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Abstract

We propose a new efficient automatic verification technique, Athena, for security
protocol analysis. It uses a new efficient representation — our extension to the Strand
Space Model, and utilizes techniques from both model checking and theorem proving ap-
proaches. Athena is fully automatic and is able to prove the correctness of many security
protocols with arbitrary number of concurrent runs. The run time for a typical protocol
from the literature, like the Needham-Schroeder protocol, is often a fraction of a second.

Athena exploits several different techniques that enable it to analyze infinite sets of
protocol runs and achieve such efficiency. Our extended Strand Space Model is a natural
and efficient representation for the problem domain. The security properties are specified
in a simple logic which permits both efficient proof search algorithms and has enough
expressive power to specify interesting properties. The automatic proof search procedure
borrows some efficient techniques from both model checking and theorem proving. We
believe that it is the right combination of the new compact representation and all the
techniques that actually makes Athena successful in fast and automatic verification of
security protocols.
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1 Introduction

Security protocols are communication protocols that use cryptography to achieve goals such
as authentication and key distribution. They are the basis of any secure system, and usually
have to be redesigned as new systems and applications emerge. However, many examples
have shown that security protocols may contain subtle errors that remain undiscovered for
years, even when the protocols are carefully designed. Therefore, we cannot rely on ad hoc
and informal ways of reasoning, and it is crucial to apply formal methods to security protocol
analysis.

One of the promising directions in this area is the use of automatic tools. Automatic tools
have the practical advantage that they are easy to use, and they have been successfully applied
to find flaws in some proposed protocols. Unfortunately, previously available tools severely
suffer from the state space explosion which prevents them from analyzing complicated proto-
cols. This is mainly due to the complexity of the intruder behavior, asynchronous composi-
tion, and symmetry redundancy in the traditional verification approaches. Most of these tools
are also limited to checking the properties of a security protocol under small configurations,
e.g. with two initiators and two responders.

In this paper we propose a new automatic verification algorithm, Athena. Athena can pro-
vide proofs of properties of a security protocol under arbitrary configurations, and exploits
several state space reduction techniques which greatly reduce the state space explosion prob-
lem.

1.1 Related Work

Previous automatic tools for security protocol analysis include general-purpose model check-
ers such as FDR [18, 15] and Mur � [26], and special-purpose model checkers, for example,
the Interrogator [25] and Brutus [10]. These tools start with an initial state of a protocol execu-
tion and then exhaustively search through all possible sequences of actions of both legitimate
principals and a modeled attacker to see whether an attack could happen. All these tools have
been successfully applied to find attacks on protocols. But they all suffer from two main
problems:

1. Bounded number of principles. All of these tools have to specify in advance the maxi-
mum number of principals that can participate in the protocol, which means that they
can only check whether a protocol is correct for a limited number of participants. Even
if they do not find an attack on the protocol, it is still possible that the protocol might
have an attack with a higher number of participants. Lowe has overcome this problem in
some cases by proving manually that a small number of participants is enough to prove
the correctness for arbitrary number of runs [18, 20].

2. State space explosion problem. Although these tools explore a number of state reduction
techniques, they still suffer from the state space explosion problem. This restricts their
applicability to protocols with only a small number of participants, e.g. three or five,
which send and receive a small number of messages in each protocol run.
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The above techniques are based on the traditional trace-based model (TBM), where each
principal is modeled by a process. The global state space of the protocol is a Cartesian prod-
uct of local state spaces of individual processes. The state transition of each local process is
based on sending or receiving a message. The processes are composed asynchronously, and
the global transition relation is an interleaving of local transitions. Due to such parallel com-
position and the interleaving semantics, the number of states and transitions to be explored
grows exponentially with the number of participants involved in the protocol [30, 31]. Hence,
these approaches suffer severely from the state space explosion problem, and are often only
able to verify protocols with small number of participants, e.g. three or five. This problem is
especially acute for the explicit state enumeration techniques.

Multiple concurrent runs of a security protocol may yield many principals with identical
roles, and in this case the transition graph often possesses a lot of symmetries. Although some
reduction techniques have been used to reduce the search space, including partial order and
symmetry reductions [8], a large number of states and transitions still have to be checked
unnecessarily.

The NRL Protocol Analyzer [22] is another special-purpose tool that uses a theorem prov-
ing approach for security protocol analysis. It starts from an insecure state and performs a
backward search trying to prove that this insecure state is unreachable. It can use many the-
orem proving techniques such as inductive methods. The advantage of this approach is that
it can prove a protocol correct for arbitrary number of participants. However, it often re-
quires non-trivial amount of human interaction and expertise, and the running time could be
much slower than in the model checking approach [24]. The NRL Protocol Analyzer reduces
symmetry redundancy by using symbolic variables. But it also uses the traditional TBM and
asynchronous composition, and hence, is still not optimal in terms of the state space explosion
problem.

There are also other approaches which use general purpose theorem provers such as Is-
abelle [29]. These approaches require more expertise with theorem provers and more human
interaction, and have the disadvantage that they cannot generate counterexamples directly.

Apart from the above approaches, there are also some tools [4, 5, 17] based on belief logics
such as BAN logic [6] and GNY logic [13], that have been used to find flaws in some protocols.

1.2 Overview of Our Techniques

We use our extension to the Strand Space Model (SSM) instead of the traditional TBM to
represent protocol executions. Thayer, Herzog and Guttman proposed SSM for protocol rep-
resentation and demonstrated how to use SSM to prove certain security properties manually,
for example authentication and secrecy [36]. (Notice that SSM is a new model for represent-
ing protocol executions and has nothing to do with strands in the context of category theory or
other mathematical theories.) Because SSM has the advantage that it contains the exact causal
relation information, the authors have been able to derive much simpler proofs of a protocol’s
properties in comparison with the traditional TBM. However, their proof technique requires
a lot of human insight and will be difficult to automate. We have extended their model and
developed a new algorithm, Athena, for analyzing security protocols automatically.
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We have designed a new logic suitable for SSM that can express various security prop-
erties, including authentication, secrecy, and electronic commerce properties. We have also
developed an automatic procedure for evaluating well-formed formulas in this logic. If the
evaluation procedure terminates, it generates either a proof or a counterexample, depending
on the validity of the formula. The validation procedure is not guaranteed to terminate, but
it terminates for the protocols we experimented with. Even when the procedure does not ter-
minate for a general case (when we allow arbitrary configurations of the protocol execution),
termination can be forced by bounding the number of concurrent protocol runs and the length
of messages. This is similar to the bounds in current model checkers such as FDR, Mur � , and
Brutus.

We formulate our verification procedure in terms of a proof search in a very specialized
proof system. Athena first transforms the security property to be verified into an initial sequent
which contains an initial state. It then applies a small set of inference rules with certain
decision procedures to the states, building a proof tree, until it either completes the proof or
refutes a sequent. In the latter case Athena reports the protocol to be incorrect, and the state
of the refuted sequent represents a counterexample, or a successful attack on the protocol.

One main difference between Athena and previous approaches is that Athena uses funda-
mentally different representation of protocol executions. As described above, most of the
existing approaches are based on TBM, in which each principal is modeled by a process, and
its local transition is based on sending/receiving a message. The protocol model in TBM is
the asynchronous parallel composition of these processes. Instead, Athena uses our extension
to SSM, a much more compact state structure based on semi-bundles and goal-bindings. The
goal-binding is the causal relation “ � ” that captures the exact information about the origins
of messages in a protocol execution. A set of protocol runs that differ only in the order of
interleaving executions of individual parties is in fact represented by one state in Athena, and
Athena can reason about all such executions simultaneously. This form of the state structure
allows us to develop efficient state search procedures avoiding the exponential growth of the
state space due to asynchronous composition.

Similarly to the NRL Protocol Analyzer, Athena also takes advantage of symbolic state rep-
resentation, in contrast to the explicit representation used in most of previous model checking
approaches. In our approach, we allow a state to contain free variables. In a way, a state is
parameterized by these free variables and, therefore, represents a (possibly infinite) set of con-
crete protocol executions. Thus, Athena can represent states and state transitions efficiently,
and in particular, naturally reduces the symmetry redundancy problem.

To reduce the search space further, our approach can use pruning theorems to prove early
that some states do not contribute to the final result, and we can prune such states from the
search space immediately. Pruning theorems can be either specific to a particular protocol,
or general theorems that are not restricted to any concrete example. In the latter case they
can be proven once and for all and included in the core of the tool. This lets our model
checker incorporate results from theorem proving easily and systematically. Note that the
interface for supplying user-defined pruning theorems is mainly for convenience reasons for
advanced users. For non-expert users, it is not required and often unnecessary to supply their
own pruning theorems. Currently Athena contains two built-in pruning theorems and they are
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shown to be effective and sufficient in most cases in our experiments.
Given a security property formula, Athena first transforms this formula into an initial state.

(Note that as explained later in section 4, this initial state is not an insecure state but rather
a state which represents a possibly infinite set of protocol executions which satisfy certain
properties.) The proof search then starts with this initial state, and new events and participants
are added only when necessary according to the exact causal relation. Hence, we reduce the
search space by avoiding the exploration of many unnecessary states and paths. In contrast,
with forward search all the participating principals have to be pre-stated, which means that
one might have to explore many more unnecessary states and paths.

As demonstrated by our experiments (Section 5), all these techniques dramatically reduce
the state space explored, and our tool outperforms previous automatic approaches. We discuss
various techniques used in Athena in more detail in Section 4.

The paper is organized as follows. We first review some background and the notion of SSM
(section 2). Then we introduce a logic to reason about strand spaces and show how to use
this logic to specify security properties (section 3). Next we explain our verification algorithm
(section 4), show some experimental results and further discussion (section 5), and finally
conclude (section 6).

2 Strand Space Model

This section is primarily a review of concepts developed by Thayer, Herzog and Guttman [36].
First, we explain the notion of terms that are used to represent the messages in the protocols.
Then, we introduce strands, strand spaces, and bundles, and show how to represent protocols
using strands. Finally, we give a formal description of the penetrator model.

2.1 Message Terms

The set of atomic terms is the union of a set of Text terms
�

and a set of Key terms � , where
� Text terms from

�
contain several different types of terms, such as principal names,

nonces, or bank account numbers.� Key terms from � contains a set of keys disjoint from
�

. In asymmetric crypto systems,�����
(for

� � � ) represents
�

’s opposite member in a public-private key pair. In
symmetric key systems,

�	����
��
.

The set of all terms 
 is defined inductively as follows:

� If � is a Text term or a Key term, then � is a term.� If � is a term and � is a Key term, then ������� is a term. This represents encryption.� If � � and ��� are terms, then � ��� ��� is a term. This represents concatenation.

We use the free encryption assumption, where

������� 
 �����������! !" � 
 ���$# �%
�� ��&
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Thayer, Herzog and Guttman defined in [36] the subterm relation � : a term � � is a subterm
of term � � if � � appears in � � . We also define an interm relation � , such that � � is an interm of
� � if � � can be extracted from � � without application of the decryption operation. The formal
definition of the two relations is the following.

� subterm relation � :
– ����� for � � � iff � 
 � ; or
– ����� for � � � iff � 
 � ; or
– ��� ��� ��� iff �����
	�� 
 ��� ��� ; or
– �����
� iff �����
	�������	�� 
 �
� .

� interm relation � :
– ����� for � � � iff � 
 � ; or
– ����� for � � � iff � 
 � ; or
– ��� ��� ��� iff � 
 ��� ��� ; or
– �����
� iff �����
	�������	�� 
 �
� .

2.2 SSM : Strands, Strand Spaces and Bundles

The notions in this subsection are mainly from the paper [36]. We extend them slightly to
make them applicable to electronic commerce protocols.

Actions. The set of actions Act that principals can take during an execution of a protocol
include external actions such as send and receive, and user-defined internal actions such as
debit, credit, etc.. In the rest of the paper, we will only use send and receive for simplicity,
and denote them � and � respectively. That is, we will always assume �
��� 
 ������� � .

Events. An event is a pair ���������! #"$�%��& , where �������! #" � �'��� , and � � 
 is the argument of
the action from the set of terms 
 . Since we only have send ( � ) and receive ( � ) actions, we
denote events as signed terms �(� and �)� . The set of events, or signed terms, is denoted by* 
 , and the set of finite sequences of signed terms is + * 

,.- .

Strands and Strand Spaces. A protocol defines a sequence of events for each principal’s
role. A strand represents a sequence of a principal’s actions in a particular protocol run, and
is an instance of a role.

A strand space is a set of strands / with a trace mapping

0.132 /54 + * 
(, - &
1. A node is a pair �768�:97& , with 6 � / and 9 an integer satisfying ;�<=9><@?BADC
E�F:GH+ 0.1 +!6I,�, .

We say that J 
 �!6K��9L& belongs to the strand 6 , denoted by J � 6 . Clearly, every node
belongs to a unique strand. The set of nodes is denoted by M .

2. If J 
 �768�:9L& � M , then NPOIQKR.S
+TJU, 
 9 and V 0.1XW OIQY+ZJU, 
 6 . If + 0.1 +!6I,�,\[ 
^] � , where] � ������� � , then
0 R 1!_ +TJU, 
 � and V.Na`bO
+ZJU, 
c]

. In other words, a node is a particular
event in a given strand, and we will often use nodes as events where it is unambiguous.
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3. If J � �:J � � M , then J � 4 J � means that J � 
 �(� and J � 
 �)� for some term � . This
represents sending a message � from J � to J � .

4. If J � �:J � � M , then J � " J � means that J � and J � occur in the same strand with
N OIQKR S
+TJ � , 
 NPOIQKR.S
+TJ � ,U��; . This represents an event J � followed immediately by J � .

5. A term � originates from a node J � M iff V.Na` Ob+ZJU, 
 � and � � 0 R 1!_ +TJ , , and whenever
J � precedes J on the same strand, � �� 0 R 1�_ +ZJ � , .

6. A term � uniquely originates from node J iff � originates on a unique node J . Nonces
and other freshly generated terms are usually uniquely originated.

We will also use M to refer to the directed graph +7M ��� , whose vertices are nodes and � 

+!4 � "�, is the set of edges that combines both types of relations J � 4 J � and J � " J � .

Bundles. A bundle represents a protocol execution under some configuration.
A bundle � 
 +LM�� ���	�U, is a subgraph of M corresponding to some strand space, �
��� +!4

� "�, is the set of edges and 
���� M is the set of nodes incident with the edges in ��� , and
the following properties hold:

� � is a non-empty, finite and acyclic graph;� If J � � � and V.Na` O +TJ � , 
 � , then there is a unique J � such that J � 4 J � is an edge in
� ;� If J � � � and J � " J � , then J � " J � is an edge in � ;

We say that a strand 6 belongs to � ( 6 � � ) if for any node J � 6 , J � 
�� . In some cases we
treat a bundle as a set of strands ��6���6 � � � . Note, that this set is closed under the substrand
relation. A strand 6 is called a substrand of 6 � (denoted 6��c6 � ) if 6 � contains all the nodes of
6 .

Causal Precedence. Let / be a strand space. For nodes J � � J � � / , define J ���	� J � iff
there is a sequence of zero or more edges of 4 and " leading from J � to J � in / . The relation
�	� expresses a causal precedence. In other words, �
� is a reflexive and transitive closure of
4 and " :

�	� 
 +!4 � "�, - &
Lemma 2.1. For a bundle � , the relation � � is a partial order, i.e. a reflexive, antisymmetric,
transitive relation. In addition, every non-empty subset of the nodes in � has � � -minimal
members.

The proof of this lemma can be found in [36].

2.3 Protocol Specification Using Strands

A protocol usually contains several roles, such as initiators, responders and servers. The
sequence of actions of each principal type is predefined by the protocol and represented as a
role, or a parameterized strand. Parameters usually include principal names and nonces. We
denote a role with parameters by �. ������ parameter list � . Instantiating parameters of a role yields
a particular strand representing a trace of a principal in a protocol run. A legal execution of a
protocol forms a bundle, in which the strands of the legitimate principals are restricted to the
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predefined traces. The strands of the legitimate principals are referred to as regular strands.
A bundle can also contain penetrator strands. We explain them in more detail in the next
subsection. We now give an example of the Needham-Schroeder protocol [27] with the fix
given by Gavin Lowe in [18]. We will refer to this protocol as NSL in the rest of the paper.
Using the standard notation, the protocol is as follows.

1. 
 4 � 2 ��
�� � 
 �����
2. � 4 
 2 ��
�� � 
�� � � �����
3. 
 4 � 2 ��
�� �����
There are two roles in this protocol: initiator and responder. The strands of the two roles

are the following :
	�

����� ��������� � ��� ��� �����! � ��������� � ��� ���
"$#&%('*) � ��+ �-, ��.0/ "$#&%21�) � ��+ �3, ��.�/4445

444567#8%21�) � �9+ � � + ��, �;:</ 6=#8%('$) � �9+ � � + ��, �;:</4445
4445>=#8%('*) � � , � . / >=#8%21�) � � , � . /

where the parameter list contains A and B as principal names, 
?� and 
�� as nonces. 
��
uniquely originates on the first node of the initiator’s strand @ JY9T� � 
��A����
?�#��
�� � , and 
�� uniquely
originates on the second node of the responder’s strand B7CI6
D � 
 �E����
?�#��
�� � . A responder’s
strand instantiated with parameters � 
=F��A�GF���
���FD��
��HF�� is the following :

	�

����� � F ��� F ��� ��F ��� �HF
�
%('*) � �0FI+ � F , ��.KJL/4445%21G) � ��FM+ � �HF + � F , � : J /4445%('*) � �HF , � .KJ /

2.4 Instantiation and Substitution

In our verification algorithm described in Section 4 we use unification to instantiate roles in
a protocol. This section defines the basic notions of substitution, unification, and the most
general unifier.
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Definition 2.2. A substitution
] 
 ���� � �� � is a mapping of variables �� to terms �� . The substi-

tuted terms do not have to be closed and may contain free variables that can later be replaced
by other substitutions.

Applying a substitution
]

to a particular term � � yields a new term
] +Z� � , obtained from � � by

simultaneously replacing all free variables �� in � � with terms
] + �� , .

We will also apply a substitution to strands, roles, and sets of strands or roles with the
obvious meaning. In particular, applying a substitution to a role creates a strand which is an
instance of that role. The formal parameters of the role act in this case as free variables.

Definition 2.3. A substitution
]

is called a unifier of terms � and � � if ] +Z� , 
 ] +X� � , .
Definition 2.4. A substitution

]
is a most general unifier (MGU) of � and � � if it is a unifier,

and for any other unifier
] � there exists a substitution � such that

] � 
 ]�� � .

2.5 The Penetrator Model

We use a similar penetrator model as the one in [36]. The penetrator � has a set of initial
knowledge init-info +�� , which usually includes the principal names and the set of keys

�
	
that

are known initially to the penetrator.
��	

usually contains all the public keys, all the private
keys of the penetrator, and all the symmetric keys initially shared between the penetrator and
principals playing by the protocol rules. It can also contain keys to model known-key attacks.

A penetrator can intercept messages and generate new messages that are derivable from
its initial knowledge and the messages it intercepts. These actions are modeled by a set of
penetrator roles.

A penetrator role is one of the following, where � and � are terms:

�
� � � � . Atomic message: �!�
� & where � � init-info +���, and � � � .��� � � � . Flushing: � � � & .��� � � � . Tee: � � � � �'� � �'�
& .��� �a� � � � . Concatenation: � � � �D�
� � �'� � & .��� �a� � � � . Separation into components: � � � � � �'� � �>� & .��� � � � . Key: �!� � & where � � ��	 .��� � � � � � . Encryption: � � � ���'�U�.� ��� ����& .��� � � � � � . Decryption: � � � ��� ��� ��� �����.� � & .
Here the notation � � � � � & & &U�D� � ��� �'� � � � & & &U�.�
� � � & for a strand means that the terms � � � & & & � � �

can be received in any order, and terms � � � � & & &U��� � � can be sent in any order, but all terms � [ must
be received before any of the � �� is sent. That is, for instance, both strands

� � " �
�!" �'� �
and

�'��" � � " �'� �
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are � � � � � � type of penetrator strands.
Athena has flexibility in incorporating new penetrator models easily by modifying the pen-

etrator strands and the initial knowledge of the penetrator. In this paper we assume that the set
of penetrator roles is � 
 � � � � � � � � � � � � � � � � � .

3 Logic and Model

In this section, we introduce a formal model and a logic to reason about security protocols
using the SSM representation, and show how various security properties are expressed in this
logic.

3.1 Syntax

The syntax of terms consists of strand constants ( 68� 6 � � & & & ) and bundle variables ( �>� & & & ). A
strand constant may represent a partial strand, and in particular, a single node can be consid-
ered as a strand constant.

Propositional formulas are defined as follows:

� 6 � � is an (atomic) propositional formula;����� � and � � # � � are propositional formulas if � � and � � are propositional formulas.

Finally, well-formed formulas (wffs) are:

��� , ��� � , � � # � � ;��� � & � , where � is a propositional formula, which doesn’t contain any other variable than
� .

Here � is a propositional formula, � � and � � are wffs, and � is a bundle variable.
Notice, that in a wff � � & � , the formula � needs to be propositional, and cannot contain any

other variables than � . In addition, we allow only negative occurrences of atomic formulas
in � that reference penetrator strands. An occurrence of an atomic formula 	 in � is called
negative if 	 appears under the scope of odd number of negations. This restriction ensures
the validity of counterexamples that our algorithm generates; namely, it is needed to apply
Proposition 4.2 from Section 4.2.

We also use the obvious abbreviations:

� � 	 � ��
 � + ��� � # ��� ��, � � 
 " � ��
 ��� � 	 � �� �  !" � ��
 + � � 
 " � �., # + � � 
 " � � , 
 � & � 
 ��� � & ���� � � 
 ������ 6
� �
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3.2 Semantics

Let the set of nodes be M . For a given protocol D , define the set of all strands for this protocol
(both regular and penetrator ones) as / 	 ; its execution traces form a set of bundles � 	 . A model� 	

for a given protocol D is a tuple
� 	 
 +LM � / 	 ��� 	 ��� , , where � is the interpretation of

strand constants and bundle variables. We write
� � 
�� � �'+ ��,�� � � for some bundle � to

denote a new model
� � which is identical to

�
except that � � + ��, 
 � . The semantics of

formulas in our logic is the following:

� �'+!6I, � / 	 and �'+ ��, � � 	 are a strand and a bundle respectively, that are assigned to
the constant 6 and the variable � by the interpretation � .� � � 
 6 � � iff �'+!6I, � �'+ ��, .� If � is a propositional formula or a wff, then

� � 
 ��� iff
� �� 
 � .� If � � and � � are propositional formulas or wffs, then

� � 
 � � # � � iff
� � 
 � � and� � 
 � � .� � � 
 � � & � iff � � � � 	 & � � �'+ ��,	� ��� � 
 � .

3.3 Specifying Security Properties in the Logic

Our logic can express a variety of security properties, including ones for authentication, se-
crecy, and electronic commerce. In this paper we mainly focus on the authentication and
secrecy. We use similar ways for representing security properties as in [36], however, we
formulate them using well-formed formulas in our logic.

Authentication.

Gavin Lowe [19] proposed agreement properties for authentication protocols. A protocol
guarantees an agreement property for a participant � (e.g. acting as a responder) for a certain
vector of parameters �� , if each time the principal � completes a run of the protocol as a
responder using �� , supposedly with 
 , then there is a unique run of the protocol with the
principal 
 initiating a session with the same parameters �� , supposedly with � .

A weaker non-injective agreement does not ensure uniqueness, but requires only that each
time a principal � completes a run of the protocol as responder using �� , supposedly with 
 ,
then there is a run of the protocol with the principal 
 as the initiator using �� , supposedly with
� .

The non-injective agreement property can be specified in our logic as:

� � &�
 �
��� + �� , � � 
 " ��" �X� + �� , � � �
where 
 �
���3+ �� , and � " �X� + �� , are the responder and the initiator strands instantiated with pa-
rameters �� . For example, in the NSL protocol, the non-injective agreement property can be
specified as � � &�
 �
��� � 
 �A� ��
��#��
�� � � � 
 " ��" �X� � 
��A����
�����
�� � � � &
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Here �� 
 � 
 �A� ��
��#��
�� � . Because of the freshness of the nonces generated in the protocol
run, usually the agreement property can be proven after the non-injective agreement property
is proven, with the argument that there cannot be two strands ��" �X� + �� , � � since the nonces
in ��" �X�D+ �� , are uniquely originated from only one strand. Namely, in the NSL protocol 
 � is
uniquely-originated in the strand � " �X� � 
��A����
�����
�� � .
Secrecy.

A value � is secret in a strand set
�

if for every bundle � that contains
�

there is no way for
the intruder to receive � in cleartext; that is, the strand � ����� does not appear in any � :

� � & � � � 
 " � � ����� � � &
For example, when

�
contains only a single responder strand 
 �
���3+ �� , , we can specify the

secrecy property as: � � & � 
 �
���%+ �� , ��� � 
 " � � ����� � � &
4 Verification Algorithm

4.1 The Intuition

In this section, we explain how to check the validity of a well-formed formula � in our logic.
Mathematically, we state our verification problem as a model checking problem: given a
protocol � (as a model), check that it satisfies a formula � . The actual verification algorithm,
however, is significantly different from the classical model checking algorithms. We only
consider the most interesting case of � 
 � � & � in this paper, because the other cases are
relatively straightforward. Notice that the � -quantifier distributes over conjunction. Since any
propositional formula � can be put in a conjunctive normal form (CNF), we assume that � has
the form � 


�
[ +�� �

� 	 [ � 	�� ��� [ ��, �
where 	 [ � and � � � are atomic formulas. Then we can transform the entire formula � into a
special form:

� 
 � � & �
[
+ � � � 	 [ � 	 � � � [ ��,



�
[
� � &
+ � � � 	 [ � 	 � � � [ ��,



�
[
� � &
+ � � 	 [ � 
 " � ��� [ ��, &

Therefore, we only need to discuss the verification procedure for a formula of the form

� 
 � � & + � 	 
 " � 
 ,�� (4.1)
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where
	 
 � 	 � � and 
 
 � � ��� are sets of formulas. Note that, due to the syntactic restriction,

the atomic formulas in the set 
 can only contain regular strands (see Section 3.1).
If
	

is empty, then � 
 � � & +�� 
 ,�� and the entire formula is trivially false, because each

�
� 
 is false for the empty bundle. Hence, we can assume that the antecedent of the

implication is never empty. If the set of formulas 
 is empty, then our formula becomes

� 
 � � & + � 	 
 " � W�� V R�,��
which is a particular case of Formula 4.1 and is covered by our decision procedure.

We represent our verification problem in a sequent form:

�����
	�� � (4.2)

where � and � are sets of strands from the assumptions
	

and conclusions 
 of � in For-
mula 4.1 respectively. That is,

� 
 ��6 �8+!6 � � , � 	 � � 
 ��6�� +�6 � ��, � 
 � &
Moreover, � is either empty or contains only regular strands, whereas � is always non-empty
and may contain penetrator strands in addition to regular ones.

We write ��
 � �
��
to denote that there is a strand in � which is a substrand of some

strand in � .
The semantics of the sequent is defined as follows:

� � ������	���� ��� 
 � � � ����&�� � � 
 " ��
 � �
�� & (4.3)

That is, for any bundle � representing a run of the protocol � , if ��� � , then ��
 � �
��
. It

is easy to see that this sequent is true if and only if the original formula � (4.1) is true for the
protocol � .

According to the semantics, in order to prove this sequent we need to consider all possible
bundles that contain � and check that they all have at least one strand from � . We formulate
our algorithm as a proof search procedure in a very specialized proof system.

First, we encode bundles in a special representation called state. Roughly speaking, a state
can be viewed as a collection of properties of bundles, and we say that a state � represents the
set of bundles satisfying these properties. The initial state �2F#+�� ���$, specifies that any bundle
it represents must satisfy the protocol � and contain all of the strands from � . Therefore, to
prove our original property, it is sufficient to prove that any bundle represented by the initial
state has common strands with � :

�!FI+�� ��� ,�	 �!�
������	�� NPO8N 0 &

The new sequent � F"	 �#� can either be solved by a decision procedure directly if it applies
(rule $ O W%� ), or split into multiple sequents � � 	 �&� � & & &U����'#	 �(� which are then proven
separately (rule V*) � N 0 ). The precise definitions and formal semantics of the sequents are given
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in Section 4.2. To simplify the notation, we will omit the subscript � in the sequent � 	 � �
when the protocol � is unambiguous from the context.

Thus, the overall verification procedure is a proof search in a very specialized proof system
described in detail in Section 4.3, coupled with a separate algorithm for splitting a state in the
V ) � N 0 rule that we introduce in Section 4.4. The resulting verification procedure allows further
optimizations which we outline in Section 4.5.

4.2 Compact State Representation

Recall that a bundle is an acyclic graph backward closed under “ " ” and “ 4 ”. It is easy to
keep the graph acyclic and backward closed under “ " ” while completing it to a bundle, since
each strand is finite and usually small. The difficult problem is to make it backward closed
under “ 4 ”, because generally there might be an infinite number of possible ways of doing
it, and we need to consider all possibilities. (Closing under “ 4 ” means that every received
message must be sent by some other node in the bundle.)

One of the reasons for infinite number of possibilities is unbounded forwarding of messages
by the intruder: a node J may receive a message either directly from J � , or there may be
arbitrary many intermediate nodes that forward the same message from J � to J . As we will
show later, only the first sender matters, and such forwarding does not change the validity of
formulas. Hence, we introduce the semi-bundle structure and the goal-binding mechanism
which effectively ignores the infinite message forwarding along with other redundancies in
protocol executions, such as the order of interleaving actions. Note that some theorem proving
techniques might be able to use forwarding theorems to achieve similar goals [29], but here
we simply use the compact state structures without applying any forwarding theorems in the
protocol analysis process.

Semi-bundles. A semi-bundle � 
 + 
 � �����>, is a subgraph of 
 , where ��� � " is the
set of edges, 
 � is the set of nodes incident to the edges in ��� , and the following properties
hold:

� 
 � is non-empty and finite;� If J � � 
 � and J � " J � , then J � " J � � ��� ;� � is acyclic.

Goals. A goal is a pair +X� �:JU, , where V N ` Ob+TJ , 
 � , � � 0 R 1!_ +ZJU, , and � is not a concatenation
of terms. A goal-set of a bundle � is the set of all the goals in � , denoted as

� + ��, .
Goal Bindings. If � is a bundle, then a goal +Z� ��JU, is bound to node J � if J � is a � � -minimal

member of the set

�

 ��� � � ��� � 0 R 1!_ + � , , V N ` Ob+ � , 
 � , and � � J � &

We denote the goal binding relation as J �
�

� J . The node J � is called a binder of +X� �:JU, . When

� is clear from the context, we write J � � J to denote J �
�

� J for simplicity.
It is easy to show that any goal in a bundle has a binder.
States. A state is a tuple �	� � � � ��& , where
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� � is a semi-bundle;� �
is the set of unbound goals of � ; and�

� is the relation for the goal-bindings.

Note that
�

is redundant and can be computed from � and � . We keep it in the state structure
for the convenience of illustration.

We say that a strand 6 is in a state � 
 � � � � � ��& , denoted 6 � � , whenever 6 � � ; similarly,� ��� for a set of strands
�

means
� � � . We also extend the notion of substitution from

Section 2.4 to states in the obvious way. For a substitution
]

, define

] +�� � � � � ��&:, 
 � ] +	� ,�� ] + � , � ] + ��, & �
where

] + � , and
] + � , are sets of corresponding elements in which all terms are substituted by]

, and ] + ��, 

�
+ ] +TJ � ,�� ] +X� ,�� ] +ZJU,�, where J �

�
� J�� &

That is,
] +TJ � ,���� �	�� �

] +ZJU, iff J �
�

� J , where � �

 ] + ��, .

Bundle Sets. We define the bundle set 
 + �T, of a state � 
 � � � � � � � � � & for a protocol � as
follows.

A bundle � � 
 + �T, iff

1. � � is a subgraph of � ;
2. The � relation in � is consistent with 4 in � ; that is, for every J �

�
� � J in � � there is a

path J � 
 J � �:J �D� & & &U�:J � 
 J in � such that

(a) J � sends a message � such that � � � , and
(b) there is no J � � in � that sends a message � � such that � � � � , and there is a path

from J � � to J � .
Intuitively, the term � must originate in J � and be forwarded to J .

Since the � � is consistent with the 4 relation in any bundle � � 
 + �T, , we can define the � �
relation between nodes in a state � as the reflexive and transitive closure of + � � � "�, , and it
will be consistent with the ��� relation for any � � 
 + �T, .
Definition 4.1. Semantics of the sequent � 	 � (introduced in section 4.1) is defined as fol-
lows:

� � � 	 ����� � 
 � � � 
 + �T, & ��
 � �
�� & (4.4)

Proposition 4.2. If
�

is empty in a state � 
 � � � � � ��& , then there exists a bundle � such that
� � 
 + �T, , and � and � contain the same strands except that � might contain some additional
penetrator strands of type � , � , or � . (Note, that � may already contain some penetrator
strands.)
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Proof sketch. Let � be the graph which contains � and the edges defined by the relation “ � ”.
For each J � � J � in � , we can add new penetrator strands of type � , � and � and the
correspondent “ 4 ” edges, such that we can find a path from J � to J � connected by a sequence
of edges of “ 4 ” and “ " ”. We then eliminate the edge J � � J � . After we remove all the
“ � ” edges in this way, we get a graph � � which only contains edges of“ 4 ” and “ " ”. It is
easy to prove that � � is a bundle. Since we only add penetrator strands of type � , � or � in
the transformation, � � and � have the same regular strands.

4.3 The Proof System and Proof Search Procedure

The skeleton of our verification algorithm is an automatic proof search procedure for the initial
sequent ������	�� (Formula 4.2). Our proof system consists of three inference rules which we
discuss in the rest of this subsection together with the actual proof search algorithm.

4.3.1 Inference Rules

Soundness and Invertibility. An inference rule is called invertible if, whenever the conclu-
sion is provable, then all of the premisses are provable. To simplify the presentation, we use
an equivalent dual definition of the invertibility: whenever one of the premisses of a rule is
proven false, its conclusion is also false.

The invertibility property is useful for disproving a sequent and providing a counterexample
— a successful attack on the protocol. It also allows to search for the proof without backtrack-
ing. In the following, we prove that each inference rule is sound and invertible.
Init rule.
In the first step of the proof search we convert an initial sequent ����� 	 � (Formula 4.2) to
another type of sequent � 	�� , where � is a state:

�!FI+�� ���$,�	��
��� �
	!� N O8N 0 � (4.5)

The initial state � F#+�� ��� , specifies that any bundle it represents must satisfy the protocol � and
contain all the strands from � . Let ��� be the smallest semi-bundle that contains � ; that is, ��� is
the backward closure of � over the " relation. Then the initial state is �2F#+�� ���$, 
 � ��� � � � � � & ,
where the set of unbound goals

�
� is computed from ��� . We do not bind any goals in the

initial state, therefore the � relation is empty.
From the construction of the initial state �HF 
 �!FI+�� ��� , we can see that it satisfies the fol-

lowing properties:
� � �!F� � & � � � 
 " � � 
 + �!F , &

It is easily to see that the N O8N 0 rule is sound and invertible.
Final rule.
A sequent � 	�� is called a leaf sequent if ��
!� �
 �

. When � 	�� is a leaf sequent, we apply
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the $ O W%� inference rule:

��
�� �
 �
� 	�� $ O W%� � (4.6)

The invertibility of this rule is trivial, and the soundness follows from the fact that any bundle
� � 
 + �T, is a supergraph of � � , thus, � has a non-empty intersection with any � � 
 + �T, .

If the $ O W%� rule does not apply and
� 
 �

, then the current sequent � 	 � is considered
proven false, or refuted. This follows directly from the Proposition 4.2. Recall that � contains
only regular strands. By Proposition 4.2 there exists a bundle � � 
 + �T, such that for any
regular strand 6 , 6 � � � if and only if 6 � � . Since no single strand from � is in � � , we
conclude that it cannot be in � either, which means 
 � � 
 + �T, & � 
�� 
�� & Therefore, � 	��
is false. Since all of our inference rules are invertible, this means that the original sequent is
also false, and the refuted sequent represents a counterexample, or a successful attack on the
protocol.
Split rule.
When the $ O W%� rule does not apply and

� �
��
, we apply the V ) � N 0 rule:

� � 	�� � � � � '�	�� � where � � � � & & &U����' � 
�� + ��,
� 	�� V*) � N 0 & (4.7)

This rule splits the state � in the current sequent into several next states � � � & & &U����' using the
next state function

�
. This yields a set of new sequents which are then proven separately.

The next state function
� + �T, is explained in more detail later in Section 4.4. Note that

� + �T,
could be empty; in this case the V ) � N 0 rule successfully finishes the proof of the sequent. When� + �T, 
 �

, the state � contains a contradiction, so its bundle set is empty, and, therefore, the
sequent is vacuously true. We will return to this special case in Section 4.5 when we discuss
some optimizations to the proof search algorithm.

The V ) � N 0 rule is sound and invertible when
�

is complete-inclusive.

Definition 4.3. We say that
�

is complete-inclusive if for any state � it satisfies the following
properties:

1.
� + �T, is finite,

2. 
 +�� � , 
 
 + �T, , where � � 
�� + �T, and 
 +�� � , 
�� � � �	� � 
 + � � , .
The proof of soundness for the V ) � N 0 rule can be easily derived from the semantics of the

sequent when the function
�

is complete-inclusive.
In addition, we prove that the V ) � N 0 rule is invertible for a complete-inclusive

�
. That is,

if any of the assumption sequents � [ 	 � is proven false, then the conclusion � 	 � is also
false. The idea behind the proof is the following. A sequent �Z[ 	 � is false implies that there
exists a bundle � from 
 + � [X, which has no common strands with � . Since 
 + � [Z, � 
 + �T, , then
� � 
 + �T, , and therefore, � 	!� is also false.

4.3.2 The Proof Search Procedure

The proof search procedure is very simple. At the beginning we transform the initial sequent
������	 � into our “working” sequent � F�	 � with the N O8N 0 rule. Then we iteratively apply
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the following procedure to the current sequent. First we try to apply the $ O W�� rule, and if it
applies, the current sequent is proven. Otherwise we check if the set of unbound goals in the
current sequent is empty (

� 
 �
), and if it is, the current sequent is proven false. Since all the

rules in our proof system are invertible, the original sequent is also false, and the proof search
terminates with a failure, returning the current sequent as a counterexample.

If the $ O W�� rule does not apply and
� �
 �

, then we apply the V*) � N 0 rule, and if it generates
any new sequents, continue the proof search for each of the new sequents.

Since our proof system is so simple and all the inference rules are invertible, there is no need
to backtrack. In the implementation we also apply several optimizations to the straightforward
proof search procedure. We perform a breadth-first search from the initial sequent and at each
step optionally merge the identical sequents that are generated in different branches of the
proof tree. Thus, we effectively construct a proof DAG.

Now we state the correctness of the proof search procedure as a theorem.

Theorem 4.4. Let ����� 	 � be an initial sequent, and
�

be a complete-inclusive next state
function. If the proof search procedure described in this section terminates with a complete
proof, then the initial sequent is true (soundness); if it refutes a sequent anywhere in the proof,
then the initial sequent is false (invertibility).

The proof is a straightforward structural induction over the proof tree that relies on the
soundness and invertibility of each inference rule.

4.4 The Next State Function

When the current sequent � 	�� cannot be proven or refuted in one step, which means the set
of unbound goals

�
in the current sequent is non-empty, we split the current state by binding

one of the goals in
�

. We call the splitting procedure the next state function
�

, which is the
basis of the V ) � N 0 rule.

�
picks a goal � � � and binds it in all possible ways, creating the set

of next states with refined � relation and possibly new strands in the semi-bundle. Note that
the order of picking goals does affect the efficiency of the algorithm. However, our experience
shows that a few simple built-in heuristics work well.

The set of unbound goals in each new state,
� ��� , might not be smaller than

� � , since the
newly introduced strands may have new unbound goals; in fact,

� ��� may even grow in size.
However, the bundle set for each new state does not increase, and usually decreases, since we
introduce a new property for the bundles to satisfy: the new goal binding.

If there is no possible way of binding the chosen goal � , then the state � is contradictory and� + �T, returns an empty set.
We now define

�
formally and show that it is complete-inclusive.

Definition 4.5. A position is a pair ���I�:9 � , where � is a role (a parameterized strand) of either a
legitimate principal from the given protocol � or a penetrator, and 9 is an index of a node in � .
In other words, a position specifies a particular node in a particular role.

Definition 4.6. A substitution
]

is called a unifier of a term � and a position ���I�:9 � if the cor-
responding node J 
 ���#��9L& in � has a form J 
 �!�
� � � & , and

]
is a unifier of � and � � for some
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� � � � � � ; that is
] +X� , 
 ] +X� � , . In other words, the node

] +ZJU, 
 ] +�� �I�:97&:, represents sending a
term containing

] +Z� , .
Definition 4.7. A substitution

]
is a most general unifier (MGU) of � and ���I�:9 � if it is a unifier,

and for any other unifier
] � of � and ���I�:9 � there exists a substitution � such that

] � 
 ]�� � .

For a protocol � and a term � we define a set of unifiers
� � +X� , as follows:

� � +Z� , 
�� + ���I�:9 ��� ] , ]
is a MGU of � and ���I�:9 � for some ���I�:9 � � � � � � �

where � is the set of penetrator roles (see Section 2.5). The set
� �%+Z� , is always finite, since

any protocol has only a finite number of both regular and penetrator roles, and each role has
finitely many nodes.

To compute the set of next states
� + ��, for a state � 
 � � � � � ��& in a protocol � , we first

pick an unbound goal � � � � . We then compute the set
� �%+Z� , for the term � and for each

element � 
 + ���I�:9 ��� ] , ��� � +Z� , construct the set of next states � �� as follows.

� Let 6 � 
 + " ��� , - � ] + � �I� 9L&:, � be a (possibly partial) strand that ends with the node] + � �I� 9L&:, and is backward closed under the " relation; that is, it consists of a node] + � �I� 9L&:, and all the preceding nodes in the strand
] +�� , .� For any strand 6 � � from the original state � we say that

] +!6I, is a (possibly partial or
extended) instance of 6 � if there exists a substitution � � such that � � +!6 � , 
 ] +!6I, �
 � �
which means

] +!6I, and � � +�6 � , have common nodes.
For each strand 6 � � from � , if

] +!6I, is an instance of 6 � with a substitution � � , then we
construct a new state � � 
 � � � � � � � � � & and include it into � �� , where

1. � � 
 ] + � , � � � � +!6 � , � ;
2. � � 
 ] + ��, � �b�76 � � 97& ��� �	��

] +X� , ��,�, , where 6 � 
�] +!6I, � � � +!6 � ,
(the goal � is bound by the 9 -th node in the strand 6 � ); and

3.
� � is updated in accordance with � � and � � .� We also construct an additional next state � � � 
 �	� � � � � � � � � � � & by adding 6 � as a new

strand, such that
1. � � � 
 ] +	� , ��6 � ;
2. � � � 
�] + ��, � �b�76 � � 97& ��� �	��

] +X�
, ��,
(the goal � is bound by the last node of 6 � ); and

3.
� � � is updated in accordance with � � � and � � � .

The set of all next states is defined as � � 
 � � �	��
 � �	� � �� . Each next state � � � � � is then
analyzed for being valid, and the final result of

� + �T, is the set of all valid next states from � � .
Checking for validity of � � involves several steps.
A state � � is considered invalid if one of the following conditions holds:

� The � -minimal relationship is not satisfied in the goal-binding. For example, there
exists a positive (sending) node J � where � binds to, and another node J � , where � �0 R 1!_ +ZJ � , and J � � J � .
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� There is a cycle in the resulting state over � and " edges;� The “unique origination” property of certain terms is not satisfied. For example, when
a nonce 
�� is specified as “uniquely originated” on a particular role and a node J � , and
if 
��'� 0 R 1!_ +TJ ��, and J � � J � in � , then the state is considered invalid.

Otherwise � � is considered valid.
Notice that terms in sending nodes of penetrator roles � , � , and � are not � -minimal, as

required by the goal-binding, and the role � does not have sending nodes at all. If any of these
roles are used to construct an element in

� � +Z� , , the corresponding new states will be invalid.
Therefore, we can reduce the penetrator roles � in

� � +X� , definition to only four roles � , � ,� , and � .
Since we only add (and never delete) nodes and strands to the next states, and since the next

state transition covers all possibilities of binding a goal, and � � is finite, we can see that
�

is
complete-inclusive. The proof of this is straightforward and we omit it in this paper.

Notice that due to the most general substitution in goal binding, the nodes and strands in
a state may contain free variables. This often allows us to prove a sequent with the minimal
possible instantiation of the terms in each state and greatly helps to reduce the search space.

4.5 Optimization: Contradiction Analysis

If
� + ��, is empty for a state � in the current sequent � 	�� , we say that � is contradictory. This

means that 
 + �T, 
 �
, usually because � contains unsolvable goals or its graph is cyclic, and

therefore, the current sequent is vacuously true. When � is contradictory, the V ) � N 0 rule takes its
extreme form and completes the proof of the current sequent:

� + �T, 
��
� 	�� V ) � N 0 &

In our algorithm we can also easily and systematically incorporate results from theorem prov-
ing by using pruning theorems, which can prove that � is contradictory early in the proof, thus,
“pruning” the search space in the current branch of the proof tree. For practical purposes, we
require that pruning theorems are expressed as computable predicates � such that if �
+ �T, is
true, then the state � is contradictory. This allows us to introduce a new (admissible) inference
rule as a special case of V*) � N 0 :

� + �T, is true
� 	�� ) 1�� OIR & (4.8)

The pruning theorems can be specific to a particular protocol, or can be general theorems
that are not restricted to any concrete example. The latter can be proven once and for all and
included in the core of the tool. Athena also provides an easy interface for the expert users
who would like to add their own protocol-specific pruning theorems. Although in general,
users do not need to input their own pruning theorems, we provide this easy interface to
achieve extensibility of the tool, which enables Athena to be used even for exotic protocols
and reduce the search space even further. So far, Athena has two built-in pruning theorems,
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Figure 1: Illustration to the state � in Proposition 4.9

described below as Propositions 4.8 and 4.9. These two theorems are shown to be effective
and sufficient in almost all of our experiments.

Proposition 4.8. Let � be a bundle, and � � ��
 � 	
be a key of a legitimate principal. If �

never originates in a regular node, then � �� 0 R 1�_ + D , for any penetrator node D � � .

That is, when such a key � occurs in a penetrator strand in a state � , then � is contradictory.
The proof of this proposition is in [36].

If all the encrypted messages specified in a protocol are well-typed, in other words, the
protocol does not contain encryptions of terms with free variables which can match terms of
an arbitrary type, then we can always compute the maximum nesting depth for the encryption
operations in any message generated by a legitimate principal (denote this maximum depth by
��� ). Then the following proposition holds.

Proposition 4.9. If a state � satisfies the following conditions (see Figure 1):

1. A node J � 
 �!� � & � � � � � � � on a penetrator strand of type � binds some goal +X� �:JU, ,
and

2. The nesting depth of encryption in � is greater or equal to ��� ,

then � is contradictory.

A proof sketch of this proposition can be found in the appendix. Note that in order to
apply proposition 4.9, certain typing requirements in the protocol are needed, namely, all the
encrypted messages specified in a protocol must be well-typed. For some protocols this might
not hold, and in such cases we specify a threshold for the maximum depth of encryption
nesting. A similar restriction is used in other model checkers such as FDR, Mur 	 , and Brutus.
Athena then verifies the correctness of the protocol for an arbitrary configuration, but with the
constraints that for any message in the protocol execution, the nesting depth of encryption is
no greater than the threshold.

5 Experimental Results

We have implemented our verification technique in a tool called Athena [33]. The implemen-
tation language of Athena is Standard ML of New Jersey [14], which is freely available on
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both Windows and Linux platforms [1].
An input to Athena consists of a protocol description and a set of security properties in

a simple and intuitive input language (and possibly, additional pruning theorems, if the user
wants to supply his own pruning theorems). A description of a typical protocol from the
literature together with its properties takes about half a page in this language, and can be
written in a matter of minutes. The tool takes this input and runs completely automatically.
If it terminates, it either finds a proof or a counterexample for each security property. In the
latter case, a successful attack is constructed from the counterexample, which is illustrated
graphically with the help of a graph drawing package Dot [2]. The Dot package is freely
available on Windows, Linux and many other platforms [3].

The latest news on the development of Athena can be found at [35].
We have run several batches of experiments on a Pentium 133MHz PC with 32 MB RAM.

The first batch is the analysis of various security properties of protocols from the collection
by Clark and Jacob [7]. We have used Athena to check about 30 protocols from [7], and
almost all of them have running time less than half a second. For example, for the Otway-
Rees protocol [28], we have checked six formulas describing authentication properties and
obtained the same results as in [12]. The longest execution time for a single formula is 0.38
second, exploring 23 states. On average, each formula takes 0.16 seconds and requires less
than 20 states.

Another batch consists of 1641 asymmetric two party authentication protocols constructed
by an automatic protocol generator, which is taken from a case study of an approach to au-
tomatic security protocol generation [32]. These protocols are already filtered by an attacker
filter which eliminates flawed protocols suffering from simple impersonation and replay at-
tacks. Athena analyzes all of the 1641 protocols in 103.8 seconds, with the average of 63.5
milliseconds per protocol, and reports 120 protocols to be correct in terms of mutual authenti-
cation.

We have also experimented with protocols for symmetric two party authentication and key
distribution with a trusted third party generated by the automatic protocol generator with dif-
ferent sets of security properties [34]. The protocol generator output more than ;8;8������� candi-
date protocols. Athena took less than two hours to analyze all of them.

Athena can be easily extended with new cryptographic primitives. In fact, adding hash
functions and MAC functions only take a few hours of modifying the code from start to finish.
In most of our experiments, Athena only needs to search from a dozen to a couple of hundreds
of states. When Athena terminates with a proof which contains only a small state space, this
automatically indicates that for a given protocol, it is sufficient to just check the correctness
of the protocol with a small number of concurrent sessions. This is a side product of the
automatic proof procedure in Athena and no manual proofs are involved.

6 Conclusion

We have presented a new efficient automatic verification technique, Athena, for the analysis
of security protocols. It is based on our extension to the Strand Space Model, combined with
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techniques from both Model Checking and Theorem Proving. It uses a simple logic to specify
various security properties and has an automatic proof search procedure for checking the va-
lidity of the well-formed formulas in the logic. When Athena terminates, it can either provide
a counterexample if the formula does not hold, or generate a proof showing the correctness of
the security protocol with arbitrary number of concurrent runs. Typical benchmark protocols
from the literature usually take Athena less than a second to find a correctness proof or an
attack on the protocol.

Athena exploits several different techniques that enable it to analyze infinite sets of proto-
col runs and achieve such efficiency. Unlike previous tools, Athena uses the extended Strand
Space Model to represent protocol executions. The semi-bundle representation and the goal
binding relation comprise a state structure which provides a very compact encoding for (usu-
ally infinite) sets of protocol runs. For example, the state structure eliminates the problem of
infinite forwarding of messages by using the � -minimal requirement in the goal binding. Be-
cause the state space in Athena is not an asynchronous composition of local processes, Athena
naturally avoids the state space explosion problem caused by the asynchronous composition.
The use of free variables and symbolic techniques allows each state to represent an infinite
number of concrete protocol executions and reduce the state space explosion problem caused
by symmetry redundancy.

As a new approach for security protocol analysis, Athena is still at a very young stage. We
look forward to extending the approach in other directions.
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A Proof of the Pruning Theorem

Proposition 4.9. If a state � satisfies the following conditions (see Figure 1):

1. A node J � 
 �7�>� � & � � � � � � � � � on a penetrator strand of type � binds some goal +X� �:JU, ,
and

2. The nesting depth of encryption in � is greater or equal to ��� ,

then � is contradictory.

This proposition is used to eliminate an infinite expansion of type � strands.

Proof Sketch. Since � contains a number of nested encryptions which is greater than or equal
to � � , the goal term ��� � ����� can not be bound to any regular node. Therefore, it can only
be bound to either a type � or a type � strand of the penetrator. If it is bound to a type �
strand, there will be either a cycle in the graph, or the � -minimal condition for � � will not be
satisfied. If it is bound to a type � strand 6�� , where 6 � 
 � � � ��� � � � and ��� � ����� � ��� , as shown
in the graph, then the same argument for � � � � � � � � applies to the strand � � � ��� � � � . Thus, we
derive a chain of type � strands. Since for any protocol run, a penetrator can only take finite
number of operations, this chain has to stop at a finite length, say at strand 6 � 
 � � � � �.� � � .
Then � � ��� � ������& can only be bound to a type � strand which will cause either a cycle in the
graph, or the � -minimal condition for some � [ to be violated. This implies that 
 + �T, 
 �

,
therefore, � is contradictory.
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