
Journal of Computer Security 29 (2021) 613–650 613
DOI 10.3233/JCS-200007
IOS Press

Privacy-preserving policy evaluation in
multi-party access control

Mina Sheikhalishahi ∗, Ischa Stork and Nicola Zannone
Eindhoven University of Technology, Eindhoven, The Netherlands
E-mails: m.sheikhalishahi@tue.nl, i.stork@student.tue.nl, n.zannone@tue.nl

Abstract. Recent years have seen an increasing popularity of online collaborative systems like social networks and web-based
collaboration platforms. Collaborative systems typically offer their users a digital environment in which they can work together
and share resources and information. These resources and information might be sensitive and, thus, they should be protected
from unauthorized accesses. Multi-party access control is emerging as a new paradigm for the protection of co-owned and
co-managed resources, where the policies of all users involved in the management of a resource should be accounted for
collaborative decision making. Existing approaches, however, only focus on the jointly protection of resources and do not
address the protection of the individual user policies themselves, whose disclosure might leak sensitive information. In this
work, we propose a privacy-preserving mechanism for the evaluation of multi-party access control policies, which preserves
the confidentiality of user policies while remaining capable of making collaborative decisions. To this end, we design secure
computation protocols for the evaluation of policies in protected form against an access query and realize such protocols using
two privacy-preserving techniques, namely Homomorphic Encryption and Secure Functional Evaluation. We show the practical
feasibility of our mechanism in terms of computation and communication costs through an experimental evaluation.

Keywords: Multi-party access control, collaborative system, privacy-preserving computation

1. Introduction

The widespread availability of the Internet has led to a significant growth in the use of online collabo-
rative systems and platforms. Such systems generally offer their users the means for digital interactions
and for the jointly creation and management of co-owned resources. These resources, however, can
be sensitive and, thus, they should be protected from unauthorized usages by considering the access
requirements of all co-owners. Multi-party access control is emerging with the aim of enabling collab-
orative governance of co-owned resources [45], thus overcoming the limitations of traditional access
control models, which are based on the assumption that resources are governed by a single entity. Sev-
eral approaches to multi-party access control have been proposed in the last years [14,18,35,48]. These
approaches provide a means for collaborative decision making by reconciling the conflicts that can arise
from the evaluation of the policies provided by the entities involved in the management of co-owned
resources.

However, existing multi-party access control models do not account for the protection of the policies
themselves, whose disclosure can leak sensitive information as well [34,54,60]. For instance:

• Collaborative commercial agreements often contain partners’ policies specifying with who and un-
der what conditions co-owned resources and assets can be shared. While each partner expects its

*Corresponding author. E-mail: m.sheikhalishahi@tue.nl.

0926-227X © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:m.sheikhalishahi@tue.nl
mailto:i.stork@student.tue.nl
mailto:n.zannone@tue.nl
mailto:m.sheikhalishahi@tue.nl
https://creativecommons.org/licenses/by-nc/4.0/

614 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

policies to be enforced [14], the policies might contain confidential information about a company’s
business and commercial relations and, thus, their disclosure can provide insights on the company’s
business strategies, which can be used by competitors (possibly in the coalition) to “evaluate sales
coverage, modify compensation plans, renegotiate terms and conditions, adjust compliance poli-
cies, build advanced segmentation categories and uncover hidden supply chain risk” [20].

• Contents uploaded by a user on her/his profile (or others’ profile) in an online social network might
refer to multiple users, e.g., a photo shared in Facebook in which several users are tagged. The
collaborative management of the contents requires the social network to consider the privacy pref-
erences (specifying who is permitted to access the co-owned contents) of individual users. The
disclosure of the users’ privacy preferences might reveal the users’ interpersonal relationship and
reduce the users’ willingness in sharing new contents [51].

• In critical-missions, e.g. in the military and counter-intelligence domain, international cooperation
is becoming a key factor to ensure the success of the mission. In this context, intelligence is often
collected from heterogeneous sources and fused to enable situation awareness and, thus, take the
proper actions to handle potential threats. Information sources, however, can be under the control
of different authorities. Due to the high sensitivity of data, each authority might want to enforce
specific constraints on the access and usage of its data. For fused data, this implies that possibly
conflicting access requirements from different parties should be accounted for. While there exist
solutions that allow the collaborative specification of access control policies for fuse data [5,15],
these solutions typically require the parties’ individual policies to be disclosed in clear. However,
the policies themselves might contain classified information and, hence, their disclosure can raise
security concerns.

The aforementioned scenarios highlight the need of protecting not only the resources but also the
security policies employed for their protection as the disclosure of those policies might leak sensitive in-
formation about the entities that contributed to their definition. Therefore, collaborative systems should
be equipped with an access control mechanism that preserves the confidentiality of individual user poli-
cies while remaining capable of making collaborative access decisions. In this light, we assume a multi-
owner-single-user setting where multiple entities are responsible for the security of co-owned resources;
specifically, each co-owners defines policies stating their access constraints for the co-owned resources
and these policies are combined into a single global policy (hereafter, called multi-party policy) for col-
laborative access decision making. The evaluation of the multi-party policy against an access request
should not leak information about the policies defined by the single co-owners.

To address this issue, in previous work [51] we proposed a privacy-preserving multi-party access
control framework, in which users provide their policies in private form and policy evaluation is per-
formed over private inputs. In particular, we designed secure computation protocols for the evaluation
of multi-party policies that preserve the confidentiality of the user policies forming the multi-party ac-
cess control policies. However, the framework in [51] only allows the evaluation of policies expressed
in a simple identity-based access control model and uses a three-valued decision set (permit, deny,
and not-applicable) that is not able to capture the complexity of existing access control standards like
XACML [44].

This paper extends our previous work to enable the secure evaluation of multi-party access con-
trol policies expressed in standardized Attribute-Based Access Control (ABAC) policy languages like
XACML while protecting the confidentiality of user policies. Compared to the policies considered in
our previous work, ABAC policies comprise a target that determines their applicability. The target of a
policy essentially consists of a set of conditions defined over subject, resource, action and environment

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 615

attributes that must be met for the policy to apply to a given query. In addition, standardized ABAC
policy languages like XACML often rely on multi-valued decision sets that extend the three-valued de-
cision set by accounting for situations for which the access control mechanism cannot make a definitive
decision due, for instance, to missing attributes [38].1 The privacy-preserving evaluation of such com-
plex ABAC policies requires the definition of new protocols for target evaluation2 and for the evaluation
of composite policies. The design of such protocols, however, is not trivial and requires addressing a
number of challenges to ensure their practical feasibility and prevent information leakages. The main
challenge lies in identifying a suitable policy representation as secure computation protocols defined
on a direct encoding of complex ABAC policies are inefficient due to the complex operations that this
encoding requires performing over private input. Therefore, we investigated policy representations that
enable the design of efficient secure computation protocols for target and policy evaluation. In partic-
ular, we adopted a Boolean encoding of ABAC policies, which by relying on AND, OR and negation
operators provides an efficient structure for secure target and policy evaluation [51]. In addition, this
Boolean encoding allows us to devise mechanisms to mask the size of multi-valued decisions, which if
not protected, might leak information about the underlying user policies.

We investigate the realization of the proposed protocols using two alternative privacy preserving tech-
niques, named Homomorphic Encryption (HE) [46] and Secure Functional Evaluation (SFE) [13]. Ho-
momorphic Encryption and Secure Functional Evaluation are two well-known and established privacy-
preserving techniques, which provide the cryptographic building blocks necessary for the realization of
the proposed protocols. However, these techniques are usually computationally expensive [17,39] and,
thus, they might be not practical in the real-world systems, hindering their use for the development of a
multi-party access control framework. To this end, we have investigated optimizations for the realization
of the proposed protocols in Homomorphic Encryption and Secure Functional Evaluation and evaluated
their computation and communication costs through an experimental evaluation. The results show that
the SFE-based protocols outperform the HE-based protocols both in terms of both computation and com-
munication costs and provide a basis for the effective realization of privacy-preserving mechanisms for
multi-party access control. We also discuss the security of the implementation of the proposed protocols
in the presence of a semi-honest adversary, which guarantees that the policy evaluation does not leak
any unintended information.

The contribution of this work can be summarized as follows:

• We design secure computation protocols that enable the secure evaluation of multi-party access
control policies expressed in standardized ABAC policy languages like XACML while protecting
the confidentiality of user policies. Based on a Boolean encoding of complex ABAC policies, we
propose efficient secure computation protocols for target and policy evaluation. We also propose a
new approach to hide the size of multi-valued decisions resulting from the evaluation of such policy,
thus preventing the leakage of information about the individual user policies.

• We realize the proposed protocols using two well-known and largely used privacy-preserving tech-
niques, namely Homomorphic Encryption and Secure Functional Evaluation and investigate further

1In this work, we use a seven-valued set D7 that extends the three-valued decision set D3 by considering any non-empty
subset of D3, i.e. D7 = P(D3) \ ∅. This decision set resembles the decision set supported by XACML where Indeterminate
decisions in XACML are represented by non-singleton decisions in D7 [10,37].

2In our previous work [51], the applicability of policies to a given query was simply computed using the private set inter-
section protocol to check if the requester belongs to the set of authorized users while a target of an ABAC policy can comprise
equality, inequality and inclusion conditions.

616 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

optimizations of the protocols based on the employed privacy-preserving techniques to reduce the
computation and communication costs of the implementation.

• We demonstrate the security of our framework for the privacy-preserving evaluation of multi-party
access control policies as well as of the underlying secure computation protocols and their compo-
sition.

• We demonstrate the practical feasibility of the proposed framework in terms of computational and
communication costs through an experimental evaluation. Our experiments show that the evaluation
of multi-party access control policies using SFE-based protocols considerably outperforms the use
of HE-based protocols. In particular, evaluating large policies (of size 50) against queries consisting
of 10 attributes using SFE-based protocols requires less than 2 seconds, thus showing their practical
feasibility for the evaluation of multi-party access control policies.

The remainder of the paper is structured as follows. The next section introduces the background
knowledge used in this work. Section 3 provides an overview of our framework for privacy-preserving
multi-party access control. Section 4 presents our secure computation protocols for the evaluation of
multi-party access control policies and Section 5 provides their implementation in Homomorphic En-
cryption and Secure Function Evaluation. Section 6 discusses the security of the proposed protocols. An
experimental evaluation of their computation and communication costs is presented in Section 7. Finally,
Section 8 discusses related work and Section 9 concludes the paper.

2. Preliminaries

This section introduces the policy language used for the specification of user and multi-party access
control policies. We also present the building blocks used for the design and implementation of secure
computation protocols for policy evaluation in two privacy-preserving techniques, namely Homomor-
phic Encryption and Secure Function Evaluation.

2.1. Policy specification and evaluation

For the specification of user and multi-party access control policies, we rely on an attribute-based
access control (ABAC) policy language inspired by PTaCL [10,37], which provides an abstraction of the
XACML policy language [44]. We first present an extension of the PTaCL syntax, which comprises two
languages, one for targets, which is used to specify the applicability of a policy to a query, and another
for policies, which is used to specify how policies are combined. Then, we present the semantics of
target and policy evaluation.

ABAC Syntax: Let A = {a1, . . . , an} be a finite set of attributes, where the domain of an attribute a is
denoted by Va . The set of queries QA is defined as P(

⋃n
i=1 ai × Vai

), and a query q ∈ QA is the set of
attribute name-value pairs:

q = {
(a1, v1), . . . , (ak, vk)

}
where ai ∈ A and vi ∈ Vai

. The set of attributes and values in q are denoted Aq = {a1, . . . , ak} and
Vq = {v1, . . . , vk} respectively. Given an attribute ai ∈ A and a query q, Vai |q denotes the set of ai’s
values that appear in q.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 617

Table 1

Operators on decision set D3 = {1, 0, ⊥}
d1 d2 ¬d1 ∼d1 d1 �̃ d2 d1 � d2 d1 � d2 d1 	̃ d2 d1 	 d2 d1 ∇ d2 d1 � d2

1 1 0 1 1 1 1 1 1 1 1
1 0 0 1 0 0 0 1 1 1 1
1 ⊥ 0 1 ⊥ ⊥ 1 1 ⊥ 1 1
0 1 1 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0
0 ⊥ 1 0 0 ⊥ 0 ⊥ ⊥ 0 0
⊥ 1 ⊥ 0 ⊥ ⊥ 1 1 ⊥ 1 1
⊥ 0 ⊥ 0 0 ⊥ 0 ⊥ ⊥ 0 0
⊥ ⊥ ⊥ 0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

To determine the applicability of a policy to a query, we employ a target language, denoted by TA,
which extends the PTaCL target language to allow the specification of access constraints built using the
set of binary predicates � = {=, �=,�,�}.3 A target t ∈ TA is defined as:

t = a φ v | op(t1, . . . , tn)

where a φ v is an atomic target with a ∈ A, v ∈ Va and φ ∈ �, and op(t1, . . . , tn) is a composite target
with op an n-ary three-valued logic operator. Here, we employ the combining operators proposed in
PTaCL, which are presented in Table 1 (we only show how to combine two policies, but the semantics
can be trivially extended to consider an arbitrary number of targets and policies). These operators rep-
resent combining algorithms largely used in ABAC languages. For instance, strong conjunction (̃�) and
strong disjunction (̃) resemble the operators used in XACML v.3 [44] for the evaluation of composite
targets. The other operators encode policy conflict resolution strategies such as the XACML combin-
ing algorithms permit-overrides (∇), deny-overrides (�) and first-applicable (�). We also consider the
negation operator (¬) and the weakening operator (∼), which maps the not-applicable decision to deny.
Note that the set of operators {¬, ∼, 	̃} is canonically complete [29], i.e. any three-valued logic operator
can be constructed using these three operators.

PTaCL also provides a policy language PA, where a policy p ∈ PA is defined as:

p = 1 | 0 | (t, p) | op(p1, . . . , pn)

where 1 and 0 represent the permit and deny decisions respectively, (t, p) is a targeted policy, and
op(p1, . . . , pn) is a composite policy with op an n-ary three-valued logic operator. Here again, we con-
sider the operators defined in Table 1.

ABAC Semantics: Given the set of policies PA, the set of queries QA, and the set of decisions D, a
policy evaluation function is a function �·� : PA ×QA → D, such that for query q and policy p, �p�(q)

represents the decision of evaluating q against p.

To evaluate a query against a policy, we first need to determine whether the policy is applicable to the
given query. Given a query, a target evaluates to a single value in D3 = {1, 0, ⊥}, intuitively indicating
if the target matches the query (1), if it does not match the query (0), or if the query does not contain the

3The PTaCL target language only supports the equality predicate.

618 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

attributes required to evaluate the applicability of the target (⊥), respectively. Formally, given a query q,
the target evaluation function is defined as:

�·�T : TA × QA → D3

�a φ v�T (q) =

⎧⎪⎨⎪⎩
1 if a ∈ Aq, ∃v′ ∈ Va|q s.t. v′ φ v

0 if a ∈ Aq, �v′ ∈ Va|q s.t. v′ φ v

⊥ if a /∈ Aq

�op(t1, . . . , tn)�T (q) = op
(
�t1�T (q), . . . , �tn�T (q)

)
where op is an n-ary three-valued logic operator as defined in Table 1.

A policy is evaluated to decisions within D7 = P({1, 0, ⊥}) \ ∅, where 1 and 0 indicate that access
should be granted or denied respectively, and ⊥ that the policy is not applicable to the given query. Non-
singleton decisions are returned when the query does not provide the required information to evaluate a
target. Intuitively, non-singleton decisions correspond to the Indeterminate decision in XACML [38]. It
is worth mentioning that even though this set is syntactically equivalent to the one used for targets, the
meaning of the values depends on whether it is used as a target or policy. Formally, the evaluation of
policy p is given by the function:

�·�P : PA × QA → D7

�1�p(q) = {1}, �0�P (q) = {0}

�(t, p)�P =

⎧⎪⎨⎪⎩
�p�P (q) if �t�T (q) = 1

{⊥} if �t�T (q) = 0

{⊥} ∪ �p�P (q) otherwise

�op(p1, . . . , pn)�P (q) = op↑(�p1�P (q), . . . , �pn�P (q)
)

where given an operator op : D3 × D3 → D3 and non-empty sets X, Y ⊆ D3, op↑ : D7 × D7 → D7 is
defined as op↑(X, Y) = {op(x, y) | x ∈ X ∧ y ∈ Y }.
2.2. Homomorphic encryption

Homomorphic Encryption (HE) is a family of cryptographic schemes that enable computation over
encrypted data. HE allows performing an operation on ciphertexts, such that the resulting ciphertext
would decrypt to the same value that would have been obtained by performing the operation on the
corresponding plaintexts. In this work, we employ an additively homomorphic cryptosystem, e.g. the
Paillier cryptosystem [46], which preserves the result of the addition of two ciphertexts.

Let Epk
(·) and Dsk (·) represent the encryption function (with public-key pk) and decryption function

(with secret-key sk), respectively. Let m1 and m2 be two messages and c a scalar value. The additive
homomorphism has the following properties:

Dsk

(
Epk

(m1) · Epk
(m2)

) = m1 + m2,

Dsk

(
Epk

(m)c
) = c · m.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 619

Hereafter, we denote the encryption of a plaintext m, encrypted with public-key pk, by [m]pk
. Since

additively homomorphic cryptosystems require ciphertexts encrypted with the same public-key, we omit
the public-key (pk) and simply write [m] instead of [m]pk

when it is clear from the context.4 Moreover,
we use symbols ⊕ and � to denote homomorphic addition and subtraction, respectively. Specifically,
[m1] ⊕ [m2] = [m1 + m2] and [m1] � [m2] = [m1 − m2].

In additive homomorphic cryptosystem, addition and scalar multiplication operations are performed
over ciphertexts, without the need to decrypt them. However, performing more complex operations in
additive homomorphic cryptosystem requires designing two-party interactive protocols. Next, we intro-
duce secure two-party computation protocols, which serve as building blocks for the construction of our
HE-based protocols encoding policy evaluation.

Secure Equality Protocol: Secure equality is used to determine the equality of two ciphertexts [41].
Given two ciphertexts [a] and [b], the secure equality test between [a] and [b] is defined as follows:

[a ?= b] =
{

[1] if a = b,

[0] otherwise.

Secure Comparison Protocol: Secure comparison is used to compare two ciphertexts [42]. Given two
ciphertexts [a] and [b], the secure comparison between [a] and [b] is defined as follows:

[a ?
� b] =

{
[1] if a � b,

[0] otherwise.

Secure Multiplication Protocol: Secure multiplication aims to compute the multiplication between two
ciphertexts [16]. Given two ciphertexts [a] and [b], the secure multiplication of [a] and [b] is defined as
follows:

[a] ⊗ [b] = [a · b].

2.3. Secure function evaluation

Despite allowing computations in the ciphertext domain, homomorphic encryption is usually expen-
sive in terms of computation cost. Secure function evaluation (SFE) is an alternative to homomorphic
encryption that enables several parties to compute a function on their private inputs without revealing
any information apart from the result of the function. In this work, we implement secure function evalua-
tion in two-party setting using the ABY framework [13]. ABY provides the constructions for Arithmetic
circuits [4], Boolean circuits [22], and Yao’s garbled circuits [57]. For our work, we only use Boolean
circuits since they provide efficient constructions for nonlinear functions.

Given two parties P1, P2 and their corresponding inputs x and y, ABY first creates secret shares for
each party and a circuit that computes a specific function f , and then evaluates f on the secret shares
using the circuit. Secret shares of each party are represented as 〈x〉1, 〈x〉2 and 〈y〉1, 〈y〉2. Secret shares
are created for each bit of the input: given a bit xi , 〈xi〉1, 〈xi〉2 are such that 〈xi〉1 � 〈xi〉2 ≡ xi mod 2,

4Note that the encryption of two equal messages with the same public-key typically results in two different ciphertexts. In
many cryptosystems like the Paillier cryptosystem, this is guaranteed by the fact that the encryption function is probabilistic.

620 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

where � represents bitwise XOR operation. The result of the function is reconstructed by combing the
secret shares obtained by each party through a bitwise XOR operation.

For this work, we adopt seven Boolean gates from the ABY framework as building blocks for the
design of our SFE-based policy evaluation protocols. For more details on the mechanism and implemen-
tation of Boolean circuits, we refer the reader to [13]. Next, we present these gates.

Inverse Gate: The inverse gate is used to compute the negation of a secret shared input in modulus 2�.
The inverse here refers to the additive inverse in mod 2�, such that the additive inverse of a number a is
equivalent to 2� − a. Given a secret shared input 〈a〉, the inverse gate is defined as:

〈¬a〉 = −〈a〉 mod 2�.

AND Gate: The AND gate is used to perform a bitwise AND operation between two secret shared inputs
using. Given secret shared inputs 〈a〉 and 〈b〉, the AND gate is defined as:

〈a ∧ b〉 = 〈a〉 ∧ 〈b〉 mod 2�.

OR Gate: The OR gate is used to perform a bitwise OR operation between two secret shared inputs.
Given the secret shared inputs 〈a〉 and 〈b〉, the OR gate is defined as:

〈a ∨ b〉 = 〈a〉 ∨ 〈b〉 mod 2�.

Subtraction Gate: The subtraction gate overloads integer subtraction such that the result is equal to the
difference of two secret shared inputs in modulus 2�. Given two secret shared inputs 〈a〉 and 〈b〉, the
subtraction gate is represented as:

〈a − b〉 = 〈a〉 − 〈b〉 mod 2�.

Multiplication Gate: The multiplication gate overloads integer multiplication such that the result is
equal to the multiplication of two secret shared inputs in modulus 2�. Given two secret shared inputs 〈a〉
and 〈b〉, the multiplication gate is represented as:

〈a × b〉 = 〈a〉 × 〈b〉 mod 2�.

Equality Gate: The equality gate is used to check the equality of two secret shared inputs in modulus
2�. Given secret shared inputs 〈a〉 and 〈b〉, the equality gate is defined as:

〈a ?= b〉 =
{

〈1〉 if a = b

〈0〉 otherwise

Comparison Gate: The comparison gate is used to check the equality of two secret shared inputs in
modulus 2�. Given secret shared inputs 〈a〉 and 〈b〉, the comparison gate is defined as:

〈a ?
� b〉 =

{
〈1〉 if a � b

〈0〉 otherwise

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 621

3. A framework for privacy-preserving multi-party access control

This section presents our framework for privacy-preserving multi-party access control. First, we
present the model for multi-party access control adopted in this work and then we present the archi-
tecture of our framework and the underlying security assumptions.

3.1. Multi-party policy model

Collaborative systems usually provide their users with an environment in which they can interact and
jointly contribute to the creation and management of shared resources. To protect those resources, each
user can specify access requirements stating who is authorized to access them and under which circum-
stances. The access requirements provided by different users, however, can be in conflict. Therefore, a
collaborative system should resolve these conflicting requirements in order to determine whether access
to co-owned resources should be granted.

Traditional access control models are centered on a single-owner governance model (i.e., they as-
sume that resources are controlled by single entities) and, thus, they are not suitable for collaborative
systems [11,24]. To this end, recent years have seen the emergence of several models for multi-party
access control [45]. These models enable collaborative access decision making by providing a means to
reconcile the conflicts arising from the evaluation of the access requirements provided by users involved
in the protection of co-owned resources.

In this work, we adopt the data governance model proposed in [35] as the underlying multi-party
access control model. This model provides a general framework to explicitly reason on the level of
authority that users have over co-owned resources based on their relations with the resource [12] and
to build a multi-party access control policy based on their authorization requirements. Specifically, it
captures the relations that users have with a co-owned resource and, based on these relations, determines
suitable strategies to resolve possible policy conflicts, thus accounting for the level of authority that
users have on co-owned resources. These policy conflict resolution strategies can be realized using the
operators presented in Table 1. Compared to other models for multi-party access control (see [45] for
a survey), the model in [35] allows a more fine-grained governance of co-owned resources by allowing
the adoption of arbitrary conflict resolution strategies.

As an illustration of the application of this model, consider the following example, which is based
on one of the scenarios presented in the introduction. In particular, consider the case where two car
companies (C1, C2), a navigation company (N1) and a ride sharing company (R1) form a joint venture
to build a classification model in order to support autonomous driving cars in finding the fast navigation
paths with respect to traffic conditions. To this end, these companies share their camera data, LiDAR
sensor information, digital mapping data and passengers’ route preferences to train the classification
model. The partners also agree that the model can be shared with other collaborators and clients for
research purposes and/or additional revenue.

The classification model, however, can be used to reconstruct potentially privacy-sensitive training
data [33]. Therefore, each partner in the joint venture might specify access control policies determin-
ing who is authorized to access the model and under which conditions based on their own business
constraints. Below, we present some hypothetical policies, denoted by pC1 , pC2 , pR1 and pN1 , for each
partner:

pC1 = (country ∈ EU, 1) pC2 = (role = partner, 1)∇(type = car, 0)

pR1 = (type = raider, 0) � 1 pN1 = (role = collaborator �̃ purpose = research, 1)

622 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

Intuitively, car company C1 allows sharing the model with any company within the European Union
(denoted by country ∈ EU5). On the other hand, car company C2 allows access to partners in joint venture
but denies access to car companies; these two access constraints are combined using the permit-overrides
policy combining operator (∇). In practice, pC2 denies access to car companies that are not partners in
the joint venture. The raider sharing company R1 does not want other raider sharing companies to access
the classification model but does not impose any other constraints, for instance, on the country of the
companies that can access the model. This is represented in pR1 by combining R1’s access constraint
with a permit default policy using the first-applicable policy combining operator (�). Finally, the policy
of the navigator company N1, pN1 , allows collaborators to use the model only for research purposes.

These policies can specify conflicting access constraints. For instance, C1’s policy would allow a
client riding sharing company located in the EU to access the model, whereas R1’s policy would deny
that request; on the other hand, car company C2 and navigator company N1 do not impose any constraints
for this case (i.e., the evaluation of their policies would return the not-applicable decision). To determine
whether access to the classification model should be granted or not, the access control policies of every
partner in the joint venture should be combined together, forming the multi-party access control policy
for the classification model. Following the framework in [35], such a multi-party policy can be defined,
for instance, by taking into account the shares of each partner in the joint venture. For example, the
multi-party policy p = (pC1�pC2) � (pN1�pR1) � 0 indicates that the access constraints of the car
companies C1 and C2 have priorities over the constraints of other partners (e.g., due to their larger shares
in the joint venture) and that access is denied in case none of the partners’ policies applies.

The multi-party policies considered in this work can be evaluated using existing access control mech-
anisms. However, such mechanisms require the policies to be provided in plaintext in order to be eval-
uated. Making these policies available to other partners (or third parties) might reveal confidential in-
formation about a company’s business strategies and commercial relationships with other companies,
which the company might want to keep confidential (e.g., by knowing pC1 , one may infer that C1 does
not have clients and/or collaborators outside the EU). Information about companies’ business relation-
ships can be exploited by the competitors to drive more appropriate business strategies, to make better
decisions towards pricing, terms, risk, and thus win business competition [20]. In this work, we focus
on the protection of user policy confidentiality and propose a framework that allows the involved mem-
bers to disclose their access control policies in a private form while still remaining capable of making
collaborative access decisions based on the access constraints provided by each individual user.

3.2. Architecture

To enable the evaluation of multi-party policies while protecting the confidentiality of user policies, we
design an access control framework that supports policy evaluation over protected input. An overview
of the proposed framework for privacy-preserving multi-party access control is presented in Fig. 1.
The framework is general and can be realized using various privacy-preserving techniques. To avoid
confusion, hereafter, we denote the protected version of a message m regardless of the specific privacy-
preserving technique used for its realization as ❲m❳ and use the notation introduced in Section 2 only
when explicitly referring to Homomorphic Encryption and Secure Functional Evaluation.

The proposed framework comprises four main entities:

5Here the inclusion (∈) constraint is used as a shorthand to check if the country of the requesting company is one of the EU
countries. It is trivial to observe that an inclusion constraint can be rewritten as equality constraints over the elements of the set.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 623

Fig. 1. Architecture.

• Data holders () share their resources and data along with encrypted privacy policies determining
to whom access is granted.

• Access requester () requests access to the shared resource.
• Data Server (DS) stores the data holders’ resources and is responsible for their protection. Specifi-

cally, the Data Server evaluates the encrypted data holders’ policies to determine whether access to
their resources should be granted.

• Semi Trusted Party (STP) is a semi-honest entity that assists Data Server in the secure evaluation of
data holders’ policies.

Data holders provide their policies in a private form (represented by ❲s1❳, . . . , ❲sn❳ in Fig. 1) to the
Data Server. Data holders are not involved in the evaluation of either their policies or the multi-party
policy and, thus, they are not required to be online for a decision to be made. This task is performed by
the Data Server together with the STP.

Upon receiving an access request, the Data Server’s policy evaluation point evaluates the request
against the multi-party policy, which comprises the user policies, under privacy preservation with the
assistance of the STP. To enable policy evaluation under privacy preservation, we propose secure com-
putation protocols to determine the applicability of policies to the access request and to compute the
combining operators in Table 1 over private inputs (cf. Section 4). These protocols can be used as build-
ing blocks for the secure evaluation of arbitrary multi-party policies expressed using those operators.

Once the multi-party policy has been evaluated, the policy evaluation point returns the access decision
in private form, ❲d❳, corresponding to the evaluation of the access request against the multi-party policy.
To be able to enforce the decision, the Data Server derives the decision in plaintext from the decision in
private form together with the STP.

We have realized the framework using two alternative privacy preserving techniques, namely Homo-
morphic Encryption (HE) and Secure Functional Evaluation (SFE). The underlying privacy-preserving
technique dictates the ‘private form’ in which policies are provided and the computations to be per-
formed in order to obtain the access decision in plaintext. In HE, the STP generates public (pk) and
private (sk) keys and sends the public key pk to the data holders and to the Data Server. Data holders
encrypt their policies using pk and send the encrypted policies to the Data Server. To derive the access
decision, the Data Server should not have access to the private key; otherwise, it will be able to learn
users’ policies. In order for the Data Server to decrypt the encrypted decision without the STP learning
it, the Data Server adds random noise r to the encrypted decision [d] and sends [d + r] to the STP. The

624 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

STP decrypts the ciphertext and sends d + r to the Data Server. The Data Server can obtain the decision
to be enforced by removing noise r .

In SFE, data holders create two secret shares of their policies and provide one share to the Data Server
and the other share to the STP. After policy evaluation, the Data Server derives the access decision in
plaintext from the decision in private form by recombining the secret share obtained by evaluating the
multi-party policy with the one obtained by the STP (cf. Section 2.3).

3.3. Security assumptions

We assume a semi-honest security model where all participants are assumed to be honest-but-
curious [21]. This model implies that all entities follow the protocol specification properly, but they are
interested in obtaining more information from their input, intermediary messages and output. Specifi-
cally, they keep track of the messages exchanged and try to learn as much information as possible from
them. This assumption guarantees that computations do not leak any unintended information. It is worth
noting that while the semi-honest adversary model is more restrictive compared to the malicious model,
it is a well-accepted adversary model with many applications in real-world scenarios, e.g., to protect
sensitive information against passive insider attacks by administrators or government agencies, or when
it is assured that the parties are trusted to not actively misbehave [13]. In this light, the semi-honest
adversary model can be applied in the context of privacy preserving multi-party access control as the
involved parties are typically engaged in a collaboration, implying that there exists a certain level of
trust among them (see, e.g., the scenarios in the introduction). We also remark that the semi-honest
adversary model enables an efficient implementation of the secure computation protocols performing
considerably faster than the malicious setting, while offering a sufficient level of security [47]. This is
specifically a desirable property for applications like the evaluation of security policies in private forms
where (collaborative) access decisions should be made in a short amount of time.

With respect to the semi-honest security assumption, our goal is to design protocols that provide
security against honest-but-curious non-colluding Data Server and STP. The non-colluding two-server
setting is typically employed to reduce the workload on the client side. Without the employment of a
semi trusted party, all computations have to be performed between the client and Data Server. This,
however, is not desirable because it requires the data holders to have enough computational resources
and to be online during computations. Note that the definition of protocols aiming to prevent the Data
Server and STP from colluding is orthogonal to the scope of this work and here we consider them as two
servers with independent interest who do not wish to or cannot collude [30]. The assumption of non-
colluding Data Server and STP can be achieved through physical means (e.g., with the use of ballot boxes
[32]) or by adding additional security verification on trusted communication channels (e.g., with the use
of mediator model [1]). Moreover, several approaches have been proposed to verify the faithfulness of
servers in secure two-party computation. For instance, it has been shown that multi-party computation
protocols secure against semi-honest adversaries can be transformed to zero-knowledge proofs [23,28].

Nonetheless, we assume that a semi-honest adversary can compromise any subset of data holders
(where at least two data holders are honest), the access requester and at most one of the STP and Data
Server (i.e., if one is controlled by the adversary, the other behaves honestly6). This security definition
assumes that such an adversary can only learn the policies of the data holders it has compromised and

6This captures the property that the Data Server and STP are not colluding parties.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 625

the final output but nothing else about the policies of the honest data holders [36]. We require that at least
two data holders are honest because colluding data holders can learn the policy evaluation of the other
data holders by comparing the final decision with the evaluation of their policies due to the definition
of the used policy combining operators (see also Section 6). Imposing that at least two data holders
are honest allows us to focus on flaws in the design of the protocols rather than on leakages that are
inevitable.

We also assume that all parties communicate over an authenticated channel. This assumption aims to
prevent attacks coming from outside the framework.

4. Protocol design

For the realization of a practical mechanism capable of evaluating policies in protected form, we need
efficient secure computation protocols. In this section, we investigate the design of such protocols. We
first introduce a suitable representation of targets and policies, and then we present secure computation
protocols for their evaluation. These protocols serve as building blocks and can be used to evaluate
arbitrary multi-party policies. In the next section, we describe the implementation of these building block
protocols based on two alternative privacy-preserving techniques, namely Homomorphic Encryption and
Secure Functional Evaluation.

4.1. Data structures

This section presents the data structures used for the specification of policies in private form and
the representation of the decision space to enable the design of efficient protocols for secure policy
evaluation.

Policy Specification: Privacy-preserving technologies like Homomorphic Encryption and Secure Func-
tion Evaluation only operate on integer numbers. To this end, we encode every attribute (ai ∈ A) and
their attribute values (v ∈ Vai

) into a unique integer number,7 where for numeric attribute values the
ordering is preserved.

This work aims at a privacy-preserving mechanism that allows the evaluation of multi-party access
control policies while protecting the confidentiality of the user policies forming the multi-party policy.
In this light, we aim to protect the constraints in the target, which determine the applicability of policies,
along with atomic policies (i.e., policies consisting of the permit and deny decisions) whereas combin-
ing operators are not protected. An atomic target t = a φ v is protected by protecting the attribute a,
attribute value v, and predicate φ individually, i.e. ❲t❳ = (❲a❳, ❲v❳, ❲φ❳). Given that an atomic target
always consists of three elements, protecting each element of the target individually does not disclose
information about the target. Note that, in order to reason over predicates under privacy preservation,
they are also encoded into integer numbers. Hereafter, we use 1, 2, 3 and 4 to denote =, �=, � and �,
respectively. A composite target t = op(t1 . . . tk) is in protected form if its subtargets are in protected
form, i.e. ❲t❳ = op(❲t1❳, . . . , ❲tk❳). Atomic policies are protected by protecting the decision, i.e. ❲1❳
and ❲0❳. Targeted and composite policies p are in protected form if their subpolicies and target (for
targeted policies) are in protected form.

7The uniqueness of attribute values can be easily achieved through a renaming of attribute values.

626 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

Note that, in this work, queries are not considered sensitive and, thus, they are received in plaintext.
However, in order to be able to evaluate a policy against a query, the attributes and attribute values in
the query should be mapped to integer numbers following the same encoding of attributes and attribute
values used for the policy.

Decision Space: In this work, we adopt a policy language that is grounded on a three-valued logic and
use D7 = P({1, 0, ⊥}) \ ∅ as the decision set (cf. Section 2.1). Although this language is representative
for several ABAC policy languages like XACML [38], the use of D7 and three-valued logic introduces
a number of challenges when policy evaluation is performed under privacy preservation. Non-singleton
decisions – even when each element of the decision is given in protected form – might reveal some
information about user policies by observing the ‘size’ of the decision. For instance, by observing a
decision consisting of three elements, an attacker can easily infer that the decision is {1, 0, ⊥} as this is
the only decision consisting of three elements. Therefore, we need to mask the ‘size’ of decisions in order
to preserve the confidentiality of user policies. One possible solution for hiding the number of elements
in a decision is to use data packing [55]. The main idea behind data packing is to efficiently use the
ciphertext message space, which is generally much larger than the size of encrypted values, to pack a set
of values in one ciphertext. However, data packing techniques require packing and unpacking the set for
each round of communication and, thus, it is not efficient to be employed in our context. Moreover, while
data packing techniques have been proposed for Homomorphic Encryption [42], it is not supported by
other secure computation frameworks like Secure Function Evaluation. In addition, previous work [51]
has shown that a direct encoding of the three-valued logic operators in Table 1 requires the application
of secure multiplication, equality and comparison protocols, which are usually heavy in terms of both
computation and communication costs.

For the design of efficient secure computation protocols able to evaluate a policy in protected form
against a query, we need suitable representation of the decision space encoding the results of policy
evaluation. Inspired by previous work [37,56], we adopt a Boolean representation of the decision space
and three-valued operators in Table 1. Given a policy p, we represent the decision space of p as a triple
(b1, b0, b⊥) of propositional formulas representing sets of queries Q1, Q0 and Q⊥ such that d ∈ �p�P (q)

exactly when q ∈ Qd . Intuitively, each element bi corresponds to a single decision i ∈ {1, 0, ⊥} with
bi ∈ {1, 0} such that bi = 1 means that i ∈ d and bi = 0 that i /∈ d.

In order to encode the target and policy evaluation functions and three-valued logic operators in Table 1
into triples of propositional formulas, we adopt and extend the rules proposed in [37]. These rules can be
employed to compute a triple of propositional formulas (b1, b0, b⊥) representing �p�P . More precisely,
each propositional formula bd denotes the set of queries Qd ⊆ Q satisfying d = �p�P (q), whenever
q ∈ Qd . The transformation rules τ (for targets) and π (for policies) presented in Tables 2 and 3
explain the construction of the propositional formula for all targets, (policy) constants and all (policy
and target) operators in Table 1. We refer to [37] for details on the correctness of transformation rules τ

and π .
This encoding of the target and policy evaluation functions allows the definition of protocols imple-

menting the ¬, ∧, and ∨ operators, which can efficiently be implemented using inverse, AND and OR
gates in SFE and negation, maximum and minimum protocols in HE (see Section 5). Moreover, this en-
coding allows masking the number of elements forming a decision d by using a fix-size representation
for all decisions.

M
.Sheikhalishahietal./P

rivacy-preserving
policy

evaluation
in

m
ulti-party

access
control

627

Table 2

Transformation rules for targets

Target τ1 τ0 τ⊥
a φ v (a ∈ Aq) ∧ (

∨
vi∈Va|q (vi φ v)) (a ∈ Aq) ∧ ¬(

∨
vi∈Va|q (vi φ v)) a /∈ Aq

¬t1 τ0(t1) τ1(t1) τ⊥(t1)

∼t1 τ1(t1) τ0(t1) ∨ τ⊥(t1) 0
t1 	̃ t2 τ1(t1) ∨ τ1(t2) τ0(t1) ∧ τ0(t2) (τ⊥(t1) ∧ ¬τ1(t2)) ∨ (τ⊥(t2) ∧ ¬τ1(t1))

t1 �̃ t2 τ1(t1) ∧ τ1(t2) τ0(t1) ∨ τ0(t2) (τ⊥(t1) ∧ ¬τ0(t2)) ∨ (τ⊥(t2) ∧ ¬τ0(t1))

t1 	 t2 (τ1(t1) ∧ ¬τ⊥(t2)) ∨ (τ1(t2) ∧ τ⊥(t1)) τ0(t1) ∧ τ0(t2) τ⊥(t1) ∨ τ⊥(t2)

t1 � t2 τ1(t1) ∧1 (t2) (τ0(t1) ∧ ¬τ⊥(t2)) ∨ (τ0(t2) ∧ ¬τ⊥(t1)) τ⊥(t1) ∨ τ⊥(t2)

t1 ∇ t2 τ1(t1) ∨ τ1(t2) (τ0(t1) ∧ ¬τ1(t2)) ∨ (τ0(t2) ∧ ¬τ1(t1)) τ⊥(t1) ∧ τ⊥(t2)

t1 � t2 (τ1(t1) ∧ ¬τ0(t2)) ∨ (τ1(t2) ∧ ¬τ0(t1)) τ0(t1) ∨ τ0(t2) τ⊥(t1) ∧ τ⊥(t2)

t1 � t2 τ1(t1) ∨ (τ⊥(t1) ∧ τ1(t2)) τ0(t1) ∨ (τ⊥(t1) ∧ τ0(t2)) τ⊥(t1) ∧ τ⊥(t2)

628
M

.Sheikhalishahietal./P
rivacy-preserving

policy
evaluation

in
m

ulti-party
access

control

Table 3

Transformation rules for policies

Policy π1 π0 π⊥
1 1 0 0
0 0 1 0
(t, p1) τ1(t) ∧ π1(p1) τ1(t) ∧ π0(p1) τ0(t) ∨ τ⊥(t) ∨ (τ1(t) ∧ π⊥(p1))

¬p1 π0(p1) π1(p1) π⊥(p1)

∼p1 π1(p1) π0(p1) ∨ π⊥(p1) 0
p1 	̃ p2 π1(p1) ∨ π1(p2) π0(p1) ∧ π0(p2) (π⊥(p1) ∧ ¬π1(p2)) ∨ (π⊥(p2) ∧ ¬π1(p1))

p1 �̃ p2 π1(p1) ∧ π1(p2) π0(p1) ∨ π0(p2) (π⊥(p1) ∧ ¬π0(p2)) ∨ (π⊥(p2) ∧ ¬π0(p1))

p1 	 p2 (π1(p1) ∧ ¬π⊥(p2)) ∨ (π1(p2) ∧ ¬π⊥(p1)) π0(p1) ∧ π0(p2) π⊥(p1) ∨ π⊥(p2)

p1 � p2 π1(p1) ∧ π1(p2) (π0(p1) ∧ ¬π⊥(p2)) ∨ (π0(p2) ∧ ¬π⊥(p1)) π⊥(p1) ∨ π⊥(p2)

p1 ∇ p2 π1(p1) ∨ π1(p2) (π0(p1) ∧ ¬π1(p2)) ∨ (π0(p2) ∧ ¬π1(p1)) π⊥(p1) ∧ π⊥(p2)

p1 �p2 (π1(p1) ∧ ¬π0(p2)) ∨ (π1(p2) ∧ ¬π0(p1)) π0(p1) ∨ π0(p2) π⊥(p1) ∧ π⊥(p2)

p1 � p2 π1(p1) ∨ (π⊥(p1) ∧ π1(p2)) π0(p1) ∨ (π⊥(p1) ∧ π0(p2)) π⊥(p1) ∧ π⊥(p2)

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 629

4.2. Target evaluation

To enable the secure evaluation of targets in protected form against a query, we design secure com-
putation protocols implementing the rules presented in Table 2 over protected input. We first propose
generic secure computation protocols for the evaluation of atomic targets (the first row of Table 2). As it
can be observed in the table, two operations are needed for such an evaluation: i) an operation to deter-
mine whether the attribute in the target is present in the query (a ∈ Aq) and ii) an operation to determine
whether there exists an attribute name-value pair in the query that satisfies the constraint in the target
(
∨

vi∈Va|q (vi φ v)). To this end, we propose building-block protocols for the secure computation of these
two operations – secure membership and secure matching – over protected inputs. Then, we present a
generic protocol for target evaluation.

Secure membership protocol. Secure membership is used to determine whether an encrypted value
belongs to a set of encrypted values [19]. Given a ciphertext ❲a❳ and a set of ciphertexts ❲B❳ =
{❲b1❳, . . . , ❲bn❳}, we can determine if ❲a❳ belongs to ❲B❳ using the following protocol:

❲P(a,B)❳ = (
❲b1❳ − ❲a❳

) × · · · × (
❲bn❳ − ❲a❳

)
Intuitively, this protocol returns ❲0❳ if a ∈ B. Based on this protocol, the secure membership protocol is
then defined as follows:

❲a
?∈ B❳ = ❲P(a,B)

?= 0❳

which returns ❲1❳ if a ∈ B, and ❲0❳ otherwise.

Secure matching protocol. To determine whether a policy is applicable to a query we need to verify if
the attribute name-value pairs forming the query satisfy the constraints in its target. To this end, we first
define the secure value-matching protocol to determine whether a protected value satisfies the constraint
defined in an atomic target under privacy preservation and, then, we show how this protocol can be used
to determine whether there exists an attribute name-value pair in the query that satisfies the target.

Recall that our goal is to protect the confidentiality of user policies. Accordingly, the constraints
establishing the applicability of these policies should be protected and, thus, we assume that not only
the attribute name and value but also the predicate in an atomic target is in protected form. Given an
atomic target in protected form ❲t❳ = (❲a❳, ❲v❳, ❲φ❳) and a protected value ❲v′❳, we define the secure
value-matching protocol as follows:

value-matching
(
❲v′❳, ❲v❳, ❲φ❳

) = (
❲φ

?= 1❳ ∧ ❲v′ ?= v❳
)

∨ (
❲φ

?= 2❳ ∧ ¬❲v′ ?= v❳
)

∨ (
❲φ

?= 3❳ ∧ ❲v′ ?
� v❳

)
∨ (❲φ

?= 4❳ ∧ (¬❲v′ ?
� v❳ ∨ ❲v′ ?= v❳

)
where ❲· ?= ·❳ and ❲· ?

� ·❳ represent the equality and comparison protocols, respectively. It is worth
noting that the protocol tests the validity of constraint v′φv for every predicate φ. This is because the
predicate is in protected form and, thus, it is not known which predicate occurs in the atomic target.

630 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

Algorithm 1: matching: secure matching protocol
Data: Atomic target in protected form (❲a❳, ❲v❳, ❲φ❳), query q

Result: Matching M ∈ {❲1❳, ❲0❳}
1 M = ❲0❳
2 for ai ∈ Aq do
3 for vj ∈ Vai |q do

4 M = M ∨ (❲ai
?= a❳ ∧ value-matching(❲vj❳, ❲v❳, ❲φ❳)

5 end
6 end
7 return M

The value-matching protocol verifies whether a given attribute value satisfies the constraint defined
in the target. Determining whether a policy is applicable to a given request requires extending this
verification by checking if there exists an attribute name-value pair in the query that satisfies the target
of the policy. To this end, we define the secure matching protocol (Algorithm 1). Given an atomic target
in protected form ❲t❳ = (❲a❳, ❲v❳, ❲φ❳) and a query q = {(a1, v1), . . . , (an, vn)}, the secure matching
protocol determines whether the query contains an attribute name-value pair that satisfies the target
under privacy preservation. The protocol encompasses two for loops to verify the target against every
attribute name-value pair in the request.8 If the attribute in the target is present in the request and at least
one of its values in q satisfies the constraint in the target, the protocol returns ❲1❳; otherwise the protocol
returns ❲0❳.

Target evaluation protocol. We have now the machinery to define the protocol for secure target eval-
uation. Given a target in protected form ❲t❳ and a query q, the secure target evaluation protocol
evalt (❲t❳, q) consists of three subprotocols evalti(❲t❳, q) with i ∈ {1, 0, ⊥}, and evaluates to a triple
of protected values (❲d1❳, ❲d0❳, ❲d⊥❳) with di ∈ {1, 0} such as ❲di❳ = evalti (❲t❳, q). Next, we define
protocol evalt (❲t❳, q) per cases based on the grammar of TA presented in Section 2.1.

Atomic target: Given an atomic target in protected form ❲t❳ = (❲a❳, ❲v❳, ❲φ❳) and a query q, protocol
evalt (❲t❳, q) consists of subprotocols:

evalt1
(
❲t❳, q

) = ❲a
?∈ Aq❳ ∧ matching

(
❲t❳, q)

)
evalt0

(
❲t❳, q

) = ❲a
?∈ Aq❳ ∧ ¬(

matching
(
❲t❳, q

))
evalt⊥

(
❲t❳, q

) = ¬❲a
?∈ Aq❳

Composite target: Given a composite target in protected form ❲t❳ = op(❲t1❳, . . . , ❲tn❳) and a query q,
protocol evalt (❲t❳, q) consists of the following subprotocols:

evalt1
(
❲t❳, q

) = op
(
evalt1

(
❲t1❳, q

)
, . . . , evalt1

(
❲tn❳, q

))
8Recall that the attribute name-value pairs in a query are in plaintext and, thus, we determine which values of an attribute

occur in the query.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 631

evalt0
(
❲t❳, q

) = op
(
evalt0

(
❲t1❳, q

)
, . . . , evalt0

(
❲tn❳, q

))
evalt⊥

(
❲t❳, q

) = op
(
evalt⊥

(
❲t1❳, q

)
, . . . , evalt⊥

(
❲tn❳, q

))
Note that the secure target evaluation protocol for composite target depends on the operator op. We omit
the definition of the protocol per each operator as it can be easily derived from the formulas presented
in Table 2 using secure computation protocols that implement the ¬, ∧, and ∨ operators. We provide
details of the implementation of these protocols in Section 5.

4.3. Policy evaluation

The secure evaluation of a policy against a given query requires secure computation protocols im-
plementing the formulas given in Table 3. Here, we provide the design of a generic protocol for policy
evaluation under privacy preservation and then we discuss in Section 5 how it can be realized in Homo-
morphic Encryption and Secure Function Evaluation.

Given a policy in protected form ❲p❳ and a query q, the secure policy evaluation protocol
evalp(❲p❳, q) consists of three subprotocols evalpi (❲p❳, q), one per each single decision i ∈ {1, 0, ⊥},
and evaluates to a triple of protected values (❲d1❳, ❲d0❳, ❲d⊥❳) with di ∈ {1, 0} such as ❲di❳ =
evalpi (❲p❳, q). Next, we define protocol evalp(❲p❳, q) per cases based on the grammar of PA presented
in Section 2.1.

Decision policy: Given a policy comprising the permit or deny decision in protected form (❲1❳ and ❲0❳
respectively) and a query q, protocol evalp(❲p❳, q) consists of the following subprotocols:

evalp1
(
❲p❳, q

) = ❲p
?= 1❳

evalp0
(
❲p❳, q

) = ❲p
?= 0❳

evalp⊥ = ❲0❳

Targeted policy: Given a targeted policy in protected form (❲t❳, ❲p❳) and a query q, protocol
evalp((❲t❳, ❲p❳), q) consists of the subprotocols:

evalp1
((
❲t❳, ❲p❳

)
, q

) = evalt1
(
❲t❳, q

) ∧ evalp1
(
❲p❳, q

)
evalp0

((
❲t❳, ❲p❳

)
, q

) = evalt0
(
❲t❳, q

) ∧ evalp0
(
❲p❳, q

)
evalp⊥

((
❲t❳, ❲p❳

)
, q

) = evalt0
(
❲t❳, q

) ∨ evalt⊥
(
❲t❳, q

) ∨ (
evalt1

(
❲t❳, q

) ∧ evalp⊥
(
❲p❳, q

))
Composite policy: Given a composite policy in protected form op(❲p1❳, . . . , ❲pn❳) and a query q,
protocol evalp(op(❲p1❳, . . . , ❲pn❳), q) consists of the subprotocols:

evalp1
(
op

(
❲p1❳, . . . , ❲pn❳

)
, q

) = op
(
evalp1

(
❲p1❳, q

)
, . . . , evalp1

(
❲pn❳, q

))
evalp0

(
op

(
❲p1❳, . . . , ❲pn❳

)
, q

) = op
(
evalp0

(
❲p1❳, q

)
, . . . , evalp0

(
❲pn❳, q

))
evalp⊥

(
op

(
❲p1❳, . . . , ❲pn❳

)
, q

) = op
(
evalp⊥

(
❲p1❳, q

)
, . . . , evalp⊥

(
❲pn❳, q

))

632 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

As for the secure target evaluation protocol, the secure policy evaluation protocol for composite policies
depends on the operator op. We omit the definition of the protocol per each operator as it can be easily
derived from the formulas presented in Table 3.

5. Protocol implementation

In this section, we describe the realization of the protocols for secure policy evaluation presented
in Section 4 using two well-known privacy-preserving techniques, namely (additively) Homomorphic
Encryption (HE) and Secure Functional Evaluation (SFE).

5.1. SFE-based protocols

To realize the protocols presented in Section 4 using Secure Functional Evaluation (SFE), we employ
the building blocks presented in Section 2.3, i.e. inverse, AND, OR, subtraction, multiplication, equality,
and comparison gates. We first observe that the protocols for the evaluation of composite targets (Table 2)
and policies (Table 3) are built over operators ¬, ∧ and ∨, which can be implemented in SFE using
the inverse, AND and OR gates, respectively. Therefore, in this section, we only detail how the secure
membership and matching protocols can be realized in terms of SFE gates.

Secure membership protocol. Given a secret shared input 〈a〉 and a set of secret shared values
B = {〈b1〉, . . . , 〈bn〉}, the secure membership protocol checks whether a belongs to B under privacy
preservation. This protocol can be realized in SFE as:

〈a ?∈ B〉 = 〈
P(a,B)

?= 0
〉

where〈
P(a,B)

〉 = 〈b1 − a〉 × · · · × 〈bn − a〉

It is worth noting that the realization of the secure membership protocols in SFE requires the use of the
subtraction, multiplication, and equality gates.

Secure matching protocol. To verify the applicability of a secret shared policy to a query, we realize the
value-matching protocol presented in Section 4 using Secure Function Evaluation. Given a secret shared
target 〈t〉 = (〈a〉, 〈v〉, 〈φ〉), and a secret shared value 〈v′〉, the value-matching protocol is implemented
in SFE as:

value-matchingB
(〈
v′〉, 〈v〉, 〈φ〉) = (〈φ ?= 1〉 ∧ 〈

v′ ?= v
〉)

∨ (〈φ ?= 2〉 ∧ ¬〈
v′ ?= v

〉)
∨ (〈φ ?= 3〉 ∧ 〈

v′ ?
� v

〉)
∨ (〈φ ?= 4〉 ∧ (¬〈

v′ ?
� v

〉 ∨ 〈
v′ ?= v

〉)

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 633

where ¬ ∧, ∨, 〈· ?= ·〉, and 〈· ?
� ·〉 are the inverse, AND, OR, equality and comparison gates presented

in Section 2.3. Then, the secure matching protocol (Algorithm 1) can be easily realized in SFE by
implementing operators ∧ and ∨ using AND and OR gates, respectively.

5.2. HE-based protocols

As an alternative to Secure Function Evaluation, we realize the protocols for secure policy evaluation
using (additively) Homomorphic Encryption (HE). Specifically, we implement the generic protocols
presented in Section 4 using the five cryptographic building blocks presented in Section 2.2, i.e., addi-
tion, subtraction, multiplication, equality and comparison. As shown in Tables 2 and 3, the protocols
for secure policy evaluation rely on operators ¬, ∧ and ∨. To this end, we first discuss how the secure
computation of these operators can be realized in HE. Then, we present the implementation of the secure
membership and matching protocols.

Secure HE-based computation of operators ¬, ∧ and ∨. For the realization of the secure membership
and matching protocols as well as for the realization of the protocols for secure evaluation of composite
targets and policies, we need building block protocols implementing operators ¬, ∧ and ∨.

It is worth noting that operators ¬, ∧ and ∨ defined over Boolean logic are a reduction of the negation
(¬), strong conjunction (̃�) and strong disjunction (̃) operators defined over three-valued logic [38], for
which HE-based protocols have been proposed in [51]. Here, we propose an alternative implementation
based on the Boolean encoding of the decision space (cf. Section 4.1), which is computationally cheaper
compared to one proposed in [51] (cf. Section 5.3.2).

Operator ¬: Given an encrypted value [a], protocol �[a] computes the negation of a (i.e., ¬a) under
encryption as follows:

�[a] = [1] � [a]
It is easy to verify that this protocol returns [0] if a = 1 and [1] if a = 0.

Operator ∧: This operator can be realized using the secure multiplication protocol. Given two cipher-
texts [a] and [b], we can observe that [a] ⊗ [b] returns [1] when both a and b are equal to 1 and returns
[0] when at least one of a and b are equal to 0, thus having the same behavior of ∧.

Operator ∨: Differently from operator ∧, none of the building blocks presented in Section 5.2 imple-
ments operator ∨. This operator can be realized through a protocol that computes the minimum between
two values under encryption. Given two ciphertexts [a] and [b], the secure minimum protocol [a] � [b]
is defined as:

[a] � [b] = [a] ⊕ [b] � ([a] ⊗ [b])
Intuitively, this protocol returns [1] when at least one of a or b is equal to 1; otherwise, [0] is returned.
It is easy to verify that this indeed captures the behavior of operator ∨.

Secure membership protocol. Given an encrypted value [a] and a set of encrypted values B =
{[b1], . . . , [bn]}, the secure membership protocol can be implemented in HE as:

[a ?∈ B] = [
P(a,B)

?= 0
]

634 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

where [P(a,B)] = ([b1] � [a]) ⊗ · · · ⊗ ([bn] � [a]). We can observe that the HE-based membership
protocol uses the subtraction, multiplication and equality protocols presented in Section 2.2.

Secure matching protocol. The protocols presented above can be used to implement the secure match-
ing protocol in HE. Specifically, given an encrypted target [t] = ([a], [v], [φ]) and an encrypted value
[v′], the value-matching protocol can be implemented in HE as:

value-matchingH
([

v′], [v], [φ]) = ([φ ?= 1] ⊗ [
v′ ?= v

])
�

([φ ?= 2] ⊗ �
[
v′ ?= v

])
�

([φ ?= 3] ⊗ [
v′ ?

� v
])

�
([φ ?= 4] ⊗ (

�
[
v′ ?

� v
]
�

[
v′ ?= v

])
where �, ⊗, and � are the secure negation, multiplication and minimum protocols respectively, and

[· ?= ·] and [· ?
� ·] are respectively the equality and comparison protocols presented in Section 2.2.

It is worth noting that the secure minimum protocol uses homomorphic subtraction and the multi-
plication protocol to ensure that the outcome is in the range {[0], [1]}. While this is necessary in the
general case to ensure the correct evaluation of policies, in the case of the secure value-matching proto-
col, these operations have to be executed for each predicate (four times in the value-matching protocol
above). This results in an overhead in term of both computation and communication costs. Next, we
present an optimized version of the secure matching protocol (Algorithm 2) in which the secure value-
matching protocol uses homomorphic addition instead of secure minimum protocol and then the secure
comparison protocol is applied to guarantee that the outcome of secure matching protocol is in the range
{[0], [1]}.

Specifically, given an encrypted target [t] = ([a], [v], [φ]) and an encrypted value [v′], the secure
value-matching protocol can be realized as:

value-matchingH
([

v′], [v], [φ]) = [φ ?= 1] ⊗ [
v′ ?= v

]
⊕ [φ ?= 2] ⊗ (

�
[
v′ ?= v

])
Algorithm 2: matchingH: secure HE-based matching protocol
Data: An encrypted atomic target [t] = ([a], [v], [φ]), query q

Result: Matching result M ∈ {[0], [1]}
1 M = [0]
2 for ai ∈ Aq do
3 for vi ∈ Vai

(q) do

4 M = M ⊕ ([ai
?= a] ⊗ value-matchingH([v′], [v], [φ]))

5 end
6 end

7 return [1 ?
� M]

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 635

⊕ [φ ?= 3] ⊗ [
v′ ?

� v
]

⊕ [φ ?= 4] ⊗ ((
�
[
v′ ?

� v
]) ⊕ [

v′ ?= v
])

Then, instead of returning the result of the matching (i.e., M) directly as in Algorithm 1, the secure
matching protocol for HE (Algorithm 2) applies the secure comparison protocol (line 7). Intuitively, if
at least one of the query’s values satisfies the constrain specified in the target, M is greater than 0, and

consequently the protocol ([1 ?
� M]) returns [1]; otherwise it returns [0].

5.3. Complexity analysis

To gain insights on the computational complexity of the proposed framework, we first analyze the
complexity of the protocols for privacy-preserving target and policy evaluation presented in Section 4 in

terms of the building block protocols, i.e., ¬, ∧, ∨, −, ×, ❲· ?= ·❳, and ❲· ?
� ·❳. Then, we analyze the

realization of these building block protocols in terms of Secure Function Evaluation and Homomorphic
Encryption. An experimental evaluation of our framework is presented in Section 7.

5.3.1. Protocol complexity
This section presents an analysis of the complexity of the proposed protocols for target and policy

evaluation on private inputs in terms of the building block protocols used for their definition. Before
presenting such an analysis, we assess the complexity of the secure membership, value-matching and
matching protocols, which have been introduced to support target and policy evaluation on private inputs.

Membership protocol: The membership protocol employs the ❲· ?= ·❳, −, and × protocols 1, k, and
k − 1 times (where k denotes the set size), respectively (Section 4.2).

Value-matching protocol: The value-matching protocol uses two times the ¬ protocol, four times the

∧ protocol, four times ∨ protocol, seven times the ❲· ?= ·❳ protocol, and two times the ❲· ?
� ·❳ protocol.

Matching protocol: The matching protocol (Algorithm 1) employs the value-matching, ∧, ∨ and

❲· ?= ·❳ protocols m, m, m, and k times respectively, where k and m denote the number of distinct
attributes and attribute values in the given query. Therefore, in terms of building block protocols, the
matching protocol uses 2m times the ¬ protocol, 5m times the ∧ protocol, 5m times ∨ protocol, 7m + k

times the ❲· ?= ·❳ protocol, and 2m times the ❲· ?
� ·❳ protocol.

Now we have the machinery to study the complexity of our protocols for secure target/policy evalua-
tion. The analysis is performed per case based on the grammar of PA presented in Section 2.1.

Atomic target: Based on the encoding presented in Section 4.2, the secure evaluation of atomic
targets in protected form ❲ta❳ = (❲a❳, ❲v❳, ❲φ❳) against a query q requires the execution of the secure
membership, matching, ¬, and ∧ protocols 3, 2, 2, and 2 times, respectively. Considering the application
of building block protocols in the membership and matching protocols, in total the secure evaluation

of an atomic target in private form ❲ta❳ against query q uses the ¬, ∧, ∨, −, ×, ❲· ?= ·❳, and ❲· ?
� ·❳

protocols 4m+2, 10m+2, 10m, 3k, 3(k−1), 14m+2k, and 4m times, respectively. Thus, the complexity
of evaluating ❲ta❳ against query q, denoted by Cta , in terms of the complexity of building block protocols

636 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

is:

Cta = (4m + 2) C¬ + (10m + 2) C∧ + 10m C∨ + 3k C− + 3(k − 1) C×
+ (14m + 2k) C

❲· ?=·❳ + 4m C
❲· ?
�·❳

where k and m are the number of distinct attributes and attribute values in q, respectively; C¬, C∧, C∨, C−,

C×, C
❲· ?=·❳ and C

❲· ?
�·❳

denote the complexity of ¬, ∧, ∨, −, ×, ❲· ?= ·❳ and ❲· ?
� ·❳ protocols, respectively.

Composite target: The evaluation of a composite target in protected form ❲t c❳ = ❲op(t1, . . . , tn)❳

requires the secure evaluation of targets ❲t1❳, . . . , ❲tn❳ and the secure evaluation of the operator ❲op❳
used to combine those targets. As targets ❲t1❳, . . . , ❲tn❳ can be in turn composite targets, assessing the
actual complexity of the secure evaluation of ❲t c❳ requires unfolding its definition in terms of atomic
targets. Assuming that ❲t c❳ is formed by atomic targets ❲ta1 ❳, . . . , ❲t

a
n❳ and operators ❲op1❳, . . . , ❲oph❳,

the complexity of evaluating ❲t c❳ against q is:

Ctc = Cta1
+ · · · + Ctan

+ Cop1
+ · · · + Coph

where Ctai
denotes the complexity of evaluating atomic target ❲tai ❳ against q (with 1 � i � n) and Copj

denote the complexity of applying operator opj (with 1 � j � h). As the secure evaluation of combining
operators requires different building block protocols to be implemented (Table 2), the complexity differs
depending on the operators used. In the worst case, a combining operator uses two times the ¬ protocol,
three times the ∧ protocol, and two times the ∨ protocol (i.e., for ∇ and �). Accordingly, we can rewrite
the complexity of evaluating ❲t c❳ against query q as:

Ctc = n · Cta + h · (2 C¬ + 3 C∧ + 2 C∨)

= (4mn + 2n + 2h) C¬ + (10mn + 2n + 3h) C∧ + (10mn + 2h) C∨
+ 3kn C− + 3(k − 1)n C× + (14m + 2k)n C

❲· ?=·❳ + 4mn C
❲· ?
�·❳

where k and m are respectively the number of distinct attributes and attribute values appeared in q, n is
the number of atomic targets forming the composite target t c and h is the number of operators used to
combine those (atomic) targets.

Decision policy: The secure evaluation of a decision policy pd against a query q requires two execu-

tions of the ❲· ?= ·❳ protocol. Accordingly, the complexity of the secure evaluation of a decision policy
pd is Cpd

= 2 C
❲· ?=·❳.

Targeted policy: The secure evaluation of a targeted policy (❲t❳, ❲p❳) against a query q requires
evaluating the target ❲t❳ two times and the policy ❲p❳ as well as executing three times the ∧ protocol
and two times the ∨ protocol (cf. Section 4.3). Accordingly, the complexity of evaluating (❲t❳, ❲p❳)

against query q depends on the complexity of evaluating ❲t❳ and ❲p❳, which in turns can be composite
elements. Formally:

C(t,p) = Ct + Cp + 3 C∧ + 2 C∨

where Ct and Cp are the complexity of evaluating ❲t❳ and ❲p❳ against q, respectively.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 637

Composite policy: The evaluation of a composite policy in private form ❲pc❳ = ❲op(p1, . . . , pl)❳

requires the secure evaluation of policies ❲p1❳, . . . , ❲pl❳. Given that the combining operators in com-
posite policies are not considered confidential, they are not protected. The complexity of executing these
operators is negligible compared to the complexity of the building blocks used for secure target/policy
evaluation. Thus, we omit their complexity in our analysis. Accordingly, the complexity of evaluating
❲p1❳, . . . , ❲pl❳ against a query q depends on the complexity of evaluating its subpolicies, which in turns
can be composite elements. Formally:

Cpc = Cp1 + · · · + Cpl

where Cpi
represents the complexity of evaluating policy ❲pi❳ against q (with 1 � i � l).

As discussed above, targeted and composite policies are complex policy statements, whose elements
can be in turn targeted and composite policies. Therefore, assessing their actual complexity requires
unfolding their definition in terms of atomic targets, decision policies and targeted policies. Given an
arbitrary policy ❲p❳ consisting of n atomic targets ❲ta❳ combined with h operators ❲op❳ (with worst
case complexity as presented for composite targets), n′ decision policies ❲pd❳ and n′′ targeted policy
❲(t, p′)❳, the complexity of evaluating ❲p❳ against a query q is:

Cp = n Cta + n′ Cpd
+ n′′ (3 C∧ + 2 C∨) + h (2 C¬ + 3 C∧ + 2 C∨)

where Cta , Cpd
are the complexity of evaluating ❲ta❳ and ❲pd❳, respectively. Note that, in the formula

above, the atomic targets and decision policies appearing in targeted policies is accounted for in the
number of atomic targets and decision policies.

Table 4 summarizes the complexity of the main protocols in terms of the complexity of building
block protocols. It is worth noting that the actual complexity depends on the specific privacy-preserving
technique used for the implementation of the protocols. In next section, we discuss the complexity of
the realization of the protocols in Secure Functional Evaluation and Homomorphic Encryption.

Table 4

Protocol complexity in terms of the number of building block protocols; k and m are respectively the number of distinct
attributes and attribute-values in the query to be evaluated; n, n′ and n′′ are the number of atomic targets, decision policies, and
targeted policies; and h is the number of combining operators occurring in composite targets (the worst case scenario)

Building block protocols
C¬ C∧ C∨ C− C× C

❲· ?=·❳ C
❲· ?
�·❳

Membership – – – k k − 1 1 –
Value-matching 2 4 4 – – 7 2
Matching
(Algorithm 1)

2m 5m 5m – – 7m + k 2m

Atomic target
(Cta)

4m + 2 10m + 2 10m 3k 3(k − 1) 14m + 2k 4m

Composite target
(Ctc)

(4m + 2)n + 2h (10m + 2)n + 3h 10mn + 2h 3kn 3(k − 1)n (14m + 2k)n 4mn

Decision policy
(Cpd

)
– – – – – 2 –

Arbitrary policy
(Cp)

(4m + 2)n + 2h (10m + 2)n + 3n′′ + 3h 10mn + 2n′′ + 2h 3kn 3(k − 1)n (14m + 2k)n + 2n′ 4mn

638 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

5.3.2. Complexity of the protocol realization in SFE and HE
This section analyzes the complexity of the realization of the proposed protocols in Secure Functional

Evaluation and Homomorphic Encryption.

SFE-based protocols: in SFE, the ¬, ∧, ∨, −, ×, ❲· ?= ·❳, and ❲· ?
� ·❳ protocols are securely

implemented using the inverse, AND, OR, subtraction, multiplication, equality, and comparison gates,
respectively. Previous work [13] shows that the multiplication, equality, and comparison gates are sig-
nificantly heavier compared to the other gates such as inverse, AND, and OR in terms of computation
and communication costs. In this respect, we expect that the complexity of policy evaluation in SFE is
mainly affected by the number of attributes and attributes values in the query (i.e., by the query size) as
well as by the number of atomic targets occurring in the policy.

HE-based protocols: in HE, only some of the building blocks used for the definition of the protocols

in Section 4 can be directly mapped to the HE building blocks. In particular, the −, ×, ❲· ?= ·❳, and

❲· ?
� ·❳ protocols can be implemented using the subtraction, multiplication, equality and comparison

protocols, respectively. The other building block protocols (i.e., the ¬, ∧, and ∨ protocols) do not have a
direct HE counterpart and their definition might require the use of multiple HE building blocks. In [51],
these protocols were defined as follows:

[¬a] = [a ?= 0] (1)

[a ∧ b] = ([a ?
� b] ⊗ [a]) ⊕ ([b ?

� a] ⊗ [b]) (2)

[a ∨ b] = ([a ?
� b] ⊗ [b]) ⊕ ([b ?

� a] ⊗ [a]) (3)

where ⊕, ⊗, [· ?= ·] and [· ?
� ·] are the addition, multiplication, equality, and comparison protocols,

respectively.
Similarly to what observed for the SFE encoding, some HE building block protocols are heavier than

others in terms of computation and communication costs [16,41,42]. In particular, the addition and sub-
traction protocols are light in additively homomorphic cryptosystems such as the Paillier cryptosystem
[46], while the multiplication, equality, and comparison protocols are considerably heavy protocols in
those cryptosystems. For instance, it has been shown that the computation and communication costs of
multiplication protocol are 200 times more than those of the addition protocol [16].

Based on these observations, we redesigned three building block protocols (i.e., ¬, ∧, ∨) proposed in
[51] by replacing the use of heavy protocols with lighter protocols (cf. Section 5.2).9 Next we present
a comparison between the complexity of the ¬, ∧, and ∨ protocols proposed in [51] (represented by
Eq. (1), (2), and (3)) – CH

¬ , CH∧ and CH∨ – and the complexity of their optimized versions presented in
Section 5.2 – CH

¬op
, CH∧op

and CH∨op
:

CH
¬ = C[· ?=·]

optimization−−−−−−→ CH
¬op

= C�

CH
∧ = C⊕ + 2C⊗ + 2C

[· ?
�·]

optimization−−−−−−→ CH
∧op

= C⊗

9Note that the correctness of the new protocols can be proved under the condition that the input data are binary (0 or 1) as
discussed in Section 5.2.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 639

CH
∨ = C⊕ + 2C⊗ + 2C

[· ?
�·]

optimization−−−−−−→ CH
∨op

= C⊕ + C� + C⊗

where C⊕, C�, C⊗, C[· ?=·] and C
[· ?
�·]

are the complexity of the HE addition, subtraction, multiplication,

equality, and comparison protocols, respectively.
We have also optimized the HE implementation of the matching protocol (Algorithm 2) to reduce

the instances of the multiplication protocol to be executed compared to Algorithm 1. By comparing
Algorithm 1 and Algorithm 2, it can be observed that the application of the multiplication and subtraction
protocols has been reduced m times each (recall that m is the number of attribute values in the query),
which in addition to the complexity reduction resulting from using the optimized versions of the ¬, ∧,
and ∨ protocols, significantly reduces the complexity of the matching protocol.

Table 5 summarizes the complexity of HE-based protocols in both general and optimized forms in
terms of the number of HE-based building block protocols.10 It can be observed that, for instance, in
atomic target evaluation the application of the comparison (multiplication) protocol has been reduced
from 22m (20m) times in general form to 2m (10m) times in optimized version. The application of other
building protocols has also been reduced except from the subtraction protocol (7m times). Thus, the im-
plementation of the HE-based atomic target evaluation protocol in the optimized version is significantly
more efficient compared to its implementation in the general form.

6. Security analysis

This section provides a security analysis of our framework for privacy-preserving multi-party access
control (Section 3.2) and of the underlying secure computation protocols (Section 5).

6.1. Protocol security analysis

The proposed privacy preserving protocols were designed based on Homomorphic Encryption and
Secure Function Evaluation. We chose Paillier’s cryptosystem for the implementation of HE-based pro-
tocols. The security of the Paillier cryptosystem is based on computational difficulty of solving deci-
sional composite residuosity assumption [46]. We employed three HE-based building blocks to shape
our complex protocols, namely secure equality [41], secure comparison [42] and secure multiplication
protocols [16]. These building blocks have been proven to be secure in the presence of semi-honest
adversaries. We refer readers to corresponding papers for the details of the security analysis for each
building block.

For policy evaluation in Secure Function Evaluation, we employed the Boolean circuits provided
by the ABY framework [22]. The use of these circuits provides information theoretic security against
semi-honest adversaries and malicious adversaries in the existence of honest majority. We refer readers
to [13,22] for the details of secure implementation and security proofs.

In the design of our protocols, we use a combination of the building blocks that are proven secure.
According to the universally composable security theorem of Canetti [7], a protocol that is obtained by
arbitrary combination of secure subprotocols guarantees security. Therefore, we can conclude that the
protocols presented in Section 5 as well as their combination are secure since they are composed from
subprotocols proven to be secure.

10The membership and decision policy which have the same complexity when designed in general and optimized versions
have not been reported in this table.

640
M

.Sheikhalishahietal./P
rivacy-preserving

policy
evaluation

in
m

ulti-party
access

control
Table 5

The complexity of HE-based protocols in terms of the number of HE building block protocols in generic and optimized form; k and m are respectively the number
of distinct attributes and attribute-values appeared in query q; n, n′, and n′′ are the number of atomic targets, decision policy, and targeted policy, respectively; and
h is the number of combining operators appearing in composite targets (the worst case scenario)

HE-based building block protocols
C⊕ C� C⊗ C[· ?=·] C

[· ?
�·]

Negation CH¬ 1
Optimized Negation
CH¬op

1

Min CH∧ 1 2 2
Optimized min CH∧op

1

Max CH∨ 1 2 2
Optimized max CH∨op

1 1 1

Value-matching CH
vmatch 8 16 9 18

Optimized
Value-matching
CH

vmatchop

4 6 8 7 2

Matching CH
match 10m 20m 9m + k 22m

Optimized matching
CH

matchop

5m 7m 10m 7m + k 2m

Atomic target CH
ta 20m + 2 3k 40m + 3k + 1 18m + 2k + 5 44m + 4

Optimized atomic target
CH

taop

10m 14m + 3k + 2 20m + 3k − 1 14m + 2k + 3 4m

Composite target CH
tc (20m + 2)n + 5h 3kn (40m + 3k + 1)n + 10h (18m + 2k + 5)n + 2h (44m + 4)n + 10h

Optimized composite
target CH

tcop

10mn + 2h (14m + 3k + 2)n + 4h (20m + 3k − 1)n + 5h (14m + 2k + 3)n 4mn

Arbitrary policy CH
p (20m + 2)n + 5(n′′ + h) 3kn (40m + 3k + 1)n +

10(n′′ + h)
(18m + 2k + 5)n +
2n′ + 2h

(44m+4)n+10(n′′ +h)

Optimized arbitrary
policy CH

pop

10mn + 2(n′′ + h) (14m + 3k + 2)n +
2n′′ + 4h

(20m + 3k − 1)n +
5(n′′ + h)

(14m + 2k + 3)n 4mn

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 641

6.2. Framework security analysis

Our framework is designed to be secure against the semi-honest adversary model. The two parties
involved in our setting, i.e. the STP and Data Server, are semi-honest non-colluding parties who try to
obtain additional information from the execution of the protocols. The data holders provide the pro-
tected data properly (i.e., encrypted data for HE-based protocols and secret shared data for SFE-based
protocols) to the intended parties.

Given that our protocols based on HE and SFE are secure, in the following we discuss the security of
our whole framework with respect to the interactions between participants.

• The access requester can observe whether access is granted or not. From this, she can learn the final
decision but not the evaluation of the data holders’ policies. It is worth noting that, by testing all
possible queries, an attacker can only reconstruct the overall multi-party policy, but she would not
be able to reconstruct the individual user policies.

• The STP learns neither the data holders’ policies nor the final decision. In the HE setting, the STP
generates the public and private keys and sends the public key to the data holders and Data Server.
Moreover, this entity interacts with the Data Server to evaluate the policies. As discussed above, the
building blocks we use in the design of operators are secure and, thus, the semi-honest STP is not
able to learn the data holders’ individual policies. Moreover, the STP receives the encrypted final
decision, which it decrypts using the private key. However, because of the noise added by the Data
Server to the encrypted message (see Section 3.2), the STP is not able to infer the final decision.11

On the other hand, in the SFE setting, the STP only receives one secret share of the data holders’
policies. Therefore, neither the data holders’ policies nor the result of policy evaluation are revealed
to the STP.

• The Data Server does not learn the data holders’ policies. The Data Server receives the policies of
each data holder in private form (encrypted in HE-based protocols and secure shared in SFE-based
protocols). In the HE setting, since it does not have the private key, it is not able to learn the data
holders’ policies. On the other hand, in the SFE setting, the Data Server only receives secret shares
of the data holders’ policies. After policy evaluation, the Data Server learns the final decision, but
not each individual policy. The Data Server evaluates the multi-party policy through communication
with the STP, which has been proven secure. The final decision, which the Data Server derives with
the help of the STP, is not considered as a secret information for the Data Server since this entity is
responsible for its enforcement.

Our security model allows entities to collude to obtain information about data holders’ policies. We
discuss a number of threats scenarios to illustrate the robustness of our framework against colluding
entities:

• Data Server and requester collusion: in the SFE setting, neither the Data Server nor the requester
has access to the other share of the data holders’ policies. Thus, even if they collude, they are not
able to learn the intermediate decisions and data holders’ policies. Similarly, in the HE setting,
neither the Data Server nor the requester has the private key. Therefore, they cannot decrypt the
messages to obtain the policies of the data holders. Both the Data Server and the requester have
access to the final decision; thus, neither of these entities learns new information.

11Note that for all HE-based protocols in the two-party setting (including the HE-based building blocks considered in this
work), the party that does not have the secret key adds random noise to the encrypted messages before they are sent to the party
possessing the private key.

642 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

• STP and requester collusion: the security in the SFE setting can be demonstrated similarly to the
case where the Data Server and requester collude as the STP and requester together only possess
one share of the data holders’ policies. In the HE setting, the Data Server adds random noise to the
encrypted data before transferring them to the STP. Thus, even if the STP and the requester have the
private key (which is generated by the STP), they cannot obtain any unintended information. It is
worth noting that the collusion of the STP and requester might reveal the final decision to the STP.
Yet, from the final decision the STP and requester cannot reconstruct the individual policies of the
data holders.

• Data Server and data holders collusion: some data holders might collude with the Data Server
to learn the policies of the other data holders, where at least two data holders are honest (cf. Sec-
tion 3.3). However, the colluding data holders and the Data Server together only have one share
of the data of the non-colluding data holders in the SFE setting and do not have the private key of
the other data holders in the HE setting. Thus, they cannot derive any unintended information from
intermediary messages. Nonetheless, by colluding, the Data Server and data holders might infer
the overall evaluation of the honest data holders’ policies (from the final decision known by the
Data Server), but they are not able to reconstruct the individual policies of honest parties. This is
because at least two data holders are assumed to be honest and, in most cases, knowing the overall
evaluation of their policies is not enough to learn the individual policies (see later for a discussion).

• STP and data holders collusion: since the Data Server adds random noises to messages in the HE
setting and the STP does not possess the share of the data of the honest data holders in the SFE
setting, even if the STP and the data holders collude, they cannot understand the inputs of honest
data holders.

These scenarios can be generalized, for example, to the case where the requester collude with a subset
of data holders (with at least two data holders to be honest) and one of the Data Server and STP. Using
the reasoning above, it is easy to see that the only information that can be leaked is the final decision
that the STP can learn by colluding with the requester. By knowing the final decision and the multi-
party policy, the entities involved (requester, data holders, Data Server, STP) may be able to learn some
information about the users’ individual policies. For example, if the final decision is the not-applicable
decision (⊥), it is easily inferred that all user policies evaluate to not-applicable. However, we argue
that these leakages are intrinsic in the definition of the combining operators in Table 1 rather than due
to flaws in the design of the secure computation protocols proposed in Section 4 or their combination.
Since revealing the final decision is inevitable, we do not consider these leakages as security leakages.

7. Experiments

We have implemented the protocols presented in Section 5 in C++. We used GMP multiprecision
library for the implementation of big integer operations. For the HE-based protocols, we used a crypto-
graphic key of length 2048 bits as recommended by the NIST [3]. For the protocols based on the ABY
framework, we used 32-bit Boolean circuits.12

To assess the practical feasibility of our mechanism for privacy-preserving multi-party access control,
we performed three sets of experiments: 1) the first set of experiments is used to evaluate the impact of

12The implementation of the proposed protocols in HE and SFE can be found at https://github.com/IschaStork/he-policy-
eval and https://github.com/IschaStork/sfe-policy-eval, respectively.

https://github.com/IschaStork/he-policy-eval
https://github.com/IschaStork/he-policy-eval
https://github.com/IschaStork/sfe-policy-eval

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 643

protected atomic target evaluation against the queries of different sizes; 2) the next set of experiments
studies the scalability of implementing the combining operators over private inputs; 3) the last set of
experiments investigates the impact of protected complex policies’ evaluation, where the number of
atomic targets forming a complex policy varies. In all experiments, we used computation time (in ms) to
measure computation cost and bandwidth usage (in bytes) to measure communication cost.

In a practical scenario, the two parties running the experiments (in both HE and SFE setting) would be
remote parties communicating through an Internet connection. For the experiments such a connection
was simulated with the use of local sockets. This does not matter for the communication costs as the
data that is sent in a local network is equal to the data usage of a remote connection. The experiments
were performed on a virtual single machine running Ubuntu 19.04 LTS with 64-bit microprocessor and
5 GB of RAM, with Intel Core i5-7200U CPU, 2.5 GHz.

7.1. Atomic target evaluation

The evaluation of an atomic target has a significant impact on policy evaluation as it serves as a build-
ing block for the evaluation of any target (cf. Table 2). As shown in Section 5.3, the secure evaluation
of atomic targets depends on the query size (i.e., the number of attributes and attribute name-value pairs
constituting the query). In the first set of experiments we assess their impact in terms of computation
and communication costs by evaluating atomic targets against queries of different size for both HE-based
protocols and SFE-based protocols.

Setting. For the experiments, we generated a set of 10 attributes A = {a1, . . . , a10}, where the domain
of each attribute ai ∈ A contains 10 attribute values. Every attribute and attribute value is represented by
a unique integer number. To assess the impact of the query size on the computation and communication
costs of the evaluation of an atomic target in protected form ❲t❳, we randomly generated atomic targets
and queries of different sizes. An atomic target t = a φ v is generated by randomly selecting an attribute
ai ∈ A, attribute-value vj ∈ Vai

, and predicate φ ∈ {1, 2, 3, 4}. A query of size n is generated by
creating n attribute name-value pairs, where the first element of each pair is an attribute ai randomly
selected from A and the second element is a value randomly selected from its domain Vai

. We varied the
query size from 1 to 20 and repeated each experiment 50 times.

Fig. 2. Computation time (in seconds) for the secure evaluation of protected atomic target against queries of different sizes.
Y-axis is in log scale.

644 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

Fig. 3. Bandwidth usage (in bytes) for the secure evaluation of protected atomic target against queries of different sizes. Y-axis
is in log scale.

Results. Figures 2 and 3 show respectively the average computation time and bandwidth usage (in log
scale) for the secure evaluation of protected atomic target against queries of different sizes (from 1 to
20) over 50 rounds of the experiments. The results show that the SFE-based protocols outperform the
HE-based ones in terms of both computation and communication costs. In particular, the evaluation of
an atomic target against a query of size 20 required 4.84 ms (9998 bytes) using SFE-based protocols and
779 ms (776171 bytes) using HE-based protocols. Moreover, we can observe that both computation and
communication costs of atomic target evaluation are linear in the query size.

7.2. Combining operators

This set of experiments aims to assess the computation and communication costs required by the
protocols for the secure computation of the combining operators presented in Table 1. This provides an
indication of the resources required by the combining operators in Boolean encoding (Table 3) when
implemented using Homomorphic Encryption and Secure Function Evaluation.

Settings. For the experiments, we have created two policies for each operator in Table 1, one for each
privacy-preserving approach (HE and SFE). Each policy consists of one or two policy depending on the
number of arguments required by the operator. For each operator, we repeated the experiments 50 times.

Results. Table 6 reports the average computation time and bandwidth usage for the protocols imple-
menting the combining operators in Table 1 over 50 runs.

As it can be observed, the SFE-based protocols outperform the HE-based protocols both in terms
of computation and communication costs. On average, the computation and communication costs of
HE-based protocols are approximately 8000 and 32 times worse than SFE-based ones, respectively. It
is worth noting that binary operators exhibit a similar computation and communication costs in binary
operators (for both HE and SFE protocols). This is because these protocols comprise an equal number
of ∧, ∨, and ¬ operators (cf. Table 3). On the other hand, the negation protocol is slightly cheaper in
Homomorphic Encryption as it only requires swapping values rather than operating on logic formulas.

7.3. Composite policies

To gain more insights on the feasibility of our mechanism for privacy preserving multi-party access
control, we performed experiments to assess the scalability of policy evaluation on private input in more
complex scenarios.

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 645

Table 6

Computation time (in ms) and communication bandwidth (in bytes) for single operator

Time (ms) Bandwidth (bytes)
HE SFE HE SFE

¬ 0 0.09 0 51
∼ 213 0.09 768 65
	 880 0.1008 3842 121
� 873 0.1032 3841 121
	̃ 873 0.1159 3842 121
�̃ 882 0.1068 3842 121
� 882 0.0929 3841 121
� 873 0.1072 3842 121
� 827 0.1041 3842 121

Fig. 4. Computation time (in seconds) for the secure evaluation of protected composite policies against queries of size 10.
Y-axis is in log scale.

Settings. For this set of experiments, we generate random policies by varying the policy size. As target
evaluation is more computationally and communicationally expensive compared to the evaluation of
combining operators,13 we regard the size of a policy as the number of atomic targets constituting the
policy. We varied the policy size from 1 to 50, while we fixed the query size to 10.

Results. Figures 4 and 5 report the average computation time and bandwidth usage (in log scale) for
each policy size. This result confirms that SFE-based protocols outperform HE-based protocols in terms
of both time and bandwidth usage. On average, the computation time required for the evaluation of
policies of size 1 to 10 in HE is 13 times worse than the computation time required by SFE-protocols.
This ratio increases to 105 when we compare the time required for evaluating the policy of size 50 in
HE and SFE. Moreover, the bandwidth usage for the evaluation of policy of size 50 is 86 times worse
when implemented in HE compared to SFE.

This difference between HE-based and SFE-based protocols arises for two reasons. The first reason
is that HE-based protocols, beside needing to perform encryption and decryption at the end of each
communication, also require implementing heavier multiplication operation for the implementation of
∧ and ∨ operators. These operations require modular exponentiations, which is computationally and

13The previous experiments show that, on average, the computation and communication costs of atomic target evaluation
(against queries of size 10) are 22 and 72 times worse than the evaluation of heaviest combining operator implementation.

646 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

Fig. 5. Bandwidth usage (in bytes) for the secure evaluation of protected composite policies against queries of size 10. Y-axis
is in log scale.

communicationally heavy. On the other hand, operations in SFE are simpler, encompassing low-level
circuit operations such as such as AND, OR and inverse check. The second reason is related to the size
of messages used in HE and SFE. In HE, all operations are performed on 2048 bits ciphertexts. On the
other hand, in SFE, a much smaller bit message size is used.

From these experiments, we conclude that the implementation of policy evaluation protocols using
Homomorphic Encryption has some limitations in terms of computation and communication costs. On
the other hand, Secure Functional Evaluation provides a viable solution for the realization of the pro-
posed protocols for privacy-preserving policy evaluation in multi-party access control.

8. Related work

In recent years, multi-party access control has received increasing attention [45]. This interest has
resulted in several access control solutions for the protection of jointly-owned and jointly-managed
resources, either through co-owners’ negotiation [18] or automatic built-in interface [27]. Approaches
for collaborative decision making and conflict resolution have been largely investigated through the
application of game theory [49], computational mechanisms [52], social-friend circle model [59], and
veto voting [53]. These approaches, however, do not consider users’ policies as sensitive information by
themselves.

The confidentiality of policies has typically been addressed in trust negotiation [34,60]. The aim of
trust negotiation is to establish mutual trust between parties that do not have a pre-existing relationship
through an exchange of (extensional) policies, represented by digital credentials. Disclosure of creden-
tials, in turn, is regulated by policies specifying which credentials must be received before the requested
credentials can be disclosed. Similarly, Trivellato et al. [54] propose a goal evaluation algorithm for trust
management that detects termination in a completely distributed way without the need of disclosing the
policies of parties, thereby preserving their confidentiality. In this work, we pursue a different direc-
tion and assume that parties disclose their policies in private form. These policies are then evaluated in
privacy-preserving way using secure computation protocols.

A large body of research has investigated the use of cryptographic techniques for the enforcement of
access control policy. Identity-based Encryption (IBE) reconsiders the concept of public-key cryptogra-
phy, in which a message is encrypted for a specific receiver using its public-key, by allowing the public-
key to be an arbitrary string [50], e.g., the receiver’s email address. Attribute-Based Encryption (ABE)

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 647

go one step further by modeling an identity as a set of attributes [25], thus supporting the enforcement of
ABAC policies. ABE schemes can be classified into two main classes: Key-Policy ABE (KP-ABE) [2],
in which the access control policy is encoded into the user’s private-key and the ciphertext is computed
with respect to a set of attributes, and Ciphertext-Policy ABE (CP-ABE) [6], in which the user’s private-
key is associated with a set of attributes and the access control policy is specified in the ciphertext. Our
solution is closer to CP-ABE where the access control policy is closer to the resource to be protected.
While CP-ABE schemes originally focus on the protection of the plaintext (i.e., ciphertexts reveal no in-
formation about the underlying plaintext) and rely on a single authority, a number of schemes have been
proposed to extend CP-ABE to protect policy confidentiality and to deal with collaborative systems.
Policy confidentiality can be protected using anonymous ABE schemes [31,43,62] where the access
control policy is hidden and the decryptor cannot obtain more information about the policy associated
with the encrypted data besides the fact that it can decrypt the data. On the other hand, multi-authority
ABE schemes [8,9] have emerged to account for that more than one entity could be responsible for man-
aging the attributes (e.g., one managing driver licenses and one managing voter registration). However,
these schemes target a different type of collaborative systems, in which resources are governed by a
single entity and delegation is used to enable decentralized authorization across administrative domains;
contrarily, our solution focuses on the evaluation of multi-party access control policies which integrate
possibly conflicting access constraints from multiple parties. To the best of our knowledge, no CP-ABE
schemes support the collaborative specification of access control policies for co-owned resources. More-
over, CP-ABE and, in general, ABE schemes have restrictions in the types of ABAC policies that can be
enforced (i.e., only equality constraints are supported), while our solution supports the specification of a
larger range of access constraints (cf. Section 4) and, given its compositional nature, can be extended to
support additional types of access constraints.

An application of cryptographic-based techniques to multi-party access control can be found in [26],
which proposes a collaborative access control model based on threshold-based secret sharing. Data hold-
ers upload their co-owned resources encrypted and disclose secret shares of the decryption key to trusted
friends, who are responsible to partially enforce the collective policy. A user can only decrypt a resource
if she collects ‘enough’ shares of the key. This work, however, mainly focuses on the protection of re-
sources, whereas the confidentiality of users’ policies is not addressed. Moreover, compared to our work
that supports the definition of arbitrary strategies to combine users’ policies, this approach only allows
a simple strategy based on the number of shares of the decryption key that the user should have.

For secure policy evaluation, we rely on previous work on secure multiparty computation. The basic
concepts for secure multiparty computation were first introduced by Yao [57]. Since, several approaches
for the secure evaluation of a function have been developed, e.g. based on combinatorial circuits [22] or
one-dimensional look up tables [40]. These approaches tend to be impractical due to the high compu-
tation/communication costs. Homomorphic Encryption and Secure Functional Evaluation have shown a
promising result in terms of communication and computation costs in the context of multi-party access
control [51]. However, differently from [51], the secure computation protocols proposed in this work
allow the evaluation of policies expressed in ABAC and have been implemented using a Boolean en-
coding of the decision space, which provides a more efficient implementation compared to the use of a
three-valued encoding.

There are a few attempts in the literature implementing logical operations over protected inputs, e.g.
privacy-preserving min computation in mobile sensing data [61] or privacy-preserving Max/Min query
protocol for two-tiered sensor network [58]. However, this body of work fail to address the secure im-
plementation of the complete set of operations required in this study (Tables 2 and 3).

648 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

9. Conclusions and future work

In this work, we proposed a framework for the secure evaluation of multi-party access control policies
expressed in ABAC, which preserves the confidentiality of individual user policies forming the multi-
party policy. In particular, we designed secure computation protocols for the evaluation of multi-party
policies based on a Boolean encoding of the decision space and able to account for the evaluation of
complex targets. We realized such protocols using two privacy-preserving approaches, namely Homo-
morphic Encryption and Secure Functional Evaluation. An experimental evaluation of the proposed pro-
tocols shows that the SFE-based protocols outperform the HE-based ones in terms of both computation
time and bandwidth usage and provide an effective foundation for the realization of privacy-preserving
mechanisms for multi-party access control.

As future work, we aim to extend our approach to support the evaluation of multi-party policies in
which the operators used for combining atomic targets and policies are also protected. This should
minimize the risks that an attacker can learn some information on the underlying user policies.

Acknowledgments

This work is supported by the H2020-ECSEL programme of the European Commission through the
SECREDAS project (grant no. 783119).

References

[1] J. Alwen, A. Shelat and I. Visconti, Collusion-free protocols in the mediated model, in: Advances in Cryptology, Springer,
2008, pp. 497–514.

[2] N. Attrapadung, B. Libert and E. de Panafieu, Expressive key-policy attribute-based encryption with constant-size cipher-
texts, in: International Conference on Practice and Theory in Public Key Cryptography, 2011, pp. 90–108.

[3] E.B. Barker, L. Chen, A.R. Regenscheid and M.E. Smid, SP 800-56B. Recommendation for pair-wise key establishment
schemes using integer factorization cryptography, Technical report, Gaithersburg, MD, United States, 2009.

[4] D. Beaver, Efficient multiparty protocols using circuit randomization, in: Advances in Cryptology, 1991, pp. 420–432.
[5] C. Bertolissi, J. den Hartog and N. Zannone, Using provenance for secure data fusion in cooperative systems, in: Proceed-

ings of Symposium on Access Control Models and Technologies, ACM, 2019, pp. 185–194.
[6] J. Bethencourt, A. Sahai and B. Waters, Ciphertext-policy attribute-based encryption, in: Proceedings of IEEE Symposium

on Security and Privacy, IEEE, 2007, pp. 321–334.
[7] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in: Proceedings of Symposium

on Foundations of Computer Science, IEEE, 2001, pp. 136–145. doi:10.1109/SFCS.2001.959888.
[8] M. Chase, Multi-authority attribute based encryption, in: Theory of Cryptography, Springer, 2007, pp. 515–534. doi:10.

1007/978-3-540-70936-7_28.
[9] M. Chase and S.S.M. Chow, Improving privacy and security in multi-authority attribute-based encryption, in: Proceedings

of ACM Conference on Computer and Communications Security, ACM, 2009, pp. 121–130.
[10] J. Crampton and C. Morisset, PTaCL: A language for attribute-based access control in open systems, in: Principles of

Security and Trust, Springer, 2012, pp. 390–409.
[11] J. Cui, H. Zhong, X. Tang and J. Zhang, A fined-grained privacy-preserving access control protocol in wireless sensor

networks, in: International Conference on Utility and Cloud Computing, ACM, 2016, pp. 382–387. doi:10.1145/2996890.
3007850.

[12] S. Damen, J. den Hartog and N. Zannone, CollAC: Collaborative access control, in: Proceedings of International Confer-
ence on Collaboration Technologies and Systems, IEEE, 2014, pp. 142–149.

[13] D. Demmler, T. Schneider and M. Zohner, ABY – A framework for efficient mixed-protocol secure two-party computa-
tion, in: Proceedings of Annual Network and Distributed System Security Symposium, 2015.

[14] J. den Hartog and N. Zannone, Collaborative access decisions: Why has my decision not been enforced? in: Information
Systems Security, LNCS, Vol. 10063, Springer, 2016, pp. 109–130. doi:10.1007/978-3-319-49806-5_6.

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1145/2996890.3007850
https://doi.org/10.1145/2996890.3007850
https://doi.org/10.1007/978-3-319-49806-5_6

M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control 649

[15] J. den Hartog and N. Zannone, A policy framework for data fusion and derived data control, in: Proceedings of ACM
International Workshop on Attribute Based Access Control, ACM, 2016, pp. 47–57.

[16] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk and T. Toft, Privacy-preserving face recognition, in:
Proceedings of International Symposium on Privacy Enhancing Technologies, Springer, 2009, pp. 235–253. doi:10.1007/
978-3-642-03168-7_14.

[17] D. Evans, V. Kolesnikov and M. Rosulek, A pragmatic introduction to secure multi-party computation, Found. Trends
Priv. Secur. 2(2–3) (2018), 70–246. doi:10.1561/3300000019.

[18] R.L. Fogues, P.K. Murukannaiah, J.M. Such and M.P. Singh, Sharing policies in multiuser privacy scenarios: Incorporating
context, preferences, and arguments in decision making, ACM Trans. Comput.-Hum. Interact. 24(1) (2017), 5–1529.
doi:10.1145/3038920.

[19] M.J. Freedman, K. Nissim and B. Pinkas, Efficient private matching and set intersection, in: Advances in Cryptology,
Springer, 2004, pp. 1–19.

[20] M. Goldberg, How understanding relationships drives better data and analytics, 2016.
[21] O. Goldreich, The Foundations of Cryptography – Volume 2, Basic Applications, Cambridge University Press, 2004.
[22] O. Goldreich, S. Micali and A. Wigderson, How to play any mental game or a completeness theorem for protocols with

honest majority, in: Proceedings of Annual Symposium on Theory of Computing, ACM, 1987, pp. 218–229.
[23] C. Hazay and M. Venkitasubramaniam, On the power of secure two-party computation, J. Cryptol. 33(1) (2020), 271–318.

doi:10.1007/s00145-019-09314-2.
[24] D. He, J. Bu, S. Zhu, M. Yin, Y. Gao, H. Wang, S. Chan and C. Chen, Distributed privacy-preserving access control in a

single-owner multi-user sensor network, in: Proceedings of INFOCOM, IEEE, 2011, pp. 331–335.
[25] D. Huang, Q. Dong and Y. Zhu, Attribute-Based Encryption and Access Control, CRC Press, 2020.
[26] P. Ilia, B. Carminati, E. Ferrari, P. Fragopoulou and S. Ioannidis, SAMPAC: Socially-aware collaborative multi-party

access control, in: Proceedings of Conference on Data and Application Security and Privacy, ACM, 2017, pp. 71–82.
[27] P. Ilia, I. Polakis, E. Athanasopoulos, F. Maggi and S. Ioannidis, Face/off: Preventing privacy leakage from photos in

social networks, in: Proceedings of Conference on Computer and Communications Security, ACM, 2015, pp. 781–792.
[28] Y. Ishai, E. Kushilevitz, M. Prabhakaran, A. Sahai and C.-H. Yu, Secure protocol transformations, in: Advances in Cryp-

tology, Springer, 2016, pp. 430–458.
[29] W.H. Jobe, Functional completeness and canonical forms in many-valued logics, The Journal of Symbolic Logic 27(4)

(1962), 409–422. doi:10.2307/2964548.
[30] S. Kamara, P. Mohassel and M. Raykova, Outsourcing multi-party computation, IACR Cryptol. ePrint Arch. 2011 (2011),

272.
[31] A. Kapadia, P.P. Tsang and S.W. Smith, Attribute-based publishing with hidden credentials and hidden policies, in: Pro-

ceedings of Annual Network and Distributed System Security Symposium, 2007, pp. 179–192.
[32] M. Lepinksi, S. Micali and A. Shelat, Collusion-free protocols, in: Proceedings of Annual Symposium on Theory of

Computing, ACM, 2005, pp. 543–552.
[33] J. Li, N. Li and B. Ribeiro, Membership inference attacks and defenses in classification models, 2020.
[34] N. Li and W. Winsborough, Towards practical automated trust negotiation, in: Proceedings of International Workshop on

Policies for Distributed Systems and Networks, IEEE, 2002, pp. 92–103.
[35] R. Mahmudlu, J. den Hartog and N. Zannone, Data governance and transparency for collaborative systems, in: Data and

Applications Security and Privacy, LNCS, Vol. 9766, Springer, 2016, pp. 199–216.
[36] P. Mohassel and Y. Zhang, SecureML: A system for scalable privacy-preserving machine learning, in: Proceedings of

IEEE Symposium on Security and Privacy, IEEE, 2017, pp. 19–38.
[37] C. Morisset, T.A.C. Willemse and N. Zannone, Efficient extended ABAC evaluation, in: Proceedings of Symposium on

Access Control Models and Technologies, ACM, 2018, pp. 149–160.
[38] C. Morisset and N. Zannone, Reduction of access control decisions, in: Proceedings of Symposium on Access Control

Models and Technologies, ACM, 2014, pp. 53–62. doi:10.1145/2613087.2613106.
[39] M. Naehrig, K. Lauter and V. Vaikuntanathan, Can homomorphic encryption be practical? in: Proceedings of Cloud

Computing Security Workshop, ACM, 2011, pp. 113–124.
[40] M. Naor and K. Nissim, Communication complexity and secure function evaluation, CoRR (2001). arXiv:cs/0109011.
[41] M. Nateghizad, Z. Erkin and R.L. Lagendijk, Efficient and secure equality tests, in: Proceedings of International Workshop

on Information Forensics and Security, 2016, pp. 1–6.
[42] M. Nateghizad, Z. Erkin and R.L. Lagendijk, An efficient privacy-preserving comparison protocol in smart metering

systems, EURASIP Journal on Information Security 2016(1) (2016), 11. doi:10.1186/s13635-016-0033-4.
[43] T. Nishide, K. Yoneyama and K. Ohta, Attribute-based encryption with partially hidden encryptor-specified access struc-

tures, in: Proceedings of International Conference on Applied Cryptography and Network Security, Springer, 2008,
pp. 111–129. doi:10.1007/978-3-540-68914-0_7.

[44] OASIS, eXtensible Access Control Markup Language (XACML) Version 3.0, OASIS Standard, 2013.

https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/3038920
https://doi.org/10.1007/s00145-019-09314-2
https://doi.org/10.2307/2964548
https://doi.org/10.1145/2613087.2613106
http://arxiv.org/abs/arXiv:cs/0109011
https://doi.org/10.1186/s13635-016-0033-4
https://doi.org/10.1007/978-3-540-68914-0_7

650 M. Sheikhalishahi et al. / Privacy-preserving policy evaluation in multi-party access control

[45] F. Paci, A.C. Squicciarini and N. Zannone, Survey on access control for community-centered collaborative systems, ACM
Comput. Surv. 51(1) (2018), 6–1638.

[46] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Proceedings of International
Conference on Theory and Application of Cryptographic Techniques, Springer, 1999, pp. 223–238.

[47] B. Pinkas, T. Schneider, N.P. Smart and S.C. Williams, Secure two-party computation is practical, in: Advances in Cryp-
tology, LNCS, Vol. 5912, Springer-Verlag, 2009, pp. 250–267.

[48] S. Rajtmajer, A. Squicciarini, C. Griffin, S. Karumanchi and A. Tyagi, Constrained social-energy minimization for multi-
party sharing in online social networks, in: Proceedings of International Conference on Autonomous Agents & Multiagent
Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2016, pp. 680–688.

[49] S. Rajtmajer, A. Squicciarini, C. Griffin, S. Karumanchi and A. Tyagi, Constrained social-energy minimization for multi-
party sharing in online social networks, in: Proceedings of International Conference on Autonomous Agents & Multiagent
Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2016, pp. 680–688.

[50] A. Shamir, Identity-based cryptosystems and signature schemes, in: Advances in Cryptology, LNCS, Vol. 196, Springer,
1985, pp. 47–53. doi:10.1007/3-540-39568-7_5.

[51] M. Sheikhalishahi, G. Tillem, Z. Erkin and N. Zannone, Privacy-preserving multi-party access control, in: Proceedings of
International Workshop on Privacy in the Electronic Society, ACM, 2019.

[52] J.M. Such and N. Criado, Resolving multi-party privacy conflicts in social media, IEEE Transactions on Knowledge and
Data Engineering 28(7) (2016), 1851–1863. doi:10.1109/TKDE.2016.2539165.

[53] K. Thomas, C. Grier and D.M. Nicol, UnFriendly: Multi-party privacy risks in social networks, in: Privacy Enhancing
Technologies, LNCS, Vol. 6205, Springer, 2010, pp. 236–252. doi:10.1007/978-3-642-14527-8_14.

[54] D. Trivellato, N. Zannone and S. Etalle, GEM: A distributed goal evaluation algorithm for trust management, Theory and
Practice of Logic Programming 14(3) (2014), 293–337. doi:10.1017/S1471068412000397.

[55] J.R. Troncoso-Pastoriza, S. Katzenbeisser, M.U. Celik and A.N. Lemma, A secure multidimensional point inclusion pro-
tocol, in: Proceedings of Workshop on Multimedia & Security, 2007.

[56] F. Turkmen, J. den Hartog, S. Ranise and N. Zannone, Formal analysis of XACML policies using SMT, Computers &
Security 66 (2017), 185–203.

[57] A.C. Yao, Protocols for secure computations, in: Proceedings of Annual Symposium on Foundations of Computer Science,
IEEE, 1982, pp. 160–164.

[58] Y. Yao, N. Xiong, J.H. Park, L. Ma and J. Liu, Privacy-preserving max/min query in two-tiered wireless sensor networks,
Computers & Mathematics with Applications 65(9) (2013), 1318–1325. doi:10.1016/j.camwa.2012.02.003.

[59] L. Yu, S.M. Motipalli, D. Lee, P. Liu, H. Xu, Q. Liu, J. Tan and B. Luo, My friend leaks my privacy: Modeling and
analyzing privacy in social networks, in: Proceedings of Symposium on Access Control Models and Technologies, ACM,
2018, pp. 93–104.

[60] T. Yu, M. Winslett and K.E. Seamons, Supporting structured credentials and sensitive policies through interoperable
strategies for automated trust negotiation, ACM Trans. Inf. Syst. Secur. 6(1) (2003), 1–42. doi:10.1145/605434.605435.

[61] Y. Zhang, Q. Chen and S. Zhong, Efficient and privacy-preserving min and kth min computations in mobile sensing
systems, IEEE Transactions on Dependable and Secure Computing 14(1) (2017), 9–21.

[62] Y. Zhang, X. Chen, J. Li, D.S. Wong and H. Li, Anonymous attribute-based encryption supporting efficient decryption
test, in: Proceedings of ACM SIGSAC Symposium on Information, Computer and Communications Security, ACM, 2013,
pp. 511–516.

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1109/TKDE.2016.2539165
https://doi.org/10.1007/978-3-642-14527-8_14
https://doi.org/10.1017/S1471068412000397
https://doi.org/10.1016/j.camwa.2012.02.003
https://doi.org/10.1145/605434.605435

	Introduction
	Preliminaries
	Policy specification and evaluation
	Homomorphic encryption
	Secure function evaluation

	A framework for privacy-preserving multi-party access control
	Multi-party policy model
	Architecture
	Security assumptions

	Protocol design
	Data structures
	Target evaluation
	Policy evaluation

	Protocol implementation
	SFE-based protocols
	HE-based protocols
	Complexity analysis
	Protocol complexity
	Complexity of the protocol realization in SFE and HE

	Security analysis
	Protocol security analysis
	Framework security analysis

	Experiments
	Atomic target evaluation
	Combining operators
	Composite policies

	Related work
	Conclusions and future work
	Acknowledgments
	References

