who then decides if an ac-
cess should be granted or denied by considering options such as, for example, the
most-specific rule approach [90] implemented as a decorrelation algorithm, or by
applying the target action of the first matching rule [131].

2.5 Discussion

A firewall is an important network security mechanism, however, the effective-
ness of a firewall is hampered by how well its policy is configured. There is a
rich literature of work on detecting and resolving anomalies in firewall policy
configurations. However, in general, research such as [1, 5, 6, 30, 35, 73, 159] is
focused on the conventional five-tuple firewall rule with a binary target action of
allow or deny, and with the exception of [23, 38, 53, 66], work in this area has
been focused on anomalies in packet-filter policies only. The extent as to what
can be synthesized from a high-level specification language suffers from similar
shortcomings, and the approaches taken by [13, 39, 71, 72] are only applicable to
packet-filter firewalls. Querying a policy configuration is also limited by the fil-
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ter condition attributes and rule target actions that can be specified in the query
language, and with the exception of [52, 93], research in this area been focused on
packet-filter policies. The query-based approach is further limited by the ability
of the administrator to construct useful queries.

Firewall policies may need to be reconfigured for highly dynamic environ-
ments, and ad-hoc updates are often carried out manually. Policy updates may
result in a configuration that is not consistent with a network security policy; the
updates may lead to a configuration that is overly-restrictive, thereby denying le-
gitimate access, or the updated configuration may be overly-permissive, resulting
in unwanted packets traversing the firewall and potentially resulting in security
violations similar to those considered in Section 2.4. The focus in this disserta-
tion is on firewall policy composition, and we argue that there is a need for a
consistent means of composing firewall policies, such that the result is anomaly-
free and composition upholds the security requirements of each policy involved.
Lattice-based access control models are fundamental components of computer se-
curity and provide consistent composition operators for a variety of access control
policy models [56, 78, 121, 122]. In this dissertation, we reinterpret the notion of
refinement [56, 57, 77] and develop a lattice-based policy model for firewalls.
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Chapter 3

Attributes of a Linux-based
Firewall

The objective of this chapter is to develop a formal model for various filter con-
dition attributes of the Linux iptables firewall. The attributes will be used to
construct packet-rules for the FW0 firewall policy algebra in Chapter 4, and ex-
tended to construct range-based rules for the FW1 algebra in Chapter 5. The
chapter is organised as follows. Section 3.1 provides an overview of Linux Netfilter
and iptables. Section 3.2 explores iptables-rule constructs and gives a formal def-
inition for filter condition attributes for use in FW0. Filter condition attributes
for IPs/ports and the TCP, UDP and ICMP protocols are developed. Additional
filtering specifications are also defined.

3.1 Linux iptables

Netfilter [68, 138] is a framework that enables packet filtering, Network Address
Translation (NAT) and packet mangling within the Linux kernel. A front-end
command-line utility called iptables is used to construct firewall rules that instruct
Netfilter how to interpret packets. As a firewall, iptables has stateless, stateful
and Deep Packet Inspection (DPI) filtering capabilities.

An iptables (firewall, NAT or mangle) rule requires the specification of a table,
a chain, the accompanying filter conditions on packet fields that must be matched
and an associated target action. With iptables, there are four tables: filter,
nat, mangle and raw. A table is a set of chains and it defines the global context
for common packet handling functionality. For example, the filter table defines
the set for firewall rules, while the nat table defines the set of rules concerned
with NAT. A chain is a set of rules that define the local context within a table.
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3.2 Encoding iptables Filter Condition
Attributes

Rules within a chain are applied to the context defined both by the chain itself
and the particular table. This dissertation focuses on the firewalling aspects
of iptables, that is, the filter table. There are three built-in chains defined
within the filter table that govern traffic being routed to (INPUT chain), from
(OUTPUT chain) and beyond the firewall itself (FORWARD chain). Figure 3.1
illustrates the iptables packet traversal according to its associated chain.

Interface x
Inbound packets

Routing
decision

INPUT

FORWARD

•

Local
process OUTPUT

Interface y

Outbound packets

allow

allow

allow
deny

deny deny

Figure 3.1: Linux iptables filter table chain packet traversal

The following example demonstrates the specification of a firewall rule using
the iptables command-line syntax.

Example 1 The following iptables access-control rule specifies that inbound
(INPUT) TCP packets (-p tcp) originating from the IP address 0.0.0.1 (-s 0.0.0.1)
destined to the IP address 0.0.0.2 (-d 0.0.0.2) will be permitted traversal of the
firewall (-j ACCEPT).

iptables -t filter -A INPUT -p tcp -s 0.0.0.1 -d 0.0.0.2 -j ACCEPT

Note, the filter table is the default table for iptables, therefore it is not necessary
to include the (-t filter) option when specifying a firewall rule. 4

3.2 Encoding iptables Filter Condition At-
tributes

In this section, the core filter condition attributes used to define firewall rules
in the FW0 firewall algebra are formally specified. Attributes are derived from
the Data Link, Network, Transport and Application Layers of the OSI model.
Additional filter condition attributes are also defined. Attribute definitions are
extended in Chapter 5 to specify range-based filter conditions used to define
firewall rules in the FW1 policy algebra.
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3.2.1 Data Link Layer Filtering

Packet-type. iptables allows the specification of firewall rules that filter the
type of packet at the Data Link layer of the OSI model.

Example 2 The following iptables rule specifies that inbound (INPUT) TCP
broadcast packets (-p tcp --pkt-type broadcast) destined for the IP address
0.0.0.1 (-d 0.0.0.1) be denied (-j DROP).

iptables -A INPUT -p tcp --pkt-type broadcast \
-d 0.0.0.1 -j DROP

4

Let PktTpe be the set of Data Link-layer packet types, whereby:

PktTpe ::= unicast | broadcast | multicast

Media Access Control (MAC) Addresses. iptables allows for constructing
firewall rules that filter the MAC address of a Ethernet device at the Data Link
layer of the OSI model. Filtering is applied to source MAC addresses entering
the FORWARD or INPUT chains of the filter table [146].

Example 3 The following iptables rule specifies that inbound TCP packets
(INPUT -p tcp) destined for the IP address 0.0.0.1 (-d 0.0.0.1) with source MAC
address 00:0F:EA:91:04:08 (-m mac --mac-source 00:0F:EA:91:04:08) be de-
nied (-j DROP).

iptables -A INPUT -p tcp -d 0.0.0.1 \
-m mac --mac-source 00:0F:EA:91:04:08 -j DROP

4

Let basic type MAC be the set of all MAC addresses. We define:

[MAC ]

For simplicity, we do not consider how the values of MAC may be constructed,
other than to assume that the usual human-readable notation can be used, such
as 00:0F:EA:91:04:08 and 00:0F:EA:91:04:09 ∈ MAC .
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3.2.2 Network Layer Filtering

IP Addresses. iptables allows the specification of firewall rules that filter the
source/destination IP address of a network packet. For simplicity, we consider
only the IPv4 address range, as a firewall rule with an IPv6 address filter condi-
tion attribute must be specified using ip6tables; the equivalent IPv6 firewall [68].
Figure 3.21 depicts the IPv4 protocol packet header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bit

bit

20 bytes

version header length
with options type of service (TOS) full length of packet

identification IP flags
x D M fragment Offset

time to live (TTL) protocol header checksum
source IP address

destination IP address
IP options (variable length)

Figure 3.2: The IPv4 protocol packet header

Example 4 The following iptables rule specifies that inbound (INPUT) TCP
packets (-p tcp) originating from the IP address 0.0.0.1 (-s 0.0.0.1) destined
to the IP address 0.0.0.2 (-d 0.0.0.2) will be permitted traversal of the firewall
(-j ACCEPT).

iptables -A INPUT -p tcp -s 0.0.0.1 -d 0.0.0.2 -j ACCEPT

It is also possible to specify firewall rules that filter by source/destina-
tion IP range. For example, the following iptables rule specifies that inbound
(INPUT) TCP packets (-p tcp) originating from the IP range 0.0.0.1-0.0.0.3 (-m
iprange --src-range 0.0.0.1-0.0.0.3) destined to the IP range 0.0.0.2-0.0.0.4
(--dst-range 0.0.0.2-0.0.0.4) will be allowed (-j ACCEPT).

iptables -A INPUT -p tcp -m iprange --src-range 0.0.0.1-0.0.0.3 \
--dst-range 0.0.0.2-0.0.0.4 -j ACCEPT

4

In this dissertation, IP addresses as encoded using natural numbers, as there
is a logical mapping from IPs to natural numbers, and a logical mapping from
IP ranges and CIDR blocks to intervals of N. This is done for ease of exposition,
and to exploit the natural ordering of ≤ over N. Let IP be the set of all IPv4
addresses, given as the set of all natural numbers from 0 . . maxIP, whereby:

1Packet header illustrations in this dissertation are adaptations of the TikZ source at [140].
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maxIP == 232 − 1

IP == {i : N | 0 ≤ i ≤ maxIP}

ICMP. The Internet Control Message Protocol, ICMP, is an OSI Network layer
protocol. It is used by networked devices to relay error/query messages [108].
iptables allows for filtering by ICMP Type and Code.

Example 5 The following iptables rule specifies inbound (INPUT) ICMP Echo
Request (ping) packets (-p icmp --icmp-type 8/0), originating from the IP
address 0.0.0.1 (-s 0.0.0.1), destined for the IP address 0.0.0.2 (-d 0.0.0.2), be
allowed (-j ACCEPT).

iptables -A INPUT -p icmp --icmp-type 8/0 -s 0.0.0.1 \
-d 0.0.0.2 -j ACCEPT

A second rule, necessary for the bi-directional network communication chan-
nel specifies, that outbound (OUTPUT) ICMP Echo Response packets (-p icmp
--icmp-type 0/0), from the IP address 0.0.0.2 (-s 0.0.0.2), destined for the IP
address 0.0.0.1 (-d 0.0.0.1), be allowed (-j ACCEPT).

iptables -A OUTPUT -p icmp --icmp-type 0/0 -s 0.0.0.2 \
-d 0.0.0.1 -j ACCEPT

4

Let TypesCodes be the set of all valid ICMP Type/Code pairs, as detailed
in [110]. Most Type/Code pairs i, j ∈ N are given as (i, j) ∈ TypesCodes, for
example, (8,0) is an ICMP Echo Request, however, some ICMP Types i ∈ N; for
example, Type 19 (reserved for security), have no ICMP Code, and are given as
(i,−1) ∈ TypesCodes. Note, for ease of exposition we use syntactic sugar in the
definition of TypesCodes as a free-type. We define:

TypesCodes ::= (0,0) | (3,0) | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
(3,8) | (3,9) | (3,10) | (3,11) | (3,12) | (3,13) | (3,14) | (3,15) | (4,0) | (5,0) |
(5,1) | (5,2) | (5,3) | (6,0) | (8,0) | (9,0) | (9,16) | (10,0) | (11,0) | (11,1) |
(12,0) | (12,1) | (12,2) | (13,0) | (14,0) | (15,0) | (16,0) | (17,0) | (18,0) |
(19, -1) | (20, -1) | (21, -1) | (22, -1) | (23, -1) | (24, -1) | (25, -1) | (26, -1) |
(27, -1) | (28, -1) | (29, -1) | (30, -1) | (31, -1) | (32, -1) | (33, -1) | (34, -1) |
(35, -1) | (36, -1) | (37, -1) | (38, -1) | (39, -1) | (40,0) | (40,1) | (40,2) |
(40,3) | (40,4) | (40,5) | (41, -1) | (253, -1) | (254, -1)
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3.2.3 Transport Layer Filtering

Network Ports. A network port is a communication end-point used by the
Transport layer protocols (for example, TCP/UDP) of the OSI model. A port
is always associated with an IP address. The Internet Assigned Numbers Au-
thority (IANA), maintains the official assignments of port numbers for specific
uses/services [151]. For example, 22 is used for SSH and 80 is used for HTTP.

Example 6 The following iptables rule specifies that inbound (INPUT) TCP
packets (-p tcp) originating from the IP address 0.0.0.1 (-s 0.0.0.1) destined
for the HTTP and HTTPS services (-m multiport --dports 80,443) at the
IP address 0.0.0.2 (-d 0.0.0.2) be denied (-j DROP).

iptables -A INPUT -p tcp -m multiport --dports 80,443 \
-s 0.0.0.1 -d 0.0.0.2 -j DROP

4

A port is a 16-bit unsigned integer. Let Ports be the set of all ports, given as
the set of all natural numbers from 0 . . maxPrt. We define:

maxPrt == 216 − 1

Ports == {i : N | 0 ≤ i ≤ maxPrt}

UDP. The User Datagram Protocol, UDP, is an OSI Transport layer proto-
col [107]. It is a transaction-oriented protocol, with no guarantee of packet deliv-
ery or duplicate protection. Figure 3.3 depicts the UDP protocol packet header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bit

bit

8
bytes

source port destination port
length checksum

Figure 3.3: The UDP protocol packet header

iptables allows the specification of firewall rules that filter UDP traffic.

Example 7 The following iptables rule specifies that inbound (INPUT) UDP
packets (-p udp) originating from the IP address 0.0.0.1 (-s 0.0.0.1) destined
for the IP address 0.0.0.2 (-d 0.0.0.2) are to be denied (-j DROP).

iptables -A INPUT -p udp -s 0.0.0.1 -d 0.0.0.2 -j DROP
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4

Let UDP define the set of packet values for the UDP protocol; whereby 1
signifies that a packet is using UDP or 0 signifies it is not. We define:

UDP ::= 1 | 0

TCP. The Transmission Control Protocol, TCP, is a connection-oriented OSI
Transport layer protocol, that provides reliable, ordered, and error-checked pack-
ets between communicating network principals [109]. Figure 3.4 depicts the TCP
protocol packet header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bit

bit

20
bytes

offset

source port destination port
sequence number

acknowledgement number
offset reserved TCP flags

CWR ECE URG ACK PSH RST SYN FIN window
checksum urgent pointer

TCP options (variable length, optional)

Figure 3.4: The TCP protocol packet header

iptables allows for TCP firewall rules to be constructed using a pair of TCP
flags specifications. The first, specifies the flags that are to be examined in a
packet-header, and the second specifies the flags that are to be set in a packet-
header, these are the mask and comp values for a TCP packet [68].

Example 8 The following iptables rule specifies that inbound (INPUT) TCP
packets (-p tcp) with all flags set (a TCP XMAS port-scan pattern [91]), and all
flags to be examined by the firewall (--tcp-flags ALL, ALL), originating from
source IP address 0.0.0.1 (-s 0.0.0.1), destined for the IP address 0.0.0.2 (-d
0.0.0.2) are to be denied (-j DROP).

iptables -A INPUT -p tcp --tcp-flags ALL, ALL -s 0.0.0.1 \
-d 0.0.0.2 -j DROP

The following iptables rules enable the TCP three-way handshake; by permit-
ting HTTP traffic from IP address 0.0.0.1 to/from the IP address 0.0.0.2 while
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filtering network traffic based on TCP flags.

iptables -A INPUT -p tcp --sport 1024:65535 --dport 80 \
--tcp-flags SYN, SYN -s 0.0.0.1 -d 0.0.0.2 -j ACCEPT

iptables -A OUTPUT -p tcp --dport 1024:65535 --sport 80 \
--tcp-flags SYN,ACK SYN,ACK -d 0.0.0.1 -s 0.0.0.2 -j ACCEPT

iptables -A INPUT -p tcp --sport 1024:65535 --dport 80 \
--tcp-flags ACK, ACK -s 0.0.0.1 -d 0.0.0.2 -j ACCEPT

iptables -A OUTPUT -p tcp --sport 80 --dport 1024:65535 \
--tcp-flags ACK, ACK -d 0.0.0.1 -s 0.0.0.2 -j ACCEPT

4

Let Flags be the set of TCP flags filterable in an iptables rule (as a mask or
a comp specification), whereby:

Flags ::= syn | ack | fin | psh | rst | urg

and let FlagSpec be the set of all (mask, comp) pairs, we define:

FlagSpec == PFlags × PFlags

3.2.4 Application Layer Filtering

Layer 7 Protocol Filtering. iptables allows for constructing firewall rules that
filter certain protocols at the Application Layer of the OSI model [86].

Example 9 The following iptables rule specifies that inbound (INPUT) SSH
packets (-m layer7 --l7proto ssh), originating from the source IP address
0.0.0.1 (-s 0.0.0.1), destined for the IP address 0.0.0.2 (-d 0.0.0.2) be allowed
(-j ACCEPT).

iptables -A INPUT -m layer7 --l7proto ssh \
-s 0.0.0.1 -d 0.0.0.2 -j ACCEPT

4

Let ProtoL7 be the set of all OSI Application-layer protocols recognised by
iptables [86]. Note, for ease of exposition we use syntactic sugar in the definition
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of ProtoL7 as a free-type. We define:

ProtoL7 ::= 100bao | aim | aimwebcontent | applejuice | ares | armagetron |
audiogalaxy | battlefield1942 | battlefield2 | battlefield2142 | bgp | biff |
bittorrent | chikka | cimd | ciscovpn | citrix | counterstrike-source | cvs |
dayofdefeat-source | dazhihui | dhcp | directconnect | dns | doom3 | edonkey |
fasttrack | finger | freenet | ftp | gkrellm | gnucleuslan | gnutella | goboogy |
gopher | gtalk | guildwars | h323 | halflife2-deathmatch | hddtemp | hotline |
http | http-rtsp | http-dap | http-freshdownload | http-itunes | httpaudio |
httpcachehit | httpcachemiss | httpvideo | ident | imap | imesh | ipp | irc |
jabber | kugoo | live365 | liveforspeed | lpd | mohaa | msn-filetransfer |
msnmessenger | mute | napster | nbns | ncp | netbios | nntp | ntp | openft |
pcanywhere | poco | pop3 | pplive | pressplay | qq | quicktime | quake-halflife |
quake1 | radmin | rdp | replaytv-ivs | rlogin | rtp | rtsp | runesofmagic |
shoutcast | sip | skypeout | skypetoskype | smb | smtp | snmp | snmp-mon |
snmp-trap | socks | soribada | soulseek | ssdp | ssh | ssl | stun | subspace |
subversion | teamfortress2 | teamspeak | telnet | tesla | tftp | thecircle |
tonghuashun | tor | tsp | uucp | validcertssl | ventrilo | vnc | whois |
worldofwarcraft | x11 | xboxlive | xunlei | yahoo | zmaap

The Layer 7 protocol definitions specify how these protocol names correspond
to regular expressions that are matched by Netfilter on the packet Application
Layer data. For example, the name smb corresponds to the signature [85]:

\xffsmb[\x72\x25]

Packet-owner/creator Filtering. For locally generated packets; iptables al-
lows filtering by various characteristics of the packet creator through the owner
module. Filtering is applied to the OUTPUT chain of the filter table [146].

Example 10 The following iptables rule specifies that outbound (OUTPUT) TCP
packets (-p tcp) originating from the Linux application UID 1001 (-m owner
--uid-owner 1001) destined to the IP address 0.0.0.1 (-d 0.0.0.1) on network
port 80 (--dport 80) will be permitted traversal of the firewall (-j ACCEPT).

iptables -A OUTPUT -p tcp -m owner --uid-owner 1001 \
-d 0.0.0.1 --dport 80 -j ACCEPT

Similarly, the following iptables rule specifies that outbound (OUTPUT) TCP
packets (-p tcp) originating from the Linux application GID 1010 (-m owner
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--gid-owner 1010) destined to the IP address 0.0.0.1 (-d 0.0.0.1) on port 80
(--dport 80) will be allowed (-j ACCEPT).

iptables -A OUTPUT -p tcp -m owner --gid-owner 1010 \
-d 0.0.0.1 --dport 80 -j ACCEPT

4

Let UID be the set of 32-Bit UIDs for a Linux system, given as the set of all
natural numbers from 0 . . maxUID. We define:

maxUID == 232 − 1

UID == {i : N | 0 ≤ i ≤ maxUID}

Similarly, let GID be the set of 32-Bit GIDs for a Linux system, given as the
set of all natural numbers from 0 . . maxGID, whereby:

maxGID == 232 − 1

GID == {i : N | 0 ≤ i ≤ maxGID}

3.2.5 Additional Filtering Specifications

State. When filtering via a stateful firewall, the firewall’s state-table automati-
cally manages TCP flags [152]. The iptables conntrack module defines the state
extension [146]. The state extension allows access to the connection tracking state
for a packet. The notion of state in iptables is an abstraction, where the literals
NEW, ESTABLISHED, RELATED, INVALID and UNTRACKED, signify user-land
‘states’ that packets within tracked connections can be related to. This is enabled
by the conntrack framework within the Linux kernel.

Example 11 The previous four iptables rules from Example 8 that enable the
TCP three-way handshake using TCP Flags may be rewritten as follows. Note,
these two rules also allow for the TCP connection teardown.

iptables -A INPUT -p tcp -s 0.0.0.1 -d 0.0.0.2 --dport 80 \
-m state --state NEW, ESTABLISHED -j ACCEPT

iptables -A OUTPUT -p tcp -d 0.0.0.1 -s 0.0.0.2 --sport 80 \
-m state --state ESTABLISHED -j ACCEPT
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An advantage of specifying state in this way, is that it allows end-users to
construct firewall rules that abstract from the low-level operational details of the
specified network protocol. The NEW state signifies the packet has started a new
connection, or is otherwise associated with a connection that has not seen packets
in both directions. An ESTABLISHED state signifies the packet is associated with
a connection which has seen packets in both directions. The state RELATED
signifies the packet is starting a new connection, but is associated with an existing
connection, for example, an FTP data transfer, or an ICMP error. The INVALID
state signifies that the packet is associated with no known connection. A state of
UNTRACKED signifies that the packet is not tracked [68]. 4

Let State be the set of connection tracking states for a packet/connection.
We define:

State ::= new | established | related | invalid | untracked

In this dissertation, the proposed model of state is based on the expressive-
ness of the iptables state module. A limitation of the approach, is that it is not
possible to reason about complex stateful anomalies, such as those considered
in [66], where a connection-oriented protocol is modelled using general automata
with the permitted protocol states and transitions encoded.

Time-based Filtering. iptables allows for a filtering decision to be made if
the packet arrival time/date is within a given range. The possible time range
expressible in a rule is 1970-01-01T00:00:00 to 2038-01-19T04:17:07 [49], and is
specified in ISO 8601 “T” notation [76].

Example 12 The following iptables rule specifies that for all inbound (INPUT)
packets from the IP address 0.0.0.1 (-s 0.0.0.1), arriving between 8 a.m.
January 1st 2017 and 6 p.m. January 3rd 2017 (-m time --datestart
2017-01-01T08:00:00 --datestop 2017-01-03T18:00:00), are to be denied.

iptables -A INPUT -s 0.0.0.1 -m time --datestart \
2017-01-01T08:00:00 --datestop 2017-01-03T18:00:00 -j DROP

4

Let Time be the set of all Unix timestamps from 1970-01-01T00:00:00 up to
and including 2038-01-19T04:17:07, given as the set of all natural numbers from
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0 . . T (2038-01-19T04:17:07), where T (date) is a function that converts a date
specified in “T” notation to a Unix timestamp. We define:

maxTime == T (2038-01-19T04:17:07)

Time == {i : N | 0 ≤ i ≤ maxTime}

When reasoning about stateful/time-based policy anomalies in later chap-
ters, we use only the anomaly definitions from [5, 6], explored in Chapter 2
Section 2.3.1, that consider redundancy, shadowing, etc., and do not consider
more complex stateful anomalies, such as those considered in [66].

Network Interfaces and Direction-oriented Filtering. iptables allows for
a filtering decision to be made with respect to the interface a network packet is
arriving at/leaving through.

Example 13 The following iptables rule specifies that inbound (INPUT) network
traffic arriving on the loopback interface (-i lo) from the local-loopback address
range (-s 127.0.0.1/8) be allowed (-j ACCEPT).

iptables -A INPUT -i lo -s 127.0.0.1/8 -j ACCEPT

Similarly, the following iptables rule specifies that that outbound (OUTPUT) net-
work traffic departing through the loopback interface (-o lo), destined for the
local-loopback address range (-d 127.0.0.1/8) be allowed (-j ACCEPT).

iptables -A OUTPUT -o lo -d 127.0.0.1/8 -j ACCEPT

4

Let basic type IFACE be the set of all interfaces on a machine, where for
simplicity, we assume elements of IFACE resemble lo, eth0, wlan0, tun0, etc.
We define:

[IFACE ]

Network traffic can be inbound or outbond on an interface. Direction-oriented
filtering is defined as Dir , whereby:

Dir ::= ingress | egress
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iptables Chains. Let Chain define the set of chains for the iptables filter table,
we define:

Chain ::= input | output | forward

The following example demonstrates the enforcement of a default deny policy
on the INPUT, OUTPUT AND FORWARD chains, respectively.

Example 14 The following iptables rules specify that all network traffic not
matched by a rule on the INPUT, OUTPUT AND FORWARD chains of the
filter table be denied.

iptables -P INPUT -j DROP

iptables -P OUTPUT -j DROP

iptables -P FORWARD -j DROP

4

3.3 Discussion

In this chapter, firewall rule filter condition attributes for IP addresses, ports,
and the TCP, UDP and ICMP protocols are defined. The specification includes
definitions for TCP flags and ICMP Types/Codes. A notion of state has been
encoded also. For the OSI Data Link Layer, attributes for packet-type and MAC
address are defined. At the OSI Application Layer, filter condition attributes for
Linux UIDs and GIDs, and the various application-layer protocols recognised by
iptables are specified. Additional filtering specifications have also been developed.
In Chapter 4, we use these filter condition attributes to develop a formal model
of filtering constraints for the FW0 firewall policy algebra. Policies in the FW0

algebra are defined in terms of constraints on individual IPs, ports, protocols and
the additional filter condition attributes defined in this chapter. In Chapter 5,
range-based versions of the filter condition attributes defined in this chapter are
formally specified for use in the FW1 firewall policy algebra.
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Chapter 4

The FW0 Policy Model

The objective of this chapter is to develop a firewall policy algebra FW0, for
constructing and reasoning over anomaly-free policies. Firewall rules are con-
structed using the filter condition attributes defined in Chapter 3. FW0 defines
a simple model of iptables rules that do not consider range-based filter condi-
tion attributes; the purpose of developing FW0 is to demonstrate the utility of
building such an algebra. In Chapter 5, the policy algebra FW1 defines a fire-
wall policy in terms of rules constraining range-based filter conditions. The FW0

policy algebra in this chapter is an extended version of the algebra in [62]. The
chapter is organised as follows. In Section 4.1 the packet-based filter condition
attribute datatypes are defined. Section 4.2 defines the FW0 firewall policy al-
gebra and Section 4.3 demonstrates how the algebra can be used in practice to
detect anomalies in firewall policies.

4.1 Packet Attribute Datatypes

In this section, filter condition attribute datatypes for the FW0 policy model
are defined. Examples of each attribute instance are given, and these are used
to construct network packets at the end of this section for use in the running
example given in Section 4.2.

OSI Layer 2. Let L2 define the set of all attributes of interest at Layer 2 of the
OSI model, given as the set of all tuples over the set of all packet-types (PktTpe)
and the set of all MAC address (MAC ). We define:

L2 == PktTpe ×MAC
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Example 1 The Data Link Layer attribute l2A ∈ L2 is defined, whereby:

l2A == (unicast, 00:0F:EA:91:04:08)

4

OSI Layer 7. Let L7 define the set of all attributes of interest at Layer 7 of the
OSI model, given as the set of all three-tuples over the set of all Layer 7 protocols
recognisable by iptables (ProtoL7 ), the set of all Linux UIDs (UID) and the set of
all Linux GIDs (GID). We define:

L7 == ProtoL7 × UID ×GID

Example 2 The Application Layer attributes l7A, l7B, l7C ∈ L7 are given as:

l7A == (http, 1001, 1010)

l7B == (ftp, 2002, 2020)

l7C == (telnet, 3003, 3030)

4

The Stateful/Protocol Datatype. Let Protocol define the set of all stateful
protocols, given as the set of all four-tuples over TCP flags (FlagSpec), the UDP
protocol (UDP), the set of all ICMP Type/Codes (TypesCodes), and the set of
all connection tracking states for a packet/connection (State). We define:

Protocol == FlagSpec × UDP × TypesCodes × State

Example 3 The attribute instance protoA ∈ Protocol is given as:

protoA == (({syn}, {syn}), 0, ∅, new)

4

Additional Filtering Specifications. Let AdditionalFC define the set of all
additional filter condition attributes of interest, given as the set of all four-tuples
over the set of all Unix timestamps expressible using ISO 8601 “T” notation in an
iptables rule (Time), the set of all network interfaces (IFACE), the set of direc-
tions for direction-oriented filtering (Dir) and the set of iptables chains (Chain).

AdditionalFC == Time × IFACE × Dir × Chain
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Example 4 The attribute instance aA ∈ AdditionalFC is defined, whereby:

aA == (1474404256, egress, eth0, output)

4

Network Packets. A network packet header is a eight-tuple (s, sprt, d, dprt,
proto, l2, l7, a), representing network traffic originating from source IP address
s, with source port number sprt, destined for destination IP address d, with
destination port number dprt, using a stateful protocol proto, with additional
Layer 2 attributes l2, additional Layer 7 attributes l7 and additional filtering
specifications a. Let Packet define the set of all packet headers:

Packet == IP × Ports × IP × Ports × Protocol × L2 × L7 × AdditionalFC

Example 5 The packets http1, ftp1, tel1 ∈ Packet are given as:

http1 == (1, 1025, 10, 80, protoA, l2A, l7A, aA)

ftp1 == (1, 1025, 11, 21, protoA, l2A, l7B, aA)

tel1 == (1, 1025, 10, 23, protoA, l2A, l7C, aA)

4

4.2 The FW0 Firewall Algebra

In this section, an algebra for constructing and reasoning about anomaly-free
firewall policies is defined. We focus on stateful and stateless firewall policies
that are defined in terms of constraints on individual IP addresses, ports, TCP,
UDP and ICMP protocols, and additional filter condition attributes. A firewall
policy defines the packets that may be allowed or denied by a firewall. Let Policy0
define the set of all firewall policies, whereby:

Policy0 == {A,D : PPacket | A ∩ D = ∅}

A firewall policy (A,D) ∈ Policy0 defines that a packet p ∈ A should be
allowed by the firewall, while a packet p ∈ D should be denied by the firewall.
Given (A,D) ∈ Policy0 then A and D are disjoint: this avoids any contradiction
in deciding whether a packet should be allowed or denied. The policy acces-
sor functions allow and deny are analogous to functions first and second for
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ordered pairs:

allow,
deny : Policy0 → PPacket

∀ a, d : P Packet •
allow (a, d) = a ∧
deny (a, d) = d

Thus, we have for all P ∈ Policy0 then P = (allow(P), deny(P)).

Lemma 4.2.1 Policy0 defines the set of anomaly-free policies.

Proof Given a policy (A,D) ∈ Policy0, as A and D are sets of individual packets,
then A has no redundancy and D has no redundancy. Therefore, all packets
allowed by the policy are distinct, as are all packets that are denied by the policy.
Given that A and D are disjoint, then a policy P has no shadowing.

∀P : Policy0 •
allow(P) ∩ deny(P) = ∅

Given that all packets in P are distinct and P has no shadowing, then P
has no generalisations and P has no correlations. Therefore, as P has no re-
dundancy/shadowing/generalisation/correlation, then Policy0 defines the set of
anomaly-free policies.

Note that (A,D) ∈ Policy0 need not partition Packet: the allow and deny sets
define the packets to which the policy explicitly applies and an implicit default
decision is applied for those packets in Packet \ (A ∪ D). For the purposes of
modeling iptables firewall policies it is sufficient to assume default deny, though
we observe that the FW0 algebra can also be used to reason about default allow
firewall policies.

Example 6 Consider the following network security policy that we will refer to
throughout this section, where traffic from an administrators subnet is permitted
access to a HTTP and a FTP server, and all Telnet traffic to the HTTP server
is to be denied. The packets that are used to define this policy include http1,
ftp1, tel1 ∈ Packet from Example 5. A firewall policy Admin1 ∈ Policy0 allows
the HTTP and FTP packets while denying the Telnet traffic:

Admin1 == ({http1, ftp1}, {tel1})
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4

Policy Refinement. An ordering can be defined over firewall policies, whereby
given P,Q ∈ Policy0 then P v Q means that P is no less restrictive than Q,
that is, any packet that is denied by Q is denied by P. Intuitively, policy P
is considered to be a safe replacement for policy Q in the sense of [56, 57, 77],
and any firewall that enforces policy Q can be reconfigured to enforce policy P
without any loss of security. The safe replacement ordering is defined as follows.

FW0

⊥,> : Policy0
v : Policy0 ↔ Policy0
u ,

t : Policy0 × Policy0 → Policy0

⊥ = (∅,Packet) ∧ > = (Packet, ∅)
∀P,Q : Policy0 •

P vQ ⇔ (allow (P) ⊆ allow (Q)) ∧
(deny (P)⊇ deny (Q)) ∧

P uQ = (allow (P) ∩ allow (Q),

deny (P) ∪ deny (Q)) ∧
P tQ = (allow (P) ∪ allow (Q),

deny (P) ∩ deny (Q))

Formally, P v Q iff every packet allowed by P is allowed by Q and that any
packet explicitly denied by Q is also explicitly denied by P. Note that in this
definition we distinguish between packets explicitly denied in the policy versus
packets implicitly denied by default. This means that, everything else being
equal, a policy that explicitly denies a packet is considered more restrictive than
a policy that relies on the implicit default-deny for the same packet; we shall see
that this distinction is important when safely extending policies with new rules.
Safe replacement is defined as the Cartesian product of subset orderings over
allow and deny sets, and it therefore follows that Policy0 is a partially ordered
set under v. ⊥ and > define the most restrictive and least restrictive policies,
that is, for any P ∈ Policy0 we have ⊥v P v>. Thus, for example, any firewall
enforcing a policy P can be safely reconfigured to enforce the (not very useful)
firewall policy ⊥.
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Theorem 4.2.2 The set of all policies Policy0 forms a lattice under safe re-
placement, with greatest lower bound (u) and lowest upper bound (t) operators
in FW0.

Proof The powerset ordering of packets is a lattice under subset, the Carte-
sian product is a lattice under the definitions of glb and lub, therefore, FW0 is
a lattice.

Example 7 Consider, an update to the network security policy Admin1, where
SSH traffic is to be denied to the HTTP and FTP servers from a malicious IP
address. Some packets to be considered as part of this access restriction are mal1,
mal2 ∈ Packet, whereby:

mal1 == (5, 1025, 10, 22, protoA, (unicast, ∅), (ssh, ∅, ∅),
(1474404256, ingress, eth0, input))

mal2 == (5, 1025, 11, 22, protoA, (unicast, ∅), (ssh, ∅, ∅),
(1474404256, ingress, eth0, input))

A firewall policy Admin2 ∈ Policy0 extends the previous policy Admin1 to deny
these packets from this malicious host:

Admin2 == ({http1, ftp1}, {tel1,mal1,mal2})

We observe that Admin2 safely replaces Admin1: Admin2 v Admin1, but Admin1 is
not a safe replacement for Admin2. 4

Policy Intersection. Under this ordering, the meet, or intersection P u Q, of
two firewall policies P and Q is defined as the policy that denies any packet
that is explicitly denied by either P or Q, but allows packets that are allowed
by both P and Q. Intuitively, this means that if a firewall is required to enforce
both policies P and Q then it can be configured to enforce the policy P u Q,
since P u Q is a safe replacement for both P and Q, that is (P u Q) v P and
(P u Q)v Q. Thus, P u Q provides the ‘best’/least restrictive safe replacement
for both P and Q under v.

Example 8 Consider, a policy Admin3 ∈ Policy0, and packets ssh1, ssh2 and
mal3 ∈ Packet, whereby:

ssh1 == (1, 1025, 10, 22, protoA, (unicast, ∅), (ssh, ∅, ∅),
(1474404256, ingress, eth0, input))
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ssh2 == (1, 1025, 11, 22, protoA, (unicast, ∅), (ssh, ∅, ∅),
(1474404256, ingress, eth0, input))

mal3 == (1, 1025, 5, 6667, protoA, l2A, (irc, ∅, ∅), aA)

The policy Admin3 permits the administrators SSH access to the HTTP and FTP
servers, and denies all network traffic from the client destined for a malicious IP,
according to packets ssh1, ssh2 and mal3 ∈ Packet.

Admin3 == ({ssh1, ssh2}, {mal3})

We have Admin2 u Admin3 = (∅, {tel1,mal1,mal2,mal3}), a safe replacement for
both policies Admin2 and Admin3 under v. 4

Policy Union. The join of two firewall policies P and Q is defined as the
policy that allows any packet allowed by either P or Q, but denies packets that
are explicitly denied by both P and Q. For example, we have Admin2 t Admin3

= ({{http1, ftp1, ssh1, ssh2}}, ∅). Intuitively, this means that a firewall that is
required to enforce either policy P or Q can be safely configured to enforce the
policy P t Q since t provides a lowest upper bound operator, and we have
P v (P tQ) and Q v (P tQ).

4.2.1 Lattice Properties of the FW0 Algebra

The ordering relation v is a non-strict partial order over Policy0; given the prop-
erties of properties of reflexivity, transitivity and antisymmetry [18].

∀FW0; P,Q,R : Policy0 •
P v P ∧
(P v Q ∧ Q v R⇒ P v R) ∧
(P v Q ∧ Q v P ⇒ P = Q)

The ordering relation v is reflexive, as any policy should be a safe replacement for
itself. If for any P ∈ Policy0, P v P did not hold, then an inconsistency would
exist. Transitivity follows from a similar requirement, where for any P,Q,R ∈
Policy0, if P safely replaces Q and Q safely replaces R, then P should also safely
replace R. Antisymmetry follows from the assumption of irredundant policies,
where if P is a safe replacement for Q and Q is a safe replacement for P, then
one of them is unnecessary.
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Figure 4.1 depicts a lattice fragment/partial Hasse diagram, for composition
of Admin2 and Admin3, under the relative ordering of v over Policy0.

>

(Packet, ∅)

Admin2
({http1, ftp1}, {tel1,mal1,mal2})

Admin3
({ssh1, ssh2}, {mal3})

Admin2 t Admin3
({{http1, ftp1, ssh1, ssh2}}, ∅)

Admin2 u Admin3
(∅, {tel1,mal1,mal2,mal3})

(∅,Packet)

⊥

Figure 4.1: FW0 lattice fragment

Commutative Laws. We observe that changing the order of the policies/-
operands does not change the composition result.

∀FW0; P,Q : Policy0 •
P tQ = Q t P ∧
P uQ = Q u P

Associative Laws. We observe that the order in which the operations are
performed does not change the outcome of the operation.

∀FW0; P,Q,R : Policy0 •
P t (Q t R) = (P tQ) t R ∧
P u (Q u R) = (P uQ) u R
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Absorption Laws. The following identities link t and u.

∀FW0; P,Q : Policy0 •
P t (P uQ) = P ∧
P u (P tQ) = P

Idempotent Laws. We observe that for all P ∈ Policy0, P is idempotent with
respect to t and u.

∀FW0; P : Policy0 •
P t P = P ∧
P u P = P

Identity Laws. We observe that FW0 is a bounded lattice/algebraic structure,
such that (Policy,t,u) is a lattice, ⊥ is the identity element for the join operation
t, and > is the identity element for the meet operation u.

∀FW0; P : Policy0 •
P t ⊥ = P ∧
P u > = P

4.2.2 Constructing Firewall Policies

The lattice of policies FW0 provides us with an algebra for constructing and
interpreting firewall polices. The following constructor functions are used to
build primitive policies.

Given a set of packets A then (AllowA) is a policy that allows packets in A,
and (DenyD) is a policy that explicitly denies packets in D.

Allow,
Deny : PPacket → Policy0

∀ S : PPacket •
Allow S = (S , ∅) ∧
Deny S = (∅, S)

This provides what we refer to as a weak interpretation of allow and deny: pack-
ets that are not explicitly mentioned in parameter S are default-deny and are
therefore not specified in the deny set of the policy. The following provides us
with a strong interpretation for these constructors:
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Allow+,

Deny+ : PPacket → Policy0

∀ S : PPacket •
Allow+ S = (S ,Packet \ S) ∧
Deny+ S = (Packet \ S , S)

In this case (Allow+A) allows packets specified in A while explicitly denying all
other packets, and (Deny+D) denies packets specified in D while allowing all
other packets.

A firewall policy P ∈ Policy0 can be decomposed into its corresponding allow
and deny policies and re-constructed using the algebra.

Lemma 4.2.3 Given A,D ∈ PPacket, then:

(Allow+A) t (DenyD) = (A,Packet \ A) t (∅,D)

Proof

(Allow+A) t (DenyD) = (AllowA) u (Deny+ D)

= (A,D)

Example 9 An alternative specification for policy Admin3 is:

Admin3 == (Allow+ ({ssh1, ssh2}) t Deny ({mal3})

4

Corollary 4.2.4 Given A,D ∈ PPacket, then:

(Deny+D) u (AllowA) = (A, ∅) u (Packet \ D,D)

Proof It follows from Lemma 4.2.3 that Corollary 4.2.4 holds.

4.3 Reasoning About Policies in Practice

Sequential Composition. A firewall policy is conventionally constructed as a
sequence of rules, whereby for a given network packet, the decision to allow or
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deny the packet is checked against each policy rule, starting from the first, in
sequence, and the first rule that matches gives the result that is returned. The
algebra FW0 can be extended to include a similar form of sequential compo-
sition of policies. The policy constructions in Section 4.2.2 can be regarded as
representing the individual rules of a conventional firewall policy.

Let (AllowA) o
9 Q denote a sequential composition of an allow rule (AllowA)

with policy Q, with the interpretation that a packet that is matched by A is
allowed; if it does not match A then policy Q is enforced. The resulting policy
either: allows packets in A (and denies all other packets), or allows/denies packets
according to policy Q. This is defined as:

(AllowA) o
9 Q = (Allow+A) tQ

= ((A ∪ allow(Q)), ((Packet \ A) ∩ deny(Q)))

= ((A ∪ allow(Q)), (deny(Q) \ A))

which is as expected. A similar definition can be provided for the sequential
composition (DenyD) o

9 Q, whereby a packet that is matched by D is denied; if it
does not match D then policy Q is enforced. This is defined as:

(DenyD) o
9 Q = (Deny+ D) uQ

= (((Packet \ D) ∩ allow(Q)), deny(Q) ∪ D)

= (allow(Q) \ D, deny(Q) ∪ D)

While in practice it is usual to write a firewall policy in terms of many con-
structions of allow and deny rules, in principle, any firewall policy P ∈ Policy0
can be defined in terms of one allow policy (Allow allow(P)) and one deny pol-
icy (Deny deny(P)) and since the allow and deny sets of P are disjoint we have
P o

9 Q = (Deny deny(P)) o
9 (Allow allow(P)) o

9 Q. We have:

o
9 : Policy0 × Policy0 → Policy0

∀FW0; P,Q : Policy0 •
P o

9 Q = (Deny+ (deny(P)))u
(Q t (Allow+ (allow(P))))

Example 10 The policy Admin4 is given as the sequential composition of Admin2
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and Admin3. We have:

Admin4 = Admin2 o
9 Admin3

= ({http1, ftp1}, {tel1,mal1,mal2}) o
9 ({ssh1, ssh2}, {mal3})

= (Packet \ {mal1,mal2, tel1}), {mal1,mal2, tel1})u
(({ssh1, ssh2}, {mal3})t

({http1, ftp1},Packet \ {http1, ftp1}))

= ({ssh1, ssh2, http1, ftp1}, {tel1,mal1,mal2,mal3})

4

A firewall rule specifies a set of packets and an associated target action. Let
Rule define the set of all packet-based firewall rules, whereby:

Rule ::= allow 〈〈PPacket〉〉 |
deny 〈〈PPacket〉〉

We define a rule interpretation function I as:

I : Rule → Policy0

∀ S : PPacket •
I(allow S) = Allow S ∧
I(deny S) = Deny S

A firewall policy is defined as a sequence of rules 〈r1, r2, . ., rn〉, for ri ∈ Rule, and
is encoded in the policy algebra as I(r1) o

9 I(r2) o
9 . . o

9 I(rn).

Policy Negation. The policy negation of P ∈ Policy0 allows packets explicitly
denied by P and explicitly denies packets allowed by P. We define:

not : Policy0 → Policy0

∀FW0; P : Policy0 •
not P = (Allow+ (deny (P)))t

(Deny (allow (P)))
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Example 11 The negation of policy Admin4 is:

not Admin4 = (Allow+ ({tel1,mal1,mal2,mal3})t
(Deny ({ssh1, ssh2, http1, ftp1}))

= ({tel1,mal1,mal2,mal3}, {ssh1, ssh2, http1, ftp1})

4

From this definition it follows that (not P) is simply (deny (P), allow (P)) and
thus not (DenyD) = (AllowD) and not (AllowA) = (DenyA). Note however,
that in general policy negation does not define a complement operator in the
algebra Policy0, that is, it not necessarily the case that (P t not P) = > and
(P u not P) = ⊥.

Example 12 Given the firewall policy Admin4, then:

Admin4 t (not Admin4) = ({ssh1, ssh2, http1, ftp1, tel1,mal1,mal2,mal3}, ∅)

6= >

and:

Admin4 u (not Admin4) = (∅, {ssh1, ssh2, http1, ftp1, tel1,mal1,mal2,mal3})

6= ⊥

4

However, the sub-lattice of policies with allow and deny sets that exactly parti-
tion the same set S ⊆ Packet has policy negation as complement (allow (P) ∪
deny (P) = S for all P in the sub-lattice).

Policy Projection. Useful policies can be constructed through filtering a policy
by a given filter condition attribute. The projection operators @u and @d filter a
policy by a set of IP addresses. Firstly, let S(S) give the set of all packets that
have s ∈ S as source IP, and similarly D(D) gives all packets with a destination
IP address d ∈ D.
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S,
D : P IP → PPacket

∀ S ,D : P IP •
S(S) = S × Port × IP × Port × Protocol × L2 × L7 × AdditionalFC ∧
D(D) = IP × Port × D × Port × Protocol × L2 × L7 × AdditionalFC

For a policy P and a set of IP addresses S , P@uS is the upstream projection of
P, and consists of the allow and deny packets from P where each packet has as
source IP some member of S . Similarly, P@dS is the downstream projection of
P, it consists of the allow and deny packets from P whereby each packet has as
destination IP some member of S .

@u ,

@d : Policy0 × P IP → Policy0

∀P : Policy0; S : P IP •
P @u S = (allow(P) ∩ S(S), deny(P) ∩ S(S)) ∧
P @d S = (allow(P) ∩ D(S), deny(P) ∩ D(S))

Example 13 Suppose there is a requirement to specify all the packets allowed/-
denied to the HTTP server by the policy Admin4, then we have:

Admin4 @d {10} = ({http1, ssh1}, {tel1,mal1})

where 10 is the IP address of the HTTP server. 4

4.3.1 Anomaly Detection

A firewall policy is conventionally constructed as a sequence of order-dependent
rules, and when a network packet matches with two or more policy rules, the
policy is anomalous [5, 6, 35]. By definition, the allow and deny sets of some
P ∈ Policy0 are disjoint, therefore P is anomaly-free by construction. We can
however define anomalies using the algebra; by considering how a policy changes
when composed with other policies.

Redundancy. A policy P is redundant given policy Q if their composition
results in no difference between the resulting policy and Q, in particular, if:

P o
9 Q = Q
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Example 14 Considering policies Admin1 and Admin2, we see that Admin1 is
redundant to Admin2 since:

Admin1 o
9 Admin2 = Admin2

as:

({http1, ftp1}, {tel1}) o
9 ({http1, ftp1}, {tel1,mal1,mal2}) =

({http1, ftp1}, {tel1,mal1,mal2})

4

Further definitions may be given for redundancy. For example, there are
redundant packets with a target action of allow between policies P and Q, if:

Allow(allow (P)) u Allow(allow (Q)) 6= (∅, ∅)

as:

Allow(allow (P)) u Allow(allow (Q)) = (allow (P) ∩ allow (Q), ∅)

A similar interpretation follows for redundant packets with a target action of
deny between policies P and Q. We have redundant denies if:

Deny(deny (P)) t Deny(deny (Q)) 6= (∅, ∅)

as:

Deny(deny (P)) t Deny(deny (Q)) = (∅, deny (P) ∩ deny (Q))

Shadowing. Some part of policy Q is shadowed by the entire policy P in the
composition P o

9Q if the packet constraints that are specified by P contradict the
constraints that are specified by Q, in particular, if:

(not P) o
9 Q = Q

This is a very general definition for shadowing. Perhaps a more familiar inter-
pretation of this definition is one where the policy P is a specific allow/deny rule
that shadows a part or all of the policy with which it is composed. Recall that
(not(AllowA)) = (DenyA) and, for example, in (AllowA) o

9Q all or part of policy
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Q is shadowed by the rule/primitive policy (AllowA) if Q denies the packets spec-
ified in A, that is, (DenyA) o

9Q = Q. Similarly, in (DenyD) o
9Q part or all of policy

Q is shadowed by the rule/primitive policy (DenyD) if (not (DenyD)) o
9 Q = Q.

Example 15 Consider, a rule that allows packets tel1,mal1 and mal2, and has
no deny constraints:

Allow({tel1,mal1,mal2})

Then this allow rule shadows the policy Admin2 in the composition
Allow({tel1,mal1,mal2}) o

9 Admin2, as:

Deny({tel1,mal1,mal2}) o
9 ({http1, ftp1}, {tel1,mal1,mal2}) =

({http1, ftp1}, {tel1,mal1,mal2})

4

Further definitions may also be given for shadowing. For example, we have
that some of the packets denied by a policy P shadow some of the packets allowed
by a policy Q if:

Deny(deny (P)) t Deny(allow (Q)) 6= (∅, ∅)

as:

Deny(deny (P)) t Deny(allow (Q)) = (∅, deny (P) ∩ allow (Q))

Similarly, some of the packets allowed by a policy P shadow some of the
packets denied by a policy Q if:

Allow(allow (P)) u Allow(deny (Q)) 6= (∅, ∅)

as:

Allow(allow (P)) u Allow(deny (Q)) = (allow (P) ∩ deny (Q), ∅)

Generalisation. A generalisation anomaly exists between P and Q if some of the
packets allowed by P shadow some of the packets denied by Q, in particular, if:

Allow(allow (P)) u Allow(deny (Q)) 6= (∅, ∅)
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and, those packets shadowed in Q are a proper subset of Q’s denies:

not (Allow(allow (P)) u Allow(deny (Q))) 6= Deny(deny (Q))

whereby:

not (Allow(allow (P)) u Allow(deny (Q))) = (∅, allow (P) ∩ deny (Q))

Similarly, A generalisation anomaly exists between P and Q if some of the
packets denied by P shadow some of the packets allowed by Q, in particular, if:

Deny(deny (P)) t Deny(allow (Q)) 6= (∅, ∅)

and, those packets shadowed in Q are a proper subset of Q’s allows:

not (Deny(deny (P)) t Deny(allow (Q))) 6= Allow(allow (Q))

as:

not (Deny(deny (P)) t Deny(allow (Q))) = (deny (P) ∩ allow (Q), ∅)

Inter-policy Anomalies. Anomalies can also occur between the different poli-
cies of distributed firewall configurations [6]. In the following, assume that P is
a policy on an upstream firewall and Q is a policy on a downstream firewall.

Redundancy. An inter-redundancy anomaly exists between policies P and Q if
some part of Q is redundant to some part of P, whereby the target action of the
redundant filter conditions is deny. Given the set of packets A denied by P, and
the set of packets B denied by Q, then there exists an inter-redundancy between
P and Q, if:

(DenyA) o
9 (DenyB) = (DenyA)

Further definitions may be given for inter-redundancy. For example, there are
redundant packets with a target action of deny between upstream policy P and
downstream policy Q, if:

Deny(deny (P)) t Deny(deny (Q)) 6= (∅, ∅)
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Shadowing. An inter-shadowing anomaly exists between policies P and Q if
some part of Q’s allows are shadowed by some part of P’s denies. Given a set of
packets A denied by P, and the set of packets B allowed by Q, then there is an
inter-shadowing anomaly between P and Q, if:

(DenyA) o
9 (AllowB) = (DenyA)

Further definitions may also be given for shadowing. For example, we have
that some of the packets denied by a policy P shadow some of the packets allowed
by a policy Q if:

Deny(deny (P)) t Deny(allow (Q)) 6= (∅, ∅)

Spuriousness. An inter-spuriousness anomaly exists between policies P and Q
if some part of Q’s denies are shadowed by some part of P’s allows. Given some
set of packets A allowed by P, and some set of packets B denied by Q, then there
exists an inter-spuriousness anomaly between P and Q, if:

(AllowA) o
9 (DenyB) = (AllowA)

A further definition may also be given for spuriousness, whereby some of the
packets allowed by a policy P shadow some of the packets denied by a policy
Q. We have an inter-spuriousness anomaly from an upstream policy P to a
downstream policy Q, if:

Allow(allow (P)) u Allow(deny (Q)) 6= (∅, ∅)

4.4 Discussion

In this chapter, a policy algebra FW0 is defined whereby firewall policies can
be specified and reasoned about. At the heart of this algebra is the notion of
safe replacement, that is, whether it is secure to replace one firewall policy by
another. The set of policies form a lattice under safe replacement and this enables
consistent operators for safe composition to be defined. Policies in this lattice are
anomaly-free by construction, and thus, composition under greatest lower and
lowest upper bound operators preserves anomaly-freedom. A policy sequential
composition operator is also proposed that can be used to interpret firewall poli-
cies defined more conventionally as sequences of firewall rules. The algebra can
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be used to characterize anomalies, such as redundancy and shadowing, that arise
from policy composition.

The proposed algebra FW0 provides a semantics for firewall policies. While
useful for the purposes of reasoning, it is not efficient to näıvely implement the
algebra since a policy is defined in terms of rules constraining individual IP ad-
dresses and ports. For example, a policy constraining access from a subnet range
192.168.*.* involves more than 65K individual packet rules, whatever about
the impact of combining these with further constraints on destination IPs and
ports. In practice, firewall rules are defined in terms of ranges of IP addresses
and ports. Extending the policy algebra to include ranges is non-trivial, as is
illustrated using the following example.

Example 16 Given a policy defined in terms of (allow and deny) sets of
source/destination IP address and port ranges, whereby the policy

P1 == ({([1 . . 3], [1 . . 3], [1 . . 3], [1 . . 3])}, ∅)

has no deny constraints (∅) and has one accept rule that permits any packet
matching ([1 . . 3], [1 . . 3], [1 . . 3], [1 . . 3]) (ranges of source and destination IP
addresses and ports). A second policy is similarly defined:

P2 == ({([2 . . 4], [2 . . 4], [2 . . 4], [2 . . 4])}, ∅)

In composing these policies under a lowest-upper-bound style operation one
cannot simply take a union of the sets of intervals as in some cases they may
coalesce and in other cases they may partition into a number of disjoint intervals.
The composition of the P1 and P2 policies is as follows:

P1 t P2 = ({([1 . . 4], [2 . . 3], [2 . . 3], [2 . . 3]),
([1 . . 3], [1 . . 1], [1 . . 3], [1 . . 3]),

([2 . . 4], [4 . . 4], [2 . . 4], [2 . . 4]),

([1 . . 3], [2 . . 3], [2 . . 3], [1 . . 1]),

([1 . . 3], [2 . . 3], [1 . . 1], [1 . . 3]),

([2 . . 4], [2 . . 3], [2 . . 3], [4 . . 4]),

([2 . . 4], [2 . . 3], [4 . . 4], [2 . . 4])}, ∅)

4

The policy algebra FW1, presented in Chapter 5, defines a firewall policy in
terms of rules constraining ranges of IP addresses and ports.
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Chapter 5

The FW1 Policy Model

The objective of this chapter is to develop a firewall policy algebra FW1, for
constructing and reasoning over anomaly-free policies. Firewall rules comprise
range-based filter condition attributes. The FW1 policy algebra is an extended
version of the algebra in [101]. The chapter is organised as follows. Section 5.1
introduces the notion of adjacency, which is at the heart of reasoning about/com-
posing firewall rules that involve range-based attributes, datatypes for firewall
rule attributes and firewall rulesets are also defined. In Section 5.2 the attribute
definitions given in Chapter 3 are extended for FW1 filter conditions. Section 5.3
defines the FW1 firewall policy algebra, and in Section 5.4 we show how FW1

can be used to reason about firewall policies in practice.

5.1 A Theory of Adjacency

Range-based filter condition attributes (for example, IPs/ports) have logical map-
pings to intervals of N. For example, the port range that includes all ports from
SSH upto and including HTTP can be written as the interval [22 . . 80].

Example 1 Consider, as part of a running example, a system that is capable
of enforcing firewall rules whereby the filter condition attribute for the rules is
a destination port range only. A rule that allowed all ports from SSH to HTTP
would be:

Index Dst Prt Action
i [22 . . 80] allow

70



5. The FW1 Policy Model 5.1 A Theory of Adjacency

where i is the index of the rule in the policy, [22 . . 80] is the required port range,
and allow means that network traffic matching this pattern be permitted traversal
of the firewall. Suppose we had a second rule, that specifies allow everything from
Quote Of The Day (QOTD) up to and including FTP Control, then:

Index Dst Prt Action
j [17 . . 21] allow

specifies that for the rule at index j; the required port range [17 . . 21] is allowed.
Intuitively we can see that the port ranges for the rules at index i and index j
are adjacent, and we may want to join rule i and rule j into a single firewall rule
that looks like:

Index Dst Prt Action
k [17 . . 80] allow

This notion of adjacency becomes more complex when we consider comparing/-
composing firewall rules comprising two or more filter condition attributes. 4

5.1.1 The Adjacency Specification

In this section we define the filter condition attribute relationships of adjacency,
disjointness and subsumption. These can be applied to any ordered set, not
just number intervals. These relationships are at the heart of adjacency, and
ultimately the FW1 algebra.

Let IV [min,max ] be the set of all intervals on the natural numbers, from min
up to and including max . Intervals are defined by their corresponding sets.

IV [min,max ] == {S : PN | ∃⊥,> : S • ∀ x : S • min ≤ ⊥ ≤ x ≤ > ≤ max}

Example 2 For ease of exposition and when no ambiguity arises, we may write
an interval as a pair [⊥ . .>], rather than by the set it defines.

IV [1, 3] = {[1 . . 1], [1 . . 2], [1 . . 3], [2 . . 2], [2 . . 3], [3 . . 3]}

4

Let IPv4 define the set of all possible IPv4 address ranges, and similarly, let
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Port define the set of all possible network port ranges, whereby:

IPv4 == IV [0,maxIP]

Port == IV [0,maxPrt]

Adjacency. The relation ( o ) defines adjacency over any ordered set. Adja-
cency is a general notion that is not limited to N. We generalize adjacency to
any attribute of generic type X , whereby for a, b ∈ X , if a oX b, then a and b are
adjacent in the set X . The property of reflexivity is required as any a ∈ X should
be adjacent to itself, that is; if for any a, that a oX a did not hold, then an in-
consistency would exist. Symmetry follows from a similar requirement, where for
a, b ∈ X , if a is adjacent to b in X , then b must also be adjacent to a in X . The
following schema defines a generic adjacency relation that can be instantiated for
adjacency over different datatypes.

[X ]

o : PX 7→ (X ↔ X)

∀ a, b : X •
a oX a ∧
(a oX b ⇒ b oX a)

Given a set S ∈ PX , then the transitive closure of the adjacency relation for
elements in S is defined as follows.

[X ]

o+ : PX 7→ (X ↔ X)

∀ S : PX •
( o+S ) = (S C ( oX )B S)+

Interval Adjacency. Two intervals on the set of natural numbers are adjacent
if their union defines a single interval. For a given maximum value max ∈ N,
we define:

∀ I , J : IV [0,max] •
I oIV[0,max] J ⇔ I ∪ J ∈ IV [0,max]

Example 3 Interval [1 . . 2] is adjacent to interval [3 . . 3] since [1 . . 2]∪ [3 . . 3] =
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[1 . . 3], thus [1 . . 2] oIPv4 [3 . . 3]. 4

Number Adjacency. Two numbers are adjacent if they are the same or if they
are different by a value of one. We define:

∀ a, b : N •
a oN b ⇔ (a = b ∨ a + 1 = b ∨ b + 1 = a)

Set Adjacency. For a generic type X , and sets S ,T ∈ PX , then S and T are
adjacent, as S ∪ T ∈ P X . We define:

∀ S ,T : PX •
S oPX T

Disjointness. The relation ( | ) is used to define the notion of disjointness
over any ordered set. Given a, b ∈ X , then a |X b denotes a and b are disjoint in
X . The property of irreflexivity is required, as a cannot be disjoint from itself,
that is; if for any a, that ¬ (a |X a) did not hold, then an inconsistency would
exist. Symmetry is also required for consistency, as if a and b are disjoint in
X , then b and a must be disjoint in X also. The following schema specification
defines a generic disjointness relation that can be instantiated for disjointness
over different datatypes.

[X ]

| : P X 7→ (X ↔ X)

∀ a, b : X •
¬ (a |X a) ∧
(a |X b ⇒ b |X a)

Interval Disjointness. Two intervals are disjoint if they don’t intersect. For a
given maximum value max ∈ N, we define:

∀ I , J : IV [0,max] •
I |IV[0,max] J ⇔ I ∩ J = ∅

Example 4 Intervals [1 . . 2] and [3 . . 3] are disjoint, since [1 . . 2] ∩ [3 . . 3] = ∅,
thus [1 . . 2] |IPv4 [3 . . 3]. 4
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Number Disjointness. Two natural numbers are disjoint if they are different.
We define:

∀ a, b : N •
a |N b ⇔ a 6= b

Set Disjointness. Two sets are disjoint if they don’t intersect. We define:

∀ S ,T : PX •
S |P X T ⇔ S ∩ T = ∅

Subsumption. The relation ( ← ) is used to define subsumption over any
ordered set. For a, b ∈ X , if a X← b, then b covers a in X . Reflexivity is required,
as any a must cover itself. Transitivity follows from a similar requirement, where
for a, b, c ∈ X , if a covers b and b covers c, then a must cover c. Antisymmetry
follows from the assumption of irredundant elements, where if a covers b and b
covers a then one of them is unnecessary [42]. The properties of reflexivity, tran-
sitivity and antisymmetry define X← as a non-strict partial order over X [18]. The
following schema defines a generic subsumption relation that can be instantiated
for subsumption over different datatypes.

[X ]

← : P X 7→ (X ↔ X)

∀ a, b, c : X •
a X← a ∧
(a X← b ∧ b X← c ⇒ a X← c) ∧
(a X← b ∧ b X← a ⇒ a = b)

Some subsumption orderings (for example, subset) may form a lattice with glb
∩X and lub ∪X operators for values in X .

Interval Subsumption. An interval I subsumes (covers) an interval J , if J ⊆ I .
For a given maximum value max ∈ N, we define:

∀ I , J : IV [0,max] •
J IV[0,max]← I ⇔ J ⊆ I
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Example 5 Interval [1 . . 3] covers interval [3 . . 3], since [3 . . 3] ⊆ [1 . . 3], thus:
[3 . . 3]

IPv4← [1 . . 3]. 4

Number Subsumption. For a, b ∈ N then b covers a if a equals b. We define:

∀ a, b : N •
a N← b ⇔ a = b

The equality relation is both symmetric and antisymmetric, and defines both an
equivalence relation and a non-strict partial order [118]. Thus, a N← b denotes
that b subsumes/covers a.

Set Subsumption. The definition for set subsumption is as expected, we define:

∀ S ,T : PX •
S PX← T ⇔ S ⊆ T

For a generic type X , and S ∈ PX , then the flattening function dSe gives the
cover-set for the elements of S , whereby the cover-set of S has no subsumption.
We define:

[X ]

d e : PX 7→ PX

∀ S : PX •
dSe = S \ {a, a′ : S | a X← a′ ∧ a 6= a′ • a}

Example 6 Given the set of all intervals on the natural numbers from 1 . . 3,
then we have:

dIV [1, 3]e = {[1 . . 1], [1 . . 2], [1 . . 3], [2 . . 2], [2 . . 3], [3 . . 3]}\
{[1 . . 1], [1 . . 2], [2 . . 2], [2 . . 3], [3 . . 3]}

= {[1 . . 3]}

4

We define a difference operator for S ,T ∈ PX , where S \PX T gives the
relative compliment of T in S . That is, everything that is of type X that is
covered in S , but not in T . We define this as:
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[X ]

\ : P(PX) 7→ PX × PX → PX

∀ S ,T : PX •
S \PX T = d{a : S ; c : X | c X← a ∧ (∀ b : T • ¬ (c X← b)) • c}e

Example 7 Given the cover-set for the set of all intervals on the natural numbers
from 1 . . 3, and the set {[1 . . 1], [3 . . 3]}, we have:

dIV [1, 3]e \IPv4 {[1 . . 1], [3 . . 3]} = {[2 . . 2]}

4

5.1.2 The Adjacency Datatype

For a generic type X , the Adjacency datatype α[X ], is the set of all closed subsets
of X partitioned by adjacency.

α[X ] == {S : PX | (∀ a, b : S | a 6= b • ¬ (a oX b))}

Example 8 We can use this to define all the ways that an interval can be par-
titioned into sets of non-adjacent intervals.

α[IV [1, 3]] = {{[1 . . 1]}, {[1 . . 2]}, {[1 . . 3]}, {[2 . . 2]},
{[2 . . 3]}, {[3 . . 3]}, {[1 . . 1], [3 . . 3]}}

4

Let IPSpec be the set of all closed subsets for the intervals of the IPv4 address
range, partitioned by adjacency, and similarly, let PrtSpec be the set of all closed
subsets for the intervals of the network port range, partitioned by adjacency.
We define:

IPSpec == α[IPv4]

PrtSpec == α[Port]

Adjacency Datatype Ordering. An ordering can be defined over Adjacency-
sets of a generic type X as follows:
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[X ]

⊥,> : α[X ]

not : α[X ]→ α[X ]

≤ : α[X ]↔ α[X ]

⊗ ,

⊕ : α[X ]× α[X ]→ α[X ]

⊥ = ∅ ∧ > = dXe
∀ S ,T : α[X ] •

not S = > \α[X ] S ∧
S ≤ T ⇔ (∀ a : S • ∃ b : T • a X← b) ∧
S ⊗ T = d

⋃
{U : α[X ] | ∀ c : U • ∃ a : S ; b : T • c X← a ∧ c X← b}e ∧

S ⊕ T =
⋂
{U : α[X ] | ∀ c : U • ∃ a : S ; b : T • a X← c ∨ b X← c}

Lemma 5.1.1 The ordering relation ≤ is a non-strict partial order over α[X ].

Proof For S ,T ∈ α[X ], then S ≤ T means that T covers S , that is, every a ∈ S
is covered by some b ∈ T . The ordering relation ≤, is defined as a subsumption
ordering/an antisymmetric preorder, where the properties of reflexivity, transi-
tivity and antisymmetry hold for ≤ over α[X ] as ( X← ) is a non-strict partial
order for elements of type X . We have:

∀ S ,T ,U : α[X ] •
S ≤ S ∧
(S ≤ T ∧ T ≤ U ⇒ S ≤ U ) ∧
(S ≤ T ∧ T ≤ S ⇒ S = T )

The elements ⊥,> ∈ α[X ] define the least and greatest bounds, respectively,
on α[X ], where ⊥ is the unique minimal element that is covered by all elements,
and > is the unique maximal element that covers all other elements. We have:

∀ S : α[X ] •
⊥ ≤ S ≤ >

Example 9 Given ranges1, ranges2 ∈ IPSpec, where:

ranges1 == {[1 . . 3], [6 . . 6], [8 . . 8]}
ranges2 == {[2 . . 4], [7 . . 7], [10 . . 10]}
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then Figure 5.1 depicts a partial Hasse diagram, for the composition of ranges1

and ranges2 under the relative ordering of ≤ over IPSpec. 4

>

dIPSpece

ranges1
{[1 . . 3], [6 . . 6], [8 . . 8]}

ranges2
{[2 . . 4], [7 . . 7], [10 . . 10]}

ranges1 ⊕ ranges2
{[1 . . 4], [6 . . 8], [10 . . 10]}

ranges1 ⊗ ranges2
{[2 . . 3]}

∅

⊥

Figure 5.1: IPSpec ordering fragment

Adjacency Datatype Union. The join of S ,T ∈ α[X ] is defined using sub-
sumption, as the generalized intersection of all Adjacency-sets, where each ele-
ment of (S ⊕T ) covers an element in either S or T . Intuitively, this means that
the values of the join are exactly a union of the elements from both S and T .

Lemma 5.1.2 The operator ⊕ is a least upper bound operator on α[X ].

Proof The generalized intersection in the join operation for some S ,T ∈ α[X ]

defines the smallest collection of x ∈ X that cover all of the elements from both
S and T by subsumption. If we take some U ∈ α[X ], such that U ≤ (S ⊕ T )

and S ≤ U ∧ T ≤ U , then (S ⊕T ) = U . Thus, Adjacency join provides a lowest
upper bound operator. Since ⊕ provides a lub operator we have S ≤ (S ⊕ T )

and T ≤ (S ⊕ T ).
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Adjacency Datatype Intersection. Under this ordering, the meet, or inter-
section S ⊗ T of S ,T ∈ α[X ], is defined using subsumption, as the cover-set for
the generalized union of all Adjacency-sets, where each element of (S ⊗ T ) is
covered by an element in both S and T . Intuitively, this means that the values of
the meet are all non-empty intersections of each value in S with each value in T .

Corollary 5.1.3 The operator ⊗ is a greatest lower bound operator on α[X ].

Proof It follows from Lemma 5.1.2 by an analogous argument that Corol-
lary 5.1.3 holds.

Since ⊗ provides the glb operator, then for S ,T ∈ α[X ] we have S⊗T is covered
by both S and T , that is (S ⊗ T ) ≤ S and (S ⊗ T ) ≤ T .

Adjacency Datatype Negation. Given S ∈ α[X ], then not S defines a com-
plement operator in α[X ], where not S is the cover-set for all elements of type X
that are not covered by some member of S . We have:

∀ S : α[X ] •
(S ⊕ not S) = > ∧ (S ⊗ not S) = ⊥

Theorem 5.1.4 The poset (α[X ],≤) forms a lattice with complement opera-
tor not.

Proof This follows from the definition of ≤ as a subsumption ordering/an an-
tisymmetric preorder, the properties of not, the definition of the meet as the
cover-set for the generalized union of all Adjacency-sets, where for S ,T ∈ α[X ],
each element of (S ⊗ T ) is covered by an element in both S and T , and the
definition of the join as the generalized intersection of all Adjacency-sets, where
each element of (S ⊕ T ) covers an element in either S or T .

5.1.3 The Duplet Datatype

The notion of adjacency becomes more complex when we consider comparing/-
composing firewall rules comprising two or more filter condition attributes. When
joining adjacent firewall rules, in some cases the rules may coalesce and in other
cases they may partition into a number of disjoint rules.

Example 10 Recall from Example 1, the firewall system that supports only
destination port range filter conditions. Suppose we want to extend the expres-
siveness of the policy rules for this system to include a definition for destination
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IP range. Consider, two policy requirements; whereby network traffic is to be
allowed to the IP range [1 . . 3] on ports [1 . . 3], and to the IP range [2 . . 4] on
ports [2 . . 4]. Then modelling this using adjacency-free IP/port range pairs, we
have p1, p2 ∈ (IPSpec × PrtSpec), whereby:

p1 == ({[1 . . 3]}, {[1 . . 3]})
p2 == ({[2 . . 4]}, {[2 . . 4]})

If we consider the attributes separately, we observe that the IP range in p1 is
adjacent to the IP range in p2, and the port ranges in p1 and p2 are also adjacent.
However, in composing p1 and p2 under a lowest-upper-bound style operation one
cannot simply take a union of the sets of intervals to be the IP/port range pair:
({[1 . . 4]}, {[1 . . 4]}), as this results in an overly permissive policy, given that
network traffic is permitted to IP 1 on port 4, and to IP 4 on port 1 as a result
of composition. Conversely, this would result in an overly restrictive policy if we
were composing deny rules.

If we consider how the join of p1 and p2 may be defined, whereby the desired
result is the smallest number of non-adjacent rules that cover both p1 and p2,
then we can apply an adjacency-precedence to the IP ranges in p1 and p2, and
observe that the port ranges in p1 and p2 are not disjoint. We refer to this as the
1st attribute major ordering, and the cover for p1 and p2 is given as:

p1 ]1
st
Mjr p2 = {({[1 . . 4]}, {[2 . . 3]}),

({[1 . . 3]}, {[1 . . 1]}),
({[2 . . 4]}, {[4 . . 4]})}

In this case, the result is a set of disjoint rules that exactly cover the IP/port-
range pair constraints from p1 and p2. The resulting operations are encoded in
the matrix in Table 5.1, whereby the label R signifies the new rule, and the label
A means filter condition attribute.

R
A

1 2

1 {[1 . . 3]} ∪IPSpec {[2 . . 4]} {[1 . . 3]} ∩PrtSpec {[2 . . 4]}
2 {[1 . . 3]} {[1 . . 3]} \PrtSpec {[2 . . 4]}
3 {[2 . . 4]} {[2 . . 4]} \PrtSpec {[1 . . 3]}

Table 5.1: A two-attribute rule join, 1st attribute major ordering
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We note, however, that instead, the adjacency-precedence may be applied to
the second attribute, where in this case we observe that the port ranges in p1 and
p2 are adjacent, and the IP ranges in p1 and p2 are not disjoint. We refer to this
as a 2nd attribute major ordering, and would therefore expect the set of disjoint
rules that exactly cover the IP/port-range pair constraints from p1 and p2 to be:

p1 ]2
nd
mjr p2 = {({[2 . . 3]}, {[1 . . 4]}),

({[1 . . 1]}, {[1 . . 3]}),
({[4 . . 4]}, {[2 . . 4]})}

The operations for the 2nd attribute major ordering the are encoded in the matrix
in Table 5.2.

R
A

1 2

1 {[1 . . 3]} ∩IPSpec {[2 . . 4]} {[1 . . 3]} ∪PrtSpec {[2 . . 4]}
2 {[1 . . 3]} \IPSpec {[2 . . 4]} {[1 . . 3]}
3 {[2 . . 4]} \IPSpec {[1 . . 3]} {[2 . . 4]}

Table 5.2: A two-attribute rule join, 2nd attribute major ordering

For the remainder of this dissertation, we consider firewall rule join in terms
of the 1st attribute major ordering. However, we also consider the join of rules
where there is an adjacency in other than the first attribute, we refer to this type
of adjacency as forward adjacency. 4

Duplets. A duplet is an ordered pair, where the set of all duplets for generic
types X ,Y , is defined as δ[X ,Y ], whereby:

δ[X ,Y ] == X × Y

Example 11 For IV [1, 1] and IV [1, 2], we have:

δ[IV [1, 1], IV [1, 2]] = {([1 . . 1], [1 . . 1]), ([1 . . 1], [1 . . 2]), ([1 . . 1], [2 . . 2])}

and δ[IPSpec,PrtSpec] gives the set of all duplets for adjacency-free IP/port-
range pairs. 4

Lemma 5.1.5 If the ordering over X is a lattice and the ordering over Y is a
lattice, then the ordering over δ[X ,Y ] is also a lattice.
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Proof Given the definition of δ[X ,Y ] as the Cartesian product of X and Y , then
if the ordering over X is a lattice and the ordering over Y is a lattice; it follows
that δ[X ,Y ] forms a lattice under the product order of X and Y .

Forward Adjacency. A pair of duplets are forward adjacent to each other if
the attributes in the first coordinate are equal and the attributes in the sec-
ond coordinate are adjacent. For (a1, b1), (a2, b2) ∈ δ[X ,Y ], we define forward
adjacency, whereby:

(a1 = a2 ∧ b1 oY b2)

Example 12 Given duplets ({[1 . . 3]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]}) ∈
δ[IPSpec,PrtSpec], then these duplets are forward adjacent, as:

({[1 . . 3]} = {[1 . . 3]}) ∧ ({[2 . . 3]} oPrtSpec {[1 . . 1]})

4

Duplet Adjacency. A pair of duplets a, b ∈ δ[X ,Y ] are adjacent, if the at-
tributes in the first coordinate are adjacent, and the attributes in the second co-
ordinate are not disjoint, or a and b are forward adjacent. For (a1, b1), (a2, b2) ∈
δ[X ,Y ], we define:

(a1, b1) oδ[X ,Y ] (a2, b2)⇔ ((a1 oX a2 ∧ ¬ (b1 |Y b2)) ∨ (a1 = a2 ∧ b1 oY b2))

Example 13 We have p1 oδ[IPSpec,PrtSpec] p2, since the IP ranges are adjacent and
the port ranges are not disjoint.

{[1 . . 3]} oIPSpec {[2 . . 4]} ∧ ¬ ({[1 . . 3]} |PrtSpec {[2 . . 4]})

4

Duplet Disjointness. A pair of duplets are disjoint if the attributes in the
first coordinate are disjoint, and/or the attributes in the second coordinate are
disjoint. For (a1, b1), (a2, b2) ∈ δ[X ,Y ], we define:

(a1, b1) |δ[X ,Y ] (a2, b2)⇔ (a1 |X a2 ∨ b1 |Y b2)

Example 14 We have ¬ (p1 |δ[IPSpec,PrtSpec] p2), since:

¬ ({[1 . . 3]} |IPSpec {[2 . . 4]} ∧ {[1 . . 3]} |PrtSpec {[2 . . 4]})
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4

Duplet Intersection. The definition for duplet intersection is defined as the
intersection of the attributes in each coordinate under their respective orderings.
For (a1, b1), (a2, b2) ∈ δ[X ,Y ], we define:

(a1, b1) ∩δ[X ,Y ] (a2, b2) = ((a1 ∩X a2), (b1 ∩Y b2))

Example 15 For p1 and p2, we have:

p1 ∩δ[IPSpec,PrtSpec] p2 = ({[2 . . 3]}, {[2 . . 3]})

4

Duplet Merge. The definition for duplet merge is defined as the union of the at-
tributes in each coordinate under their respective orderings. For (a1, b1), (a2, b2) ∈
δ[X ,Y ], we define:

(a1, b1) ∪δ[X ,Y ] (a2, b2) = ((a1 ∪X a2), (b1 ∪Y b2))

Example 16 For p1 and p2, we have:

p1 ∪δ[IPSpec,PrtSpec] p2 = ({[1 . . 4]}, {[1 . . 4]})

4

Duplet Subsumption. A duplet (a1, b1) covers a duplet (a2, b2) in δ[X ,Y ], if
a1 covers a2 in X , and b1 covers b2 in Y . Thus, we define duplet subsumption as:

(a2, b2)
δ[X ,Y ]← (a1, b1)⇔ (a2

X← a1 ∧ (b2
Y← b1)

Example 17 For p1 and p2, we have:

({[2 . . 3]}, {[2 . . 3]})
δ[IPSpec,PrtSpec]← p1 ∧

({[2 . . 3]}, {[2 . . 3]})
δ[IPSpec,PrtSpec]← p2

4

Precedence Subsumption. A precedence subsumption is defined for duplets,
whereby we explicitly define subsumption orderings separately in each coordinate.
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The relation ( → ) defines a general format for precedence subsumption over
any ordered set. For a, b ∈ X , if a X→ b, then a covers b by precedence in X . The
properties of reflexivity, transitivity and antisymmetry define X→ as a non-strict
partial order over X [18]. The following schema defines a generic precedence
subsumption relation that can be instantiated for precedence subsumption over
different datatypes.

[X ]

→ : P X 7→ (X ↔ X)

∀ a, b, c : X •
a X→ a ∧
(a X→ b ∧ b X→ c ⇒ a X→ c) ∧
(a X→ b ∧ b X→ a ⇒ a = b)

A duplet (a1, b1) covers a duplet (a2, b2) by precedence in δ[X ,Y ], if a1 covers
a2 in X , and b2 covers b1 in Y . Thus, we define precedence subsumption as:

(a1, b1)
δ[X ,Y ]→ (a2, b2)⇔ (a2

X← a1 ∧ (b1
Y← b2)

Example 18 For p1, p2, and duplets ({[1 . . 4]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]}) ∈
δ[IPSpec,PrtSpec], then we have:

({[1 . . 3]}, {[1 . . 1]})
δ[IPSpec,PrtSpec]→ p1 ∧

({[1 . . 4]}, {[2 . . 3]})
δ[IPSpec,PrtSpec]→ p1 ∧

({[1 . . 4]}, {[2 . . 3]})
δ[IPSpec,PrtSpec]→ p2

4

Precedence Cover. For a duplet a ∈ δ[X ,Y ] and a set of duplets S ∈ P δ[X ,Y ],
then S covers a if the duplet merge of all elements in S that each cover a by
precedence subsumption, cover a by duplet subsumption. We define:
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[X ,Y ]

 : P δ[X ,Y ] 7→ (δ[X ,Y ]↔ P δ[X ,Y ])

∀ a : δ[X ,Y ]; S : P δ[X ,Y ] •
a δ[X ,Y ]

 S ⇔ (∃ b, b′
: S | (b δ[X ,Y ]→ a ∧ b′ δ[X ,Y ]→ a) ∧

a δ[X ,Y ]← (b ∪δ[X ,Y ] b
′
))

Example 19 For p1, and duplets ({[1 . . 3]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]}) ∈
δ[IPSpec,PrtSpec], then we have:

p1
δ[IPSpec,PrtSpec]

 {({[1 . . 3]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]})}

as:

({[1 . . 3]}, {[1 . . 3]})
δ[IPSpec,PrtSpec]

 {({[1 . . 3]}, {[1 . . 3]})}

4

Intersecting Elements. For a ∈ δ[X ,Y ] and S ∈ P δ[X ,Y ], then abSc is the
set of all non-empty intersections of a with each value b ∈ S . We define:

[X ,Y ]

b c : δ[X ,Y ]× P δ[X ,Y ]→ P δ[X ,Y ]

∀ a : δ[X ,Y ]; S : P δ[X ,Y ] •
abSc = {b : S | ¬ (a |δ[X ,Y ] b) • (a ∩δ[X ,Y ] b)}

Example 20 For p1, and duplets ({[1 . .4]}, {[2 . .3]}), ({[1 . .3]}, {[1 . .1]}), ({[2 . .
4]}, {[4 . . 4]}) ∈ δ[IPSpec,PrtSpec], then:

p1b{({[1 . . 4]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]}), ({[2 . . 4]}, {[4 . . 4]}}c =
{({[1 . . 3]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]})}

4

5.1.4 Duplet Adjacency Ordering

In this section, an ordering is defined for Adjacency-sets of duplets.
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Duplet Adjacency Difference. Given S ,T ∈ α[δ[X ,Y ]], then S \α[δ[X ,Y ]] T is
the cover-set for the set of all duplets covered in S by a duplet, or by a collection
of duplets, and not covered in T . Thus, we define the difference of Adjacency-sets
of duplets as:

S \α[δ[X ,Y ]] T = d{c : δ[X ,Y ] | c δ[X ,Y ]
 cbSc ∧ ¬ (c δ[X ,Y ]

 cbTc)}e

Example 21 Given Polp1,Pol
p
2 ∈ α[δ[IPSpec,PrtSpec]], where:

Polp1 == {({[1 . . 3]}, {[1 . . 3]})}
Polp2 == {({[2 . . 4]}, {[2 . . 4]})}

then:

Polp1 \α[δ[IPSpec,PrtSpec]] Pol
p
2 = {({[1 . . 3]}, {[1 . . 1]}), ({[1 . . 1]}, {[2 . . 3]})}

4

The implementation definition for duplet difference is given in Chapter 6 Sec-
tion 6.1.1.

Duplet Adjacency Ordering. An ordering can be defined over Adjacency-sets
of duplets as follows:

[X ,Y ]

⊥,> : α[δ[X ,Y ]]

not : α[δ[X ,Y ]]→ α[δ[X ,Y ]]

≤ : α[δ[X ,Y ]]↔ α[δ[X ,Y ]]

⊗ ,

⊕ : α[δ[X ,Y ]]× α[δ[X ,Y ]]→ α[δ[X ,Y ]]

⊥ = ∅ ∧ > = dδ[X ,Y ]e
∀ S ,T : α[δ[X ,Y ]] •

not S = > \α[δ[X ,Y ]] S ∧
S ≤ T ⇔ (∀ a : S • a δ[X ,Y ]

 abTc) ∧
S ⊕ T = d{a, b :

⋂
{U : P(δ[X ,Y ]) | (∀ c : U • ∃ a : S ; b : T •

c δ[X ,Y ]→ a ∨ c δ[X ,Y ]→ b)} | a o+δ[X ,Y ] b • a ∪δ[X ,Y ] b}e ∧
S ⊗ T = d

⋃
{U : α[δ[X ,Y ]] | ∀ c : U • c δ[X ,Y ]

 cbSc ∧ c δ[X ,Y ]
 cbTc}e
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Figure 5.2 depicts a partial Hasse diagram, for the composition of Polp1 and
Polp2 under the relative ordering of ≤ over α[δ[IPSpec,PrtSpec]].

>

dδ[IPSpec,PrtSpec]e

{({[1 . . 4]}, {[1 . . 4]})}

Polp1
{({[1 . . 3]}, {[1 . . 3]})}

Polp2
{({[2 . . 4]}, {[2 . . 4]})}

Polp1 ⊕ Polp2
{({[1 . . 4]}, {[2 . . 3]}), ({[1 . . 3]}, {[1 . . 1]}), ({[2 . . 4]}, {[4 . . 4]})}

Polp1 ⊗ Polp2
{({[2 . . 3]}, {[2 . . 3]})}

∅

⊥

Figure 5.2: Duplet ordering fragment

Lemma 5.1.6 The ordering relation ≤ is a non-strict partial order over
α[δ[X ,Y ]].

Proof For S ,T ∈ α[δ[X ,Y ]], then S ≤ T means that T covers S , that is, every
a ∈ S is covered under duplet subsumption, either by a duplet, or by a collection
of duplets in T . The ordering relation ≤, is defined as an antisymmetric pre-
order, where the properties of reflexivity, transitivity and antisymmetry hold for
≤ over α[δ[X ,Y ]].
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Reflexivity. For S ∈ α[δ[X ,Y ]], we have for a ∈ S , then a covers itself under
duplet subsumption. Since S is adjacency-free, then every duplet in S covers only
itself under a duplet subsumption in S . Since duplet subsumption is reflexive,
then ≤ is reflexive; that is:

∀ S : α[δ[X ,Y ]] •
(S , S) ∈ ( ≤ )

Transitivity. For S ,T ∈ α[δ[X ,Y ]], then S ≤ T if all a ∈ S are covered in
T under duplet subsumption. Then if we take some U ∈ α[δ[X ,Y ]], such that
T ≤ U , then all b ∈ T are covered in U under duplet subsumption. Therefore,
all a ∈ S are covered in U under duplet subsumption as duplet subsumption is
transitive. Then ≤ is transitive; that is:

∀ S ,T ,U : α[δ[X ,Y ]] •
(S ,T ) ∈ ( ≤ ) ∧ (T ,U ) ∈ ( ≤ )⇒ (S ,U ) ∈ ( ≤ )

Antisymmetry. For S ,T ∈ α[δ[X ,Y ]], then S ≤ T if all a ∈ S are covered
in T under duplet subsumption, and if T ≤ S then all b ∈ T are covered in S
under duplet subsumption. Therefore, from the definition of duplet subsumption,
if S ≤ T and T ≤ S then T = S . Then ≤ is antisymmetric; that is:

∀ S ,T : α[δ[X ,Y ]] •
(S ,T ) ∈ ( ≤ ) ∧ (T , S) ∈ ( ≤ )⇒ S = T

The elements ⊥,> ∈ α[δ[X ,Y ]] define the least and greatest bounds, respec-
tively, on α[δ[X ,Y ]], where ⊥ is the unique minimal element that is covered by
all elements, and > is the unique maximal element that covers all other elements.
We have:

∀ S : α[δ[X ,Y ]] •
⊥ ≤ S ≤ >

Then we have:

∀ S ,T ,U : α[δ[X ,Y ]] •
S ≤ S ∧
(S ≤ T ∧ T ≤ U ⇒ S ≤ U ) ∧
(S ≤ T ∧ T ≤ S ⇒ S = T )
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Thus, ≤ is a non-strict partial order over α[δ[X ,Y ]].

Adjacency Duplet Union. The join of S ,T ∈ α[δ[X ,Y ]] is defined using
subsumption, as the cover-set for the duplet merge of the transitive closure of
adjacent duplets, from the generalized intersection of all sets of sets of duplets,
whereby each element of the generalized intersection covers an element in either S
or T by duplet precedence subsumption. The generalized intersection defines the
smallest collection of duplets that cover all of the duplets from both S and T by
precedence subsumption. Given that all duplets in this set are now disjoint, the
cover-set for the duplet merge of the transitive closure of adjacent duplets merges
any forward-adjacent duplets from S and T . If we take some U ∈ α[δ[X ,Y ]],
such that U ≤ (S ⊕ T ) and S ≤ U ∧ T ≤ U , then (S ⊕ T ) = U . Thus,
Adjacency join provides a lowest upper bound operator, we have:

∀ S ,T ,U : α[δ[X ,Y ]] •
S ≤ (S ⊕ T ) ∧ T ≤ (S ⊕ T ) ∧
(S ≤ U ∧ T ≤ U ⇒ (S ⊕ T ) ≤ U )

An efficient implementation definition for duplet join is given in Chapter 6
Section 6.1.1.

Adjacency Duplet Intersection. Under this ordering, the meet (S ⊗ T ) of
S ,T ∈ α[δ[X ,Y ]] is defined using subsumption, as the cover-set for the general-
ized union of all Adjacency-sets, where each element of (S ⊗ T ) is covered by a
duplet, or by a collection of duplets in both S and T . The meet is defined as the
largest set of adjacency-free duplets that is covered by both S and T . Thus, ⊗
provides the glb operator, then for S ,T ∈ α[δ[X ,Y ]] we have S ⊗ T is covered
by both S and T , that is (S ⊗ T ) ≤ S and (S ⊗ T ) ≤ T .

Adjacency Duplet Negation. Given S ∈ α[δ[X ,Y ]], then not S defines a
complement operator in α[δ[X ,Y ]], where not S is the cover-set for all elements
of type X that are not covered by some member of S . We have:

∀ S : α[δ[X ,Y ]] •
(S ⊕ not S) = > ∧ (S ⊗ not S) = ⊥

Theorem 5.1.7 The poset (α[δ[X ,Y ]],≤) forms a lattice with complement op-
erator not.

Reasoning About Firewall Policies Through
Refinement and Composition

89 Ultan James Neville



5. The FW1 Policy Model 5.1 A Theory of Adjacency

Proof This follows from the definition of ≤ as an antisymmetric preorder, the
properties of not, and the definitions of ⊕ and ⊗.

Commutative Laws. We observe that changing the order of the
operands/Adjacency-sets does not change the composition result.

∀ S ,T : α[δ[X ,Y ]] •
S ⊕ T = T ⊕ S ∧
S ⊗ T = T ⊗ S

Associative Laws. We observe that the order in which the operations are
performed does not change the outcome of the operation.

∀ S ,T ,U : α[δ[X ,Y ]] •
S ⊕ (T ⊕ U ) = (S ⊕ T )⊕ U ∧
S ⊗ (T ⊗ U ) = (S ⊗ T )⊗ U

Absorption Laws. The following identities link ⊕ and ⊗.

∀ S ,T : α[δ[X ,Y ]] •
S ⊕ (S ⊗ T ) = S ∧
S ⊗ (S ⊕ T ) = S

Idempotent Laws. We observe that for all S ∈ α[δ[X ,Y ]], S is idempotent
with respect to ⊕ and ⊗.

∀ S : α[δ[X ,Y ]] •
S ⊕ S = S ∧
S ⊗ S = S

Identity Laws. We observe that (α[δ[X ,Y ]],⊕,⊗,⊥,>) is a bounded lattice/al-
gebraic structure, such that (α[δ[X ,Y ]],⊕,⊗) is a lattice, ⊥ is the identity ele-
ment for the join operation ⊕, and > is the identity element for the meet opera-
tion ⊗.

∀ S : α[δ[X ,Y ]] •
S ⊕⊥ = S ∧
S ⊗> = S
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Distributivity Laws. The join operation distributes over the meet operation
and vice-versa.

∀ S ,T ,U : α[δ[X ,Y ]] •
S ⊕ (T ⊗ U ) = (S ⊕ T )⊗ (T ⊕ U ) ∧
S ⊗ (T ⊕ U ) = (S ⊗ T )⊕ (T ⊗ U )

Thus, (α[δ[X ,Y ]],≤,⊕,⊗,⊥,>,not) is a lattice.

5.2 FW1 Filter Conditions

In this section, the filter condition attribute datatypes for the FW1 policy model
are defined.

OSI Layer 2. Let L2 define the set of all additional filter condition attributes
at the Data-Link Layer, given as the set of all duplets over the set of all sets of
packet-types (PPktTpe) and the set of all sets of MAC addresses (PMAC ).

L2 == δ[PPktTpe,PMAC ]

From Lemma 5.1.5, we have that L2 is a lattice.

OSI Layer 7. Let L7 define the set of all additional filter condition attributes at
the OSI Application Layer, given as the set of all duplets over the set of all sets
of Layer 7 protocols (PProtoL7 ), the set of all closed subsets for the ranges of all
Linux UIDs partitioned by adjacency (UIDSpec), and the set of all closed subsets
for the ranges of all Linux GIDs (GIDSpec) partitioned by adjacency.

UIDSpec == α[IV [0,maxUID]]

GIDSpec == α[IV [0,maxGID]]

L7 == δ[PProtoL7 , δ[UIDSpec,GIDSpec]]

From Lemma 5.1.5, we have that L7 is a lattice.

The Stateful/Protocol Datatype. Let Protocol define the set of all stateful
protocols, given as the set of all duplets over the TCP protocol (PFlagSpec), the
UDP protocol (UDP), the ICMP protocol (PTypesCodes), and the set of all sets
of connection tracking states for a packet/connection (P State).
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Protocol == δ[PFlagSpec, δ[UDP, δ[PTypesCodes,P State]]]

A benefit of the modelling approach to state in this dissertation, is that the pow-
erset ordering defined over the set of iptables state literals enables a consistent
means of comparing and composing the stateful aspect of firewall rules in the
proposed model. While the approach in [66] provides a more expressive model
of stateful rules using general automata, the approach taken to compare and
compose stateful firewall rules is more complex than the proposed model in this
dissertation. From Lemma 5.1.5, we have that Protocol is a lattice.

Stateful/Protocol Disjointness. A pair of stateful protocols are disjoint if
the TCP, UDP and ICMP attributes are disjoint, and/or their state is disjoint.
For t1, t2 ∈ PFlagSpec, u1, u2 ∈ UDP, i1, i2 ∈ PTypesCodes and s1, s2 ∈ P State,
we define:

(t1, u1, i1, s1) |Protocol (t2, u2, i2, s2)⇔
((t1 |PFlagSpec t2 ∧ u1 |UDP u2 ∧ i1 |PTypesCodes i2) ∨ s1 |PState s2)

Additional Filtering Specifications. Let AdditionalFC define the set of all
additional filter condition attributes of interest, given as the set of all duplets
over the set of all closed subsets for the ranges of all Unix timestamps, from 0 up
to and including maxTime (TimeSpec), the set of all sets of all network interfaces
on a machine (P IFACE), the set of all sets of directions for direction-oriented
filtering (PDir) and the set of all sets of iptables chains (PChain).

TimeSpec == α[IV [0,maxTime]]
AdditionalFC == δ[TimeSpec, δ[P IFACE , δ[PDir ,PChain]]]

From Lemma 5.1.5, we have that AdditionalFC is a lattice.

Filter Conditions. A filter condition is an eight-tuple (s, sprt, d, dprt, p,
l2, l7, a), representing network traffic originating from source IP ranges s, with
source port ranges sprt, destined for destination IP ranges d, with destination
port ranges dprt, using stateful-protocols p, with additional Layer 2 attributes l2,
additional Layer 7 attributes l7 and additional filtering specifications a. Let FC
define the set of all filter conditions, where:

FC == δ[IPSpec, δ[PrtSpec, δ[IPSpec, δ[PrtSpec, δ[Protocol, δ[L2, δ[L7,AdditionalFC ]]]]]]]
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From Lemma 5.1.5, we have that FC is a lattice.

Forward Adjacency. Recall, for (a1, b1), (a2, b2) ∈ δ[X ,Y ], we define forward
adjacency, whereby: (a1 = a2 ∧ b1 oY b2). A pair of filter conditions are forward
adjacent if the attributes in the first coordinate are equal, and there is one adja-
cent attribute in the second coordinate, while all other attributes in the second
coordinate are equal.

5.3 The FW1 Firewall Algebra

In this section, we define an algebra FW1, for constructing and reasoning about
anomaly-free firewall policies. We focus on stateless and stateful firewall policies
that are defined in terms of constraints on source/destination IP/port ranges,
the TCP, UDP and ICMP protocols, and additional filter condition attributes.
A firewall policy defines the filter conditions that may be allowed or denied by a
firewall. Let Policy define the set of all firewall policies, whereby:

Policy == {A,D : α[FC ] | ∀ a : A; d : D • a |FC d}

A firewall policy (A,D) ∈ Policy defines a policy as a disjoint pair of
adjacency-free sets of filter conditions under the duplet adjacency ordering,
whereby a filter condition f ∈ A should be allowed by the firewall, while a fil-
ter condition f ∈ D should be denied. Given (A,D) ∈ Policy, then A and D
are disjoint: this avoids any contradiction in deciding whether a filter condition
should be allowed or denied. The policy destructor functions allow and deny are
analogous to functions first and second for ordered pairs:

allow,
deny : Policy → α[FC ]

∀A,D : α[FC ] •
allow (A,D) = A ∧ deny (A,D) = D

Thus, we have for all P ∈ Policy then P = (allow(P), deny(P)).

Lemma 5.3.1 Policy defines the set of anomaly-free policies.

Proof Given a policy (A,D) ∈ Policy, as A and D are adjacency-free sets, then
A has no redundancy and D has no redundancy, as Adjacency-sets have no sub-
sumption. Therefore, all packets matched in filter conditions allowed by the policy
are distinct, as are all packets matched in filter conditions that are denied by the
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policy. Given a policy P ∈ Policy, as allow(P) and deny(P) are disjoint, then P
has no shadowing.

∀P : Policy • allow(P) |α[FC ] deny(P)

As P has no subsumption and P has no shadowing, then P has no generalised
filter conditions and P has no correlated filter conditions. Therefore, as P has no
redundancy/shadowing/generalisation/correlation, then Policy defines the set of
anomaly-free policies.

Note that (A,D) ∈ Policy need not partition dFCe: the allow and deny sets
define the filter conditions to which the policy explicitly applies, and an implicit
default decision is applied for those filter conditions in dFCe \α[FC ] (A⊕D). For
the purposes of modelling iptables firewalls it is sufficient to assume default deny,
though we observe that FW1 can also be used to reason about default allow fire-
wall policies.

Policy Refinement. An ordering can be defined over firewall policies, whereby
given P,Q ∈ Policy then P v Q means that P is no less restrictive than Q, that
is, any filter condition that is denied by Q is denied by P. Intuitively, policy P
is considered to be a safe replacement for policy Q, in the sense of [56, 57, 77]
and any firewall that enforces policy Q can be reconfigured to enforce policy
P without any loss of security. The set Policy forms a lattice under the safe
replacement ordering and is defined as follows.

FW1

⊥,> : Policy
v : Policy ↔ Policy
u ,

t : Policy × Policy → Policy

⊥ = (∅, dFCe) ∧ > = (dFCe, ∅)
∀P,Q : Policy •

P v Q ⇔ ((allow P ≤ allow Q) ∧
(deny Q ≤ deny P)) ∧

P uQ = (allow P ⊗ allow Q,
deny P ⊕ deny Q) ∧

P tQ = (allow P ⊕ allow Q,
deny P ⊗ deny Q)
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Formally, P v Q iff every filter condition allowed by P is allowed by Q and
that any filter conditions explicitly denied by Q are also explicitly denied by P.
Note that in this definition we distinguish between filter conditions explicitly de-
nied in the policy versus those implicitly denied by default. This means that,
everything else being equal, a policy that explicitly denies a filter condition is
considered more restrictive than a policy that relies on the implicit default-deny
for the same network traffic pattern. Safe replacement is defined as the Cartesian
product of Adjacency orderings over allow and deny sets and it therefore follows
that (Policy,v) is a poset. ⊥ and > define the most restrictive and least restric-
tive policies, that is, for any P ∈ Policy we have ⊥ v P v >. Thus, for example,
any firewall enforcing a policy P can be safely reconfigured to enforce the (not
very useful) firewall policy ⊥.

Theorem 5.3.2 The set of all policies Policy forms a lattice under safe re-
placement, with greatest lower bound (u) and lowest upper bound (t) operators
in FW1.

Proof The ordering of adjacency-free filter condition/duplets is a lattice under
subsumption, the Cartesian product is a lattice under the definitions of glb and
lub, therefore, FW1 is a lattice.

Note, the lattice properties of the FW0 policy algebra, described in Chapter 4
Section 4.2.1, also apply to Policy policies in the FW1 algebra.

Policy Intersection. Under this ordering, the meet P u Q, of two firewall
policies P and Q is defined as the policy that denies any filter condition that is
explicitly denied by either P or Q, but allows filter conditions that are allowed by
both P and Q. Intuitively, this means that if a firewall is required to enforce both
policies P and Q, it can be configured to enforce the policy (P uQ) since P uQ
is a safe replacement for both P and Q, that is; (P uQ) v P and (P uQ) v Q.
Given the definition of safe replacement as a product of two Adjacency lattices,
it follows that the policy meet provides the glb operator. Thus, P u Q provides
the ‘best’/least restrictive safe replacement (under v) for both P and Q.

Policy Union. The join of two firewall policies P and Q is defined as the
policy that allows any filter condition allowed by either P or Q, but denies filter
conditions that are explicitly denied by both P and Q. Intuitively, this means
that a firewall that is required to enforce either policy P or Q can be safely
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configured to enforce the policy (P tQ). Since t provides a lub operator we have
P v (P tQ) and Q v (P tQ).

5.3.1 Constructing Firewall Policies

The lattice of policies FW1 provides us with an algebra for constructing and
interpreting firewall polices. The following constructor functions are used to
build primitive policies, and are analogous to the FW0 constructors defined in
Section 4.2.2. Given A ∈ α[FC ], then (AllowA) is a policy that allows filter
conditions in A, and (DenyD) is a policy that explicitly denies filter conditions
in D. This provides a weak interpretation of allow and deny.

Allow,
Deny : α[FC ]→ Policy

∀ S : α[FC ] •
Allow S = (S , ∅) ∧
Deny S = (∅, S)

The following provides us with a strong interpretation for these constructors:

Allow+,

Deny+ : α[FC ]→ Policy

∀ S : α[FC ] •
Allow+ S = (S ,not S) ∧
Deny+ S = (not S , S)

whereby (Allow+ A) allows filter conditions specified in A, while explicitly denying
all other filter conditions, and (Deny+ D) denies filter conditions specified in D
while allowing all other filter conditions.

A firewall policy P ∈ Policy can be decomposed into its corresponding allow
and deny sets, and re-constructed using the algebra; for any (A,D) ∈ Policy,
since A and D are disjoint then:

Lemma 5.3.3 Given A,D ∈ α[FC ], then:

(Allow+A) t (DenyD) = (A, dFCe \α[FC ] A) t (∅,D)
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Proof

(Allow+A) t (DenyD) = (AllowA) u (Deny+ D)

= (A,D)

Corollary 5.3.4 Given A,D ∈ α[FC ], then:

(Deny+D) u (AllowA) = (A, ∅) u (dFCe \α[FC ] D,D)

Proof It follows from Lemma 5.3.3 that Corollary 5.3.4 holds.

5.4 Reasoning About Policies in Practice

Sequential Composition. The algebra FW1 can be extended to include a form
of sequential composition of policies. The definition for FW1 sequential policy
composition is analogous to that given in Chapter 4 Section 4.3 for the FW0

algebra. The policy constructions in Section 5.3.1 can be regarded as representing
the individual rules of a conventional firewall policy.

Let (AllowA) o
9 Q denote a sequential composition of an allow rule (AllowA)

with policy Q with the interpretation that a given network packet matched in
A is allowed; if it does not match in A then policy Q is enforced. The resulting
policy either: allows filter conditions in A (and denies all other filter conditions),
or allows/denies filter conditions in accordance with policy Q. We define:

(AllowA) o
9 Q = (Allow+ A) tQ

= ((A⊕ allow(Q)), ((dFCe \α[FC ] A)⊗ deny(Q)))

= ((A⊕ allow(Q)), (deny(Q) \α[FC ] A))

which is as expected. A similar definition can be provided for the sequential
composition (DenyD) o

9 Q, whereby a given network packet that is matched in D
is denied; if it does not match in D then policy Q is enforced. We define:

(DenyD) o
9 Q = (Deny+D) uQ

= (((dFCe \α[FC ] D)⊗ allow(Q)), deny(Q)⊕ D)

= (allow(Q) \α[FC ] D, deny(Q)⊕ D)
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While in practice its usual to write a firewall policy in terms of many con-
structions of allow and deny rules, in principle, any firewall policy P ∈ Policy
can be defined in terms of one allow policy (Allow allow(P)) and one deny pol-
icy (Deny deny(P)) and since the allow and deny sets of P are disjoint we have
P o

9 Q = (Deny deny(P)) o
9 (Allow allow(P)) o

9 Q. We define this as:

o
9 : Policy × Policy → Policy

∀FW1; P,Q : Policy •
P o

9 Q = (Deny+ (deny(P)))u
(Q t (Allow+ (allow(P))))

Let Rule define the set of all firewall rules, whereby:

Rule ::= allow 〈〈FC 〉〉 |
deny 〈〈FC 〉〉

In Chapter 9 Section 9.2, we consider an additional target action of log for firewall
rules. We define a rule interpretation function as:

I : Rule → Policy

∀ f : FC •
I(allow f ) = Allow({f }) ∧
I(deny f ) = Deny({f })

A firewall policy is defined as a sequence of rules 〈r1, r2, . ., rn〉, for ri ∈ Rule,
and is encoded in the policy algebra as I(r1) o

9 I(r2) o
9 . . o

9 I(rn).

Policy Negation. The policy negation of P ∈ Policy allows filter conditions ex-
plicitly denied by P and explicitly denies filter conditions allowed by P. We define:

not : Policy → Policy

∀FW1; P : Policy •
notP = (Allow+ (deny (P)))t

(Deny (allow (P)))

From this definition it follows that (not P) is (deny (P), allow (P)) and thus
not (DenyD) = (AllowD) and not (AllowA) = (DenyA). Given that policy nega-
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tion is defined similarly to the policy negation operation in the FW0 algebra, we
observe that in general, policy negation does not define a complement operator
in the algebra FW1, that is, it not necessarily the case that (Ptnot P) = > and
(P u not P) = ⊥. However, the sub-lattice of policies with allow and deny sets
that exactly partition the same set S ≤ dFCe has policy negation as complement
(allow (P) ⊕ deny (P) = S for all P in the sub-lattice).

5.4.1 Standards Compliance

RFC 5735 [33], details fifteen IPv4 address blocks that have been assigned by
IANA for specialized/global purposes. The special-use IPv4 addresses are de-
tailed in Table 5.3.

Address Block Present Use Range Start Range End Num IPs
0.0.0.0/8 “This” Network 0.0.0.0 0.255.255.255 224

10.0.0.0/8 Private-Use Networks 10.0.0.0 10.255.255.255 224

127.0.0.0/8 Loopback 127.0.0.0 127.255.255.255 224

169.254.0.0/16 Link Local 169.254.0.0 169.254.255.255 216

172.16.0.0/12 Private-Use Networks 172.16.0.0 172.31.255.255 220

192.0.0.0/24 IETF Protocol Assignments 192.0.0.0 192.0.0.255 28

192.0.2.0/24 TEST-NET-1 192.0.2.0 192.0.2.255 28

192.88.99.0/24 6to4 Relay Anycast 192.88.99.0 192.88.99.255 28

192.168.0.0/16 Private-Use Networks 192.168.0.0 192.168.255.255 216

198.18.0.0/15 Network Interconnect
Device Benchmark Testing 198.18.0.0 198.19.255.255 217

198.51.100.0/24 TEST-NET-2 198.51.100.0 198.51.100.255 28

203.0.113.0/24 TEST-NET-3 203.0.113.0 203.0.113.255 28

224.0.0.0/4 Multicast 224.0.0.0 239.255.255.255 228

240.0.0.0/4 Reserved for Future Use 240.0.0.0 255.255.255.255 228

255.255.255.255/32 Limited Broadcast 255.255.255.255 255.255.255.255 1

Table 5.3: IANA special-use IPv4 addresses

Some of these address spaces may appear on the Internet, and may be used
legitimately outside a single administrative domain, however, while the assigned
values of the address blocks do not directly raise security issues; unexpected use
may indicate an attack [33]. For example, packets with a source IP address from
the private address space 172.16.0.0/12, arriving on the Wide Area Network in-
terface of a network router, may be considered spoofed, and may be part of a
Denial of Service (DoS), or Distributed DoS attack.

RFC 5735 Compliance. Best practice recommendations are implemented for
each of the fifteen specialized IP address block ranges in [33], resulting in one
hundred and twenty iptables deny rules. In [55], we defined this deny ruleset
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for a firewall management tool. We define IP spoof-mitigation policies for each
iptables chain separately. For the INPUT chain, a compliance policy RFC5735I is
defined, whereby for each of the IP address block ranges, the following iptables
rules are enforced.

iptables -A INPUT -i $in \
-m iprange --src-range $min:$max -j DROP

iptables -A INPUT -i $in \
-m iprange --dst-range $min:$max -j DROP

Similarly, for the OUTPUT chain, an IP spoof-mitigation compliance policy
RFC5735O is defined, whereby for each of the specialized IP address block ranges
we have:

iptables -A OUTPUT -o $out \
-m iprange --src-range $min:$max -j DROP

iptables -A OUTPUT -o $out \
-m iprange --dst-range $min:$max -j DROP

For the FORWARD chain, then RFC5735F enforces the following iptables rules
for each of the IP address block ranges.

iptables -A FORWARD -i $in \
-m iprange --src-range $min:$max -j DROP

iptables -A FORWARD -i $in \
-m iprange --dst-range $min:$max -j DROP

iptables -A FORWARD -o $out \
-m iprange --src-range $min:$max -j DROP

iptables -A FORWARD -o $out \
-m iprange --dst-range $min:$max -j DROP

Each policy, RFC5735I,RFC5735O,RFC5735F, terminates with a final iptables
rule that specifies all other traffic be permitted on the given iptables chain.

A Redefined Firewall Policy. We model these iptables rules in the algebra by
redefining some policy-model attributes, and provide more formal definitions of
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RFC5735I,RFC5735O and RFC5735F. Let AdditionalFCI be the set of all duplets
for additional filter condition attributes of interest, whereby:

AdditionalFCI == δ[PChain, δ[PDir ,P IFACE ]]

A revised definition for the set of all filter conditions FCI is given as:

FCI == δ[IPSpec, δ[PrtSpec, δ[IPSpec, δ[PrtSpec, δ[Protocol,AdditionalFCI ]]]]]

A revised definition for the set of all policies PolicyI is given as:

PolicyI == {A,D : α[FCI ] | ∀ a : A; d : D • a |FCI d}

The compliance policies RFC5735I,RFC5735O,RFC5735F ∈ PolicyI , define the
minimum requirements for what it means for some perimeter network firewall
policy to mitigate the threat of IP spoofing for all traffic, in accordance with
RFC 5735. Thus, we have for all P ∈ PolicyI if:

P v (RFC5735I u RFC5735O u RFC5735F)

then P complies with the best practice recommendations outlined in [33] for IP
address spoof-mitigation. In Chapter 6, a prototype policy management toolkit
that implements PolicyI firewall policies is described.

5.4.2 Anomaly Detection

We have by definition, the adjacency-free allow and deny sets of some P ∈ Policy
are disjoint, therefore P is anomaly-free by construction. We can however define
anomalies using the algebra; by considering how a policy changes when composed
with other policies. The definitions given in this section are analogous to those
given in Chapter 4 Section 4.3.1 for the FW0 algebra.

Redundancy. A policy P is redundant given policy Q if their composition
results in no difference between the resulting policy and Q, in particular, if:

P o
9 Q = Q

Further definitions may be given for redundancy. For example, there are
redundant packets with a target action of allow in filter conditions between policy
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P and policy Q, if:

Allow(allow (P)) u Allow(allow (Q)) 6= (∅, ∅)

as:

Allow(allow (P)) u Allow(allow (Q)) = (allow (P)⊗ allow (Q), ∅)

A similar interpretation follows for redundant packets with a target action of
deny between filter conditions in a policy P and filter conditions in a policy Q.
In particular, we have redundant denies if:

Deny(deny (P)) t Deny(deny (Q)) 6= (∅, ∅)

as:

Deny(deny (P)) t Deny(deny (Q)) = (∅, deny (P)⊗ deny (Q))

Shadowing. Some part of policy Q is shadowed by the entire policy P in the
composition P o

9 Q if the filter condition constraints that are specified by P con-
tradict the constraints that are specified by Q, in particular, if:

(not P) o
9 Q = Q

This is a very general definition for shadowing, as discussed in Chapter 4 Sec-
tion 4.3.1 when reasoning about shadowing anomalies using the FW0 algebra.

Further definitions may also be given for shadowing. For example, we have
that some of the packets denied by filter conditions in a policy P shadow some
of the packets allowed by filter conditions in a policy Q if:

Deny(deny (P)) t Deny(allow (Q)) 6= (∅, ∅)

as:

Deny(deny (P)) t Deny(allow (Q)) = (∅, deny (P)⊗ allow (Q))

Similarly, some of the packets allowed by filter conditions in a policy P shadow
some of the packets denied by filter conditions in a policy Q if:

Allow(allow (P)) u Allow(deny (Q)) 6= (∅, ∅)
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as:

Allow(allow (P)) u Allow(deny (Q)) = (allow (P)⊗ deny (Q), ∅)

Generalisation. A generalisation anomaly exists between P and Q if some of
the packets allowed by filter conditions in P shadow some of the packets denied
by filter conditions in Q, in particular, if:

Allow(allow (P)) u Allow(deny (Q)) 6= (∅, ∅)

and, those packets shadowed by filter conditions in Q are subsumed by Q’s denies:

not (Allow(allow (P)) u Allow(deny (Q))) 6= Deny(deny (Q))

whereby:

not (Allow(allow (P)) u Allow(deny (Q))) = (∅, allow (P)⊗ deny (Q))

Similarly, a generalisation anomaly exists between P and Q if some of the
packets denied by filter conditions in P shadow some of the packets allowed by
filter conditions in Q, in particular, if:

Deny(deny (P)) t Deny(allow (Q)) 6= (∅, ∅)

and, those packets shadowed by filter conditions in Q are subsumed by Q’s allows:

not (Deny(deny (P)) t Deny(allow (Q))) 6= Allow(allow (Q))

as:

not (Deny(deny (P)) t Deny(allow (Q))) = (deny (P)⊗ allow (Q), ∅)

Inter-policy Anomalies. We can also use the FW1 algebra to reason about
anomalies between the different policies of distributed firewall configurations. In
the following, assume that P is a policy on an upstream firewall and Q is a policy
on a downstream firewall.

Redundancy. An inter-redundancy anomaly exists between policies P and Q
if some part of Q is redundant to some part of P, whereby the target action
of the redundant filter conditions is deny. Given some set of filter conditions A
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denied by P, and some set of filter conditions B denied by Q, then there exists
an inter-redundancy between P and Q, if:

(DenyA) o
9 (DenyB) = (DenyA)

Further definitions may be given for inter-redundancy. For example, there
are redundant packets with a target action of deny in filter conditions between
upstream policy P and downstream policy Q, if:

Deny(deny (P)) t Deny(deny (Q)) 6= (∅, ∅)

Shadowing. An inter-shadowing anomaly exists between policies P and Q if
some part of Q’s allows are shadowed by some part of P’s denies. Given some
set of filter conditions A denied by P, and some set of filter conditions B allowed
by Q, then there is an inter-shadowing anomaly between P and Q, if:

(DenyA) o
9 (AllowB) = (DenyA)

Further definitions may also be given for inter-shadowing. For example, we
have that some of the packets denied by filter conditions in a policy P shadow
some of the packets allowed by filter conditions in a policy Q if:

Deny(deny (P)) t Deny(allow (Q)) 6= (∅, ∅)

Spuriousness. An inter-spuriousness anomaly exists between policies P and Q
if some part of Q’s denies are shadowed by some part of P’s allows. Given some
set of filter conditions A allowed by P, and some set of filter conditions B denied
by Q, then there exists an inter-spuriousness anomaly between P and Q, if:

(AllowA) o
9 (DenyB) = (AllowA)

Spuriousness may also be defined as follows, whereby some of the packets
allowed by filter conditions in a policy P shadow some of the packets denied by
filter conditions in a policy Q. We have an inter-spuriousness anomaly from an
upstream policy P to a downstream policy Q, if:

Allow(allow (P)) u Allow(deny (Q)) 6= (∅, ∅)
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5.5 Discussion

In this chapter, a policy algebra FW1 is defined in which firewall policies can
be specified and reasoned about. At the heart of this algebra is the notion of
safe replacement, that is, whether it is secure to replace one firewall policy by
another. The set of policies form a lattice under safe replacement and this enables
consistent operators for safe composition to be defined. Policies in this lattice are
anomaly-free by construction, and thus, composition under glb and lub operators
preserves anomaly-freedom. A policy sequential composition operator is also pro-
posed that can be used to interpret firewall policies defined more conventionally
as sequences of rules.

The algebra can be used to characterize anomalies, such as redundancy and
shadowing, that arise from policy composition. To consider the types of stateful
anomalies from [66] in the proposed model FW1, then it would be necessary
to apply additional constraints when constructing and composing anomaly-free
firewall policies. For example, a policy that specifies a firewall rule that enables
the establishment of a TCP connection from host X to host Y , should also
include rules that allow for the various other permissible transitions of the TCP
protocol. A similar approach would be required when considering more complex
time-based rule anomalies. Suppose, for example, a policy specifies a rule that
allows outbound SSH traffic from host X to host Y between 6 a.m. and 8 p.m.
on Tuesdays, but is missing firewall rule/s permitting inbound SSH traffic during
the same time period between X and Y . Similar to the notion of more complex
stateful anomalies, it would also be necessary to apply additional constraints
when constructing and composing anomaly-free firewall policies to consider more
complex time-based anomalies. Best practice policy compliance may be defined
using v. The algebra FW1 provides a formal interpretation of the network access
controls for a partial mapping of the iptables filter table. FW1 is a generic algebra
and can also be used to model other firewall systems.

In [5], a firewall policy is modelled as a single rooted tree, relations between
rules are defined on a pairwise basis, and definitions for firewall configuration
anomalies are provided. In [6], the work is extended to distributed firewall poli-
cies. In [35], a firewall policy is modelled as a linked-list, and in [73] rule rela-
tions within a policy are modelled in a directed graph. In [159] Binary Decision
Diagrams are used to model firewall rulesets. In [22], a theorem-proving ap-
proach is used to reason about firewall policies. We model a firewall policy as
an ordered pair of disjoint adjacency-free sets, where the set of policies Policy
forms a lattice under v, and each P ∈ Policy is anomaly-free by construction.
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In [5, 6, 35, 73, 159] an algorithmic approach is taken to detect/resolve anomalies.
We follow an algebraic (as opposed to algorithmic) approach towards modelling
anomalies in a single policy, and across a distributed policy configuration through
policy composition. In [161], a firewall policy algebra is proposed. However, the
authors note that an anomaly-free composition is not guaranteed as a result of
using their algebraic operators. Our work differs, in that policy composition
under the u,t and o

9 operators defined in this chapter all result in anomaly-
free policies. The proposed algebra FW1 is used to reason about and compose
anomaly-free policies and therefore we do not have to worry about dealing with
conflicts that may arise. Anomaly conflicts are dealt with in composition by com-
puting anomaly-free policies, rather than using techniques such as [78] to resolve
conflicts in policy decisions.

Yang and Lam [158] propose the Atomic Predicate (AP) Verifier tool. AP
Verifier reduces the set of predicates representing network packet filters to a set
of atomic predicates, with the aim of speeding up network reachability testing. A
predicate is represented as a set of integers that define the atomic predicates. The
performance analysis of AP Verifier is compared with other tools, and demon-
strates the proposed approach is significantly more time- and space-efficient. Bel-
haouane et al. [17] propose a formal method to verify when two Access Control
Lists are functionally equivalent/isofunctional. In this dissertation, we argue that
there is an isomorphic mapping between policies in the FW0 and FW1 firewall
algebras, that is, every firewall policy P ∈ Policy has a corresponding unique
representation P ∈ Policy0 and vice-versa.

In [62], we developed the algebra FW0 (extended in Chapter 4), and used it
to reason over host-based and network access controls in OpenStack. In [62], we
focused on stateless firewall policies that are defined in terms of constraints on
individual IPs, ports and protocols. The FW1 algebra is defined over stateful
firewall policies constructed in terms of constraints on source/destination IP/-
port ranges, the TCP, UDP and ICMP protocols, and additional filter condition
attributes. We argue that FW1 gives a more expressive means for reasoning over
OpenStack security group and perimeter firewall configurations. In Chapter 7,
the FW1 algebra is used to construct a policy model for OpenStack host-based
and network access controls.
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Chapter 6

Implementing The FW1 Policy
Algebra

This chapter describes a prototype policy management toolkit that implements
the FW1 PolicyI firewall policies defined in Chapter 5 Section 5.4.1, for iptables.
Experiments for policy operators are conducted and the results are presented.
This chapter is an extended version of the results reported for the prototype in
[101], and is organised as follows. In Section 6.1 the prototype construction is de-
scribed, we give efficient implementations of firewall rule (duplet) join and firewall
rule (duplet) difference, and the experimentation methodology is presented. In
Section 6.2, the sequential composition operator for PolicyI policies is evaluated.
Policy union is evaluated in Section 6.3, as is policy intersection in Section 6.4.
In Section 6.5 we evaluate policy compliance.

6.1 Implementing iptables Policies

A prototype policy management toolkit has been implemented in Python for ipt-
ables. We reason over an implementation of the PolicyI policies described in
Chapter 5 Section 5.4.1, using the o

9, t,u and v policy operators. The test-bed
for the experiments is a 64-Bit Ubuntu 14.04 LTS OS, running on a Dell Latitude
E6430, with a quad-core Intel i5-3320M processor and 4GB of RAM. Every ex-
periment was conducted three times; the median result chosen for inclusion. In
this section, the construction of the firewall datatypes for the prototype and the
methodology for generating the test-data is described.

Firewall Rules. An iptables rule is modelled as a list of generic filter conditions.
The current implementation defines firewall rules with filter condition attributes
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for source/destination IP/port ranges, the ICMP, UDP and TCP protocols, and
additional filter condition attributes. The relationships of adjacency, disjointness
and subsumption have been encoded, as have composition operators for rule in-
tersection and rule join/combination.

Range-based Attributes. Filter condition attributes defined as ranges in the
FW1 framework, for example, source/destination IP/port ranges, are imple-
mented as interval sets, using the Pyinter Python package [104]. The package was
modified to include definitions for relative compliment operators and adjacency
over intervals and interval sets.

ICMP and UDP. The ICMP protocol is modelled as the set of all valid ICMP
Type/Code pairs, given in Chapter 3 Section 3.2.2. UDP has been defined as a
binary attribute. Boolean operators apply for the UDP filter condition attributes.

TCP. The TCP protocol is encoded as a 212 bit array, whereby the position of
each bit is mapped to an index value in a table. This table is the implementation
of the FlagSpec object defined in Chapter 3 Section 3.2.3, and is encoded as the list
of TCP (mask, comp) pairs, as pairs of six-bit arrays; as depicted in Figure 6.1.

0 1 2 3 4 5

1 0 1 0 1 0

Mask

SYN FIN ACK PSH RST URG

0 1 2 3 4 5

0 1 0 1 0 1

Comp

SYN FIN ACK PSH RST URG

Flag values

Figure 6.1: A TCP FlagSpec element

A value of 1 at a given position in the 212 bit array indicates that this particu-
lar arrangement of TCP flags are matched in the packets specified by the firewall
rule. Table 6.1 gives an overview of the FlagSpec lookup.

Index Mask Comp
1 ‘000000’ ‘000000’
2 ‘000000’ ‘000001’
. . . . . .
8 ‘000000’ ‘000111’
. . . . . .

4096 ‘111111’ ‘111111’

Table 6.1: Partial TCP FlagSpec Lookup Table
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Additional Attributes. Attributes for direction-oriented filtering, network in-
terface and iptables chains have been encoded as sets for firewall rules.

Firewall Policies. A policy is implemented as a disjoint pair of adjacency-free
sets of firewall rules. The adjacency-free sets of rules have been modelled follow-
ing the approach taken to model the interval-sets in the Pyinter package [104].

Transitive Closure of Adjacent Rules. The transitive closure for the ad-
jacency relation over rules in firewall policies has been implemented recursively,
following the approach used in the Pyinter package to implement the transitive
closure over adjacent intervals [104]. A set of firewall rules is adjacency-free by
construction. When a new rule is added to the ruleset, a check is made firstly
to determine if there are any rules in the set that are adjacent to the new rule.
If there are none, the new rule is added. Otherwise, the adjacent rules are re-
moved from the ruleset, and rules resulting from the combination of the new rule
with the adjacent rules are added to the ruleset, starting again with a check to
determine if there are any rules in the set that are adjacent to the new rule.

6.1.1 Implementing Duplet Join and Difference

In this section, the implementations of duplet/rule join and duplet/rule difference
are defined.

Duplet Combination. For f , g ∈ δ[X ,Y ], then the combination operation
(f ]δ[X ,Y ] g) defines a set of adjacency-free duplets that exactly cover f and g.

[X ]

] : PX 7→ (X × X)→ PX

∀ a, b : X •
∀ c : (a ]X b) •

a X← c ∨ b X← c ∧
6 ∃ d : (a ]X b) •

c oX d | c 6= d

The operation is described using three recursive functions; center C(f , g), left
L(f , g) and right R(f , g), and is defined as the set union of the duplets resulting
from C(f , g), L(f , g) and R(f , g). For ease of exposition, a duplet is given as
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sequence of filter condition attributes. We assume f and g always have the same
number of attributes. The functions are defined as follows.

Center. For f , g ∈ δ[X ,Y ], then C(f , g) defines the join of the adjacent and
common attributes in f and g. For duplets comprising two attributes, we define:

C(〈a1, b1〉, 〈a2, b2〉) = 〈a1 ∪X a2, b1 ∩Y b2〉

Table 6.2 specifies the operations and duplet resulting from C(f , g) for two-
attribute duplets. The label D signifies duplet, while A means the attribute.

D
A

1 2

1 a1 ∪X a1 b1 ∩Y b2

Table 6.2: Center function for two-attribute duplets

For f and g of length greater than two, we define for each additional attribute:

C(f 〈̂c1〉, g 〈̂c2〉) = C(f , g)a 〈c1 ∩Y c2〉

Table 6.3 specifies the operations and duplet resulting from C(f , g) for duplets
with three attributes.

D
A

1 2 3

1 a1 ∪X a1 b1 ∩Y b2 c1 ∩Y c2

Table 6.3: Center function for three-attribute duplets

Left. For f , g ∈ δ[X ,Y ], then L(f , g) defines the remaining attribute constraints
covered in f , that are not covered in C(f , g). For duplets comprising two at-
tributes, we define:

L(〈a1, b1〉, 〈a2, b2〉) = {〈a1, b1 \Y b2〉}

Table 6.4 specifies the operations and duplet resulting from L(f , g) for two-
attribute duplets.
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D
A

1 2

1 a1 b1 \Y b2

Table 6.4: Left function for two-attribute duplets

For f and g of length greater than two, we define for each additional attribute:

L(f 〈̂c1〉, g 〈̂c2〉) = {〈head f 〉a tail (C(f , g))a 〈c1 \Y c2〉} ∪
{t : L(f , g) • t a 〈c1〉}

Table 6.5 specifies the operations and duplets resulting from L(f , g) for duplets
comprising three attributes.

D
A

1 2 3

1 a1 b1 \Y b2 c1
2 a1 b1 ∩Y b2 c1 \Y c2

Table 6.5: Left function for three-attribute duplets

Right. For f , g ∈ δ[X ,Y ], then R(f , g) defines the remaining attribute con-
straints covered in g, that are not covered in C(f , g). For duplets comprising two
attributes, we define:

R(〈a1, b1〉, 〈a2, b2〉) = {〈a2, b2 \Y b1〉}

Table 6.6 specifies the operations and duplet resulting from R(f , g) for two-
attribute duplets.

D
A

1 2

1 a2 b2 \Y b1

Table 6.6: Right function for two-attribute duplets

For f and g of length greater than two, we define for each additional attribute:

R(f 〈̂c1〉, g 〈̂c2〉) = {〈head g〉a tail (C(f , g))a 〈c2 \Y c1〉} ∪
{t : R(f , g) • t a 〈c2〉}
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Table 6.7 specifies the operations and duplets resulting from R(f , g) for duplets
comprising three attributes.

D
A

1 2 3

1 a2 b2 \Y b1 c2
2 a2 b2 ∩Y b1 c2 \Y c1

Table 6.7: Right function for three-attribute duplets

Thus, we define the combination operation for f and g as:

f ]δ[X ,Y ] g = {C(f , g)} ∪ L(f , g) ∪R(f , g)

Theorem 6.1.1 For f , g ∈ δ[X ,Y ], then f ]δ[X ,Y ] g defines the adjacency-free
combination for all n ∈ N, where (n = # f = # g) ≥ 2.

Proof We will show that for f , g ∈ δ[X ,Y ], then f ]δ[X ,Y ]g defines the adjacency-
free combination for all n ∈ N, where (n = # f = # g) ≥ 2, using induction on n.

Base Case. For n = 2, then for f ]δ[X ,Y ] g, the resulting operations and duplets
for f and g as two attribute duplets are given in Table 6.8:

D
A

1 2

1 a1 ∪X a1 b1 ∩Y b2
2 a1 b1 \Y b2
3 a2 b2 \Y b1

Table 6.8: A two-attribute duplet join

Therefore, Theorem 6.1.1 holds when n = 2.

Inductive Hypothesis. Suppose Theorem 6.1.1 holds for k ∈ N, where k > n,
and k = # f = # g. Then for f ]δ[X ,Y ] g, the resulting operations and duplets for
f and g as k-attribute duplets are given in Table 6.9:
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D
A

1 2 . . k

1 a1 ∪X a1 b1 ∩Y b2 . . x1 ∩Y x2
2 a1 b1 \Y b2 . . x1
3 a2 b2 \Y b1 . . x2
. . . . . . . . x1
. . . . . . . . x2
(k + k − 2) a1 b1 ∩Y b2 . . x1 \Y x2
(k + k − 1) a2 b2 ∩Y b1 . . x2 \Y x1

Table 6.9: A k-attribute duplet join

Inductive Step. Let n = k + 1. Then by the recursive definitions of C(f , g),
L(f , g) and R(f , g), the resulting operations and duplets for f and g as (k + 1)-
attribute duplets in (f ]δ[X ,Y ] g) are given in Table 6.10, whereby:

D
A

1 2 . . k k + 1

1 a1 ∪X a1 b1 ∩Y b2 . . x1 ∩Y x2 y1 ∩Y y2
2 a1 b1 \Y b2 . . x1 y1
3 a2 b2 \Y b1 . . x2 y2
. . . . . . . . x1 y1
. . . . . . . . x2 y2
(k + k − 2) a1 b1 ∩Y b2 . . x1 \Y x2 y1
(k + k − 1) a2 b2 ∩Y b1 . . x2 \Y x1 y2
(k + k) a1 b1 ∩Y b2 . . x1 ∩Y x2 y1 \Y y2
(k + k + 1) a2 b2 ∩Y b1 . . x2 ∩Y x1 y2 \Y y1

Table 6.10: A (k + 1)-attribute duplet join

Therefore, Theorem 6.1.1 holds for n = k + 1. By the principal of mathematical
induction, the theorem holds for all n ∈ N, where n ≥ 2.

Algorithm 1 summarises the duplet combination operation.
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1 Combine(f, g, len, ruleSet) /* combines duplets f and g. */
input : a pair of duplets (f , g), the number of attributes (len), an

empty list to hold the result (ruleSet)
output: the list (ruleSet), where ruleSet = 〈C(f , g),L(f , g),R(f , g)〉

2 if (len == 2) then
3 ruleSet(0)← 〈a1 ∪X a2, b1 ∩Y b2〉
4 ruleSet(1)← {〈a1, b1 \Y b2〉}
5 ruleSet(2)← {〈a2, b2 \Y b1〉}
6 return ruleSet
7 else
8 len ← len − 1

9 i ← #ruleSet(0)
10 l ← a/〈〈head f 〉, tail (ruleSet(0)), 〈f (i) \Y g(i)〉〉
11 r ← a/〈〈head g〉, tail (ruleSet(0)), 〈g(i) \Y f (i)〉〉
12 ruleSet(0)← ruleSet(0)a 〈f (i) ∩Y g(i)〉
13 ruleSet(1)← {t : ruleSet(1) • t a 〈f (i)〉} ∪ {l}
14 ruleSet(2)← {t : ruleSet(2) • t a 〈g(i)〉} ∪ {r}
15 returnCombine(f, g, len, ruleSet)

Algorithm 1: Duplet combination operation

A Bottom-up Approach to Duplet Join. Recall, the definition for the join
operation of S ,T ∈ α[δ[X ,Y ]] given in Chapter 5 Section 5.1.3 is constructed
following a top-down approach with respect to the ordering relation ≤, whereby:

S ⊕ T = d{a, b :
⋂
{U : P(δ[X ,Y ]) | (∀ c : U • ∃ a : S ; b : T •

c δ[X ,Y ]→ a ∨ c δ[X ,Y ]→ b)} | a o+δ[X ,Y ] b • a ∪δ[X ,Y ] b}e

For all S ,T ∈ α[δ[X ,Y ]], we define the implementation definition for sets of
adjacency-free duplets as:

S ⊕ T = d{a, b : d
⋃
{a, b : (S ∪ T ) | a o+(S∪T) b • (a ]δ[X ,Y ] b)}e |

a o+δ[X ,Y ] b • a ∪δ[X ,Y ] b}e

Adjacency Duplet Union Implementation. The implementation definition
for the join of S ,T ∈ α[δ[X ,Y ]] is defined as the cover-set for the duplet merge
of the transitive closure of adjacent duplets, from the coverset for the generalized
union of sets from the duplet combination operation ( ] ), for all transitively
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adjacent duplets in S and T . The coverset for the the generalized union defines
the smallest collection of duplets that cover all of the duplets from both S and T
by precedence subsumption. Given that all duplets in this set are now disjoint, the
cover-set for the duplet merge of the transitive closure of adjacent duplets merges
any forward-adjacent duplets from S and T . If we take some U ∈ α[δ[X ,Y ]],
such that U ≤ (S ⊕ T ) and S ≤ U ∧ T ≤ U , then (S ⊕ T ) = U . Thus, the
implementation definition for duplet Adjacency-set join provides a lowest upper
bound operator.

Theorem 6.1.2 The two given definitions for joining sets of adjacency-free du-
plets are equivalent.

∀ S ,T : α[δ[X ,Y ]] •
S ⊕ T = d{a, b :

⋂
{U : P(δ[X ,Y ]) | (∀ c : U • ∃ a : S ; b : T •

c δ[X ,Y ]→ a ∨ c δ[X ,Y ]→ b)} | a o+δ[X ,Y ] b • a ∪δ[X ,Y ] b}e
= d{a, b : d

⋃
{a, b : (S ∪ T ) | a o+(S∪T) b • (a ]δ[X ,Y ] b)}e |

a o+δ[X ,Y ] b • a ∪δ[X ,Y ] b}e

Proof Given that both definitions define the cover-set for the duplet merge of
the transitive closure of forward adjacent duplets from the smallest collection of
disjoint adjacency-free duplets that cover all of the duplets from both S and T
by precedence subsumption, then Theorem 6.1.2 holds.

Duplet Difference. For f , g ∈ δ[X ,Y ], the operation (f \δ[X ,Y ] g) defines a
set of adjacency-free duplets that are covered by f but not by g. The operation
is described using two recursive functions; center Cdiff (f , g), and the left L(f , g)
function given previously. The function (f \δ[X ,Y ] g) is defined as the set union of
the duplets resulting from Cdiff (f , g) and L(f , g).

Center. For f , g ∈ δ[X ,Y ], then for duplets comprising two attributes; Cdiff (f , g)
is defined as follows:

Cdiff (〈a1, b1〉, 〈a2, b2〉) = 〈a1 \X a2, b1 ∩Y b2〉

The operations and duplet resulting from Cdiff (f , g) for two-attribute duplets are
given in Table 6.11.
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D
A

1 2

1 a1 \X a1 b1 ∩Y b2

Table 6.11: Center difference function for two-attribute duplets

For f and g of length greater than two, we define for each additional attribute:

Cdiff (f 〈̂c1〉, g 〈̂c2〉) = Cdiff (f , g)a 〈c1 ∩Y c2〉

The operations and duplet resulting from Cdiff (f , g) for duplets with three at-
tributes are given in Table 6.12.

D
A

1 2 3

1 a1 \X a1 b1 ∩Y b2 c1 ∩Y c2

Table 6.12: Center difference function for three-attribute duplets

Thus, we define the difference operation for f and g as:

f \δ[X ,Y ] g = {Cdiff (f , g)} ∪ L(f , g)

Theorem 6.1.3 For f , g ∈ δ[X ,Y ], then f \δ[X ,Y ] g defines the adjacency-free
duplet difference for all n ∈ N, where (n = # f = # g) ≥ 2.

Proof We will show that for f , g ∈ δ[X ,Y ], then f \δ[X ,Y ]g defines the adjacency-
free duplet difference for all n ∈ N, where (n = # f = # g) ≥ 2, using induction
on n.

Base Case. For n = 2, then for f \δ[X ,Y ] g, the resulting operations and duplets
for f and g as two-attribute duplets are given in Table 6.13.

D
A

1 2

1 a1 \X a1 b1 ∩Y b2
2 a1 b1 \Y b2

Table 6.13: A two-attribute duplet difference
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Therefore, Theorem 6.1.3 holds when n = 2.

Inductive Hypothesis. Suppose Theorem 6.1.3 holds for k ∈ N, where k > n,
and k = # f = # g. Then for f \δ[X ,Y ] g, the resulting operations and duplets for
f and g as k-attribute duplets are given in Table 6.14.

D
A

1 2 . . k

1 a1 \X a1 b1 ∩Y b2 . . x1 ∩Y x2
2 a1 b1 \Y b2 . . x1
. . . . . . . . x1
k a1 b1 ∩Y b2 . . x1 \Y x2

Table 6.14: A k-attribute duplet difference

Inductive Step. Let n = k + 1. Then by the recursive definitions of Cdiff (f , g)
and L(f , g), the resulting operations and duplets for f and g as (k + 1)-attribute
duplets in (f \δ[X ,Y ] g) are given in Table 6.15, whereby:

D
A

1 2 . . k k + 1

1 a1 \X a1 b1 ∩Y b2 . . x1 ∩Y x2 y1 ∩Y y2
2 a1 b1 \Y b2 . . x1 y1
. . . . . . . . x1 y1
(k) a1 b1 ∩Y b2 . . x1 \Y x2 y1
(k + 1) a1 b1 ∩Y b2 . . x1 ∩Y x2 y1 \Y y2

Table 6.15: A (k + 1)-attribute duplet difference

Therefore, Theorem 6.1.3 holds for n = k + 1. By the principal of mathematical
induction, the theorem holds for all n ∈ N, where n ≥ 2.

Algorithm 2 summarises the duplet difference operation.
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1 Difference(f, g, len, ruleSet) /* duplet difference operation. */
input : a pair of duplets (f , g), the number of attributes (len), an

empty list to hold the result (ruleSet)
output: the list (ruleSet), where ruleSet = 〈Cdiff (f , g),L(f , g)〉

2 if (len == 2) then
3 ruleSet ← 〈〈a1 \X a2, b1 ∩Y b2〉, {〈a1, b1 \Y b2〉}〉
4 return ruleSet
5 else
6 len ← len − 1

7 i ← #ruleSet(0)
8 l ← a/〈〈head f 〉, tail (ruleSet(0)), 〈f (i) \Y g(i)〉〉
9 ruleSet(0)← ruleSet(0)a 〈f (i) ∩Y g(i)〉

10 ruleSet(1)← {t : ruleSet(1) • t a 〈f (i)〉} ∪ {l}
11 returnDifference(f, g, len, ruleSet)

Algorithm 2: Duplet difference operation

6.1.2 Generating the Datasets

Datasets have been constructed to evaluate the policy operators. The policy com-
position datasets were constructed in such a way as to test possible best/worst-
case scenarios. A dataset has also been constructed to test policy compliance.

Datasets for Sequential Composition Experiments. Two datasets were
generated for experimentation. Each dataset consists of iptables policies of size
24, 25 . . 211. This allows us to formulate a doubling hypothesis [128] for each
dataset, whereby we determine the effect on the experiment’s running time by
doubling the number of rules. All dataset rules have a target action of allow.

Non-adjacent Dataset. This dataset contains policies where no rule is adjacent
to any other rule (other than itself). The source/destination IP/port ranges for
each rule in a policy are incremented, such that each new rule is not adjacent to
the previous rule. The first two rules of each policy in this dataset are:

iptables -A INPUT -m iprange --src-range 0.0.0.1-0.0.0.50 \
--dst-range 0.0.0.26-0.0.0.75 -p udp \
--sport 100:110 --dport 100:110 -j ACCEPT
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iptables -A INPUT -m iprange --src-range 0.0.0.51-0.0.0.100 \
--dst-range 0.0.0.76-0.0.0.125 -p udp \
--sport 120:130 --dport 120:130 -j ACCEPT

Adjacent Dataset. This dataset consists of policies where every new rule is
adjacent to the previous rule, to ensure the maximum number of possible rules
are generated as a result of composition. The policies have been generated by
incrementing the values of the source/destination IP/port ranges for each new
rule, such that the new rule is adjacent to the previous rule. The first two rules
in each of the adjacent dataset policies are:

iptables -A INPUT -m iprange --src-range 0.0.0.1-0.0.0.50 \
--dst-range 0.0.0.45-0.0.0.100 -p tcp \
--sport 100:110 --dport 100:110 -j ACCEPT

iptables -A INPUT -m iprange --src-range 0.0.0.51-0.0.0.100 \
--dst-range 0.0.0.95-0.0.0.150 -p tcp \
--sport 105:115 --dport 105:115 -j ACCEPT

The datasets have been constructed in this way, as evaluating randomly gen-
erated rules is not an effective testing technique. The adjacent and non-adjacent
datasets allow for a boundary value analysis [114] of rule composition.

Example 1 Sequentially composing the first two rules in an adjacent dataset
policy results in the following re-computed adjacency-free iptables ruleset.

iptables -A INPUT -m iprange --src-range 0.0.0.51-0.0.0.100 \
--dst-range 0.0.0.101-0.0.0.150 -p tcp \
--sport 105:110 --dport 105:115 -j ACCEPT

iptables -A INPUT -m iprange --src-range 0.0.0.1-0.0.0.100 \
--dst-range 0.0.0.95-0.0.0.100 -p tcp \
--sport 105:110 --dport 105:110 -j ACCEPT

iptables -A INPUT -m iprange --src-range 0.0.0.1-0.0.0.50 \
--dst-range 0.0.0.45-0.0.0.100 -p tcp \
--sport 100:104 --dport 100:110 -j ACCEPT

iptables -A INPUT -m iprange --src-range 0.0.0.51-0.0.0.100 \
--dst-range 0.0.0.95-0.0.0.150 -p tcp \
--sport 111:115 --dport 105:115 -j ACCEPT
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iptables -A INPUT -m iprange --src-range 0.0.0.1-0.0.0.50 \
--dst-range 0.0.0.95-0.0.0.100 -p tcp \
--sport 105:110 --dport 100:104 -j ACCEPT

iptables -A INPUT -m iprange --src-range 0.0.0.51-0.0.0.100 \
--dst-range 0.0.0.95-0.0.0.100 -p tcp \
--sport 105:110 --dport 111:115 -j ACCEPT

iptables -A INPUT -m iprange --src-range 0.0.0.1-0.0.0.50 \
--dst-range 0.0.0.45-0.0.0.94 -p tcp \
--sport 105:110 --dport 100:110 -j ACCEPT

However, sequentially composing the first two rules from a non-adjacent
dataset policy results in those two rules for a re-computed adjacency-free ipt-
ables ruleset/policy. 4

Dataset for Policy Union and Intersection Experiments. Each policy in
the previously defined adjacent dataset, is split into two policies to construct the
dataset for the lub/glb experiments. The first policy contains the odd (index)
rules from the original policy. All rules in an odd-index policy are adjacency-free.
The second policy contains the even (index) rules from the original policy. All
rules in an even-index policy are adjacency-free. Constructing the dataset from
the odd-index and even-index policies allows us to evaluate the cost, in terms
of time, of composing policies of different sizes, whereby for the policy union ex-
periments, the maximum number of rules are generated as a result of composition.

Dataset for Policy Compliance Experiments. A dataset consisting of ipt-
ables policies of size 25, 26 . . 211 is generated to test policy compliance. Each
policy in this dataset is RFC 5735 compliant by construction, for TCP traffic
arriving on the iptables INPUT chain to/from each of the fifteen special-use IPv4
addresses [33]. Recall, the compliance policy RFC5735I defined in Chapter 5
Section 5.4.1 for PolicyI policies. The UDP rules from the previously defined
non-adjacent dataset have been re-written with a target action of deny, and are
used to construct the remaining rules for each policy in the compliance dataset.

The iptables policies in the datasets described in this section are used to
evaluate the time complexity of the Python prototype implementation of the
FW1 PolicyI policy operators. In this section, when we refer to the cost of the
evaluation of a policy in an experiment, we are referring to cost in terms of time.
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6.2 Evaluating Sequential Policy Composition

In this section, the sequential composition operator for PolicyI policies is eval-
uated. The prototype parses the system’s currently enforced iptables ruleset
〈r1, r2 . . rn〉 by chain, using the Python-iptables package [100], and then normal-
izes each rule to a primitive/singleton policy. The overall policy for the chain
is evaluated as I(r1) o

9 I(r2) o
9 . . o

9 I(rn). Once the sequential composition of the
system’s currently enforced iptables policy is computed, the prototype generates
a semantically-equivalent adjacency-free set of iptables rules and re-writes this
new ruleset to the system. Experimentation was conducted over the adjacent
and non-adjacent rulesets. Three different approaches have been implemented
for evaluating sequential composition. The different approaches and results of
the experiments are described in this section.

A Linear Approach. This approach is the evaluation of policies in a linear
sequence, as I(r1) o

9 I(r2) o
9 . . o

9 I(rn).

Non-adjacent Dataset Experiments. The first set of experiments were con-
ducted on the non-adjacent datasets. Figure 6.2 details the results.
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210 16.09 3.23
211 57.81 3.59

Figure 6.2: Sequential composition with no adjacent rules (in seconds)

As the number of rules increase, the cost of computing the sequential composi-
tion of non-adjacent rules is relatively cheap, and is proportional to the number
of rules. For the largest ruleset 211, the time taken for the evaluation of the se-
quential composition of the rules is approximately one minute.

Adjacent Dataset Experiments. The second set of experiments was con-
ducted on the adjacent rulesets. Figure 6.3 gives the results.
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Figure 6.3: Sequential composition with adjacent rules (in seconds)

We observe that as the number of rules increase, the cost of computing the se-
quential composition of adjacent rules is expensive, but is also proportional to
the number of rules used in the experiment. However, the cost is by orders of
magnitude more expensive than the cost for evaluating the sequential composi-
tion of non-adjacent policies of the same size. For 29 rules, the time taken for the
evaluation of sequential composition is around three minutes, and the time taken
for 211 rules is approximately forty six minutes.

A Divide-and-Conquer Approach. This approach has been implemented
in order to improve on the results from previous experiments using the lin-
ear approach. For this approach, we take a sequence of primitive policies
〈I(r1), I(r2) . . I(rn)〉, and perform a binary-chop on the sequence; whereby a
binary expression tree is constructed to compute the order of the sequential com-
positions. Policies are always leaves, and sequential composition operators always
have a left and a right sub-tree. Figure 6.4 depicts the expression tree for 23

rules/primitive policies.

o
9

o
9

o
9

I(r1) I(r2)

o
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I(r3) I(r4)

o
9

o
9
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o
9

I(r7) I(r8)

Figure 6.4: A 23 rule binary-chop

We have that the sequential composition for the 23 rules in the binary-chop is
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evaluated as:

(((I(r1) o
9 I(r2)) o

9 (I(r3) o
9 I(r4))) o

9 ((I(r5) o
9 I(r6)) o

9 (I(r7) o
9 I(r8))))

The result of this evaluation is equivalent to the policy resulting from the linear
sequential composition of policies, that is, the evaluation of I(r1) o

9I(r2) o
9 . . o9I(r8).

If the number of rules/primitive policies is odd, the expression tree is balanced
from left to right, as depicted in Figure 6.5.

o
9

o
9

I(r1) I(r2)

3mod 2 6= 0

I(r3)

Figure 6.5: Balancing an unbalanced expression tree with three rules

Binary-chop Non-adjacent Dataset Experiments. The first set of experi-
ments were conducted on the non-adjacent datasets. Figure 6.6 details the results.
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Figure 6.6: Binary-chop evaluation with no adjacent rules (in seconds)

As the number of rules increase, the cost of computing the sequential composition
of non-adjacent rules using the binary-chop is relatively cheap, and is proportional
to the number of rules. We observe however, that the cost is slightly more ex-
pensive than the cost for evaluating policies of the same size following the linear
approach for the non-adjacent dataset. For the largest ruleset 211, the time taken
for the evaluation of the sequential composition of 211 rules is approximately one
minute and twenty seconds.
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Binary-chop Adjacent Dataset Experiments. The second set of experiments
was conducted on the adjacent rulesets. Figure 6.7 details the results.
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Figure 6.7: Binary-chop evaluation with adjacent rules (in seconds)

As the number of rules increase, the cost, in terms of time, to compute the se-
quential composition of adjacent rules using the binary-chop is expensive, but is
also proportional to the number of rules. However, we observe that the cost is
much more expensive than the cost for evaluating policies of the same size fol-
lowing the linear approach for the adjacent dataset. For 29 rules, the time taken
for the evaluation of sequential composition is around nine and a half minutes,
and the time taken for 211 rules is approximately two and a half hours.

A Parallel Divide-and-Conquer Approach. This approach has been imple-
mented in order to improve on the results from previous experiments using the
binary-chop approach. For this approach, we again perform a binary-chop on the
sequence of rules, however, we incorporate the standard Python multiprocessing
package [65]. The left and right sub-expressions are evaluated in parallel, and
then sequentially composed, as depicted in Figure 6.8.
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Figure 6.8: A 22 rule binary-chop (parallel evaluation)
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Parallel Binary-chop Non-adjacent Dataset Experiments. The first set
of experiments were conducted on the non-adjacent datasets. Figure 6.9 details
the results.
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Figure 6.9: Binary-chop parallel evaluation with no adjacent rules (in seconds)

As the number of rules increase, the cost of computing the sequential composi-
tion of non-adjacent rules using the parallel binary-chop is relatively cheap, and
is proportional to the number of rules used in the experiment. We observe that
the cost is an improvement to the cost for evaluating policies of the same size
following the binary-chop approach without multiprocessing, for the non-adjacent
dataset. For the largest ruleset 211, the time taken for the evaluation of the se-
quential composition of 211 rules is approximately one minute.

Parallel Binary-chop Adjacent Dataset Experiments. The second set of
experiments was conducted on the adjacent rulesets. Figure 6.10 gives the results.
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Figure 6.10: Binary-chop parallel evaluation with adjacent rules (in seconds)

We observe that as the number of rules increase, the cost, in terms of time, to
compute the sequential composition of adjacent rules using the parallel binary-
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chop is expensive, and is proportional to the number of rules. We observe that for
larger policies, the parallel approach is an improvement to the cost for evaluating
policies of the same size following the binary-chop approach without multiprocess-
ing, for the adjacent dataset. The evaluation time for the sequential composition
of 29 rules is around seven and a half minutes, and the time taken for the largest
dataset, 211, is approximately two hours.

6.3 Evaluating Policy Union

In this section, the join operation for the FW1 PolicyI policies is evaluated. Ex-
periments are conducted, whereby each policy in the adjacent dataset described
in Section 6.1, is split into two policies to construct the dataset for the lub exper-
iments. The first policy contains the odd (index) rules from the original policy,
and the second policy contains the even (index) rules from the original policy.
For each P,Q ∈ PolicyI in this dataset, the time taken for the operation P t Q
is given by Table 6.16.

P
Q

23 24 25 26 27 28 29 210

23 0.65 0.79 0.81 0.99 1.40 2.51 5.73 16.93
24 0.79 1.86 2.09 2.32 2.91 4.50 8.83 22.19
25 0.81 2.09 4.97 5.45 6.78 9.17 15.50 32.89
26 0.99 2.32 5.45 14.70 17.01 21.93 32.29 57.47
27 1.40 2.91 6.78 17.01 48.85 58.44 76.94 119.28
28 2.51 4.50 9.17 21.93 58.44 179.87 217.34 294.56
29 5.73 8.83 15.50 32.29 76.94 217.34 699.11 839.49
210 16.93 22.19 32.89 57.47 119.28 294.56 839.49 2722.63

Table 6.16: Time taken to compute P tQ (in seconds)

A benefit of conducting the policy join experiments in this way, is that in prac-
tice, we may want to update a policy P, comprising a large number of rules, with
a smaller policy Q that permits some new accesses. The time taken for composi-
tion of policies of equal size is approximately the same as (slightly less than) the
time necessary to sequentially compose the rules from both policies. That is; for
example, the time taken for the sequential composition of 29 rules is around three
minutes, as is the join of the two policies of size 28. This is highlighted through the
diagonal in the matrix, and is as expected; given that we used all allow rules, and
the sequential composition of the rules used in these experiments results in the
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eventual join of the rules. Figure 6.11 gives the 3D plot for the data in Table 6.16.
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Figure 6.11: Time taken to compute P tQ (in seconds)

6.4 Evaluating Policy Intersection

In this section, the meet operation for the FW1 PolicyI policies is evaluated.
Experiments are conducted to test policy glb using the odd-index policies from
the policy join experiments. For each P,Q ∈ PolicyI in this dataset, the time
taken for the operation P uQ is given in Table 6.17.

P
Q

23 24 25 26 27 28 29 210

23 1.0 ×10−3 2.0 ×10−3 3.0 ×10−3 4.0 ×10−3 9.0 ×10−3 1.0 ×10−2 3.0 ×10−2 6.0 ×10−2

24 2.0 ×10−3 4.0 ×10−3 6.0 ×10−3 1.0 ×10−2 1.7 ×10−2 3.0 ×10−2 6.0 ×10−2 1.2 ×10−1

25 3.0 ×10−3 6.0 ×10−3 0.01 0.02 0.03 0.06 0.12 0.25
26 4.0 ×10−3 1.0 ×10−2 0.02 0.05 0.08 0.14 0.26 0.50
27 9.0 ×10−3 1.7 ×10−2 0.03 0.08 0.18 0.31 0.55 1.03
28 1.0 ×10−2 3.0 ×10−2 0.06 0.14 0.31 0.73 1.21 2.19
29 3.0 ×10−2 6.0 ×10−2 0.12 0.26 0.55 1.21 2.93 4.90
210 6.0 ×10−2 1.2 ×10−1 0.25 0.50 1.03 2.19 4.90 11.99

Table 6.17: Time taken to compute P uQ (in seconds)

We observe that as the number of rules increase, the cost in terms of time to
compute the intersection of the rulesets is cheap. For the largest ruleset composi-
tion of 210 and 210 rules, the time taken for evaluation was approximately twelve
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seconds. Figure 6.12 gives the 3D plot for the data in Table 6.17.
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Figure 6.12: Time taken to compute P uQ (in seconds)

6.5 Evaluating Policy Compliance

In this section, we evaluate the ordering relation v for PolicyI policies. For each
P in the compliance dataset described in Section 6.1, the time taken in seconds
for the evaluation of P v RFC5735I is given in Figure 6.13.
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Figure 6.13: Time taken to compute P v RFC5735I (in seconds)

We observe that the compliance test has a cheap cost in terms time, and all
evaluation times for P v RFC5735I are negligible.
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6.6 Discussion

In this chapter, a prototype policy management toolkit that implements FW1

PolicyI firewall policies in Python for iptables is described. The results in this
chapter are described in terms of the algebra FW1, for stateful and stateless
firewall policies that are defined in terms of constraints on source/destination
IP/port ranges, the TCP, UDP and ICMP protocols, and additional filter condi-
tion attributes. Experiments were conducted for o

9, t,u and v policy operators.
Two datasets were generated to evaluate sequential policy composition, one

dataset contains policies that are adjacency-free, while the other dataset con-
sists of policies where every new rule in a policy is adjacent to the previous rule.
Datasets were constructed in this way to test possible best- and worst-case scenar-
ios for policy composition. Three different approaches have been implemented for
evaluation of the sequential composition operator. For the non-adjacent dataset,
the cost, of computing the sequential composition of the rules is cheap. In the
worst case, evaluation time for 211 rules is approximately one minute and twenty
seconds using the binary-chop approach, and in the best case, using the linear
approach, it is approximately one minute. For the adjacent rulesets, we observe a
significant difference in the evaluation times across approaches. In the best case,
evaluation time for 211 rules is approximately forty six minutes using the linear
approach, and in the worst case, evaluation time for 211 rules is approximately
two and a half hours using the divide-and-conquer/binary-chop approach. We
conjecture that this is due to the computation of unnecessary transitive closures
over adjacent rules, as a result of how transitive closure has been implemented,
and constructing the expression tree to compute the order of the sequential com-
positions for the binary-chop. For example, in a 22 rule policy expression, as
depicted in Figure 6.14, rules I(r1) and I(r2) are sequentially composed, the
result of this is sequentially composed with the result of (I(r3) o

9 I(r4)).

o
9

o
9

I(r1) I(r2)

o
9

I(r3) I(r4)

Unnecessary
closures

Figure 6.14: An unnecessary closure computation

Reasoning About Firewall Policies Through
Refinement and Composition

130 Ultan James Neville



6. Implementing The FW1 Policy
Algebra 6.6 Discussion

The unnecessary closures in this case are computed during the sequential com-
position of rules I(r3) and I(r4), as I(r3) is adjacent to (I(r1) o

9 I(r2)) and the
result of the composition of I(r3) and I(r4) will result in a set of rules that are
adjacent to (I(r1) o

9 I(r2)), rather than just the single rule I(r3).
In evaluating t and u, a dataset was constructed from the rules of the adjacent

dataset used in the sequential composition experiments, and a dataset specifying
best practice firewall rules was constructed to test policy compliance. Overall,
the results are promising and demonstrate that the approach is practical for
large policies.
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Chapter 7

A Firewall Policy Algebra For
OpenStack

This chapter describes a firewall policy algebra FWOpenStack for OpenStack.
FWOpenStack is a derivation of the FW1 algebra defined in Chapter 5. We use the
algebra to provide a uniform way to specify and reason about OpenStack host-
based and network access controls. This chapter builds upon earlier research
[62, 101] and is organised as follows. Section 7.1 gives an overview of the Open-
Stack cloud operating system. OpenStack host-based and network access control
is examined in Section 7.2. In Section 7.3, OpenStack perimeter firewalls and
security groups are encoded, and a firewall policy algebra FWOpenStack is derived
from the FW1 model. Section 7.4 presents a case study OpenStack deployment
that illustrates practical use of the algebra.

7.1 OpenStack

OpenStack [63] is an open-source cloud operating system for public and private
clouds. It provides Infrastructure-as-a-Service (IaaS) through a collection of in-
terrelated projects/services. These services are used to manage pools of compute,
storage, and networking resources throughout a datacenter [63]. For example, the
Nova compute service manages the life-cycle of compute instances in an Open-
Stack deployment. The Glance image service stores and retrieves virtual machine
disk images, and is used by Nova during instance provisioning. The Neutron net-
working service enables Network-Connectivity-as-a-Service for Nova [64]. In this
chapter, we focus on the OpenStack networking service, Neutron.
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7.1.1 Motivation

The cloud computing paradigm has become widely adopted, with applications
ranging from research to enterprise. However, for end-users, administrators and
providers alike, there are security challenges. Managing the host-based and net-
work access controls within and across cloud deployments is complex and error-
prone. Cross-tenant accesses are often necessary for service-to-service commu-
nication, and the environment is highly dynamic due to platform and service
migration. Multiple access control policies of varying types are required for a
deployment, and a misconfigured policy may permit accesses that were intended
to be denied or vice-versa. We regard the specification of an OpenStack access
control policy as a process that evolves. Threats to, and access requirements for,
resources within a cloud do not usually remain static, and over time, a policy
or distributed policy configuration may be updated on an ad-hoc basis possibly
by multiple specifiers/administrators. This can be problematic and may intro-
duce anomalies, whereby the intended semantics of the specified access controls
become ambiguous.

7.2 OpenStack Firewall Policies

The OpenStack Networking service, Neutron, is a standalone API-centric net-
working service. In general, the OpenStack networking configuration for a de-
ployment will be segmented into four physical data center networks, as part of
three distinct security domains. The Management network is used for inter-
communication between OpenStack services, and is considered the Management
Security Domain. The API network is used by tenants to access OpenStack APIs,
and is considered the Public Security Domain. The External network, also in the
Public Security Domain, is used by virtual machines (VMs) for Internet access,
while the Guest network, used for VM instance-to-instance communication, is
considered the Guest Security Domain. In this chapter, we focus on host-based
and network access controls within the Guest Security Domain. These controls
consist of perimeter firewall policies and Neutron security groups.

7.2.1 Perimeter Firewall Policies

Firewall-as-a-Service (FWaaS) adds perimeter firewall management to an Open-
Stack project by filtering traffic at the Neutron router. It is implemented as a
sequence of iptables rules, where a default-deny policy is enforced. One firewall
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policy is supported per project, whereby the policy is applied to all networking
routers within the project [64]. FWaaS is currently considered an experimental
feature of OpenStack Networking [15]. A FWaaS rule can be constructed using
the OpenStack Neutron command-line client:

neutron firewall-rule-create
--source-ip-address $s
--source-port $sprt
--destination-ip-address $d
--destination-port $dprt
--protocol $p
--action $act

The source ($s) and destination ($d) IP fields may be given as a single IP ad-
dress/an IP address block (CIDR), the source ($sprt) and destination ($dprt)
ports may be specified as single port values or ranges. The protocol ($p) field
may be given as TCP/UDP/ICMP/Any, and the action field ($act) specifying
the access decision, may be given as allow/deny.

7.2.2 Security Group Policies

A security group policy is a container for IP filter rules. Traditionally, secu-
rity group capabilities were managed as part of the OpenStack compute service,
Nova, and were instance-based. In Neutron, security groups are virtual inter-
face port based. When utilizing Neutron as part of an OpenStack deployment,
best practice [15] stipulates that security group capabilities be disabled in Nova,
due to both possible conflicting policies, and also the more powerful capabilities
of Neutron security groups. Security group rules allow administrators/tenants
the ability to specify the type and direction of traffic that is allowed to pass
through a virtual interface port. When a port is created in Neutron it is associ-
ated with a security group. If no security group is specified, a ‘default’ security
group is assigned. This default group will drop all ingress traffic except that
traffic originating from the default group, and allow all egress [15]. Rules may be
added/removed to/from any security group by a tenant/administrator to change
the default behaviour. A security group rule can be constructed using the Open-
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Stack Neutron command-line client:

neutron security-group-rule-create
--direction $dir
--port-range-min $min
--port-range-max $max
--remote-ip-prefix $rsrc
--remote-group-id $rsrc
--protocol $p
SECURITY GROUP

The direction field ($dir) is specified as ingress/egress. The remote source ($rsrc)
may be given as an IP address/an IP address block (CIDR) using the remote IP
prefix, or as a Neutron security group using the remote group id. Selecting a
security group as the remote source will allow access to/from any instance in
that security group, depending on the value specified in the direction field. The
destination port ($min, $max) may be given as a single port/port range. The
protocol field ($p) may be specified as TCP/UDP/ICMP/Any. Additionally,
when specifying a rule with an ICMP protocol, given that ICMP does not support
ports, the specific ICMP Type/Code may be given in place of the destination
port. The SECURITY GROUP attribute specifies the security group that this rule
applies to. Note that there are additional parameters that may be provided as
command-line arguments, however the above are sufficient for our purposes.

7.3 The OpenStack Policy Model

In this section, a derivation of the FW1 algebra is used to encode the network
and host-based access controls available in OpenStack.

FWaaS Filter Conditions. A FWaaS filter condition is a five-tuple,
(s, sprt, d, dprt, p) ∈ FCFWaaS , representing network traffic originating from
source IP range s, with source port range sprt, destined for destination IP range d,
with destination port range dprt, using protocols p. Let FCFWaaS define the set
of all FWaaS filter conditions:

FCFWaaS == δ[IPSpec, δ[PrtSpec, δ[IPSpec, δ[PrtSpec,Protocol]]]]

From this definition it follows that FCFWaaS is a five-tuple iptables filter condition
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(FC ). From Lemma 5.1.5, we have that FCFWaaS is a lattice.

Security Group Filter Conditions. A security group filter condition defines
the packets to be accepted relative to the members of the security group. Let
FCSG define the set of all security group filter conditions:

FCSG == δ[IPSpec, δ[Dir , δ[IPSpec, δ[PrtSpec,Protocol]]]]

The filter condition attribute Dir , specifies direction-oriented filtering as ingress
or egress. A security group filter condition (sgm, dir , rsrc, dprt, p) ∈ FCSG spec-
ifies that for all members sgm of the security group to which the rule belongs,
network traffic is permitted in direction dir to/from remote-source rsrc (depend-
ing on direction dir), to destination ports dprt, using protocols p.

Filter Condition Mapping. A security group filter condition f ∈ FCSG can be
mapped to the FWaaS filter condition Fsg (f ) that it matches, whereby:

Fsg : FCSG → FCFWaaS

∀ sgm, rsrc : IPSpec; prt : PrtSpec; p : Protocol •
Fsg(sgm, egress, rsrc, prt, p)

= (sgm, {{[0 . . maxPrt]}}, rsrc, prt, p) ∧
Fsg(sgm, ingress, rsrc, prt, p)

= (rsrc, {{[0 . . maxPrt]}}, sgm, prt, p)

If the direction attribute is ingress then the filter condition constrains packets
coming from the remote source and destined to the members of the security group;
if direction attribute is egress then the filter condition constrains packets coming
from members of the security group (source) and destined to the remote resource.

7.3.1 The OpenStack Policy Algebra

A firewall policy defines the filter conditions that may be allowed or denied by a
firewall. Let PolicyFWaaS define the set of all OpenStack firewall policies, whereby:

PolicyFWaaS == {A,D : α[FCFWaaS ] | ∀ a : A; d : D • a |FCFWaaS d}

A firewall policy (A,D) ∈ PolicyFWaaS defines a policy as a pair of adjacency-free
sets of filter conditions under the duplet adjacency ordering, whereby a filter con-
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dition f ∈ A should be allowed by the OpenStack firewall, while a filter condition
f ∈ D should be denied.

OpenStack Policy Ordering. The safe replacement [56, 57, 77] ordering for
OpenStack firewall policies is defined as follows.

FWOpenStack

⊥,> : PolicyFWaaS

v : PolicyFWaaS ↔ PolicyFWaaS

u ,

t : PolicyFWaaS × PolicyFWaaS → PolicyFWaaS

⊥ = (∅, dFCFWaaSe) ∧ > = (dFCFWaaSe, ∅)
∀P,Q : PolicyFWaaS •

P v Q ⇔ ((allow P ≤ allow Q) ∧
(deny Q ≤ deny P)) ∧

P uQ = (allow P ⊗ allow Q,
deny P ⊕ deny Q) ∧

P tQ = (allow P ⊕ allow Q,
deny P ⊗ deny Q)

The definitions for ordering and composition operations in the FWOpenStack al-
gebra are the same as those defined for the FW1 policy algebra in Chapter 5,
Section 5.3, and therefore, FWOpenStack is a lattice.

The lattice of policies PolicyFWaaS provides us with an algebra for constructing
and interpreting OpenStack firewall polices. Definitions for policy construction,
policy negation, policy sequential composition and firewall rule interpretation are
assumed for PolicyFWaaS policies. These definitions are similar to those defined
in Chapter 5 for the FW1 policy algebra.

FWaaS Rules. A FWaaS rule defines an action (allow or deny) for a given filter
condition. Let Rule define the set of all FWaaS rules whereby:

Rule ::= allow 〈〈FCFWaaS〉〉 |
deny 〈〈FCFWaaS〉〉

A FWaaS firewall policy is defined as a sequence of rules 〈r1, r2, . . . , rn〉 for ri ∈
Rule, and is encoded in the FWOpenStack policy algebra as I(r1) o

9I(r2) o
9 . . . o9I(rn).
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Security Group Rules. A security group rule is simply an allow action on its
filter condition:

Is : FCSG → PolicyFWaaS

∀ f : FCSG •
Is (f ) = (Allow (Fsg (f )))

A security group policy is written as a sequence of security group rules
〈r1, r2, . . . , rn〉 where each ri ∈ FCSG and is encoded in the policy algebra as
Is (r1) o

9 Is (r2) o
9 . . . o

9 Is (rn). Note that in this encoding it is assumed that each
rule in the original policy has the same membership, that is, group(ri) = group(rj)
for all rules ri and rj in the policy where group(r) gives the group in the rule/filter
condition r .

Policy Projection. The projection operators @u and @d filter a policy by a set
of IP ranges. Firstly, let S(S) give the cover-set for all filter conditions that have
a source IP in some member s ∈ S , and similarly D(D) gives the cover-set for all
filter conditions with a destination IP address in some member d ∈ D.

S,D : IPSpec → α[FCFWaaS ]

∀ S ,D : IPSpec •
S(S) = dδ[S , δ[PrtSpec, δ[IPSpec, δ[PrtSpec, δ[Protocol]]]]]e ∧
D(D) = dδ[IPSpec, δ[PrtSpec, δ[D, δ[PrtSpec, δ[Protocol]]]]]e

For a policy P and a set of adjacency-free IP ranges S , P@uS is the upstream
projection of P, and consists of the allow and deny filter conditions from P where
each filter condition has a source IP in some member of S . Similarly, P@dS is
the downstream projection of P, it consists of the allow and deny filter conditions
from P whereby each filter conditions has as a destination IP in some member
of S .

@u ,

@d : PolicyFWaaS × IPSpec → PolicyFWaaS

∀P : PolicyFWaaS ; S : IPSpec •
P @u S = (allow(P)⊗ S(S), deny(P)⊗ S(S)) ∧
P @d S = (allow(P)⊗D(S), deny(P)⊗D(S))
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7.4 Reasoning About OpenStack Firewall Poli-
cies

In this section, a case study OpenStack deployment is presented that illustrates
the practical use of the algebra FWOpenStack . Consider, a company that has mi-
grated platforms and services to an on-premises OpenStack deployment. The de-
ployment hosts both a development and a production cloud for the Web-service
provided by the company and the code revision control systems for the Web-
service. These two private clouds are defined as independent OpenStack project-
s/tenants as depicted in Figure 7.11.

Internet

Company perimeter
firewall

Intranet 172.16.1.0/24

Production

10.0.2.0/24

Development

10.0.1.0/24

192.168.2.0/24

Admins

192.168.1.0/24

Devs/Testers

Figure 7.1: External network architecture

1All clip art used in this dissertation has been sourced from [106].
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System Administrator Bob manages the network access controls for both the
development and production clouds. The architecture for each cloud is depicted
in Figure 7.2.

Development/Production cloud
perimeter firewall

10.0.i.0/24

172.16.1.b

WebSG

DBSG

10.0.j.k
172.16.1.a GitSG

Figure 7.2: Guest network architecture

7.4.1 Reasoning About Security Groups

Bob creates a security group policy GitSG within the development cloud to manage
the type of traffic permitted to/from the code revision control server. sgm1 ∈
IPSpec denotes the set of adjacency-free IP ranges for the members of this security
group. Bob begins to add rules git1, git2, for ICMP ping for each member of the
dev/tester subnet to allow developers and testers to ping the Git server in the
development cloud. Recall that when specifying a security group rule using the
OpenStack Neutron CLI, that the ICMP Type/Code is given in place of a port
range, when required. The function M(rule) maps a rule written in OpenStack
firewall rule syntax to FW1 algebra syntax.
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git1 == neutron security-group-rule-create --direction ingress \
--port-range-min 8 --port-range-max 0 \
--remote-ip-prefix 192.168.1.3 --protocol icmp GitSG1

git2 == neutron security-group-rule-create --direction ingress \
--port-range-min 8 --port-range-max 0 \
--remote-ip-prefix 192.168.1.4 --protocol icmp GitSG1

GitSG1 == Is (M(git1)) o
9 Is (M(git2))

Bob finds this tedious and decides to simply add a rule git3 that allows all inbound
ICMP traffic from the dev/tester subnet.

git3 == neutron security-group-rule-create --direction ingress \
--remote-ip-prefix 192.168.1.0/24 --protocol icmp GitSG2

GitSG2 == GitSG1 o
9 Is (M(git3))

In doing so, however, git1 and git2 are now redundant to git3, (Is (M(git1)) o
9

Is (M(git2))) o
9 Is (M(git3)) = Is (M(git3)).

Rule git4 is introduced to allow all developers and testers access to the code
revision control system (Git) in the development cloud, where:

git4 == neutron security-group-rule-create --direction ingress \
--port-range-min 9418 --port-range-max 9418 \
--remote-ip-prefix 192.168.1.0/24 --protocol tcp GitSG3

GitSG3 == GitSG2 o
9 Is (M(git4))

Cross-tenant access is required for source code replication, therefore Bob must
ensure that rsync via SSH is permitted from the Git server in the development
cloud to the Git server in the production cloud. To do so, he introduces rule
git5, where:

git5 == neutron security-group-rule-create --direction egress \
--port-range-min 22 --port-range-max 22 \
--remote-ip-prefix 172.16.1.7 --protocol tcp GitSG

GitSG == GitSG3 o
9 Is (M(git5))

Bob creates the security group policy WebSG to manage the accesses to/from
the Web-service load balancer in the development cloud. Let sgm2 ∈ IPSpec denote
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the set of adjacency-free IP ranges for the members of this security group. Bob
adds rules to allow HTTP traffic from the developers and testers (web1), and from
the administrators (web2), where:

web1 == neutron security-group-rule-create --direction ingress \
--port-range-min 80 --port-range-max 80 \
--remote-ip-prefix 192.168.1.0/24 --protocol tcp WebSG

web2 == neutron security-group-rule-create --direction ingress \
--port-range-min 80 --port-range-max 80 \
--remote-ip-prefix 192.168.2.0/24 --protocol tcp WebSG

WebSG == Is (M(web1)) o
9 Is (M(web2))

The security group policy DBSG is created by Bob to manage accesses to/from
the Web-service data tier in the development cloud. The literal sgm3 ∈ IPSpec

denotes the set of adjacency-free IP ranges for the members of this security group.
He adds the rule db1 to allow all inbound traffic from members of the WebSG group
to MySQL port 3306.

db1 == neutron security-group-rule-create --direction ingress \
--port-range-min 3306 --port-range-max 3306 \
--remote-group-id sgm2 --protocol tcp DBSG

DBSG == Is (M(db1))

The development cloud enforces the security group policies GitSG,WebSG and
DBSG. Recall that a security group policy is a container for allow rules managing
the access to/from the security group, and that each security group policy in a
cloud deployment is enforced independent of the other security group policies.
Thus, the overall security group policy is the union of the individual policies:

DevSG == GitSG tWebSG t DBSG

7.4.2 Reasoning About FWaaS Firewalls

As part of the configuration, Bob must also ensure the appropriate traffic traverses
the perimeter firewall at the edge router of the development cloud. He therefore
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enforces FWaaS policy DevFW1 and begins to add some rules.

dev1 == neutron firewall-rule-create --source-ip-address 172.16.1.5 \
--destination-ip-address 172.16.1.7 --destination-port 22 \
--protocol tcp --action deny

dev2 == neutron firewall-rule-create --source-ip-address 172.16.1.5 \
--destination-ip-address 172.16.1.7 --destination-port 22 \
--protocol tcp --action allow

DevFW1 == I (M(dev1)) o
9 I (M(dev2))

Bob mistakenly introduces rule dev1, creating a shadowing anomaly of rule dev2,
that is, not (I (dev1)) o

9 I (dev2) = I (dev2), whereby the logical traffic flow is
broken between the code revision control systems in the development and pro-
duction clouds.

Rule dev3 ensures the developers and testers are permitted to ping the Git
server in the development cloud.

dev3 == neutron firewall-rule-create --source-ip-address \
192.168.1.0/24 --destination-ip-address 172.16.1.5 \
--protocol icmp --action allow

DevFW2 == DevFW1 o
9 I (M(dev3))

The rule dev4 permits unwanted Telnet traffic to the Git server, thereby al-
lowing spurious traffic into the development cloud, where:

dev4 == neutron firewall-rule-create --source-ip-address \
192.168.1.0/24 --destination-ip-address 172.16.1.5 \
--destination-port 21 --protocol tcp --action allow

DevFW == DevFW2 o
9 I (M(dev4))

Recall that all traffic entering the development cloud must traverse the de-
velopment cloud perimeter firewall, and that the policy defining the complete set
of internal accesses for the cloud is given as DevSG. Thus, the policy constrain-
ing accesses for traffic from upstream firewall DevFW to downstream composite
security groups DevSG is calculated as:

PolINDEV == DevSG @d (sgm1 ⊕ sgm2 ⊕ sgm3 ⊕ floatIP) o
9

DevFW @d (sgm1 ⊕ sgm2 ⊕ sgm3 ⊕ floatIP)
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where ⊕ is the join operator for sets of adjacency-free IP ranges, and floatIP ∈
IPSpec is the set of floating IP addresses, given as the set of adjacency-free IP
ranges used by the tenant. Note that all security group members are included
since (at the time of writing) FWaaS applies to all routers within a tenant, not
just to the perimeter.

The Production Cloud Firewall. Bob must also ensure the configuration is
correct for the production cloud perimeter firewall ProdFW1.

prod1 == neutron firewall-rule-create --source-ip-address $malIP \
--destination-port 80--protocol tcp --action deny

ProdFW1 == I (M(prod1))

Rule prod1 denies HTTP traffic to the production Web servers from the known
malicious IP range $malIP.

prod2 == neutron firewall-rule-create --source-ip-address \
172.16.1.5 --destination-ip-address 172.16.1.7 \
--destination-port 22 --protocol tcp --action allow

ProdFW2 == ProdFW1 o
9 I (M(prod2))

Rule prod2 is introduced by Bob to ensure the rsync via SSH between the code
revision control systems in the development and production clouds is permitted.
However, the problematic rule dev1 in the development cloud firewall, has also
caused a shadowing anomaly between the two perimeter firewalls (not (I (dev1)) o

9

I (prod2) = I (prod2)), whereby the the development cloud firewall is denying
traffic from the development Git server to the Git server in the production cloud,
while the rule prod2 of the production cloud firewall is permitting the traffic.

prod3 == neutron firewall-rule-create --destination-port 80 \
--protocol tcp --action allow

ProdFW == ProdFW2 o
9 I (M(prod3))

Bob introduces prod3 to allow all other HTTP traffic to the Web-service load
balancer. The rule prod3 is generalised by the rule at prod1, as prod1 partially
shadows prod3.
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Production Cloud Git Security Group. In the production cloud, Bob cre-
ates security group Git2SG1 to manage the type of traffic permitted to/from the
production code revision control server. The literal sgm4 denotes the set of IP
addresses for the members of this security group. Rule gitp1 is introduced to allow
all developers and testers access to the code revision control system (Git) in the
production cloud, where:

gitp1 == neutron security-group-rule-create --direction ingress \
--port-range-min 9418 --port-range-max 9418 \
--remote-ip-prefix 192.168.1.0/24 --protocol tcp Git2SG1

Git2SG1 == Is (M(gitp1))

The rule gitp2, intended to ensure rsync via SSH between the code revision control
systems in the development and production clouds is permitted, is inter-shadowed
by the upstream rule dev1 of the development cloud perimeter firewall, where:

gitp2 == neutron security-group-rule-create --direction ingress \
--port-range-min 22 --port-range-max 22 \
--remote-ip-prefix 172.16.1.5 --protocol tcp Git2SG

Git2SG == Git2SG1 o
9 Is (M(gitp2))

Recall, PolINDEV provides a policy about traffic traversing the perimeter firewall
for the development cloud to the composite security group. A similar policy can
be given for the traffic traversing the perimeter firewall of the production cloud
destined to the security group within the production cloud. Further definitions
can be given about policies on traffic leaving the respective clouds. These in turn
can be composed to give a policy that is effectively about the rsync via SSH for
the code revision systems in the development cloud to the production cloud.

7.4.3 OpenStack Firewall Policy Anomalies

In this section, we use the definitions of [5, 6] to describe potential intra- and
inter-anomalies between rules/policies in Neutron security group and FWaaS pol-
icy configurations.

Security Group Intra-anomalies. An intra-redundancy anomaly may occur
in a security group, given that we may encounter two or more rules that are
equivalent, or one or more rules that are filtering a subset of the network traffic

Reasoning About Firewall Policies Through
Refinement and Composition

145 Ultan James Neville



7. A Firewall Policy Algebra For
OpenStack

7.4 Reasoning About OpenStack Firewall
Policies

filtered by another rule in the policy. We may also encounter rules that cannot
match any traffic based on either the source/destination IP addresses, resulting
in an intra-irrelevance anomaly.

Security Group (to Security Group) Inter-anomalies. We observe the
possibility of spurious network traffic between different security groups; regarded
as an implicit inter-spuriousness anomaly, from an upstream security group P
permitting traffic to a downstream security group Q, whereby Q is missing a rule
permitting the same traffic (and is therefore implicitly denying it). An implicit
inter-shadowing anomaly may occur between security groups; depending on, for
example, if upstream security group P was acting as a proxy for traffic for a
downstream security group Q, and P is missing a rule (implicitly denying) traffic
intended for Q, whereby Q is explicitly permitting the same traffic.

FWaaS Policy Anomalies. We observe that all the intra-anomalies described
in [5] may occur between rules in a single FWaaS policy, and that all the inter-
anomalies given in [6] may occur between rules across distributed FWaaS policies.

Inter-anomalies Between Security Group and FWaaS Policies. We con-
sider an upstream FWaaS policy P and a downstream security group policy Q.
We observe the possibility of inter-spuriousness; given that P may be configured
in such a way to allow unwanted traffic directed towards members of the security
group constrained by Q. We note also the possibility of inter-shadowing, whereby
P may be explicitly denying traffic that Q has been configured to accept.

When considering an upstream security group policy P and a downstream
FWaaS policy Q, we note the possibility of inter-spuriousness, and an implicit
inter-shadowing anomaly; depending on, again for example, if P was acting as
a proxy for traffic for Q, and P is missing a rule (implicitly denying) traffic in-
tended for the downstream FWaaS firewall Q, whereby Q is explicitly permitting
the same traffic. We observe the possibility of an inter-correlation anomaly be-
tween rules in an upstream FWaaS policy P and a downstream security group Q,
or also between an upstream security group policy P and a downstream FWaaS
policy Q. This anomaly occurs independent of target action/access decision,
where a rule in the upstream policy is filtering some of the packets filtered by a
rule in the downstream policy, and the rule under question in the downstream pol-
icy is filtering some of the packets filtered by the rule in the upstream policy. The
inter-correlation anomaly may cause further anomalies such as inter-spuriousness
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and inter-shadowing, depending on the target actions of the correlated rules.

7.5 Discussion

In this chapter, a policy algebra FWOpenStack is defined in which OpenStack fire-
wall policies can be specified and reasoned about. The set of policies form a
lattice under safe replacement and this enables consistent operators for safe com-
position to be defined. Policies in this lattice are anomaly-free by construction,
and thus, composition under glb and lub operators preserves anomaly-freedom.
The algebra FWOpenStack is a derivation of the FW1 policy algebra developed in
Chapter 5, and provides a formal interpretation of the host-based and network
access controls in OpenStack. In particular, it gives a meaning for OpenStack
security group policies and perimeter firewalls. This provides us with a uniform
notation to define and reason about different kinds policies in OpenStack. For
example, reasoning over combinations of perimeter firewall and security group
policies to ensure that modifications are safe (replacements) and checking for
heterogeneous inter-policy anomalies.

In [80], cloud calculus is used to capture the topology of cloud computing
systems and the global firewall policy for a given configuration. The work in
this chapter could extend the work in [80], given that FWOpenStack may be used
in conjunction with cloud calculus to guarantee anomaly-free dynamic firewall
policy reconfiguration, whereby the ordering relation v may be used to provide
a viable alternative for the given equivalence relation defined over ‘cloud’ terms
for the formal verification of firewall policy preservation after a live migration.
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Chapter 8

A Policy Management
Framework For Android

This chapter describes a system policy algebra AndroidSys for the Android OS,
that uses the FW1 firewall policy algebra, in conjunction with an algebra for
managing Android permissions, to construct a model of security control reconfig-
uration for Android firewall policies and Android permission polices. This chapter
builds upon earlier research [54, 55, 101], and is organised as follows. Section 8.1
gives an overview of the Android mobile operating system. Android firewall con-
figuration management is considered in Section 8.2. In Section 8.3, we examine
the Android Permission Model, and a simple algebra AndroidPerm is developed
for managing Android permissions. In Section 8.4, a threat-based model that
represents catalogues of best practice for Android systems is described. In Sec-
tion 8.5, a policy algebra AndroidSys is defined, whereby Android system policies;
comprising firewall and permission policies, can be specified and reasoned about.
We also consider a future iteration of the MASON prototype incorporating the
proposed framework.

8.1 Android

Android [141], is an open-source software framework for mobile devices based on
an optimized version of the Linux kernel. It is a privilege-separated mobile oper-
ating system. The Android OS has a layered architecture, with user applications
(apps) residing at the upper-most layer. The next layer hosts the application
framework, containing the Java APIs accessible to app developers. The following
layer hosts the native C/C++ libraries of the Android OS; these can be used by
any component of the previous two layers. This layer also hosts the Android run-
time, which contains an optimized variant of a Java virtual machine (VM), the
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Dalvik VM. The next layer hosts the hardware abstraction layer (HAL) subsys-
tem; this layer provides an interface for vendors to create software hooks between
Android and the device hardware [143]. At the lowest layer of the hierarchy is
the Linux kernel, the kernel acts as a layer of abstraction between software and
hardware, and is responsible for core system services such as process manage-
ment, and management of the network stack. Android uses Linux iptables as its
firewall mechanism.

8.1.1 Motivation

Android runs on a variety of mobile devices, such as smartphones (for example,
Google Pixel), tablet PCs (for example, Sony Xperia Z4) and embedded devices
(for example, Neo-ITX and Raspberry Pi 3). In this section, we consider the
Android software framework from the context of smartphones.

Modern smartphones with their processing power and the wide variety of
applications (“apps”) are on a par with modern desktop environments [129]. This
has resulted in smartphones being used in a variety of domains from a personal
device (such as for voice, Web browsing, Email and social media) to enterprise,
medical and military domains [154]. The technological advances and the usage of
smartphones in a variety of domains is not without its security implications. In
addition to traditional mobile phone threats, threats to desktop environments are
also applicable to smartphones [29, 81, 129]. For example, Malware threats such
as DroidDream [10], an Android Market Trojan used to maliciously root Android
smartphones, and apps that steal user’s banking information [82, 139, 162] are
on the increase [129, 139].

Smartphones may host a variety of security mechanisms such as anti-virus,
app monitoring and firewalls. In practice, security mechanisms are either disabled
or configured with an open-access policy [119]. Configuration of smartphone secu-
rity mechanisms, for example a firewall, is typically performed by non-technical
end-users. As a consequence, an effective security configuration may be ham-
pered by a poor understanding and/or management of smartphone application
requirements. Misconfiguration, may result in the failure to adequately provide
smartphone app services. For example, an overly-restrictive firewall configuration
may prevent normal interaction of network-based apps. An overly-permissive fire-
wall configuration, while permitting normal operation of the app, may leave the
smartphone vulnerable to attack, for example, across open ports or through ma-
licious payloads.

Smartphones operate in mobile network environments and deploying a fixed
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security configuration for a global set of threats is not practical. For example,
a smartphone may in one scenario be connected to an enterprise WiFi network
while in another be connected to an open-access WiFi network or a 3g operator
network. What may be considered a threat in one scenario may not be a threat
in another. For example, a security configuration that permits a set of apps
(such as gaming and social media apps) within a home network environment
may not be permitted within an enterprise or teleworking environment. In a
teleworking scenario, it is considered best practice to permit the use of “a different
brand of Web browser for telework” and prohibit the use of the everyday Web
browser [125]. Thus, the deployment of smartphone security configurations must
be dynamic in order mitigate the relevant threats within a given scenario. Note,
while smartphone apps may provide their own end-to-end security, in accordance
with for example [48], it is considered best practice to also restrict access at the
smartphone firewall [79, 125, 133, 152].

In this chapter, a threat-based model that represents catalogues of best prac-
tice standards for smartphones/Android is described. The firewall catalogues are
smartphone/Android-centric and extend the work in [61]. New catalogues of best
practice for example NIST 800-114 [125] are developed, as is a prototype firewall
app called MASON, to automatically manage firewall configurations on behalf of
the end-user [55]. A case study based on firewall access control demonstrates how
automated firewall configuration recommendations can be made based on cata-
logues of countermeasures. These countermeasures are drawn from best-practice
standards such as NIST 800-124, a guideline on cell phone and PDA security and
NIST 800-41-rev1, a guideline on firewall security configuration. The case study
also demonstrates how MASON can be extended with the FW1 algebra to ensure
anomaly-free firewall policy reconfiguration.

8.2 Smartphone Firewall Configuration Man-
agement

The smartphone firewall is a security mechanism that controls traffic flow to and
from network-based applications that are hosted by the smartphone itself and/or
are hosted by a network of systems tethered to the smartphone in accordance
with a security policy. Management of a smartphone firewall configuration in-
volves either writing low-level command syntax via a CLI or the use of a graphical
management console (for example DroidWall [163], WhipserMonitor [92] and No-
Root [147]). However, smartphone firewall policy management is complex and
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error-prone [25, 156, 157]. Typical errors range from invalid syntax and incorrect
rule ordering, to a failure to uphold a security policy due to lack of GUI-based
firewall rule granularity, to errors resulting from the poor comprehension of a
firewall configuration [94, 152]. An effective smartphone firewall configuration
may be further hampered by the poor understanding and/or management of the
overall high-level smartphone security requirements.

8.2.1 Threat Mitigation Using A Smartphone Firewall

In this section, we consider known network-based threats that may be mitigated
by the smartphone firewall.

Port-based Attack Surface Mitigation. A smartphone port-based attack sur-
face is the number of network accessible apps, hosted on the smartphone or on
its tethered devices, in terms of ports that are available for a potential attacker
to exploit. A smartphone may have a number of network accessible apps, for
example RDP port 3389, VNC port 5900, SSH port 22, FTP ports 20 and 21.
It is considered best practice to uninstall or disable unnecessary network apps:
“Removing or disabling unnecessary services enhances the security” [124]. For ex-
ample, a smartphone may host server-based apps such as Telnet or FTP intended
for occasional use. A smartphone user may not wish to install and uninstall these
kinds of apps before or after each use. As a consequence, this increases the
smartphone’s attack surface.

By explicitly configuring the firewall to permit access to intended app ports
only, one can significantly reduce the attack surface. Consider the scenario of a
remote desktop server app used to manage a smartphones files and photos. Con-
figuring the firewall to permit only RDP traffic destined for port 3389 will reduce
the attack surface from a possible 216 ports to just one intended port.

IP-based Attack Surface Mitigation. A smartphone IP-based attack surface
is the number of network-accessible apps, hosted on the smartphone or on its
tethered devices, in terms of client IP address reachability that are available as
a potential attacker threat vector. For example, with respect to smartphone
remote management it is recommended to “Restrict which hosts can be used to
remotely administer” on the smartphone where the restriction is “by IP address
(not hostname)” [124].

Configuration of a smartphone’s firewall to comply with best practice recom-
mendations of this kind ensures that the IP-based attack surface is significantly
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reduced. Note, while a smartphone’s remote management server apps, such as a
VPN or SSH, may provide their own protection in terms of authentication and
authorisation, it is considered best practice to also restrict access at the smart-
phone firewall as part of a defence in depth strategy [152].

IP-based Spoof Mitigation. An IP packet’s source address may be spoofed
(forged) by an attacker in an attempt to trick the smartphone into processing the
packet as if it had originated from the smartphone itself or from devices tethered
to it. An external attacker may forge IP packets with a set of source IP addresses,
for example 192.168.0.0/16, that are associated with an internal private IP
network range [33], but are inbound on the 3g or WiFi external interface.

A smartphone firewall configured in accordance with standards of best prac-
tice will mitigate against the threat of IP spoofing. For example, NIST 800-41rev1
recommendation FBPr1-2 in Table B.4 recommends that (spoofed) packets arriv-
ing on an external interface claiming to have originated from either of the three
RFC 1918 [115] reserved internal IP address ranges should be dropped. This type
of attack typically forms part of a Denial of Service (DoS) attack.

Port Scan Mitigation. Port Scanning is a reconnaissance technique that at-
tackers use to determine the network resources of the smartphone and of its teth-
ered devices. Typical TCP-based port scanning involves exploiting the intended
use of the TCP protocol by forging TCP header flags.

Firewalls provide an effective way to mitigate against invalid TCP packets.
For example, the XMAS TCP port scan where TCP flags FIN, PSH and URG are
simultaneously set [91]. In addition to mitigating invalid TCP packets, a firewall
that manages TCP communication state is an effective way to mitigate against
valid TCP packets that are forged. For example, TCP packets forged to mimic
the expected return packets for outbound TCP traffic requests.

Tunnel Bypass Mitigation. From the point of view of the firewall, the term
tunnelling refers to the practice of encapsulating data from one protocol inside
another protocol in order to evade the firewall [27]. For example, a Skype client
typically listens on TCP and UDP port 33033 [14]. However, should Skype fail
to establish communication over that port, it has the ability to operate on the
port required by HTTP (port 80) [14, 21, 116]. As a consequence, despite denying
traffic for TCP and UDP port 33033, Skype packets may still traverse the firewall
unhindered by exploiting the intended purpose of HTTP-based firewall rules.
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A smartphone firewall that can perform Deep Packet Inspection (DPI) mit-
igates the threat of tunnelling. The following is one of many possible Skype
signatures used in a Skype-to-Skype communication that a firewall may be con-
figured to filter [116].

ˆ..\x02.............

Malware Traffic Mitigation. A smartphone firewall can be used to mitigate
or reduce the flow of Malware communication even in infected phones. Well
known Remote Access Trojans (RATs), such as Android’s Geinimi Trojan [137],
can be blocked in terms of protocol (TCP) and ports (5432, 4501 and 6543)
from indiscriminately making outbound connections to an external C&C. RATs
may also communicate with their C&C over HTTP-based ports. For example,
DroidDream [89] transmits IMEI, IMSI and device model information to its C&C
server using the following URL:

http://184.105.XXX.XX:8080/GMServer/GMServlet

In this scenario, as with the Tunnel Bypass Mitigation Skype example, a fire-
wall performing DPI with a deny action on outbound HTTP-based packet pay-
loads that contain “GMServer/GMServlet” will prevent an infected smartphone
from communicating with DroidDream’s C&C. Note, best practice stipulates the
avoidance of once-off firefighting rules where possible and to adopt a default deny
rule on outbound traffic [152].

8.2.2 Reasoning About Smartphone Firewall Policies

In this section, a case study is presented that illustrates practical use of the FW1

algebra on Android systems. Consider, some end-user Alice, who over the course
of her day encounters various scenarios while using her new smartphone.

7:30 a.m. As part of Alice’s morning routine, she likes to check her email, read
the news on her favourite Website and watch videos on YouTube. However, a
problem on Android systems is that the firewall policy is open-access by default.

The following iptables rules implement a firewall policy PolHome for Alice,
whereby only her three favourite apps are allowed to access the Internet (rules
r1 . . r3), and a default deny policy applies to all other network traffic.

r1 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $email \
-m state --state NEW,ESTABLISHED,RELATED -j ACCEPT
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r2 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $firefox \
-m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

r3 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $youtube \
-m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

The function M(rule) maps a rule written in iptables rule syntax to FW1

algebra syntax. The policy PolHome is given as:

PolHome == I(M(r1)) o
9 I(M(r2)) o

9 I(M(r3))

The policy PolHome addresses Alice’s current requirements and she now has a
working firewall implementation.

Internet

Figure 8.1: 7:30 a.m. (PolHome)

9:30 a.m. The company Alice works for has incorporated a BYOD policy.
All employees have a VNC server running on their mobile devices to allow for
screen sharing with local company systems. Company employees must use a
non-standard Web browser for work-related activities, and non-authorised apps
are restricted from accessing the company’s internal network to help mitigate
potential privacy violations.

The following iptables rules implement a simple BYOD policy PolWork for
Alice; whereby rule r1 allows inbound network access to the VNC server port on
Alice’s device from the company’s internal network, and rules r2 . . r5 permit/deny
network access to other applications running on the device.

r1 == iptables -A INPUT -p tcp -s 192.168.1.0/24 --dport 5900 \
-m state --state NEW,ESTABLISHED,RELATED -j ACCEPT
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r2 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $fFoxSec \
-m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

r3 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $email \
-m state --state NEW,ESTABLISHED,RELATED -j DROP

r4 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $firefox \
-m state --state NEW,ESTABLISHED,RELATED -j DROP

r5 == iptables -A OUTPUT -p tcp -m owner - -uid-owner $youtube \
-m state --state NEW,ESTABLISHED,RELATED -j DROP

The policy PolWork implements the BYOD requirements of Alice’s employer, and
is given as:

PolWork == I(M(r1)) o
9 I(M(r2)) o

9 I(M(r3)) o
9 I(r4) o

9 I(r5)

5900

5900
Internet

Work LAN

Figure 8.2: 9:30 a.m. (PolWork)

Alice needs to manage her policies. If she simply concatenated PolHome

and PolWork then she introduces anomalies, in particular, shadowing anomalies;
whereby rules r1 . . r3 from PolHome shadow (respectively) rules r3 . . r5 in PolWork.
We observe that:

(notPolHome) o
9 PolWork = PolWork

From this, we note that a one-size-fits-all approach does not apply to smartphone
firewall policies.
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5:30 p.m. Alice likes visiting her favourite café after work, and regularly uses
the open-access WiFi. Unfortunately for her, Mike is a customer also, and he is
running target/service enumeration scans on the café network.

5900

Internet

Figure 8.3: 5:30 p.m. (Internet café)

The following iptables rules implement a partial compliance policy
NIST-800-114, for Alice, whereby the firewall will: “silently ignore unsolicited re-
quests sent to it, which essentially hides the device from malicious parties” [125].

r1 == iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

r2 == iptables -A INPUT -p tcp --tcp-flags ALL ALL -j DROP

r3 == iptables -A INPUT -p tcp --tcp-flags ALL FIN,PSH,URG -j DROP

r4 == iptables -A INPUT -p tcp --tcp-flags \
ALL SYN,RST,ACK,FIN,URG -j DROP

r5 == iptables -A INPUT -p tcp --tcp-flags \
FIN,PSH,URG FIN,PSH,URG -j DROP

r6 == iptables -A INPUT -p tcp --tcp-flags ALL FIN -j DROP

r7 == iptables -A INPUT -j ACCEPT

The policy NIST-800-114 denies various TCP flag combinations used in com-
mon port scanning techniques [91], while allowing all other network traffic, and
is given as:
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NIST-800-114 == I(M(r1)) o
9 I(M(r2)) o

9 I(M(r3)) o
9 I(M(r4))o9

I(M(r5)) o
9 I(M(r6)) o

9 I(M(r7))

Assume, that the firewall policy currently enforced on Alice’s system is PolCurr,
then if PolCurr v NIST-800-114 then Alice’s current system policy complies with
best practice recommendations outlined in [125] for unsolicited requests sent to
the device.

9:30 p.m. The WiFi signal disappears, while the family (Bob and Claire) need
to use the Internet. Bob has a work-related email to send and Claire needs
to upload an assignment due for college. Tech-savvy Alice enables tethering.
However, Alice’s system again faces a new set of threats. For example, there may
be Malware running on either/both Bob’s and Claire’s machines. Alice would like
to reason with a degree of confidence that the traffic passing through her firewall
is not part of some form of DoS attack.

5900

Internet

Figure 8.4: 9:30 p.m. (device tethering)

Recall, the IP spoof-mitigation compliance policies RFC5735I,RFC5735O and
RFC5735F defined is Chapter 5 Section 5.4.1. Then given the policy currently
enforced on Alice’s system as PolCurr, we have that if PolCurr v (NIST-800-114 u
RFC5735I u RFC5735O u RFC5735F), then Alice’s current system policy complies
with best practice recommendations outlined in [125] for unsolicited requests
sent to the device and the best practice recommendations outlined in [33] for IP
address spoof-mitigation.
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8.2.3 MASON

End-user management of security configurations that mitigate smartphone
threats is complex and error-prone. As a consequence, misconfiguration of a
security configuration may unnecessarily expose a smartphone to known threats.
There are a number of existing techniques for static and dynamic analysis of
smartphone applications. The authors in [127] adopt a static analysis approach
to detect Android-based Malware. In [43], a tool called PiOS is developed and
uses static analysis techniques to detect data flows in Mach-0 binaries. This pro-
vides a basis to detect privacy leaks in Apple’s iOS applications. TaintDroid [45]
is a smartphone application that uses dynamic analysis techniques to detect pri-
vacy leaks in Android applications. A machine learning approach is taken in [130]
to detect application anomalies. There are a number of Android apps for firewall
configuration management, for example DroidWall [163], WhipserMonitor [92]
and NoRoot [147]. However, in existing works [92, 147, 163], Android firewall
configuration is performed on an ad-hoc basis.

MASON [55], is a prototype automated agent app for Android that man-
ages the firewall configuration on behalf of the non-expert end-user. In contrast
to [92, 147, 163], the automatic generation of smartphone firewall configurations
in this research is guided by best practice recommendations. The current ver-
sion of MASON minimises the potential for firewall configuration conflicts as
follows. Generalisation firewall rules that apply to app’s as a whole, for example
anti-port scanning and anti-bogon firewall rules, are given precedence over the
disjoint singleton (specific) firewall rules. For the most part, firewall rules are
disjoint singleton rules where rule ordering is irrelevant. That is, for each app
requiring network access, there is a corresponding firewall rule that also filters
based on that app’s UID. The current implementation of MASON assumes that
the firewall configuration is conflict free and does not consider firewall policy
structural analysis [6, 35]. We argue that extending MASON with the FW1 al-
gebra provides a means of anomaly-free, dynamic firewall policy reconfiguration
for Android. An extended version of the prototype may also include a means to
manage policies other than those specific to network access control, for example,
policies to manage Android permission assignment to system applications using
the Android Device Administration API [142].
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8.3 The Android Permission Model

At the core of the Android security framework is the permission-based model.
The model restricts permission assignment to an application in two ways: by
user confirmation and through signatures by developer keys [46, 141]. An appli-
cation has no associated permissions by default, and permissions required by the
application must be specified by the developer in the application’s Manifest file.
Permissions are categorized in terms of four threat-levels [144]:

• Normal: permission is granted to any application that requests it.

• Dangerous: permission is not automatically granted to the requesting ap-
plication and requires user confirmation.

• Signature: permission is granted if the requesting application is signed with
the same certificate as the application that declared the permission.

• Signature or System: permission is granted if the requesting application
has the same signature as the application that declared the permission, or
is granted to apps in the Android system image.

For Android applications signed with the same certificate and specifying the
sharedUserId attribute in their respective Manifest files, then these Applications
share the set union of their permissions. For platform version Android 5.1 (API
level 22) and lower, dangerous permissions must be granted to the application at
install-time, or the install will fail. A problem with this, is that it may introduce
over-privileged, potentially malicious applications to the system. The user may
blindly accept the permission requests, or be unable to deny individual requests
considered to be unnecessary for the legitimate operation of the application. Once
granted, a permission cannot be revoked.

Barrera et al. [12], present an empirical analysis of the Android permission
model using 1,100 apps as a case-study. Results show that a small subset of
Android permissions are used frequently, while a large subset of permissions were
used by very few applications. The authors note potential points of improvement
for the Android permission model, such as the lack of expressiveness in the Inter-
net permission. For example, an Android app that holds the Internet permission
has unrestricted network access over WiFi and 3g connections. Enck et al. [46],
present Kirin, a security service that reads application permission requirements
during installation and checks them against a set of security rules. Rules are

Reasoning About Firewall Policies Through
Refinement and Composition

159 Ultan James Neville



8. A Policy Management Framework
For Android 8.3 The Android Permission Model

used to identify dangerous application permission configurations, such as appli-
cations that require Internet access and the ability to process audio and record
outgoing calls, as an app with these permissions may potentially record and for-
ward phonecalls to a remote location. If an application fails on any security rule,
Kirin blocks the install and the user is alerted. While a light-weight application
certification mechanism such as Kirin is desirable, it requires modification of the
Android security framework to integrate with the installation process of an An-
droid application. The authors do not consider applications sharing permissions
through use of the sharedUserId attribute.

For platform version Android 6.0 (API level 23) and higher, a dangerous per-
mission is granted by the user to the application at run-time, and this can be
revoked/granted again later. While this run-time permission model is a notable
improvement over the install-time model, there are still significant security con-
siderations to be addressed. For example, in [44], attacks against the system are
composed from seemingly innocuous applications requesting apparently benign
collections of permissions, and many permissions used to construct the attacks
are classified under the run-time permission model as normal, for example, the
Internet permission and the permission to start at system boot.

8.3.1 Encoding The Permission Model

In this section, we develop a formal model of Android permission management
for system applications.

Applications. We define Android applications by their UID. Thus, we define the
set of all Android apps for a system to be UID, given in Chapter 3 Section 3.2.4.

Permissions. Android permissions categorized as dangerous [144] may be
granted to/revoked from system applications using the Android Device Adminis-
tration API [142]. Let Permission be the set of Android permissions characterized
in [144] as having a threat-level of dangerous. We define:

Permission ::= read calendar | write calendar | camera | read contacts |
write contacts | get accounts | access fine location | access coarse location |
record audio | read phone state | call phone | read call log | write call log |
add voicemail | use sip | process outgoing calls | body sensors | send sms |
receive sms | read sms | receive wap push | receive mms |
read external storage | write external storage
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Permission Policies. An Android permission policy is a pair of relations that
define the application/permission mappings/pairs that may be granted or denied
access to a given resource by the system. Let PolicyPerm define the set of all
Android permissions policies, whereby:

PolicyPerm == {G,D : (UID ↔ Permission) | G ∩ D = ∅}

A permissions policy (G,D) ∈ PolicyPerm defines that an application/permis-
sion pair a 7→ p ∈ G should be granted access to a given resource by the system,
while an application/permission pair a 7→ p ∈ D should be denied access to a
given resource by the system. Policy accessor functions grant and deny for per-
missions policies are assumed, and are analogous to functions first and second for
ordered pairs. Definitions for permissions policy refinement and composition are
analogous to the definitions given for the FW0 firewall policy model in Chap-
ter 4 Section 4.2. Definitions for policy construction, policy negation and policy
sequential composition are also analogous to those given for the FW0 policy
algebra in Chapter 4. Thus, we define the Android permissions policy algebra as:

AndroidPerm == (PolicyPerm,v,u,t,⊥,>)

Note, the lattice properties of the FW0 policy algebra, described in Chapter 4
Section 4.2.1, also apply to PolicyPerm policies in the AndroidPerm algebra.

8.4 A Compliance-driven Threat Model

In this section, we extend the threat-based model developed for MASON in [55],
and consider the threat of apps with over/under-privileged Android permissions.

8.4.1 Catalogues of Best Practice

A best practice standard is a high-level document that defines a set of recom-
mended best practices (countermeasures) to protect sensitive and critical system
resources. The following best practice standards NIST 800-41 [152], NIST 800-
41rev1 [123], NIST 800-124 [79], NIST 800-114 [125] and NIST 800-153 [133] for
firewall access control have been encoded as part of this work. Excerpts of these
catalogues are illustrated in Tables B.1, B.2, B.3, B.4 and B.5. For example, Ta-
ble B.4 and Table B.5 illustrate excerpts of recommended best practice for general
firewall configuration management [152] and firewall configuration management
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whilst teleworking [125], respectively.
The advantage of developing catalogues from best practice standards is it

provides a basis to automatically generate compliant firewall configurations. For
example, NIST 800-41rev1 recommendation FBPr1-2 in Table B.4 recommends
that (spoofed) packets arriving on an external interface claiming to have orig-
inated from either of the three RFC1918 reserved internal IP address ranges
should be dropped. Such traffic indicates a Denial of Service attack typically in-
volving the TCP SYN flag. NIST 800-114 recommendation TBP-1 in Table B.5
recommends that in a teleworking scenario, a firewall should be configured with
a whitelist of trusted network-based apps.

Catalogues developed as part of this work extends the catalogues in [61] spe-
cialised for mobile devices. New best practice catalogues, namely NIST 800-124
[79], NIST 800-114 [125] and NIST 800-153 [133] have also been developed. The
catalogue of firewall best practice for smartphones developed as part of this re-
search consists of one hundred and thirty five distinct threat and countermeasure
pairs. Future research should extend this catalogue to include knowledge about
other best practice standards. Note, the majority of the catalogue countermea-
sures are templates. For example, the following firewall rules outlined in TBP-1
Table B.5:

iptables -A OUTPUT -m owner --uid-owner $appUID \
-m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -m owner --uid-owner $appUID \
-m state --state ESTABLISHED,RELATED -j ACCEPT

are template countermeasures that have a UID variable $appUID that is modi-
fied each time the firewall rules are applied to a locally executing network-based
smartphone app. These rules ensure that outbound/inbound local application
whitelist traffic is permitted, and as such, avoid the stateful anomalies of [66]
that result from the omission of explicit rules in a policy.

8.4.2 Threat Taxonomy

Having analysed the best practice standards outlined in Section 8.4.1, known
network-based threats were categorised in the following way: Spoofing, Denial
of Service, Scanning, Source Routing, Malicious Content, Promiscuity Level and
Non-Audit. We also consider NIST 800-163, that recommends limiting Android
permissions, whereby: “apps should have only the minimum permissions neces-
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sary and should only grant other applications the necessary permissions” [112],
this is categorised as Permission Promiscuity Level. Note, other threat categories
could be chosen, for example Microsoft’s STRIDE classification [74]. Table 8.1
illustrates a fragment of the threat classification developed.

Detailed Threats Threat Category
FBPr1-2 Threats Spoofing
FBPr1-2 Threats
FBPr1-4 Threats DoS
FBPr1-5 Threats
TBP-2 Threats Scanning

FBPr1-3 Threats Source Routing
TBP-4 Threats Malicious Content

FBPr1-1 Threats
TBP-1 Threats Promiscuity Level
TBP-3 Threats
TBP-5 Threats Non-Audit
PBP-1 Threats Permission Promiscuity Level

Table 8.1: Extract of threat catalogue

Spoofing. Threats classified as Spoofing are those that refer to IP address spoof-
ing. For example, threats described by the FBPr1-2 recommendation in Table B.4
are considered spoofing threats.

DoS. Denial of Service threats are those that have the capability of flooding
network resources. For example, in Table B.4 FBPr1-4 recommends IP address
broadcast mitigation and FBPr1-5 recommends threshold-limiting to mitigate
connection-based Denial of Service threats. Note, recommendation FBPr1-4 cur-
rently considers the more common /24 network broadcast range only and does
not consider additional network broadcast ranges for example /25 or /26.

Scanning. Network information disclosure threats, for example, those outlined
by the NIST 800-114 recommendation TBP-2 in Table B.5, are classified in this
dissertation as Scanning threats.

Source Routing. Source Routing, for example NIST 800-41rev1 recommen-
dation FBPr1-3 in Table B.4, is a threat classification where an attacker may
specify the route the packet takes through the network and has the potential to
bypass firewalls.
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Malicious Content. From a firewall policy configuration perspective, Mali-
cious Content threats are those that contain malformed application payloads
such as URL parameters, form elements and SQL queries. Malicious Content
may be mitigated in a variety of ways for example blacklisting known TCP/UDP
ports or performing Deep Packet Inspection (DPI) on known malicious signa-
tures. Recommendations TBP-4 in Table B.5 and FBP-2 in Table B.3 illustrate
template DPI firewall rules that mitigate outbound and inbound Malicious Con-
tent threat communication.

Promiscuity Level. Threats that are categorised as Promiscuity Level are
those that refer to IP address (and/or port) reachability in terms of unintended
whitelisting or blacklisting. That is, an overly-promiscuous firewall configuration
(unintended whitelisting), while permitting normal operation of the smartphone
app, may expose other apps to unintended threats, whilst an overly-restrictive
firewall configuration (unintended blacklisting) may prevent normal interopera-
tion of services with the resulting failure of the smartphone app. An example of
this is outlined by NIST 800-114 recommendation TBP-1 Table B.5.

Non-Audit. Non-Audit threats are those that do not log relevant traffic com-
munications. From a compliance perspective, it is considered best practice to
log traffic for auditing purposes. For example, NIST SP800-114 recommendation
TBP-5 in Table B.5 outlines teleworking auditing threats and their corresponding
firewall mitigation. Similarly, recommendation WiFiBP-2 in Table B.2 advocates
logging for auditing purposes. Extending the FW1 policy algebra with a target
action of log for firewall rules is a topic for future research, and is discussed in
Chapter 9 Section 9.2. This extension to FW1 is necessary to consider the Non-
Audit ruleset as part of a firewall configuration while using the algebra.

Permission Promiscuity Level. Threats that are categorised as Permission
Promiscuity Level are those that refer to system resource reachability, for ex-
ample, the device microphone/camera/etc., in terms of unintended whitelisting
or blacklisting of apps and the associated required permission/s. That is, an
overly-promiscuous application/permission configuration (unintended whitelist-
ing), while permitting normal operation of the smartphone app, may expose
other apps and/or the device user to unintended threats. For example, an un-
trusted application accessing the users’ calendar and/or location, or using services
that cost the user money, such as sending SMS or calling premium-rate phone
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numbers. Conversely, an overly-restrictive application/permission configuration
(unintended blacklisting) may prevent normal interoperation of services with the
resulting failure of the smartphone app. An example of this is outlined by NIST
800-163 recommendation PBP-1 Table B.6.

8.4.3 Device Security State

The security State of a smartphone represents attributes of a phone in use that
may introduce vulnerabilities and/or influence how threats are mitigated. These
attributes may correspond to, for example, user-preferences (indicating for in-
stance, security risk appetite), or how the smartphone is currently used (for
instance, communicating over a WiFi or 3g Internet connection). While there
is potentially a large number of such attributes, for this part of the research we
focussed on six, which in-part, based on best practice recommendations, have a
direct impact on network access controls on smartphones. We argue that cer-
tain attributes, for example, the users’ risk appetite, the device battery level,
and how the device is currently used (for instance, operating in a teleworking
scenario) also, in-part, based on best practice recommendations, have a direct
impact on Android permission policy management.

Risk Appetite Attribute. This user-selected attribute reflects the level of risk
that the user is willing to accept [149]. An appetite of hungry means that the user
is willing to take risks and is satisfied with minimal countermeasures necessary to
mitigate threats. An appetite of averse means that the user wishes for the most
extensive countermeasures, for example, defense in depth. We define:

RiskAppetite ::= averse | hungry

Note, future research may consider additional risk appetite granularity and in-
clude minimalist, cautious and open attributes [149].

Teleworking Attribute. This attribute indicates whether the smartphone is
used in teleworking, or non-teleworking mode. This is defined as:

Telework ::= true | false

Battery Level Attribute. The experimental results outlined in [55] found
that the number of firewall rules can have an impact on battery consumption.
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Therefore, when battery power is low, a user with a low risk appetite may wish to
reduce the number of rules in the firewall. Thus, we include the current battery
level in the state of the smartphone. We define:

Battery ::= lo | hi

Network Interface Attribute. A smartphone may be configured to communi-
cate over WiFi and/or 3g networks. Note that a network interface configuration
of WiFi and 3g, combined, corresponds to a tethering state. Let Iface define the
set of possible network interface configurations, whereby:

Iface == P{wifi, 3g}

Network Connection Attribute. Different network connections may be
trusted in different ways. For example, a WiFi connection providing WPA2-
Enterprise security may be considered trusted, while an open WiFi connection
in a default configuration may be considered untrusted. Let NetConn define the
possible network connection attribute states, whereby:

NetConn ::= trusted | untrusted

Data Quota Attribute. This user-selected attribute reflects whether the user
wishes to apply a maximum data download capacity. If a data quota is to be
configured, for example in a scenario where a smartphone is operating in roaming
mode, it will be applied to a relevant set of white-listed apps. We define:

Quota ::= true | false

Security State. The set of all possible states of the smartphone is defined as:

State == RiskAppetite × Telework × Battery × Iface× NetConn×Quota

The (six-tuple) security State space provides a total of sixty-four states in
which a smartphone may operate. However, we argue that certain attribute
combinations are not valid and therefore the security state space may be reduced
to forty. This is discussed in more detail in [55]. Table B.7 illustrates the valid
security state matrix for MASON.
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8.5 A System Policy Model

In this section, we develop a formal model for Android firewall and permission
policy management.

System Policies. An Android system policy is an FW1 firewall policy and an
Android permission policy. Let PolicySys define the set of all Android system
policies, whereby:

PolicySys == Policy × PolicyPerm

Definitions for destructor functions firewall and permission are assumed, and
are analogous to functions first and second for ordered pairs. Thus, we have
for all P ∈ PolicySys then P = (firewall (P), permission (P)). Definitions for
system policy refinement and composition, including sequential composition, are
defined as the Cartesian product of firewall and permission policy refinement and
composition, respectively. Thus, we define the Android system policy algebra as:

AndroidSys == (PolicySys,v,u,t,⊥,>)

Note, the lattice properties of the FW0 policy algebra, described in Chapter 4
Section 4.2.1, also apply to PolicySys policies in the AndroidSys algebra.

8.5.1 Security Configuration Synthesis

The current implementation of MASON makes configuration decisions for firewall
policies based on six different binary attributes, comprising the security State, de-
fined in Section 8.4.3. Suitable firewall configurations are automatically generated
for each security state using the information contained in Table B.7 and the threat
catalogues (for example Table B.5). The catalogues of best practice for network-
based threat mitigation using a firewall are encoded as collections of iptables rules.
The best-practice rules can be encoded in the FW1 policy algebra as compliance
policies, for example, RFC5735I,RFC5735O,RFC5735F and NIST-800-114, and as
policies to manage the user-defined blacklisted and whitelisted networked apps
by UID. NIST 800-114 recommendation TBP-3 in Table B.5 recommends that
different Web browsers such as Firefox and Google Chrome, should be used in
teleworking and non-teleworking scenarios. This is to minimise the Web browser
used for general use, which may have become compromised with malicious plugins,
from communicating in a teleworking scenario. User-specified application/per-
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mission blacklists are in keeping with NIST 800-163 recommendation PBP-1 in
Table B.6, and may be managed by MASON through the Android Device Ad-
ministration API [142]. Extending MASON with the AndroidSys algebra provides
a means of anomaly-free, dynamic firewall and permission policy reconfiguration
for Android.

Example 1 Consider, how the algebra AndroidSys is used to build the system
policy for a given state. We have PolApps ∈ PolicySys, whereby for this state:

allow(firewall (PolApps))

defines the whitelist of network applications permitted network access by UID,
and deny(firewall (PolApps)) defines the blacklist of network applications denied
network access by UID. Similarly,

grant(permission (PolApps))

defines the whitelist of the application/permission pairs permitted access to given
resources in the system for this state, and deny(permission (PolApps)) is the black-
list of application/permission pairs. The permission policy for a given state is
PolPerm ∈ PolicyPerm, whereby:

PolPerm == permission (PolApps)

Suppose, that in this state, we require that the system configuration complies
with the best practice recommendations outlined in NIST 800-114 for threats
within the scanning category. Consider, (NIST-800-114,PolPerm) ∈ PolicySys.
When constructing the security configuration for this state, that complies with
NIST 800-114 for unsolicited requests sent to the device, while also enforcing the
networked-app blacklist/whitelist for the state, and the application/permission
blacklist/whitelist for the state, then the following policy fragment:

(NIST-800-114,PolPerm) o
9 PolApps

defines this part of the system policy. 4

While various security states may have been related to the same threat cate-
gories, the security configuration generated for each state may be different.

Example 2 Consider security states state-3 and state-25 in Table B.7. Both
security states are threatened by threats within the category IP spoofing. How-
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ever, the specific/individual IP spoofing threats will differ for both security states.
Because security state state-25 is concerned with tethering, it must consider ad-
ditional firewall access-control rules that mitigate IP spoofing threats along its
iptables FORWARD chain to protect smartphone tethered devices [79]. Note, in
a tethering scenario, the smartphone is an Internet gateway for tethered devices.

Consider, system policies (RFC5735I,PolPerm), (RFC5735O,PolPerm), (RFC5735F,

PolPerm) ∈ PolicySys. Then for security state state-3, we construct the IP spoof
mitigation policy as follows:

((RFC5735I,PolPerm) u (RFC5735O,PolPerm))

whereby the iptables rules that mitigate IP spoofing threats apply to the INPUT
and OUTPUT chains. Similarly, we construct the IP spoof mitigation policy for
state-25 as follows:

((RFC5735I,PolPerm) u (RFC5735O,PolPerm) u (RFC5735F,PolPerm))

The security states state-3 and state-25 are also threatened by scanning.
When constructing PolCurr ∈ PolicySys, whereby PolCurr defines the overall se-
curity policy for a given state, then if this state is threatened by scanning and
IP spoofing threats, and for each other threat category the state is threatened
by, then:

PolCurr == ((RFC5735I,PolPerm) u (RFC5735O,PolPerm) u . .
. . u (NIST-800-114,PolPerm)) o

9 PolApps

defines the anomaly-free security configuration for the current state. 4

Example 3 There are also scenarios where permitted (trusted) network apps in
one security state may no longer be permitted in another security state. For exam-
ple, trusted networked apps such as Telnet, FTP or games for example in security
state-3 may alternate between whitelists and blacklists in a security state that in-
volves teleworking, for example security state-1. Suppose, that PolPerm defines the
permission policy for the state, then when defining PolApps in a state alternating
between the network app whitelist/blacklist, we have the application policy:

(not (firewall (PolApps)),PolPerm)

This ensures compliance with NIST 800-114 recommendation TPB-1 in Table B.5.
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That is, only trusted apps defined in accordance with the enterprise-level tele-
working security policy may be permitted network access. 4

The lattice of policies AndroidSys provides us with an algebra for constructing
and interpreting Android system polices. An anomaly-free security configuration
is defined by composing policy fragments derived from the threat catalogues as
P,Q ∈ PolicySys. The current prototype implementation makes configuration
decisions for firewall policies based on six different binary attributes, comprising
the security state State. In a model of extended security states, the system policy
ordering relation v may be used as a formal verification of the security policy
to be enforced for a state configuration change. Extending the security states
by exhaustively enumerating State as a means of manually building a catalogue
of countermeasures is not scalable. Looking for optimal policy configurations
in extended security states is a topic for future research, and is considered in
Chapter 9 Section 9.2.

8.6 Discussion

In this chapter, a policy algebra AndroidSys is defined, in which Android system
policies, comprising firewall and permission policies, can be specified and rea-
soned about. The AndroidSys algebra incorporates the FW1 firewall policy alge-
bra, defined in Chapter 5 Section 5.3, and the Android permission policy algebra,
defined in Section 8.3 of this chapter. The set of Android system policies form a
lattice under safe replacement and this enables consistent operators for safe com-
position to be defined. Policies in this lattice are anomaly-free by construction,
and thus, composition under glb and lub operators preserves anomaly-freedom.
A policy sequential composition operator is also proposed that can be used to
give precedence to the security requirements of one system policy over another
in composition.

This chapter also extended the threat-based model defined in [55] for MASON
to consider the threat of apps with over/under-privileged Android permissions.
Catalogues developed as part of this work extend the catalogues in [61] with an
emphasis on mobile devices and provided a basis with which to evaluate the se-
curity model. A more fine-grained approach to encoding threats related to apps
with over/under-privileged Android permissions is a topic for future research,
and is considered in Chapter 9 Section 9.2. Extending the MASON prototype
with the proposed model would require mapping the catalogues of best prac-
tice policy fragments into the algebra as compliance policies, recall, for example,
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RFC5735I, RFC5735O, RFC5735F and NIST-800-114. Given that Android applica-
tions are usually written in Java, then the Python FW1 algebra implementation,
presented in Chapter 6, may be incorporated into the MASON prototype using
Jython [145]; a Java-based implementation of Python that allows developers to
run Python on any Java platform. Alternatively, the existing Python implemen-
tation may be incorporated in MASON using Kivy [150]; an open source Python
library that runs on Android. The Android Device Administration API may be in-
corporated into the prototype to enable the end-user to specify blacklist/whitelist
permission-policies, these policies can be incorporated into the algebra as sets,
thereby enabling MASON to dynamically manage policy reconfiguration.

We argue that the MASON prototype, extended with the policy framework
described in this chapter, may be used by non-expert end-users to automatically
generate and reason over suitable anomaly-free firewall and permission policy
configurations on Android systems, that are compliant with best practice recom-
mendations, such as [79, 112, 123, 125, 133, 152].
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Chapter 9

Conclusion and Future Research

Firewall policy management is complex and error-prone. Policies may need to be
reconfigured for highly dynamic environments, and misconfiguration is common.
Typical errors range from invalid syntax and incorrect rule ordering, to a failure
to uphold a security policy due to lack of GUI-based firewall rule granularity, to
errors resulting from the poor comprehension of a firewall configuration. An effec-
tive firewall policy may be further hampered by the poor understanding and/or
management of the overall high-level security requirements. Policy management
is often reliant on the expert-knowledge of security administrators, and drawing
from best practice. A significant challenge is to reason confidently that a pol-
icy is anomaly-free, and adequately mitigates the threats outlined in the network
security policy. There is a rich literature of work on managing firewall policy con-
figurations. The work in [1, 5, 6, 30, 35, 66, 73, 87, 159] is focused on detecting
and resolving anomalies in firewall policy configurations, while the approaches
in [47, 52, 88, 95] enable an administrator to query a policy configuration. Work
such as [3, 13, 39, 72, 84] permits an administrator to specify at a high-level of
abstraction what would otherwise be low-level firewall rules. However, in general,
literature is focused on a five-tuple firewall rule with a binary target action of
allow or deny, and most consider only packet-filter policy configurations. The
thesis of this dissertation is that a firewall policy should be anomaly-free by con-
struction, and as such, there is a need for a firewall policy language that allows
for constructing, comparing, and composing anomaly-free policies.

9.1 Overview

The objective of this dissertation has been to develop a theory about compos-
ing anomaly-free firewall policies, as having a consistent means of anomaly-free
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firewall policy composition enables a means of anomaly-free, dynamic firewall
policy reconfiguration. The thesis of this dissertation was evaluated as follows.
A model has been constructed to describe what it means to specify, compare and
compose anomaly-free policies. The model is developed as a lattice structure and
provides sound and consistent operators for firewall policy composition. The core
filter condition constructs developed for firewall rules specify a partial mapping of
the iptables filter table. This mapping has been used to define filter condition
constraints that extend the conventional five-tuple firewall rule, used for example
in [1, 5, 6, 30, 35, 73, 87, 159], to include additional filter condition attributes
such as, for example, TCP flags, ICMP Codes/Types and time-based filtering.
A simple firewall policy algebra FW0 has been developed for policies that are
defined in terms of constraints on individual IP addresses, ports, protocols and
additional filter condition attributes. The purpose of developing FW0 was to
demonstrate the utility of specifying an algebra for firewall policies that supports
rules with complex range-based constraints.

The firewall policy algebra FW1 developed in Chapter 5 defines the founda-
tions for the work of this dissertation. Policies in the FW1 framework are de-
fined over stateful and stateless firewall rules constructed in terms of constraints
on source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and
additional filter condition attributes. The algebra allows policies to be composed
in such a way, that the result upholds the access requirements of each policy
involved; and permits one to reason as to whether some policy is a safe (secure)
replacement for another policy in the sense of [56, 57, 77]. The set of policies form
a lattice under safe replacement and this enables consistent operators for safe com-
position to be defined. Policies in this lattice are anomaly-free by construction,
and thus, composition under glb and lub operators preserves anomaly-freedom.
A policy sequential composition operator is also proposed that can be used to
interpret firewall policies defined more conventionally as sequences of rules. The
proposed algebra is used to reason about iptables firewall policy configurations.
FW1 is a generic firewall algebra that can be used to model different firewall
systems, and an n-tuple firewall rule filter condition specification is supported by
the model. The effectiveness of the algebra is demonstrated by its application to
anomaly detection, and standards compliance. Firewall rules in FW0/FW1 poli-
cies are defined in terms of a binary target action of allow or deny. We describe
an extension of FW1 to incorporate an additional firewall rule target action of
log as part of future research in Section 9.2.
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We consider a number of possible areas to demonstrate the effectiveness of the
approach in practice. A proof of concept prototype policy management toolkit
that implements FW1 firewall policies for iptables is developed. Experiments
have been conducted for o

9, t,u and v policy operators, and the preliminary
results are reported in Chapter 6. Overall, the results are promising.

The cloud computing paradigm has become widely adopted, however, man-
aging the host-based and network access controls within and across cloud deploy-
ments is complex and error-prone. The environment is highly dynamic due to
platform and service migration, and cross-tenant accesses are often required to
facilitate service-to-service communication. A policy model FWOpenStack is pro-
posed in Chapter 7 for OpenStack firewall policies using a derivation of FW1.
OpenStack avails of multiple access control policies of varying types for a firewall
deployment, and we use FWOpenStack to provide a uniform way to specify and
reason about OpenStack security group policies and perimeter firewall policies.
A case study OpenStack deployment illustrates practical use of the algebra.

Deploying a fixed security configuration for a global set of threats is not prac-
tical for devices operating in mobile environments. Therefore, security configura-
tions for mobile devices must be dynamic in order mitigate the relevant threats
within a given scenario. Mobile devices may host a variety of security mechanisms,
however, security configuration is typically performed by non-technical end-users.
A policy management framework for Android is proposed in Chapter 8, and a
case study deployment illustrates practical use of FW1. An algebra AndroidSys
is proposed that incorporates FW1 and the Android permission policy algebra
AndroidPerm, for managing the unified reconfiguration of Android firewall and
Android permission policies. The compliance-driven threat model developed for
the MASON prototype is extended to include knowledge related to Android per-
missions. The policy framework amalgamates the threat model and AndroidSys,
and defines a means to dynamically manage the security configuration for firewall
policies and dangerous run-time permissions on Android systems. We describe
how integrating the policy management framework with the MASON prototype
can be used to dynamically synthesise standards-compliant anomaly-free security
configurations on behalf of the end-user of Android systems.

9.2 Future Research

Extending The Firewall Policy Algebra. There are a number of areas for
future work.
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• A Log Action. In this dissertation, the focus was on firewall rules with
a target action of either allow or deny. From a compliance perspective, it
is considered best practice to log traffic for auditing purposes [123]. Future
work should extend the FW1 algebra to include a target action of log for
firewall rules. An approach may be taken, whereby we extend (A,D) ∈
Policy to (A,D,L) ∈ Policy, where L ∈ α[FC ] and a filter condition f ∈
L should be logged by the firewall. We give the destructor function log
for firewall policies; whereby log (A,D,L) = L. For policy composition,
then for P,Q ∈ Policy, we have P u Q signifies the operation (log P ⊕
log Q) for logged filter conditions. Similarly, for P t Q we have the logged
filter conditions (log P ⊗ log Q). From this, we have that the ordering for
logged filter conditions is defined similarly to the ordering for denied filter
conditions. In practice, a logged filter condition may be shadowed by a
filter condition with a target action of allow or deny. However, it is not the
case that a filter condition with a target action of log can shadow a filter
condition with a target action of allow or deny. Therefore, for sequential
composition, then we have P o

9 Q defines the logged filter conditions for the
resulting policy as: (log P ⊕ (log Q \α[fc] (allow P ⊕ deny P))).

• A Definition for Network Address Translation (NAT). The NAT
routing technology is often combined with firewalling [123]. This disser-
tation focused on the firewalling aspects of iptables, that is, the filter
table. Future work should extend the FW1 algebra to include a definition
for NAT. An approach may be taken, whereby we define the filter condition
attribute Table, and mangle, nat, filter,∈ Table. Additionally, we require
prerouting, postrouting ∈ Chain. Given that NAT is the process of trans-
posing one IP address space into another, then rules in the algebra need to
include definitions for source and destination NAT address. These address
spaces may be modelled as S ,T ∈ IPSpec. Similarly, to include attributes for
source and destination port translation, a rule would additionally include
S ,T ∈ PrtSpec. The model of Netfilter in [3] includes a definition for NAT.

Extending The Android Policy Framework. Future work should consider
the following areas.

• The Threat-based Model. A future iteration of the threat-based model
for MASON should consider additional threats and attributes for the de-
vice security State. For example, the physical location of the device, where
it may be advantageous to prevent the device operating in a teleworking
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scenario, for example, when it is located in a certain (untrusted) country
or region of the world. Best practice recommendations such as, for ex-
ample [112, 126], provide sources from where new threats and attributes
may be identified. For example, in [126], it is recommended that user and
application access to hardware such as the USB interface be restricted, to
prevent misuse by unauthorized parties, and that all network interfaces not
needed by the device, such as Bluetooth and NFC, be disabled, thereby
reducing the overall attack surface of the system.

• Optimal Policy Configurations in Extended Security States. The
current implementation of MASON makes configuration decisions for fire-
wall policies based on six different binary attributes, comprising the security
State. Pruning invalid attribute combinations resulted in forty configura-
tion scenarios for which corresponding policies were manually constructed
from the collections of best-practice firewall rules. However, to allow for an
arbitrary number of additional security states in future work, then manu-
ally constructing a catalogue of best-practice policies is not scalable. For
example, supporting three risk-appetite attribute values, or adding an ad-
ditional binary attribute potentially doubles the size of the matrix of valid
security states for MASON. Future research should investigate how policies
can be constructed as a set of constraints over State, the associated threats
and the collections of best-practice countermeasures; whereby given some
s ∈ State, then finding an acceptable security policy P ∈ PolicySys amounts
to a Constraint Satisfaction Problem. Comparable techniques have been
successfully used to generate secure configurations [9] given a collection of
system constraints. Belhaouane et al. [16] propose a series of quantitative
metrics to evaluate the comprehensive complexity of policies. A definition
of policy complexity is proposed, along with a set of metrics to evaluate the
reasoning effort needed to understand a policy. Future work should inves-
tigate a means of policy comparison in the FW1 algebra that incorporates
metrics, as such an approach could be used to allow one to reason consis-
tently about how much more restrictive one policy is when compared to
another, thereby enabling trade-offs to be made when considering optimal
policy decisions.

• Combinations of Dangerous Permissions. A more fine-grained ap-
proach to encoding threats related to apps with over/under-privileged An-
droid permissions should also be considered. For example, in [44], it is
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shown how attacks incorporating a seemingly benign collection of permis-
sions can pose a significant threat to the security of the system.

Interoperation With Other Domains. The general idea of a policy algebra
for network access control can be applied to various domains of interest. For
example, future work should investigate the application of the FW1 algebra to
policy composition in Cyber Physical Systems [59] and in SDN hypervisors [117].
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Management of Network Security Components. 7th International Sympo-
sium on System and Information Security (SSI), Sao Paulo, Brazil, Novem-
ber 2005.

[37] F. Cuppens, N. Cuppens-Boulahia, and J. Garćıa-Alfaro. Detection of Net-
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Appendix A

Presentation of Mathematical
Definitions

A.1 The Z Notation

In this section, we build on the description we gave in [62] for the Z notation. The
interested reader is also referred to [135] for comprehensive information on Z. A
set may be defined in Z using set specification in comprehension. This is of the
form {D | P • E }, where D represents declarations, P is a predicate and E an
expression. The components of {D | P • E } are the values taken by expression
E when the variables introduced by D take all possible values that make the
predicate P true. For example, the set of squares of all even natural numbers is
defined as { n : N | (n mod 2) = 0 • n2 }. When there is only one variable in the
declaration and the expression consists of just that variable, then the expression
may be dropped if desired. For example, the set of all even numbers may be
written as { n : N | (n mod 2) = 0 }. Sets may also be defined in display form
such as {1, 2}.

In Z, relations and functions are represented as sets of pairs. A (binary)
relation R, declared as having type A ↔ B, is a component of P(A × B). For
a ∈ A and b ∈ B, then the pair (a, b) is written as a 7→ b, and a 7→ b ∈ R means
that a is related to b under relation R. Functions are treated as special forms
of relations. The schema notation is used to structure specifications. A schema
such as FW1 defines a collection of variables (limited to the scope of the schema)
and specifies how they are related. The variables can be introduced via schema
inclusion, as done, for example, in the definition of sequential composition.
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A. Presentation of Mathematical
Definitions A.1 The Z Notation

N The natural numbers
PA The power set of A

A↔ B Relations between A and B
S C R Domain restriction
S B R Range restriction
R+ Transitive closure

A→ B Total functions from A to B
A 7→ B Partial functions from A to B
A× B The Cartesian product of A and B

X ::= A | B〈〈C 〉〉 Free-type definition
X == a Abbreviation definition
x = y Equality
x ∈ S Membership
∅ Empty set
⊆ Subset
⊇ Superset
∪ Set union
∩ Set intersection
\ Set difference
# Cardinality
¬ S Negation
∧ Conjunction
∨ Disjunction
⇔ Equivalence

∀ S • E Universal quantification⋃
S Generalized union⋂
S Generalized intersection

〈X〉 Sequence display
a Concatenation
a/ Distributed concatenation

head s First element of a sequence
tail s All but the head of a sequence
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Appendix B

Supplementary Android
Threat-model Information

B.1 Best Practice Extracts and Android Secu-
rity States

Table B.1 gives an extract of NIST-800-124: Guidelines on Cell Phone and
PDA Security.

ID Recommendation Description
CPhBP-1 “Install and configure additional security controls that are required, including ... remote content

erasure” [79].
Threat Countermeasure
No intended remote erasure
whitelist

iptables -A INPUT -p tcp --sport $port -j ACCEPT

iptables -A OUTPUT -p tcp --dport $port -j ACCEPT
ID Recommendation Description

CPhBP-2 “Curb Wireless Interfaces: turn off Bluetooth, Wi-Fi, infrared, and other wireless interfaces until
they are needed. ” [79].
Threat Countermeasure
Inbound local spurious iface
traffic

iptables -A INPUT -i $iface -j DROP

Outbound local spurious
iface traffic

iptables -A OUTPUT -o $iface -j DROP

Inbound forward spurious
iface traffic

iptables -A FORWARD -i $iface -j DROP

Outbound forward spurious
iface traffic

iptables -A FORWARD -o $iface -j DROP

ID Recommendation Description
CPhBP-4 “Network Access - Malware resident on the device is able to use the device for one or more unau-

thorized network activities, including port scanning or using the device as a proxy for network
communications” [79].
Threat Countermeasure
Outbound local Malware IP
Pkt dropped using default
drop as a catch all

iptables -P OUTPUT DROP

Table B.1: Extract of NIST-800-124
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B. Supplementary Android
Threat-model Information

B.1 Best Practice Extracts and Android
Security States

Table B.2 gives an extract of NIST-800-153: Guidelines for Securing Wireless
Local Area Networks.

ID Recommendation Description
WiFiBP-1 “For all their WLAN client devices not authorized for dual connections: Implement the appropriate

technical security controls . . . so that all dual connected configurations are prohibited.” [133].
Threat Countermeasure
Inbound local spurious iface
traffic

iptables -A INPUT -i $ifaceToDisable -j DROP

Outbound local spurious
iface traffic

iptables -A OUTPUT -o $ifaceToDisable -j DROP

Inbound forward Spurious
iface traffic

iptables -A FORWARD -i $ifaceToDisable -j DROP

Outbound forward Spurious
iface traffic

iptables -A FORWARD -o $ifaceToDisable -j DROP

ID Recommendation Description
WiFiBP-2 Logging:“often useful for both periodic assessments and continuous monitoring.” [133].

Threat Countermeasure
No inbound local audit con-
trol

iptables -A INPUT -j LOG --log-level 7

No inbound forward audit
control

iptables -A FORWARD -i $iface -j LOG --log-level 7

Table B.2: Extract of NIST-800-153

Table B.3 gives an extract of NIST-800-41: Guidelines on Firewalls & Fire-
wall Policy.

ID Recommendation Description
FBP-1 Deny “Inbound or Outbound network traffic containing a source or destination address of

0.0.0.0.” [152].
Threat Countermeasure
Inbound Local 0.0.0.0/8 Src
IP Pkt

iptables -A INPUT -s 0.0.0.0/8 -j DROP

Outbound local 0.0.0.0/8
Src IP Pkt

iptables -A OUTPUT -s 0.0.0.0/8 -j DROP

Inbound Forward 0.0.0.0/8
Src IP Pkt

iptables -A FORWARD -i $iface -s 0.0.0.0/8 -j DROP

Outbound forward 0.0.0.0/8
Src IP Pkt

iptables -A FORWARD -o $iface -s 0.0.0.0/8 -j DROP

ID Recommendation Description
FBP-2 “Content filtering . . . virus scanning, filtering, and removal” [152].

Threat Countermeasure
Inbound local unfiltered
traffic

iptables -A INPUT -m -string --algo bm --string
‘$filterString’ -j DROP

Inbound forward unfiltered
traffic

iptables -A FORWARD -i $iface -m -string --algo bm
--string ‘$filterString’ -j DROP

ID Recommendation Description
FBP-3 Implement stateful rules where possible as “stateful inspection firewalls are generally considered to

be more secure than packet filter firewalls.” [152].
Threat Countermeasure
No whitelist application
communication

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j
ACCEPT
iptables -A OUTPUT -m owner --uid-owner $appUID state
--state NEW,ESTABLISHED, RELATED -j ACCEPT

Table B.3: Extract of NIST-800-41
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B. Supplementary Android
Threat-model Information

B.1 Best Practice Extracts and Android
Security States

Table B.4 gives an extract of NIST-800-41-Rev1: Guidelines on Firewalls &
Firewall Policy.

ID Recommendation Description
FBPr1-1 “deny by default policies should be used for incoming TCP and UDP traffic.” [125].

Threat Countermeasure
No inbound default deny policy iptables -P INPUT DROP
No outbound default deny policy iptables -P OUTPUT DROP
No forward default deny policy iptables -P FORWARD DROP

ID Recommendation Description
FBPr1-2 “. . . an invalid source address for incoming traffic or destination address for outgoing traffic . . . should be blocked”

that is “An IPv4 address within the ranges in RFC 1918 ” and “An address that is not in an . . . IANA
. . . range” [123]
Threat Countermeasure
Inbound local 192.168.0.0/16 Src IP
Pkt

iptables -A INPUT -s 192.168.0.0/16 -j DROP

Outbound local 192.168.0.0/16 Dst
IP Pkt

iptables -A OUTPUT -d 192.168.0.0/16 -j DROP

Inbound forward 192.168.0.0/16 Src
IP Pkt

iptables -A FORWARD -i $iface -s 192.168.0.0/16 -j DROP

Outbound forward 192.168.0.0/16
DstIP Pkt

iptables -A FORWARD -o $iface -d 192.168.0.0/16 -j DROP

Inbound local 10.0.0.0/8 Src IP Pkt iptables -A INPUT -s 10.0.0.0/8 -j DROP
Outbound local 10.0.0.0/8 Dst IP
Pkt

iptables -A OUTPUT -d 10.0.0.0/8 -j DROP

Inbound forward 10.0.0.0/8 Src IP
Pkt

iptables -A FORWARD -i $iface -s 10.0.0.0/8 -j DROP

Outbound forward 10.0.0.0/8
DstIP Pkt

iptables -A FORWARD -o $iface -d 10.0.0.0/8 -j DROP

Inbound local 172.16.0.0/12 Src IP
Pkt

iptables -A INPUT -s 172.16.0.0/12 -j DROP

Outbound local 172.16.0.0/12 Dst
IP Pkt

iptables -A OUTPUT -d 172.16.0.0/12 -j DROP

Inbound forward 172.16.0.0/12 Src
IP Pkt

iptables -A FORWARD -i $iface -s 172.16.0.0/12 -j DROP

Outbound forward 172.16.0.0/12
Dst IP Pkt

iptables -A FORWARD -o $iface -d 172.16.0.0/12 -j DROP

ID Recommendation Description
FBPr1-3 “Organizations should also block . . . IP source routing information” [123]

Threat Countermeasure
SSRR firewall bypass. iptables -A FORWARD -m ipv4options --ssrr -j DROP
LSRR firewall bypass. iptables -A FORWARD -m ipv4options --lsrr -j DROP

ID Recommendation Description
FBPr1-4 “Organizations should also block . . . directed broadcast addresses” [123]

Threat Countermeasure
Inbound local directed broadcast iptables -A INPUT -d x.x.x.255 -j DROP
Outbound local directed broadcast iptables -A OUTPUT -d x.x.x.255 -j DROP
Inbound forward directed broadcast iptables -A FORWARD -i $iface -d x.x.x.255 -j DROP
Outbound forward directed broad-
cast

iptables -A FORWARD -o $iface -d x.x.x.255 -j DROP

ID Recommendation Description
FBPr1-5 To limit Denial of Service “a firewall might redirect the connections made to a particular inside address to a slower

route if the rate of connections is above a certain threshold.” [123]
Threat Countermeasure
Inbound forward DoS to tethered
device

iptables -A FORWARD -i $iface -d $lanIP -m limit --limit $x/s
--limit-burst $y -j ACCEPT

Table B.4: Extract of NIST-800-41-Rev1

Reasoning About Firewall Policies Through
Refinement and Composition

B3 Ultan James Neville



B. Supplementary Android
Threat-model Information

B.1 Best Practice Extracts and Android
Security States

Table B.5 gives an extract of NIST-800-114: User’s Guide to Securing External
Devices for Telework & Remote Access, and Table B.6 gives an extract of NIST-
800-163: Vetting the Security of Mobile Applications.

ID Recommendation Description
TBP-1 Construct an access control whitelist of locally hosted applications trusted for telework network

access: “teleworkers should install and use only trusted software” [125].
Threat Countermeasure
Inbound local application
whitelist traffic not permit-
ted

iptables -A INPUT -m owner --uid-owner $appUID -m state
--state ESTABLISHED,RELATED -j ACCEPT

Outbound local application
whitelist traffic not permit-
ted

iptables -A OUTPUT -m owner --uid-owner $appUID -m state
--state NEW,ESTABLISHED,RELATED -j ACCEPT

ID Recommendation Description
TBP-2 . . . “silently ignore unsolicited requests sent to it, which essentially hides the device from malicious

parties.” [125].
Threat Countermeasure
ICMP ping network scan iptables -A INPUT -p icmp -j DROP
TCP XMAS network scan iptables -A INPUT -p tcp --tcp-flags ALL ALL -j DROP
TCP Null network scan iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP
TCP Syn Fin network scan iptables -A INPUT -p tcp --tcp-flags SYN,FIN SYN,FIN -j

DROP
TCP Rst Fin network scan iptables -A INPUT -p tcp --tcp-flags FIN,RST FIN,RST -j

DROP
TCP Port 0 network scan iptables -A INPUT -p tcp --dport 0 -j DROP

iptables -A INPUT -p tcp --sport 0 -j DROP
ID Recommendation Description

TBP-3 “Use a different brand of Web browser for telework” [125].
Threat Countermeasure
Regular Web browser usage iptables -A OUTPUT -p tcp --dport 80 -m owner --uid-owner

$untrustedHTTPUID -j DROP
Intended telework Web
browser usage not permit-
ted

iptables -A OUTPUT -p tcp --dport 80 -m owner --uid-owner
$trustedHTTPUID state --state NEW,ESTABLISHED -j ACCEPT

ID Recommendation Description
TBP-4 “Configuring primary applications to filter content and stop other activity that is likely to be mali-

cious” [125]
Threat Countermeasure
Outbound local unfiltered
traffic

iptables -A OUTPUT -m -string --algo bm --string
‘$filterString’ -j DROP

ID Recommendation Description
TBP-5 “Personal firewalls should be configured to log significant events, such as blocked and allowed activ-

ity” [125]
Threat Countermeasure
No inbound local audit con-
trol

iptables -A INPUT -j LOG --log-level 7

No inbound forward audit
control

iptables -A FORWARD -i $iface -j LOG --log-level 7

Table B.5: Extract of NIST-800-114

ID Recommendation Description
PBP-1 “Apps should have only the minimum permissions necessary and should only grant other applications

the necessary permissions” [125].
Threat Countermeasure
An overly-promiscuous application/per-
mission configuration

Blacklist unnecessary application/permission pairs

Table B.6: Extract of NIST-800-163
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State Interface Network
Connection

Risk
Appetite Teleworking Data

Quota Battery Spoofing DoS Scanning Source
Routing

Malicious
Content

Promiscuity
Level Non-Audit

Permission
Promiscuity

Level
state-1 wifi trusted averse true false hi x x x x x x x
state-2 wifi trusted averse true false lo x x x x x x x
state-3 wifi trusted averse false false hi x x x x x
state-4 wifi trusted averse false false lo x x x
state-5 wifi trusted hungry true false hi x x x x x x
state-6 wifi trusted hungry true false lo x x x x x x x
state-7 wifi trusted hungry false false hi x
state-8 wifi trusted hungry false false lo x
state-9 wifi untrusted averse true false hi x x x x x x x
state-10 wifi untrusted averse true false lo x x x x x x x
state-11 wifi untrusted averse false false hi x x x x x x
state-12 wifi untrusted averse false false lo x x x x x x
state-13 wifi untrusted hungry true false hi x x x x x x x
state-14 wifi untrusted hungry true false lo x x x x x x x
state-15 wifi untrusted hungry false false hi x
state-16 wifi untrusted hungry false false lo x
state-17 3g trusted averse true false hi x x x x x x x
state-18 3g trusted averse true false lo x x x x x x x
state-19 3g trusted averse false false hi x x x x x
state-20 3g trusted averse false false lo x x
state-21 3g trusted hungry true false hi x x x x x x x
state-22 3g trusted hungry true false lo x x x x x x x
state-23 3g trusted hungry false false hi x
state-24 3g trusted hungry false false lo x
state-25 3g,wifi trusted averse false false hi x x x x x x x
state-26 3g,wifi trusted averse false false lo x x x
state-27 3g,wifi trusted hungry false false hi x
state-28 3g,wifi trusted hungry false false lo x
state-29 3g trusted averse true true hi x x x x x x x
state-30 3g trusted averse true true lo x x x x x x x
state-31 3g trusted averse false true hi x x x x x
state-32 3g trusted averse false true lo x x
state-33 3g trusted hungry true true lo x x x x x x x
state-35 3g trusted hungry false true hi x
state-36 3g trusted hungry false true lo x
state-37 3g,wifi trusted averse false true hi x x x x x x
state-38 3g,wifi trusted averse false true lo x x x
state-39 3g,wifi trusted hungry false true hi x
state-40 3g,wifi trusted hungry false true lo x

Table B.7: Matrix of valid security states for MASON
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