arXiv:cy/0001026v1 [cs.CR] 28 Jan 2000

A Logic for SDSI’s Linked Local Name Spaces

Joseph Y. Halpern
Cornell University
Dept. of Computer Science
Ithaca, NY 14853
halpern@cs.cornell.edu
http://www.cs.cornell.edu/home/halpern

Ron van der Meyden
School of Computer Science and Engineering,
University of New South Wales,
Sydney 2052,
Australia.
meyden@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~meyden

April 26, 2024

Abstract

Abadi has introduced a logic to explicate the meaning of local names in SDSI, the Simple
Distributed Security Infrastructure proposed by Rivest and Lampson. Abadi’s logic does
not correspond precisely to SDSI, however; it draws conclusions about local names that do
not follow from SDSI’s name resolution algorithm. Moreover, its semantics is somewhat
unintuitive. This paper presents the Logic of Local Name Containment, which does not
suffer from these deficiencies. It has a clear semantics and provides a tight characterization
of SDSI name resolution. The semantics is shown to be closely related to that of logic
programs, leading to an approach to the efficient implementation of queries concerning
local names. A complete axiomatization of the logic is also provided.

http://arxiv.org/abs/cs/0001026v1

1 Introduction

Rivest and Lampson [RL96] introduced SDSI—a Simple Distributed Security Infrastructure—
to facilitate the construction of secure systems.! In SDSI, principals (agents) are identified with
public keys. In addition to principals, SDSI allows other names, such as poker-buddies. Rather
than having a global name space, these names are interpreted locally, by each principal. That
is, each principal associates with each name a set of principals. Of course, the interpretation of a
name such as poker-buddies may be different for each agent. However, a principal can “export”
his bindings to other principals. Thus, Ron may receive a message from the principal he names
Joe describing a set of principals Joe associates with poker-buddies. Ron may then refer to
the principals Joe associates with poker-buddies by the expression Joe’s poker-buddies.

Rivest and Lampson [RL96] give an operational account of local names; they provide a name-
resolution algorithm that, given a principal k and a name n, computes the set of principals
associated with n according to k. Abadi [Aba98] has provided a logic that, among other
things, gives a more semantic account of local names. According to Abadi, its purpose “is to
explain local names in a general, self-contained way, without requiring reference to particular
implementations.” Abadi shows that the SDSI name-resolution algorithm can be captured in
terms of a collection of sound proof rules in his logic.

Abadi’s focus is on axioms. He constructs a semantics, not with the goal of capturing the
intended meaning of his constructs, but rather, with the goal of showing that certain formulas
are not derivable from his axioms. (In particular, he shows that false is not derivable, showing
that his axioms are consistent.) While adequate for Abadi’s restricted goals, his semantics
validates some formulas that we certainly would not expect to be valid. One consequence of
this is that, while he is able to pinpoint some potential concerns with the logic, the resolution
of these concerns is less satisfactory. For example, he observes that adding two seemingly
reasonable axioms to his logic allows us to reach quite an unreasonable conclusion. However, it
is not obvious from the semantic intuitions provided by Abadi which (if either) of the axioms
is unreasonable, or why it is unreasonable. Moreover, while he proves that this particular
unreasonable conclusion is not derivable in his framework, as we show, a closely related (and
equally unreasonable) conclusion is in fact valid. This means we have no assurance that it or
other similar formulas cannot be derived from Abadi’s axioms.

We very much subscribe to Abadi’s goal of using a logic to give a general account of naming.
In this paper, we provide a logic whose syntax is very similar to Abadi’s, but whose semantics
is quite different and, we believe, captures better the meaning we intend the constructs to have.
Nevertheless, all but one of Abadi’s name space axioms are sound in our system.

We remark that, in a sense, our task is much easier than Abadi’s, since we give the con-
structs in the logic a somewhat narrower reading than he does. Abadi tends to intertwine and
occasionally identify issues of naming with issues of rights and delegation. (Such an identifi-
cation is also implicitly made to some extent in designs such as PolicyMaker [BFL96].) We
believe that it is important to treat these issues separately. Such a separation allows us to both

1SDSI now forms the basis for the Simple Public Key Infrastructure (SPKI) standardization work [Gro98].
SPKI simplifies some SDSI features (e.g., it eliminates groups) but adds many others. We focus in this paper on
the core naming features of SDSI—there are some minor differences in the way that SPKI has chosen to handle
these features, but we believe that our work is equally relevant to the the fragment of SPKI dealing with naming.

give a cleaner semantics for each of the relevant notions and to clarify a number of subtleties.
This paper focuses on naming, which we carefully separate from the other issues; a companion
paper [HvdMS99] considers authority and delegation.

We believe that our approach has a number of significant advantages:

e We can still simulate the SDSI’s name resolution algorithm; Abadi’s extra axiom is unnec-
essary. In fact, our logic captures SDSI’s name resolution more accurately than Abadi’s.
Abadi’s logic can draw conclusions that SDSI’s name resolution cannot; our logic, in a
precise sense, draws exactly the same conclusions as SDSI’s name resolution algorithm.

e According to our semantic intuition, one of Abadi’s proposed additional axioms is in fact
quite unreasonable; it does not hold under our semantics, and it is quite clear why.

e We are able to provide a sound and complete axiomatization of our logic. Thus, unlike
Abadi, we have a proof system that corresponds precisely to our semantics. This will
allow us to prove stronger results than Abadi’s about formulas that cannot be derived
in our framework. Our completeness proof also yields a (provably optimal) NP-complete
decision procedure for satisfiability of formulas in the logic.

e Our logic is closely related to Logic Programming. This allows us to translate queries
about names to Logic Programming queries, and thus use all the well-developed Logic
Programming technology to deal with such queries.

e Our approach opens the road to a number of generalizations, which allow us to deal with
issues like permission, authority, and delegation [HvdMS99].

The rest of this paper is organized as follows. In Section 2, we review Abadi’s logic and, in
the process, describe SDSI’s naming scheme. We also point out what we see as the problems
with Abadi’s approach. In Section 3, we give the syntax and semantics of our logic, and present
a complete axiomatization. In Section 4 we show that our logic provides a tight characterization
of SDSI name resolution. Section 5 deals with the connection between our account of SDSI
name resolution and logic programming, and Section 6 concerns Self, an additional construct
considered by Abadi. Section 7 concludes.

2 SDSI’s Name Spaces and Abadi’s Logic

In this section, we briefly review SDSI’s naming scheme and Abadi’s logic, and discuss our
criticism of Abadi’s logic. Like Abadi, we are basing our discussion on SDSI 1.1 [RL96].

2.1 SDSI’s Name Spaces

SDSI has local names and a set of reserved names, which we refer to as global names. Both
are associated with sets of principals, but the set of principals associated with a local name
depends on the principal owning the local name space, while the set of principals associated
with a global name does not. We denote the set of global names by G with generic element g,
the set of local names by N with generic element n, and the set of keys (principals) by K with

generic element k. We assume that all these sets are pairwise disjoint and that K is nonempty.
Global identifiers are either keys or global names.?

The elements of K UG U N are said to be simple names. We form principal expressions
from simple names inductively. Simple names are principal expressions, and if p and q are
principal expressions, then so is (p’s q). Abadi’s semantics (and ours) makes the latter operation
associative, in that ((p’s q)’s r) and (p’s (q’s r)) have the same meaning. In light of this, we
can ignore parenthesization when writing such expressions. The expression p1’s ...pm-1"s pPm
is written in SDSI as (ref :p1,...,pm).> We remark for future reference that SDSI has a special
global name denoted “DNS!!”, which represents the root of the DNS (Internet mail) hierarchy;
this allows us to express an email address such as bob@fudge . com as DNS!!’s com’s fudge’s bob.

SDSI allows a principal to issue certificates of the form n —— p, signed with its key. If
k issues such a certificate, it has the effect of binding local name n in k’s name space to the
principals denoted by the principal expression p.* Notice that only principals issue certificates,
and that these certificates bind a local name (not a global name) to some set of principals. In
general, a local name may be bound to a unique principal, no principal, or many principals.
SDSI allows a principal k to issue certificates n — p; and n —— po. This has the effect of
binding n to (at least) the principals denoted by p; and ps.

SDSI provides a name-resolution algorithm for computing the set of principals bound to a
name. The core of the algorithm consists of a nondeterministic procedure REF2. For ease of
exposition, we take REF2 to have four arguments: a principal k, a function ¢ that associates
with each principal k" a set of bindings (intuitively, ones that correspond to certificates signed
by k), a function 3 which associates with each global name g a set of principals (intuitively, the
ones bound to g), and a principal expression p. REF2(k,3,c,p) returns the principal(s) bound
to p in k’s name space, given the bindings § and the certificates ¢. REF2 is nondeterministic;
the set of possible outputs of REF2 is taken to be the set of principals bound to p in k’s name
space. REF2 is described in Figure 1.

2.2 Abadi’s Logic: Syntax, Semantics, and Axiomatization

The formulas in Abadi’s logic are formed by starting with a set of primitive propositions and
formulas of the form p — p’, where p and p’ are principal expressions. More complicated for-

2Note that Abadi uses G for global identifier; thus, his G corresponds to our G U K.

3SDST allows m to be 0, taking (ref:) to be the current principal. In Section 6, we follow Abadi by considering
an expression Self that represents (ref:).

4SDSI also allows other forms of binding that we do not consider here. Our notation is also a simplification
of that used by SDSI.

®Our version of REF2 is similar, although not identical, to Abadi’s. Like Abadi’s, it is simpler than that in
[RL96], in that we do not deal with a number of issues, such as quoting or encrypted objects, dealt with by
SDSI. Our presentation of REF2 differs from Abadi’s mainly in its treatment of global names. Abadi assumes
that REF2 takes only two arguments, o and p, where o is either a global identifier (i.e., an element of GU K) or
current principal, denoted cp. Although he does not write ¢ explicitly as an argument, he does assume that
there is a set he denotes assumptions(o) that includes bindings corresponding to signed certificates. In addition,
it includes bindings for cp. We do not have a distinguished current principal; rather, if the current principal is k,
then for uniformity we assume that all of the current principal’s bindings are also described by the bindings in
c(k). More significantly, if g is a global name, then Abadi’s REF2(o,g) would return g, while ours would return
some principal k to which g is bound in 8. Our approach seems more consistent with the SDSI presentation of
REF2, but this difference is minor, and all of Abadi’s results hold for our presentation of REF2.

REF2(k7/37C7p)
if p € K then return(p)
elseifpe G
then if 5(p) = 0 then fail
else return(k’) for some ¥’ € 5(p)
else if p is a local name n in N
then if ¢(k) = () then fail
else for some n — q € c(k) return(REF2(k,3,¢,q))
else if p is of the form q’s r
then return(REF2(REF2(k,0,¢,q),5,¢,r))

Figure 1: Procedure REF2

mulas are formed by closing off under conjunction, negation, and formulas of the form p says ¢,
where ¢ is a formula.

Abadi views p — p’ as meaning that p is “bound to” p’. He considers two possible inter-
pretations of “bound to”. The first is equality; however, he rejects this as being inappropriate.
(In particular, it does not satisfy some of his axioms.) The second is that p — p’ means p’
“speaks-for” p, in the sense discussed in [ABLP93, LABWO92]. Roughly speaking, this says
that any message certified by p’ should be viewed as also having been certified by p. While
the “speaking-for” interpretation is the one favored by Abadi, he does not commit to it. Note
that under Abadi’s “speaking-for” interpretation, it makes sense to write p — p’ for arbitrary
principal expressions p and p’. However, SDSI allows only local (simple) names to be bound
to principal expressions. We shall make a similar restriction in our logic (and, indeed, under
our semantic interpretation of binding, it would not make sense to allow an arbitrary principal
expression to be bound to another one.)

The “speaks-for” interpretation intertwines issues of delegation with those of naming. As we
suggested in the introduction, we believe these issues should be separated. We shall give — a
different interpretation that we believe is simpler and more in the spirit of binding. We believe
that the “speaks-for” relation of [ABLP93, LABW92| should have quite different semantics
than that of binding names to principals. (We hope to return to this issue in future work.)

Abadi interprets p says ¢ as “the principal denoted by p makes a statement that implies ¢”.
In the case where p is a key (i.e., principal) k, this could mean that k signs a statement saying
¢. Under our more restrictive interpretation, this is exactly how we interpret our analogue to
says.

In any case, note that Abadi translates SDSI’s local name n being bound to p as n — p
and captures k signing a certificate saying n is bound to p by the formula k says n —— p. For
future reference, it is worth noting that, in order to capture the binding of names to principals,
no use is made of primitive propositions.

Abadi interprets formulas in his logic with respect to a tuple (W, «, p, u). The function «
maps global identifiers (G U K) to subsets of YW. The function p maps N x W to subsets of W.

Finally, u associates with each world (principal) k and primitive proposition p a truth value
1(p, k).

Abadi does not provide any intuition for his semantics, but suggests that WV should be
thought of as a set of possible worlds, as in modal logic. However, he also suggests [private
communication, 1999] that his semantics was motivated by the work of Grove and Halpern
[GH93], in which the corresponding set contains pairs consisting of a world and an agent. Some
of Abadi’s definitions make more intuitive sense if we think of W as a set of agents, while others
make more sense if we think of W as a set of worlds. We elaborate on this point below.

Given k € W and p € P, Abadi defines [p]x inductively, as follows:

e [glx = alg), forge GUK
e [n]x = p(n,k) forne N
e [p1’s p2]x = U{[p2]w : ¥ € [p1]x}

Here we have used a notation corresponding to the interpretation of the “worlds” in W as
agents. Using this interpretation we may think of [p]x as the set of principals bound to principal
expression p according to k. The clause for [p1’s p2]x then says that if k¥’ is one of the principals
referred to by k as p1, then k uses p1’s p2 to refer to any principal referred to by k' as ps.

Abadi also defines what it means for a formula ¢ to be true at world k € W, written k = ¢,
inductively, by

e k = piff u(p, k) = true, if p is a primitive proposition
ekEopNYiff k¢ and k E ¢

ek Eiff k £ ¢

e k=p— p iff [p]x C [p']x

e k =p says ¢ iff X' = ¢ for all ¥’ € [p]k.

These clauses defining = are quite intuitive if one interprets W to be a set of worlds and
considers [p]x to be the set of worlds consistent with what principal p has said at world k. In
particular, under this interpretation, the clause for says can be read as stating that p says ¢
if ¢ holds in all worlds consistent with what p has said. The clause for — also has quite a
plausible reading under the “speaks-for” interpretation of this construct: it states that p’ speaks
for p if all worlds consistent with what p has said are consistent with what p’ has said, i.e., p is
constrained to speak consistently with what p’ has said. However, it seems rather difficult to
extend this intuitive reading to encompass the inductive definition of [p]kx. In particular, it is
far from clear to us what intuitive understanding to assign to the clause for [p;’s p2]x on this
reading.

On the other hand, note that if we interpret the worlds as agents, then we can think of
k = ¢ as saying that ¢ is true when local names are interpreted according to agent k. But this
reading of the clauses, when combined with the intuitive reading of [p]x as the set of principals
that k refers to using p, also has its difficulties. Intuitively, when n is bound to p in principal

Reflexivity: pP—p
Transitivity: (p—a) = (g 1) = (pr— 1))
Left Monotonicity: (p——q) = ((p’sr)+—— (q’s r))
Globality: (p’s g) — g if g is a global identifier
Associativity: ((p’'sq)’st)— (p’s (q’s T))

(p’s (a's) — ((p'sq)’s 1)

(p says (n— 1) = ((p’s n) — (p’s 1))
if n is a local name
Speaking-for: (p—q) = ((q says ¢) = p says @)

Linking:

Figure 2: Abadi’s axioms for linked local name spaces

k’s local name space, the principals that k refers to using p should be a subset of the principals
that k refers to using n. Abadi interprets n being bound to p as n —— p; this holds with respect
to principal k when [p]x is a superset of [n]x. This is precisely the opposite of what we would
expect. Thus, neither the interpretation of ¥V as a set of worlds nor the interpretation of W as
a set of agents gives a fully satisfactory justification for Abadi’s semantics. As we shall see, in
our semantics, the interpretation of a principal expression p according to an agent will be a set
of agents, but we use the reverse of Abadi’s containment to represent binding.

Abadi provides an axiom system for his logic, which has three components:

1. The standard axioms and rules of propositional logic.

2. The standard axiom and rule for modal logic for the says operator:
(p says (¢ = ¥)) = ((p says ¢) = (p says V))

¢
P says ¢

3. New axioms dealing with linked local name spaces, shown in Figure 2.

He shows that this axiomatization is sound, but conjectures it is not complete.

2.3 Name Resolution in Abadi’s Logic

Abadi proves a number of interesting results relating his logic to SDSI. First, he shows that in
a precise sense his logic can simulate REF2. He provides a collection of name-resolution rules
NR and proves the following results:

Proposition 2.1: Given a collection of ¢ of bindings corresponding to signed certificates and a
set B of bindings of global names to keys, let 2 be the conjunction of the formulas k says n —— q

5The results stated here are a variant of those stated in Abadi’s paper, since our version of REF2 differs
slightly from his. Nevertheless, the proofs of the results are essentially identical.

for each certificate n — q € c(k) and the formulas g — k for each k € ((g). Then E =
((k’s p) — k1) is provable with the name resolution rules NR if and only if REF2(k, 3, ¢,p)
yields k.

Proposition 2.2: The name resolution rules are sound with respect to the logic. That is, given
E as in Proposition 2.1 and any principal expression p, if E = (p — k) is provable using NR
then E = (p — k) is also provable in the logic.

These results show that any bindings of names to principals that can be deduced using
REF2 can also be deduced using Abadi’s logic. However, Abadi shows that his logic is actually
more powerful than REF2, by giving two examples of conclusions that can be deduced from his
logic but not using REF2:

Example 2.3: Using the Globality, Associativity, and Transitivity axioms, if k and k' are
keys, we immediately get k’s (Lampson’s k') —— k’. This result does not follow from the REF2
algorithm. That is, REF2(k, 3, ¢, Lampson’s k') does not necessarily yield k’ for arbitrary ¢ and
£ (in particular, it will not do so if Lampson is not bound to anything in ¢). i

Example 2.4: Suppose ¢ consists of the four certificates that correspond to the following
formulas: k says (Lampson — ki), k says (Lampson —— ko), ki says (Ron — Rivest), and
ko says (Rivest —— k3) (where k, ki, ko, and k3 are keys). Using the Speaking-for axiom, it
is not hard to show that we can conclude that k’s (Lampson’s Ron) — ks. It is easy to show
that REF2 cannot reach this conclusion; that is, REF2(k, 3, ¢,Lampson’s Ron) does not yield
k3 for any 5.7 I

In reference to Example 2.3, Abadi [Aba98] says that “it is not clear whether [these con-
clusions] are harmful, and they might in fact be useful”. In general, he views it as a feature
of his logic that it allows reasoning about names without knowing their bindings [private com-
munication, 1999]. While we agree that, in general, reasoning about names without knowing
their bindings is a powerful feature, we believe it is important to make clear exactly which
conclusions are desirable and which are not. This is what a good semantics can provide. Under
our semantics, neither of these two conclusions are valid. In fact, our logic draws precisely
the same conclusions as REF2. Of course, the conclusions of Examples 2.3 and 2.4 are valid
under Abadi’s semantics but, as we observed earlier, Abadi’s semantics is not really meant to
be used as a guide to which conclusions are acceptable (and, indeed, as we shall see, it validates
a number of conclusions that do not seem so acceptable).

Abadi also considers the effect of extending his axiom system. In particular, he considers
adding the following two axioms:

e the converse of Globality: g (p’s g)

"SPKI certificates and SDSI certificates have a slightly different syntactic form. A SPKI certificate issued by k
to bind n to p could be expressed in the logic as k says (k’'s n — p). Abadi has remarked [private communication
1999], that if we rewrite the example using assertions in this form, the corresponding conclusion of this example
would not follow in his logic. We have followed the SDSI format for certificates in this paper, but note that after
some minor changes to the definitions, all the results in Sections 3-5 would still apply to SPKI certificates.

e a generalization of Linking: (p says (p1 — p2)) = (p’s p1 —— p’s p2), for an arbitrary
principal p; (instead of a local name).

The generalization of Linking is in fact sound under Abadi’s semantics. The converse of Glob-
ality is not, but only because we may have [p]x = 0. Note that [plx = 0 iff k |= p says false;
thus, the following variant of the converse of Globability is sound under Abadi’s semantics:
~(p says false) = (g — (p’s g)).

This is quite relevant to our purposes because Abadi shows that if we added the two axioms
above to his system, then from k says (DNS!! — k), we can conclude DNS!! — k. Thus,
just from k saying that DNS!! is bound to k, it follows that DNS!! is indeed bound to k. This is
particularly disconcerting under Abadi’s “speaks-for” interpretation, where DNS!! — k becomes
“k speaks for DNS!!”. We certainly do not want an arbitrary principal to speak for the name
server!

Abadi proves a result showing that such conclusions are not derivable from hypotheses of a
certain type in his logic (which does not have these two axioms).

Proposition 2.5: [Aba98] Let k and k' be distinct global names; let ¢ be a formula of the form
(k" says (n1 — p1))A...A(X says (ny — px)), whereny,...,ny are local names and py, - .. , Pk
are principal expressions; let 1 be a formula of the form (k says 1) A ... A (k says p,), where
U1, ..,y are arbitrary formulas. Then ¢ A = (k' —— k) is not valid.®

While Proposition 2.5 provides some assurance that undesirable formulas are not derivable
in the logic, it does not provide much. Indeed, if we allow the v to include the formula —(k’
says false), then the result no longer holds. In fact, it follows from our earlier discussion that
the formula

(k says (DNS!! — k)) A —(k says false) = (DNS!! — k)

is valid. Moreover, it does not seem so unreasonable to allow conjuncts such as —(k says false)
as part of ». We certainly want to be able to use the logic to be able to say that if a principal’s
statements are not blatantly inconsistent, then certain conclusions follow.

3 The Logic of Local Name Containment

In this section we propose the Logic of Local Name Containment (henceforth LLNC) as an
alternative to Abadi’s logic. LLNC interprets local names as sets of principals and interprets
SDSI certificates as stating containment relationships between these sets. We define the syntax
in Section 3.1. In Section 3.2 we describe two distinct semantics for the logic. Section 3.3
presents a complete axiomatization.

3.1 Syntax

LLNC has syntactic elements that are closely related to the syntactic elements of Abadi’s logic.
However, our notation differs slightly from Abadi’s to help emphasize some of the differences
in intuition.

8 Abadi’s result actually says “¢ A = (k' — k) is not derivable”; since his axiomatization is sound, but not
necessarily complete, the claim that it is not valid is stronger, and that is what Abadi’s proof shows.

Again, we start with keys K, global names G, and local names N, and form principal
expressions from them. The formulas of our language are formed as follows:

e If p and q are principal expressions then p — q is a formula.
o Ifk € K and ¢ is a formula then k cert ¢ is a formula.”

o If ¢1 and ¢ are formulas, then so are —¢1 and ¢1 Ago. As usual, ¢1V ¢9 is an abbreviation
for =(—¢1 A —2) and ¢1 = ¢ is an abbreviation for —¢; V ¢s.

We write L for the set of all formulas. (For simplicity, we omit primitive propositions, although
we could easily add them. They play no role in Abadi’s account of SDSI names, nor will they
in ours.)

We read the expression p — q as “p contains q”; we intend for it to capture the fact that
all the keys bound to q are also bound to p. However, our intuitions about the meaning of
p — q are quite different from Abadi’s. In particular, we do not wish to interpret p — q as “q
speaks for p.” We consider the “speaks for” relation as being about rights and delegation, which
requires a more sophisticated semantics than we wish to consider here. (See [HvdMS99] for a
logic for reasoning about rights and delegation.) The expression p — q should be understood
as simply asserting a containment relationship between the denotations of principal expressions
p and q; this is exactly what our semantics will enforce.

We read the expression k cert ¢ as “k has certified that ¢.” This corresponds roughly to
Abadi’s k says ¢. There are two significant differences, however. For one thing, we do not allow
arbritrary principal expressions on the left-hand side; only keys may certify a formula ¢. For
another, our interpretation of cert is more restrictive than Abadi’s says, in that cert is treated
quite syntactically; it refers to an actual certificate issued by a principal, while says considers
logical consequences of such certificates. As a consequence, whereas says satisfies standard
properties of modal operators (e.g., closure under logical consequence), cert does not.

3.2 Semantics

Our semantics is designed to model the SDSI principle that principals bind names in their local
name space to values by issuing certificates. The interpretation of a local name depends on
the principal and the certificates that have been issued. As the principal may rely on others
for its interpretation of local names, the certificates issued by other principals also play a role.
The interpretation of global names and keys will be independent of both the principal and the
certificates that have been issued.

A world is a pair w = (3, ¢), where : G — P(K) and ¢: K — P(L) (where P(X) denotes
the set of subsets of X) and Uxexc(k) is finite. Intuitively, the function g interprets global (or
fixed) names as sets of keys. The intended interpretation of the function c is that it associates

9For our account of SDSI naming, it would suffice to restrict this clause to formulas of the form k cert n — p
wheren € N and p € P: our semantics will treat more general certificates as irrelevant to the meaning of principal
expressions. We allow the more general form for purposes of discussion and because we envisage generalizations
of the logic in which other types of certificates will be required.

with every key k the set of formulas c¢(k) that have been certified using this key. That is, if
¢ € c(k) then, intuitively, a certificate asserting ¢ has been signed using k.!°

Formulas of the logic will be interpreted in a world with respect to a key. Intuitively, this
key indicates the principal from whose perspective we interpret principal expressions.

To interpret local names, we introduce an additional semantic construct. A local name
assignment will be a function [: K x N — P(K) associating each key and local name with a
set of keys. Intuitively, I(k,n) is the set of keys represented by principal k’s local name n. We
write LNA for the set of all local name assignments.

Given a world w = (f3,¢), a local name assignment [, and a key k, we may assign to each

principal expression p an interpretation [p], 1k, a set of keys. The definition is much like that
of Abadi’s [p]x:

o [K]uwix ={K'}, if k¥ € K is a key,

o [glwix = B(g), if g € G is a global name,

e [n]yx =Il(k,n), if n € N is a local name,

e [p’s qluwix = U{[a]wix | ¥ € [plw,ix}, for principal expressions p,q € P.

Our intuitions for [p],, ; x are essentially the same as for the “agent-based” reading of Abadi’s
logic, discussed above. That is, [p]w i x is the set of keys associated with the expression p in k’s
local name space, when local names are interpreted according to [. With respect to principal
k, the expression p’s q denotes the set of principals that principals referred to by k as p refer
to as q.

We now define what it means for a formula ¢ to be true at a world w = (3, ¢) with respect to
a local name assignment [and key k, written w, I,k |= ¢, by induction on the structure of ¢.!

o w,l,k =pr— qif [plux 2 [awix

o w,l.k =X cert ¢ if ¢ € c(k)

e w,l,k = ¢y if not w,l,k = ¢

o w k=1 Ao if w,l k= ¢ and w,l, k = do.

Note that the semantics of cert reinforces its syntactic nature. To determine if k¥’ cert ¢ is
true at (w,l,k), we check whether a certificate has been issued in world w by k" certifying ¢.
Moreover, as we shall see, while we allow any formula to be certified by k, the only formulas
whose certification has a nontrivial semantic impact are those of the form n —— p, where n is
a local name. We return to this issue below.

0We make the simplifying assumption that certificates do not have expiration dates. It is not difficult to
extend the logic to take into account certificate expiration; see [HvdM99]. The assumption that Uy c(k) is
finite is meant to enforce the intuition that only finitely many certificates are issued. None of our later results
depend on this assumption, but it seems reasonable given the intended application of the logic.

"'Note that our semantics is thus in the spirit of that of Grove and Halpern [GH93], in that the truth of a
formula depends on both an agent and some features of the world (captured by w and).

10

We do not consider all pairs w,l as being appropriate on the left-hand side of . If w =
(8,c), we expect the local name assignment [to respect the certificates that have been issued
in ¢. That is, if ¢(k) includes the binding n — p, we would expect that I(k,n) would include
all the keys bound to p in k’s name space. The question is whether there can be other keys
bound to n in k’s name space beyond those forced by the certificates. How we answer this
question depends on our intuitions for c¢. For example, we could view c as the set of certificates
received by one of the principals. This would be particularly appropriate if we wanted to reason
about the knowledge and belief of the agents, an extension we plan to explore in future work.
With this viewpoint, we could view [as consisting of all the bindings, including ones that the
principal does not know about. Thus, [would at least have all the bindings forced by ¢, but
perhaps others as well. Alternatively, we could view c¢ as consisting of all the certificates that
have been issued. In this case, we would want [to be in some sense minimal, and have no
bindings beyond those forced by the certificates in ¢. We now present two different semantics,
which reflect each of these two intuitions. We then show that, as far as validity is concerned,
the semantics are equivalent; that is, they have the same proof theory.

A local name assignment [is consistent with a world w = (3, ¢) if, for all keys k, local
names n, and principal expressions p, if the formula n — p is in ¢(k), then w,l,k = n +— p.
Intuitively, assignments that are not consistent with a world provide an inappropriate basis for
the interpretation of local names, since the certificates issued by principals are not necessarily
reflected in their local bindings. We obtain our first semantics, called the open semantics, by
restricting to consistent local name assignments. We write w,l,k =, ¢ if w,l,k | ¢ and [
is consistent with w. The formula ¢ is o-satisfiable if there exists a triple w,l,k such that
w,l,k o ¢ and ¢ is o-valid, denoted =, ¢, if there does not exist a triple w, [,k such that
w,l,k o ¢

Although our syntax allows k to certify arbitrary formulas, it is easy to see that, according
to the semantics just introduced (as well as the one we are about to introduce), only the
certification of formulas of the form n —— p has any impact on consistency; all other formulas
certified by k are ignored. There is a good reason for this restriction. We are implicitly assuming
that when k' certifies n —— p, that very act causes all the keys bound to p to also be bound
to n in k’s name space. Thus, if n —— p € ¢(k), then we want n — p to be true in (w,l, k).
But if k certifies a formula like k1’s n —— k3 where k; # k, then we cannot conclude that this
formula is true in (w,l,k) unless we are prepared to make additional assumptions about k’s
truthfulness. We feel that if such assumptions are to be made, then they should be modeled
explicitly in the logic, not hidden in the semantics.

It does seem reasonable to extend the notion of [being consistent with w to require that if
k certifies a formula 1 which is a Boolean combination of formulas of the form n —— p then
(w,l,k) = v. However, once we allow more general Boolean combinations (in particular, once
we allow disjunctions), there will be problems making sense out of the intuition of our next
semantics, that there are “no bindings beyond those forced by the certificates in ¢”. We consider
this issue next.

According to the open semantics, it is possible for a local name n of principal k; to be
bound to a key ks even when no certificate concerning n has been issued. Arguably, this is
not in accordance with the intentions of SDSI. To better capture these intentions, we define a
second semantics, that restricts the name bindings to those forced by the certificates issued.

11

To do so, we first establish that the open semantics satisfies a kind of “minimal model”
result. Define the ordering < on the space LNA of local name assignments by 1 < s if
li(k,n) Cla(k,n) for all k € K and n € N. It is readily seen that LNA is given the structure of
a complete lattice [Bir67] by this relation. Say that a local name assignment [is minimal in a
set of local name assignments L if | € L and [<[’ for all I’ € L.

Theorem 3.1: Given a world w, there exists a unique local name assignment l,, minimal in the
set of all local name assignments consistent with w. Moreover, if p is a principal expression and
k1 and ko are keys, then w,ly, k1 o p — ko iff, for all local name assignments | consistent
with w, we have w,l, k1 Eo p — Ka.

The proof of this result (which, like that of all the technical results in this paper, is deferred to
the appendix) uses standard techniques from the theory of fixed points.

We now define our second semantics, called the closed semantics. It attempts to capture the
intuition that the only bindings in [should be those required by the certificates in ¢, using the
minimal assignment promised by Theorem 3.1. We write w,k = ¢ if w,l,,,k = ¢. We say that
¢ is c-satisfiable if there exists a world w and key k such that w,k |=. ¢ and that ¢ is c-valid,
denoted =, ¢, if w,k |=. ¢ for all worlds w and principals k. Note that by Theorem 3.1, the
assignment [,, is consistent with w, so c-satisfiability implies o-satisfiability. Thus, if =, ¢ then
Ec ¢. As we shall soon see (Theorem 3.5), somewhat surprisingly, the converse holds as well.

3.3 A Complete Axiomatization

We start this section by presenting a sound and complete axiomatization for LLNC with respect
to the open semantics. We then prove that the open and closed semantics are characterized by
the same valid formulas, so that the axiomatization is also sound and complete with respect to
the closed semantics.

The axiomatization depends in part on whether the set K of keys is finite or infinite. Figure 3
describes the axiom system AX;,s for the case where K is infinite.

It is interesting to compare the axioms in AX;,s to Abadi’s axioms. Although we interpret
—— as superset and he interprets it as subset, Reflexivity, Transitivity, Left-Monotonicity, and
Associativity, hold in both cases, for essentially the same reasons. The switch from subset to
superset means that the Converse of Globality holds in our case. Globality does not hold in
general because the denotation of p’s g may be empty if the denotation of p is empty (as we
observed, this is also why the Converse of Globality does not hold in general for Abadi). In fact,
for our logic, p’s g —— g holds whenever the interpretation of p is nonempty. We use p’s k — k
as a canonical way of denoting that the interpretation of p is nonempty. This explains the form
of the Globality axiom. Since the interpretation of a key is always nonempty, we also get Key
Globality.

Key Linking is our analogue of Abadi’s Linking axiom. Of course, we use cert whereas
Abadi uses says; in addition, only keys can certify formulas for us. While this axiom shows
that there are some similarities between cert and says, there are some significant differences.
We have no analogue of Abadi’s Speaking-for axiom and, unlike says, cert does not satisfy the
standard axiom and rule of modal logic: (k cert (¢ = 1)) A (k cert ¢) does not imply k cert 9

12

Propositional Logic:
Reflexivity:
Transitivity:

Left Monotonicity:
Associativity:

Key Globality:
Globality:

Converse of Globality:

Key Linking:

Nonemptiness:

Key Distinctness:
Modus Ponens:

All instances of propositional tautologies
p—p
(p—a)=((qr—1)=(Pr—1))
(pr—a)= ((p’s) — (a's 1))
((p'sq)’st)— (p’s (q's 1))

(p’s (q's) — ((p’s q)’s 1)
(k'sg)—gifke Kandge GUK
(pPsk— k)= (psgr—g)ifke K, gc GUK
g— (psg)ifge KUG

(k cert (n+—— 1)) = ((k'sn) — (k’s 1))
if n is a local name

(a) pr—ki=pskr—k

(b) —(pr—aq)=qskr—k

() psaqr—ki=pskr—k

(d) (pPskr— kAKX +—p)=(p—k)
—(k; — ko) if k; and ky are distinct keys
From ¢ and ¢ = v infer .

Figure 3: The axiom system AX,,;

and k cert ¢ is not valid even if ¢ is valid. Interestingly, Abadi does not use these properties of
Speaking-for in proving that his name resolution rules NR, used to capture REF2, are sound.
As a result, (with very minor changes) we can show that the name resolution rules are also
sound for LLNC, and hence we can prove analogues of Propositions 2.1 and 2.2. However, we
can actually prove a much stronger result: whereas Abadi’s logic is able to draw conclusions
about bindings that do not follow from REF2, LLNC captures REF2 exactly (see Theorem 4.1).

AXns has two axioms that do not appear in Abadi’s axiomatization: Key Distinctness and
Nonemptiness. Key Distinctness just captures the fact that we interpret keys as themselves.
The first three parts of Nonemptiness capture various ways that an expression can be seen to
be nonempty. For example, part (a) says that if p is bound to (i.e., is a superset of) a key, then
its interpretation must be nonempty and part (b) says that if p is not a superset of g, then q
must be nonempty. Part (d) of Nonemptiness says that if p is nonempty and k' is bound to p,
then p is bound to ¥, i.e., p and k' have exactly the same interpretation.

If K is finite we need to add two further axioms to AX;,;. Let AXg, consist of all the
axioms and rule in AX;,s together with:

Witnesses: —(pr—q) = Vkex(—(p— k) A(q+—k))
(p's @) — k1 = Vker((p— k) A (k's g — k1))
\/keK(nk — 1lx < k’s ng — lk)

where ny € N and 1y € K for each k € K.

Current Principal:

The two axioms that make up Witnesses essentially capture our interpretation of —— as
containment. They tell us that facts about containment of principal expressions can be reduced
to facts about keys. For example, the first one says that if p does not contain q, then there is

13

a key bound to q that is not bound to p. Current Principal captures the fact that some key in
K must be the current principal; if k is the current principal, then for all local names n and
keys k', n — k' & k’s n —— k' holds. (This is actually true not just for local names, but for
all principal expressions; it suffices to state the axiom just for local names.)

While the properties captured by these two axioms continue to hold even if K is infinite,
they can no longer be expressed in the logic, since we cannot take a disjunction over all the
elements in K. Interestingly, we can drop Nonemptiness and Globality as axioms in AXg,.
These properties already follow from the other properties in the presence of Witnesses.

As the following result shows, these axiom systems completely characterize validity in the
logic with respect to the open semantics.

Theorem 3.2: AX,,; (resp., AXpn) is a sound and complete aziomatization of LLNC with
respect to the open semantics if K is infinite (resp., K is finite).

In the course of proving Theorem 3.2, we also prove a “finite model” result, which we cull
out here. Let |¢|, the length of ¢, be the total number of symbols appearing in ¢. This result
holds both when K is finite and when K is infinite.

Proposition 3.3: Let Ky be the keys that appear in ¢ and let Cy(k) consist of all bindings
n — p such that k cert n —— p is a subformula of ¢. If ¢ is satisfiable with respect to the open
semantics, then for all sets K' of keys such that Ky, C K’ and |K'| > min(|K|,2 - |¢|?), there
is a world w = (3, ¢), local name assignment 1, and principal k € K’ such that w,l,kx =, ¢ and
(a) l(k',n) C K’ for allkX' € K andn € N, (b) l(k',n) =0 if ¥ ¢ K', (¢) B(g) C K’ for all
ge G, (d) B(g) =0 if g does not occur in ¢, and (e) c(k) C Cy(k) for all keys k.

Corollary 3.4: The problem of deciding if a formula ¢ € LLNC' is satisfiable with respect to
the open semantics is NP-complete (whether K is finite or infinite).

Proof: The lower bound is immediate from the fact that we can trivially embed satisfiability
for propositional logic into satisfiability for LLNC. For the upper bound, given ¢, choose K’
such that |K’| = min(|K|,2 - |¢|?) and K’ O K4. Then guess w,l,k as in Proposition 3.3 and
check whether w,l,k =, ¢. Proposition 3.3 says that the guess is only polynomial in |¢|; it is
clear that checking whether w, [,k =, ¢ can also be done in time polynomial in ¢. Note that
for |¢| < |K| (which is likely to include all cases of practical interest, given that K will typically
be a very large set), the polynomial does not depend on |K|. I

As we suggested earlier, the closed semantics and the open semantics are characterized by
exactly the same axioms.

Theorem 3.5: The same formulas are c-valid and o-valid; i.e., for all formulas ¢, we have

Fo ¢ iff e ¢.

We remark that this result is sensitive to the language under consideration. It may no
longer hold if we move to a more expressive language.

14

Corollary 3.6: AX, (resp., AXpn) is a sound and complete aviomatization of LLNC with
respect to the closed semantics when K is infinite (rep., finite).

Corollary 3.7: The problem of deciding if a formula ¢ € LLNC' is satisfiable with respect to
the closed semantics is NP-complete (whether K is finite or infinite).

Let us now return to the contentious axioms discussed by Abadi. Converse of Globality is
valid in LLNC, as we observed earlier. The generalization of Linking considered by Abadi,
restricted to be syntactically well formed, amounts to

(k cert (p1 — p2)) = (k’s p1 — k’s p2).

In general, this is not valid, since our semantics ignores certificates stating p; — p2 when p; is
not a local name. Thus, we avoid the “unreasonable” conclusions that can be drawn from these
axioms. In particular, it does not follow in our logic that (k cert (DNS!! — k)) = DNS!! — k.
However, the reason it does not follow in LLNC is quite different from the reason it does not
follow in Abadi’s logic: since DNS!! is a global name, a certificate such as k cert (DNS!! — k)
has no impact on the interpretation of global names. This captures the intuition that k should
not be trusted when making assertions about bindings not under its control. If we were willing
to trust k on everything, then concluding that k is bound to DNS!! after k certifies that it is
would not seem so unreasonable.

The following formula is also not valid in LLNC:
(—(k cert false) A (k cert (DNS!! — k))) = DNS!! — k.

(This formula corresponds to the one that we noted earlier is valid in Abadi’s logic.) Failure
to issue a certificate stating false has no more impact on global names than does any other
behavior of k. Nor would a precondition asserting that the interpretation of k is non-empty
validate the formula, since this is true in every world. We can in fact prove the following
generalization of Abadi’s Proposition 2.5, which provides a stronger statement of the safety of
our logic than Abadi’s result.

Proposition 3.8: Let I' be any c-satisfiable boolean combination of formulas of the form
k cert ¢, and let A be any boolean combination of formulas of the form p — q where neither
p nor q contains a local name. Then . T = A iff E. A.

Informally, Proposition 3.8 says that facts about global names are completely independent of

facts about certificates; issuing certificates can have no impact on the global name assignment.
As we observed earlier, the analogous result does not hold for Abadi’s logic.

4 Name Resolution in LLNC

In this section, we show that LLNC captures REF2 exactly. Indeed, we show that it does so
for several distinct semantic interpretations. Define the order > on worlds by (5',¢) > (8, ¢) if

1. #'(g) 2 B(g) for all global names g, and

15

2. d(k) D ¢(k) for all keys k.

That is, w’ > w when w' contains more certificates than w and the bindings to global names
in w are a subset of those in w'. If F is a set of formulas and ¢ is a formula, we write F =, ¢
if for all worlds w, local name assigments [consistent with w and all keys k, if w,l,k =, ¢ for
all ¢ in E then w,l,k =, ¢. Similarly, E |, ¢ if for all worlds w and all keys k, if w,k = ¢
for all ¢ in F then w,k . ¢.

Theorem 4.1: Suppose ki, ko are principals, w = (,¢) is a world, and p is a principal
expression. Let E,, be the set of all formulas g — k for all global names g and keys k € (3(g)
and the formulas k cert ¢ for all keys k and formulas ¢ € ¢(k). The following are equivalent:

1. k1 € REF2(k2,/B, c, p),
w, ko e p — ki,
w', ko Ec p — ky for all worlds w' > w,

Ey ’:c k2’S p+— ki,

AR

Ey, o ko’s pr— ky.

This theorem gives a number of perspectives on name resolution in LLNC. The equivalence
between (1) and (2) in this theorem tells us that REF2 is sound and complete with respect to
key binding, according to the semantics of LLNC. That is, REF2(k, 3, ¢, p) yields k' iff p — ¥’
is forced to be true by the bindings of global names in 3 and the certificates in ¢. Thus, viewed
as a specification of the meaning of SDSI names, the closed semantics and REF2 are equivalent.

Informally, we have viewed REF2 as a procedure that is run by an omniscient agent with
complete information about the interpretation of global names and the certificates that have
been issued. It is also possible to understand REF2 as performing a computation based on the
limited information available to a particular principal. Suppose that the world w expresses the
limited information this principal has about the binding of global names and the certificates
that have been issued. Suppose that w’ describes the actual bindings of global names and the
certificates that have been issued. Assuming that all of the principal’s information is correct,
then w < w’. Thus, the set of w’ > w is the set of all worlds w’ that are consistent with the
information available to the principal. (We could formalize this using the Kripke semantics for
the logic of knowledge in a distributed system [HM90].) The equivalence between (2) and (3)
essentially shows that it doesn’t matter whether we view the principal as having total or partial
information.

The implication from (1) to (4) in Theorem 4.1 is analogous to Abadi’s soundness result,
Proposition 2.2. Of course, the converse implication gives us completeness, which, as Abadi
himself observed, does not hold for Abadi’s logic (since it validates conclusions that do not
follow from REF2). Interestingly, although, as we have seen, there are significant differences
between LLNC and Abadi’s logic, an examination of Abadi’s soundness proof reveals that it
does not use the Speaking-for rule, the unrestricted form of Globality, or the standard axiom
and rule for the modal operator says, which are the main points of difference with our logic.

16

This observation says that the proof of the implication from (1) to (4) is essentially the same
for LLNC and for Abadi’s logic.

It is instructive to understand why the formulas considered in Examples 2.3 and 2.4, which
give conclusions in Abadi’s logic beyond those derivable by REF2, are not valid in LLNC.
It is easy to see why the formula k’s (Lampson’s k') —— k' from Example 2.3 (which, by
Associativity and Transitivity, is equivalent to (k’s Lampson)’s k' — k') is not valid in LLNC.
This is simply because the antecedent of (our version of) Globality does not always hold. Now
consider the formula in Example 2.4. The proof that this is valid in Abadi’s logic uses the
Speaking-for axiom, which does not hold for us (if we replace says by cert). To see that it
is not valid in LLNC, consider a world w = (f,¢) containing only the certificates forced by
the formulas (i.e., ¢(k) = {Lampson —— kj,Lampson —— ks}, ¢(k;) = {Ron —— Rivest},
c(ke) = {Rivest —— k3}). Then it is easy to see that w,k [~ k’s (Lampson’s Ron) — kg, since
[k’s (Lampson’s Ron)]y , x = 0 whereas [ks]u 1, x = {ks}-

5 Logic Programming Implementations of Name Resolution
Queries

The reader familiar with the theory of logic programming may have noted a close resemblance of
the results and constructions of the preceding sections to the (now standard) fixpoint semantics
for logic programs developed originally by van Emden and Kowalski [EK76]. Indeed, it is
possible to translate our semantics into the framework of logic programming. In fact, we provide
a translation that does not require the use of function symbols and thus produces a Datalog
program, a restricted type of logic program that has significant computational advantages over
unrestricted logic programs. Our translation allows us to take advantage of the significant body
of research on the optimization of Datalog programs [Ul188, UlI89].

The idea is to translate queries to formulas in a first-order language over a vocabulary V
which consists of a constant symbol for each element in K UG U N and a ternary predicate
symbol name. Intuitively, name(x,y, z) says that, in the local name space of key x, the basic
principal expression (i.e., key, global name or local name) y is bound to key z.

Using name, for each principal expression p and pair of variables x, y, we define a first-order
formula 7, ,(p) that, intuitively, corresponds to the assertion “y € [p];,” by induction on the
structure of p:

L Tw,y(P) = name(x,p,y) whenp € K UGU N.
2. Tpy(q’s T) = F2(74,2(q) A T2 y(x)), where z # x, .

Recall that a Herbrand structure over the vocabulary V' is a first-order structure that has
as its domain the set of constant symbols K UG U N in V and interprets each constant sybol
as itself. Such a structure may be represented as a set of tuples of the form name(z,y, z), where
xz,y,z2 € KUGUN. The subset relation on such sets partially orders the Herbrand structures.

We say that a Herbrand structure M over V represents a world w = (3, ¢) and local name
assignment [if, for all z,y,z € K UG U N, we have name(z,y, z) € M iff either

1. z,y,z € K and z =y, or

17

2. € K,yeGand z € 3(y), or

3. e K,ye N and z € [(z,y).

Intuitively, M represents w and [if it encodes all the interpretations of basic principal expres-
sions given by w and [. The following result, whose straightforward proof is left to the reader,
shows that in this case M also captures the interpretation of all other principal expressions,
and expresses the correctness of our translation of principal expressions.

Proposition 5.1: If M represents w and l then, for all principal expressions p and x,y €
KUGUN, we have M = 1, 4(p) iff v,y € K and w,l,z Ep+—y.

We now show how a logic program can be used to capture the relationsip between w and
ly. For each world w = (3, c¢), we define a theory (set of sentences) 3, that characterizes w;
> consists of the following sentences:

1. a sentence name(kq, ko, ks), for each pair of keys kj,ky € K, and

2. the sentence name(ky, g, k2), for each pair of keys ki,ky € K and global name g € G such
that ky € 0(g),

3. the sentence Vy(7xy(q) = name(k,n,y)), for each key k and binding n +— q in c(k).

After some equivalence-preserving syntactic transformations (moving the existentials in the
body of these sentences to the front), the theory ¥, is a definite Horn theory, i.e., it consists
of formulas of the form Vx(B = H), where B is a (possibly empty) conjunction of atoms (that
is, formulas of the form name(z,y, z) or y = z) and H is an atom. Well-known results from the
theory of logic programming show that such a theory ¥ has a Herbrand model My minimal with
respect to the containment ordering on Herbrand structures. Moreover, this minimal Herbrand
model captures the minimal name assignments for w.

Theorem 5.2: The minimal Herbrand model M, of ¥, represents w and l,.
Using Proposition 5.1, we immediately obtain the following corollary.

Corollary 5.3: For all x,y € K UG U N and principal expressions p, we have M, = Ty 4 (p)
iff v,y € K and w,z =cp— y.

Because Y, is a definite Horn theory, it corresponds to a logic program. Moreover, for
eristential queries, i.e., queries ¢ that are sentences formed from atomic formulas using only
conjunction, disjunction and existential quantification (but not negation), we have that X entails
¢ iff My | ¢. This enables us to exploit logic programming technology to obtain efficient
implementations of several types of queries, corresponding to different choices of bound and
free variables in the predicate “name”. We may even form complex queries not corresponding in
any direct way to the capacities of the procedure REF2. Examples of this include the following:

1. the query name(ky,n,ks) returns “yes” if ko is bound to the local name n according to ky;

18

2. the query name(X,n, k) returns the set of keys X such that k is in n according to X;

3. the query name(ki, X,ko) returns the set of global and local names X containing ko
according to kj.

4. the query name(ky,n, X) A name(kg,n, X) returns the set of keys X that k; and ko agree
to be associated with local name n.

Many more possibilities clearly exist. These observations show the advantage of viewing name
resolution in a logic programming framework.

6 Self

Abadi considers an extension of his logic obtained by adding a special basic principal expression
Self, intended to represent SDSI’s expression (ref:). (We remark that Self is essentially the
same as I in the logic of naming considered in [GH93].) Intuitively, Self denotes the current
principal. The semantics given to Self by Abadi extends the definition of the set of principals
associated with a principal expression by taking [Self], = {a} for each a € W. This suffices
to validate the following axiom.

Identity: Self’sp+——p pr— Self’sp
p’s Self — p pr—— p’s Self

These axioms very reasonably capture the intuitions that Self refers to the current principal.

However, not all consequences of this semantics for Self are so reasonable. For example,
the following is valid under Abadi’s semantics:

(kp says US —— Self) A (kp says US — kyp) (1)
= kp says ((US says false) V (Self — kyp))

Interpreting kp as the key of the president of the US and ky p the key of the vice-president, this
is clearly unreasonable. It should not follow from the fact the the president says that both he
and the vice-president speak for the US that according to the president, either the US speaks
nonsense or the vice president speaks for the president.

Abadi’s suggested semantics for Self works much better in the context of the logic LLNC.
Suppose we extend this logic to include Self, and like Abadi, define [Self]x = {k} for keys k €
K. This again validates the Identity axioms above. To get completeness, we just need to add one
axiom in addition to Identity, which basically says that Self acts like a key (cf. Nonemptiness
(@)):

Self-is-key Self — p Ap’s k —— k = p —— Self.

Let AX:;? (resp., AX%%f) be the result of adding Identity and Self-is-key to AX;,; (resp.,
AXg,). Let LLNC?® be the language that results when we add Self to the syntax.

Theorem 6.1: AX‘;S}f (resp., AXsiff) is a sound and complete aziomatization of LLNC® with
respect to the open semantics if K is infinite (resp., K is finite).

19

Propositions 3.3 and Theorem 3.5 hold with essentially no change in proof for LLNC?; it
follows that AXsiff (resp., AXffL]lf) is also complete with respect to the closed semantics and the
satisfiability problem is NP-complete.

Interestingly, the proof of completeness shows that once we add Identity and Self-is-key to
the axioms, we no longer need Current Principal as an axiom in the finite case. Here is a sketch
of the argument: From Identity we get that Self’s k —— k is provable for any key k. Now
applying Witnesses, we get that VikcxSelf —— k is provable. Together with Self-is-key, this
says that Self is one of the keys in K. Identity (together with Transitivity) tells us that for
that key k that is Self, n —— k' < k’s n —— k’ holds, giving us Current Principal.

Note that with our semantics for Self, the counterintuitive conclusion (1) does not follow.
From kp cert US — Self and kp cert US — ky p it follows that [US]x, 2 {kp,kyp}. Thus,
we have neither [US]x, = 0 nor {kyp} D [US]x,, which would be required to get a conclusion
similar to that drawn by Abadi’s logic.

7 Conclusions

We have introduced a logic LLNC for reasoning about SDSI’s local name spaces and have
argued that it has some significant advantages over Abadi’s logic. Among other things, it
provides a complete characterization of SDSI’s REF2, has an elegant complete axiomatization,
and its connections with Logic Programming lead to efficient implementations of many queries
of interest.

We believe that some of the dimensions in which Abadi’s logic differs from SDSI warrant
further investigation. For example, under some sensible interpretations, the conclusions reached
by Abadi’s logic in Example 2.4 are quite reasonable. One such interpretation is that while local
names may be bound to more than one key, they are intended to denote a single individual. If
k knows that ki and ko are two keys used by the one individual Lampson, and Lampson uses
ki to certify that his local name Ron is bound to the name Rivest, and also uses his key ko to
certify that his local name Rivest is bound to ks, then it is very reasonable to conclude that
k’s Lampson’s Ron is bound to k3. Another interpretation supporting this conclusion would be
that says aggregates the certificates issued using a number of distinct keys (possibly belonging
to distinct individuals) much in the way that the notion of distributed knowledge [FHMV95]
from the literature on reasoning about knowledge aggregates the knowledge of a collection
of agents. We believe that our semantic framework, which, unlike Abadi’s, makes the set of
certificates issued explicit, provides an appropriate basis for the study of such issues.

Our semantic framework also lends itself to a number of generalizations, which we are
currently exploring. These include reasoning about the beliefs of principals and reasoning
about permission, authority, and delegation. We hope to report on this work shortly.

A Proofs

In this appendix, we prove all the technical results stated in the main text. For ease of exposi-
tion, we repeat the statements of the results here.

20

Theorem 3.1: Given a world w, there exists a unique local name assignment l,, minimal in
the set of all local name assignments consistent with w. Moreover, if p is a principal expression
and ky and kg are keys, then w,ly,, k1 = p — ko iff, for all local name assignments | consistent
with w, we have w,l,ky Eo, p — ko.

Proof: This result can be established using standard results from the theory of fixed points.
Suppose (X, <) is a complete partial order. Denote the least upper bound of a set Y C X
by UY. A mapping T : X — X is said to be monotonic if for all x < y in X we have
T(x) < T(y). Such a mapping 7" is said to be continuous if for all infinite increasing sequences
xog <z < ...in X we have T(U{x; : ¢ € N}) = L{T(z;) : ¢ € N}. Note that continuity
implies monotonicity. To establish continuity of a monotonic mapping T, it suffices to show
that T(U{z; : ¢ € N}) < L{T(z;) : i € N}, since the opposite containment is immediate
from monotonicity.

For a fixed expression p, world w and key k, the expression [p]., x is easily seen to be
monotonic in I, i.e., if I <1’ then [p]y1x C [plw,r k. Moreover, it is also continuous in I.

Lemma A.1: Suppose ly <11 < ... is an increasing sequence of local name assignments and
let I, = U,eNlm- For all principal expressions p, we have [plw i, x = UmeNIPlw,im k-

Proof: By a straightforward induction on the structure of p. I

Given the world w = (3, ¢), we define an operator T, on the space of local name assignments
LNA. For a local name assignment [, we define T3,(I) to be the local name assignment such
that for all k € K and n € N, the set T},(1)(k,n) is the union of the sets [p].,,;x such that the
formula n — p is in ¢(k). The following lemma is follows easily from Lemma A.1.

Lemma A.2: The mapping Ty, is a continuous operator on (LNA, <).
The following lemma is almost immediate from the definitions.
Lemma A.3: A local name assignment [is consistent with a world w iff T,(l) < 1.

Suppose (X, <) is a complete partial order with minimal element L. An element z € X is
said to be a pre-fizpoint of an operator T on X if T'(x) < x; z is a fizpoint of T if T'(z) = x.
Given an operator T on X, define a sequence of elements T' T v, where is an ordinal, as follows.
For the base case, let T'1 0 = L. For successor ordinals v+ 1, define T' 1 v+ 1 =T(T 1 ~).
For limit ordinals ~, define T' T v =UL{T 16 : § <~}. A well-known result (see [LNS82] for
a discussion of its history) states that if 7" is continuous then then this sequences converges to
the least pre-fixpoint of T, that convergence has taken place by v = w, and that T' T w is in fact
a fixed point of T'. Thus, we obtain as a corollary of Lemma A.2 and Lemma A.3 that there
exists a minimal local name assignment consistent with w, and that this local name assignment
equals Ty, T w. The second half of Theorem 3.1 is immediate from the earlier observation that
[plw.i x is monotonic in 1. I

Theorem 3.2: AXp, (resp., AXins) is a sound and complete axiomatization of LLNC with
respect to the open semantics if K is infinite (resp., K is finite).

21

Proof: We start with the completeness proof for AX;,r, so that we assume that K is infinite.
We then show how to deal with AXy,. As usual, it suffices to show that if ¢ is AX;,-consistent,
then ¢ is satisfable. In fact, we put a little extra work into our proof that ¢ is satisfiable so
that we can prove Proposition 3.3 as well.

Let Sub(¢) consist of all subformulas of ¢. We say that a principal expression p’ is a
variant of p if p — p’ and p’ —— p are both provable using only Reflexivity, Associativity,
and Transitivity. The left-associative variant of a principal expression p is the one where we
associate all terms to the left. Thus, ((n1’s n2)’s n3)’s ny is the left-associative variant of
n17S ((ng’s ng)’S n4).

Define P to be the smallest set of principal expressions such that

1. if p+— qis in Sub(¢) then p and q are in P,

2. if k cert (n+—— p) € Sub(¢) then k’s n and k’s p are in P,

3. if p € P and p’ is the left-associative variant of p, then p’ € P,

4. P is closed under subexpressions, so that if p’s q € P, then so are p and q,

5. if k € Pis a key and n € P is a local name, then k’s n € P.

For Proposition 3.3, it is necessary to get an upper bound on the size of P in terms of |4|.
Lemma A.4: |P| < 2-|¢|?.

Proof: Let |p| be the total number of expressions in G U K U N that appear in p, counted
with multiplicity. An easy proof by induction on structure shows that a principal expression p
has at most |p| subexpressions, at least one of which must be in G U K U N. For every other
subexpression q, there is a unique left-associative variant q’, which has at most |q| = |q| < |p]
subexpressions, each of which is associated to the left. Thus, starting with a principal expression
p, the least set closed under clauses 3 and 4 above contains at most |p|? elements. Now a
straightforward induction on the structure of ¢ shows that the least set P’ closed under clauses
1-4 above has at most |¢|> expressions. Finally, it is easy to see that closing off under 5 gives
us P, since the set that results after closing off under 5 is still closed under 1-4. Moreover, this
final step adds at most |¢|? expressions k’s n, since both k and n must be subexpressions of ¢.

Let kg be some key not occurring in P. We use kg both to express emptiness of expressions
in P and as the “current principal”. Define P; to be the set of principal expressions P U {kq} U
{p’s ko : p € P}. Let E be consist of the formulas p’s kg — kg for each p € P. Note that all
principal expressions occurring in the formulas in F are in P;. Let S be an AX,,/-consistent set
containing ¢ and, for every formula ¢ € Sub(¢)UE, either ¢ or —¢). Since ¢ is AX;,,¢-consistent,
there must be some AXj,-consistent set S of this form.

Define ST = CI(S, P1) to be the smallest set of formulas containing S closed under Reflex-
ivity, Transitivity, Left Motonocity, Converse of Globality, Globality, and Nonemptiness, in the
sense that

22

if pe P, thenpr—pe ST,

if p— q and q — r are both in ST, then p— 1 € ST,
ifp—qeSt, psreP,andqsr € P, thenpsr+——qgsre ST,
ifpsge P forge KUG theng——psge ST,

if p’sk — k € ST for some key k and p’s g € P|, where g € KUG, thenp'sg+—— g€ ST,

ifp—— k' € ST and p'sk € P, then psk— ke ST,

if 7«(p—q)e St andqske P, thengsk— ke ST,
ifpsqr— Xk € ST andp'sk € P, then psk—k € ST,

if p’s k — k and k' —— p are both in ST, then p+— k' € ST,

)
)
)
)
)
(CIKL) if k cert (n+——p) € ST then (k'sn+——k’sp) € ST,
)
)
)
)
) if k and k' are distinct keys in P, then —=(k — k') € ST,
)

If p’ is the left-associative variant of p € P, then p—p’ € ST and p' —— p € ST.

It is easy to see that ST is AXnp-consistent, since S is and each of the closure rules emulates
an axiom in AX;,¢. Our goal now is to show that there exists a triple w, [, k such that w, [,k = v
for all ¢» € S (and thus, in particular, w,l,k = ¢).

Lemma A.5: Ifkq appears in the formula p — q € ST, then ko appears in both p and q.

Proof: An easy induction on the construction of S, using the fact that all principal expressions
occurring in ST are in P; and ko appears only as the right most expression in a principal
expression in P;. 1

By Lemma A.5, if p —— q € ST and one of the expressions p,q is in P (and thus does not
mention ko) then so is the other. Define a binary relation ~ on P by defining p ~ ¢ if both
p+—— qand g — p are in ST. It is immediate from transitivity and reflexivity that ~ is an
equivalence relation on P. Given p € P, we write [p] for the equivalence class of p under ~.

We classify the expressions in P as follows. Say that an expression p in P is empty (with
respect to ST) if =(p’s ko — k¢) is in ST. Say that p is key-equivalent if it is not empty and
k — pis in ST for some key k (by (CINE) this implies p & k). Intuitively, the interpretation of
an empty expression will be the empty set and the interpretation of a key-equivalent expression
p such that k — p € ST will be {k}. If p is neither empty nor key-equivalent, we say it is
open. Clearly, every expression in P is either empty, key-equivalent, or open. Moreover, by
(CILM) and (CIT), if p ~ q then p is empty, key-equivalent or open iff q is. In particular, we
may sensibly refer to open ~-equivalence classes of expressions in P.

Let O be the set of open equivalence classes of expressions in P. Note that if K, C K consists
of all the keys in K that appear in ¢, then there are fewer than 2-|¢|? — K| equivalence classes
of open expressions. For each class ¢ € O, let k. be a fresh key. Intuitively, the key k. will

23

act as a canonical representative of the keys in the interpretation of an expression p € ¢, in
the sense that the interpretations of p’s q and k.’s q will be the same for certain expressions q.
Since K is infinite, we are guaranteed that we can always find keys k., but the argument works
even if K is finite, as long as |K| > 2 - |$|*>. (We also need to have a key in K \ Ky to be k.)

Define S* to be consist of ST together with, for all ¢ € O,

1. the formula k. — k., and

2. the formulas p — k., where for some q € ¢ we have p+— q € ST.

It is easy to show that ko does not appear in any formula in S* — ST: Clearly kg does not
appear in the formulas k. — k. added by clause 1. If p — q is a formula added by clause 2,
then there is some equivalence class ¢ and expression q € ¢ such that p — q € S*. Since c is
an equivalence class of expressions in P, none of which contain kg, the expression q does not
contain kq. It follows from Lemma A.5 that p does not contain kg. Since S* — ST contains no
formulas involving kg, S* also satisfies the property stated for ST in Lemma A.5.

Define the local name assignment [as follows. Given a key k and local name n,

1. l(kg,n) ={k' € K | n+— kK € S*},

2. l(kyn) ={k € K | kK’'sn+— kK € S*} ifke P,

3. l(kyn) ={k' € K | p'snr+——k € 5" and p € ¢} if k = k. for some ¢ € O,
4. l(k,n) = 0 for all other k.

Define the world w = (f,¢) by taking G(g) = {k € K | g — k € S*} and defining c(k),
for each key k, to be the set of formulas n — p such that (k cert (n — p)) € S. Note for
future reference that there exists a finite subset K7 of K such that I(n,k) C K7, l(n,k) = () for
k ¢ K1, B(g) C K1, and B(g) = 0 if g does not appear in ¢. Indeed, K; consists of the keys
that appear in S, kg, and the keys k. for ¢ € O.

Let I(lp)={ke K |p—k € §*}.
Lemma A.6: Ifp € P, then p is empty iff I1(p) = 0.

Proof: If p is not empty, then it is either key-equivalent or open. If it is key-equivalent, we
have already observed that there must exist some key k' such that p — k' € S*, so I(p) # 0.
If it is open, suppose it is in equivalence class ¢. Then p — k. € S*, since p — p € ST by
(CIR). Again, it follows that I(p) # 0.

Conversely, suppose that I(p) # (0. Thus, p — k € S* for some key k. If p+— k € ST,
then by (CIK), p’s kg — kg € ST, so p is not empty. If p— k ¢ ST, then k = k., and there is
some q € ¢ such that p — q € ST. Since q is open, q cannot be empty, so q’s kg — kg € ST.
Moreover, by (CILM), p’s kg — q’s kg € ST. Thus, by (CIT), p’s kg — kg € ST, so p is
nonempty. 1

Lemma A.7: For all expressions p € P, we have [p]y. 1k, = I(p)-

24

Proof: We proceed by induction on |p| (as defined in Lemma A.4). The claim is immediate
from the definitions in case p is a global name or a local name. Suppose that p is a key kj.
Then [p]w,ix, = {ki}. Since k; — k; € S* by construction, it follows that k; € I(ky). It
remains to show that I(k;) C {ky}. Suppose (k1 — k) € S*. By Lemma A.5, we cannot have
k = k. Since ST is AXpp-consistent and closed under (CIKD), if k € P we must have k; = k.
The remaining possibility for k, that it equals k. for some ¢ € O, cannot happen. For if so,
only the second clause of the definition of S* could explain (k; — k) € S*. But then we have
(ky — q) € ST for some q € c. This contradicts the assumption that ¢ is an equivalence class
of open expressions.

Finally, suppose that |p| > 1. Let p’ be the left-associative variant of p. It is clear from the
semantics that [pluix, = [P lwik,- Morover, (CILV) and (CIT) guarantee that I(p) = I(p’).
Thus, it suffices to prove that I(p') = [p']w,ix,- Suppose that p’ = q’s r. The definition of
length guarantees that |p’| = |p| > |q|, so the induction hypothesis applies to q. Since p’ is
associated to the left, r e GUK UN.

Suppose that r = g € G U K. Note that [q’s glwix, = 0 if [a]w,ix, = 0 and [9’s glwix, =
[8]w,ixo if [a]w,ix, # 0. We consider these two cases separately.

Suppose first that [q]wix, = 0, so [p'lwik, = 0. By the induction hypothesis, I(q) = 0.
To show that I(p’) = 0, we show that p’ is empty. Suppose not. Then (p')’s kg — ko € ST.
Since ST contains either q’s kg — ko or —(q’s kg — ko) and St is AX;,s-consistent, by
Nonemptiness(c), Associativity, and Transitivity, we must have q’s kg — kg € ST. Thus, q is
not empty. By Lemma A.6, I(q) # 0, a contradiction. Hence, p’ is empty. It now follows from
Lemma A.6 that I(p’) = (), as desired.

Consider next the case where [q]uwix, # 0, S0 [P'Tw.ix, = [94'S 8lw.ix, = [8]w.ix,- To show
that [p'Jw,ix, = I(p’), we show that I(p’) = I(g). The result then follows from the induction
hypothesis.

By the induction hypothesis, I(q) # 0, so by Lemma A.6, q is not empty. It follows from
(CIG) that q’s g — g € ST. Suppose that k € I(g). If k € P, then g — k € ST, so by
(CIT), g'sgr—k € ST and k € I(p'). If k = k. for some ¢ € O, then g — ¢’ € ST for some
q € c. Thus, p’ — q' € ST by (CIT) and we obtain that p’ — k € S* by construction of S*.
Thus, I(g) C I(p').

For the opposite containment, note that by (CICG) we have g — q’s g € ST. Arguing as
above, we obtain using (CIT) that I(g) 2 I(p’). This completes the proof that I(p') = I(g).

It remains to deal with the case that p’ has of the form g’s n, where n is a local name. There
are three possibilities: q is empty, key-equivalent or open. If q is empty, then by Lemma A.6 and
the induction hypothesis, I(q) = 0 and [q]w, 1k, = 0. It follows that [p']y 1k, = 0. Moreover,
using Nonemptiness(c), Associativity, and Transitivity as above, it follows that p’ is empty and
hence by Lemma A.6, I(p') = 0, as desired.

If q is key-equivalent, say q =~ ki, then g — k; € S* and k; —— q € ST. Using Key
Distinctness and the consistency of ST, it easily follows that I(q) = {k;}. By the induction
hypothesis, [q]w 1k, = {k1}. Thus, [p']w,ix, = {(ki,n). By construction, l(k;,n) = I(k;’s n) =
I(p'), as desired.

Finally, suppose that q is open. If k € I(p’), then it is immediate from the construction
that that q — kjq € S* and k € I(kjq,n). By the induction hypothesis, kiq € [q]uw,x0, SO

25

k € [plwik, = Uk’e[[q}]w,z,kol(k/’n)’ Thus, I(p') C [p'lw.ix, if p’ is open.

For the opposite containment, suppose that k € [p/Jyx,- This means that there is some
key k' such that k" € [q]y 1k, and k € I(k’,n). By the induction hypothesis, k' € I(q), so
q— k' € S*. If ¥ € P, then g — k' € ST and (k')’s n — k € ST. (Since q € P and
q+— k' € S* we cannot have k' = kg, by Lemma A.5.) By (CILM), g’'sn+— (k¥')’sn € ST,
so by (CIT) we get @’s n — k € ST. Hence, k € I(p/). If ¥ = k., where ¢ is an open
equivalence class, then from q —— k' € S* it follows that ¢ — q’ € ST for some q' € c.
From k € I(k.,n) it follows that (r')’s n — k € S* for some r’ € ¢. By construction of S*
we must have (r')’s n € Pp, and since r’ =~ ¢/, we have ' — r’ € S*. By (CIT) we obtain
q+— 1’ € ST, and hence by (CILM) that q’s n — (r')’s n € ST. Now notice that it follows
from @’'sn— (r')’sn € ST and (r')’s n—— k € S* that g'sn—— k € S*. If k € Py, this is
immediate from (CIT). In case k = kg for some open class d, we have (r')’sn —— t € ST for some
t € d. But then q’'s n —— t € ST by (CIT); by definition of S* we get that q’'s n — k € S*.
This completes the proof. |

Lemma A.8: For all formulas v € Sub(¢) U E, we have ¢ € S iff w,l, kg o 9.

Proof: We first show that by induction on the structure of ¢ € Sub(¢) U E that ¢ € S iff
w,l, ko = 1, and then show that the assignment [is consistent with w.

It is immediate from the construction of w that w,l,ko = ¢ iff ¢ € S for ¢ of the form
k cert (n+— p).

If) has the form p — q, note that w,l,ko = p —— q iff [pluwik, 2 [A]wix, iff (by
Lemma A.7) iff I(p) D I(q). Thus, it suffices to show that I(p) 2 I(q) iff p — q € ST, for
p,q € P.

The “if” direction is immediate from (CIT): If k € I(q) then q — k € S*, so by (CIT) and
the construction of S*, p — k € S* and thus k € I(p).

For the “only if” direction, suppose by way of contradiction that I(p) 2 I(q) but p— q ¢
ST. Then, by construction, =(p — q) € ST. We consider three cases, depending on whether
q is empty, key-equivalent, or open.

Note first that q cannot be empty: —=(p — q) € ST, so by (CIN) we have q’s kg — ko € ST.

Suppose that q is key-equivalent, with k —— q € S*. If p — k € ST then, by (CIT),
p — q € ST, but this is not possible because ST is AX,s-consistent. Thus p — k ¢ ST.
Since k € P, p— k ¢ S*, and thus k € I(p) — I(q), giving us the desired contradiction.

Finally, suppose q is open. By construction, q — k(g € S*. Moreover, we cannot have
p — kg € S*, for then there would exist r ~ q such that p — r € S*. Using (CIT),
it would follow that p — q € ST, which is impossible since ST is AX;,s-consistent. Thus,
kig €1 (p) — I(q), giving the required contradiction, and completing the proof in the case that
1 is of the form p — q.

If v is of the form —)’ or 1 A 19, the result is immediate from the induction hypothesis
(in the latter case, we need the fact that if ¢; A1y € Sub(¢) U E, then in fact ¢ A 1o € Sub(¢),
s0 11,19 € Sub(¢) and the induction hypothesis applies). This completes the induction proof.

To show that the assignment [is consistent with w, suppose that n — p € ¢(k). Then, by
construction, k cert (n — p) € S. By (CIKL), we have k’s n — k’s p € ST. By what we have

26

just shown w,l, kg = k’s n — k’s p. It follows that w,l,k = n +—— p. Thus, [is consistent
with w. 1

Thus, we have shown that ¢ is satisfiable, completing the proof of Theorem 3.2 in the case
that K is infinite. The same argument works without change if K is finite but |[K| > 2-|¢[%. (A
consequence of this is that we do not need to use the axioms Witnesses and Current Principal to
derive a valid formula ¢ in AXg, if 2-[¢[* < |K|.) Moreover, the proof shows that Proposition 3.3
holds if |K| > 2 - |¢|%.

Now suppose that K < 2 - |¢|?. We show that if ¢ is AXpp,-consistent, then ¢ is satisfiable.
The proof is in the spirit of that in the case of AX;,r, but simpler.

Now let P be the least set of principal expressions containing all principal expressions that
appear in ¢ and closed under subexpressions. Let F' consist of all formulas of the form p — k’
and ks p — Kk, where p € P and k,k’ € K. Let S be an AXp,-consistent set containing ¢
and, for every formula ¢ € Sub(¢) U F, either ¢ or —¢). Since ¢ is AXg,-consistent, there must
be some AXg,-consistent set S of this form.

There must be some key kg € K such that for every local name in P and key k € K, we have
n— k € Siff kg’sn+—— k € S. For otherwise, for each key k, there is some local name nyx and
key kx such that either both ngx — kx and —(k’s nx — kg) are in S or both —(nx — kx) and
k’s nx — ki are in S. This means that S is inconsistent with the axiom Current Principal.
Define the local assignment [so that I(k,n) = {k' : k’'s n —— k’ € S}. Similar to the case for
AXys, define the world w = (8, ¢) by taking 3(g) = {k € K | g— k € ST} and defining c(k),
for each key k, to be the set of formulas n —— p such that k cert (n+——p) € S.

Now we have the following analogue to Lemma A.8.
Lemma A.9: For all formulas v € Sub(¢) U F, we have ¢ € S iff w,l, ko o .

Proof: Again we first show that by induction on the structure of 1) € Sub(¢) U E that ¢ € S
iff w,l, ko = 1, and then show that the assignment [is consistent with w.

It is immediate from the construction of w that w,l,kg = ¢ iff ¢ € S for ¢ of the form
k cert (n+— p).

We next show that the result holds if 9 is of the form p — ¥/, for p € P, by induction
on the structure of p. We strengthen the induction hypothesis to also show that w,l, kg =
kK'spr— Xk iff k'spr——k e S. If pis akey ki, then w,l, kg = k; — k' iff ¥’ = k; and by
Reflexivity and Key Distinctness, k1 — k' € S iff ky = /. Similarly, w,l, ko | k’s k1 — k' iff
w,l, kg Eky — X iff k; — k' € S iff k’'s k1 — k' € S, by Transitivity, Key Globality, and
Converse of Globality (using the fact that S is AXg,-consistent).

If p is a global identifier g, w,l, ko = g — k' iff g —— k' € S by the definition of 3. The
argument for k’s g — k’ is identical to the case that p = k.

If p is the local name n, then w,l,kg = n — k" iff k¥’ € I(kg,n) iff kg’s n — k' € S iff
n+— k' € S, by choice of kg. Similarly, w,l, kg Ek’'sn+—— X' iff k¥’ € I(n, k) if K¥’'sn+— k' € S.

Finally, if p is of the form q’s r, then w,l,kq = q’s r — k' iff there exists a key k” such
that w,l, kg = q — k" and w,l,kg | (¥”)’s r — X' iff (by the induction hypothesis) there
exists a key k” such that g — k" € S and (k")sr —— k' € Siff gs r — k' € S. The
“only if” direction of the last equivalence follows using Left Monotonocity and Transitivity; the

27

“if” direction follows from Witnesses. The argument for k’s (q’s r) — k' is identical, using
Associativity: w,l, ko = k’s (q’s r) — k' iff there exists a key k” such that w,l, ko = k’s q —
k" and w,l,ko | (k”)’s r — k' iff there exists a key k” such that k’s g — k” € S and
(k" sr— X e Siffk's (@'sr)— k' € S.

We now continue with our induction in the case that p — q. Note that w,l, kg Ep+——q
iff w,l, kg = q+—— k' implies w,l, kg Ep — ¥ for all k¥’ € K iff (by the induction hypothesis)
qr— k' € Simpliespr— k' € Siff p— q € S. The “only if” direction of the last equivalence
follows immediately from Transitivity; the “if” direction follows from Witnesses.

We complete the induction proof by observing that if 1) is of the form —t or ¥ A 1, the
result follows immediately from the induction hypothesis.

To show that [is consistent with w, suppose that n — p € ¢(k). By construction, this
means that k cert (n — p) € S. By Key Linking, we must also have k’s n — k’s p € S. By
what we have just shown, w,l, kg = k’s n —— k’s p. It follows that w,l,k =n+— p. Thus, [is
consistent with w. I

This completes the proof of Theorem 3.2 in the case that K is finite. Note that since we
can assume without loss of generality that |K| < 2-|¢|? here (otherwise the argument for the
case that K is infinite applies) the proof also shows that Proposition 3.3 holds. 1

Theorem 3.5: The same formulas are c-valid and o-valid; i.e., for all formulas ¢, we have

Fo ¢ iff e ¢.

Proof: We show that —¢ is o-satisfiable iff —¢ is c-satisfiable, which is equivalent to the claim.
The direction from c-satisfiability to o-satisfiability is straightforward: Since for every world w
the local name assignment l,, is w-consistent, it follows from w,k . ¢ that w,l,,k F, —¢.
Thus, it remains to show that if —¢ is o-satisfiable, then it is c-satisfiable.

So suppose that —¢ is o-satisfiable. By Proposition 3.3, there is a world w = (3, ¢), local
name assignment [, and principal k such that w,l,k £, —¢ and a finite subset K’ of K such
that [(k’,n) C K’ for all k' € K and n € N, and (g) C K’ for all global names g. By standard
propositional reasoning, —¢ is equivalent to a disjunctive normal form expression in which the
atoms are of the form p — q and k; cert ¢, where p and q are principal expressions, k; is a
key, and ¢ is a formula. If w,,k =, —¢ then one of the disjuncts o is satisfied, i.e., w,l,k =, o.
Suppose that o is the conjunction of the formulas in the set A U B, where

1. Ais a set of formulas of the form p — q or =(p — q),

2. B is a set of formulas of the form k; cert 1 or =(k; cert).

Let Ky be the set of keys that appear in the formula ¢ together with K’ and k. Let N,
be the set of local names that appear in ¢. Define the world w’ = (#,¢) as follows. Take
the interpretation of global names ' to be equal to 3, the interpretation of global names in w.
Define ¢’ by taking the set of certificates ¢/(k’) to be the empty if k' ¢ K, and to consist of
c(k") together with all certificates of the form n —— pyr 4 if k' € Ky, n € Ny, and k¥’ € I(n, k'),
where pyr 4 is a principal expression of the form (k”)’s (k”)’s ... (k") that does not appear in

28

¢. (Clearly we can make the expression sufficiently long so as to ensure it does not appear in
¢.) Clearly Ugege(k') is finite.

We show that w',k = 0. It follows from this that w',k =, —¢. Note first that from the
fact that (k') C (k') for all ¥/, it follows that w’,k . k' cert ¢ for all formulas k" cert ¢ in
B. Moreover, if =(k’ cert 1) is in B then, since the expressions px» 4 on the right-hand side of
the certificates in (k') — ¢(k) do not appear in ¢ it follows that w',k |=c —(k’ cert 1). Thus
w', k . B.

It remains to show that the formulas in A are satisfied. To show this, we show that
Ly (n,k") =1(n,k') for all n € N, and ¥’ € K. (2)

It easily follows from (2), the fact that all keys in ¢ are in K’, and the fact that global names
have the same interpretation in w and w’ that [Plw i, % = [Plw,x for all principal expressions
p occurring in A and all keys k' € Ky4. This in turn is easily seen to imply that w’, k = A.

It remains to prove (2). It is almost immediate from the definition of I’ that I,/ (n,k’) D
l(n,X) for all n € Ny and k¥’ € Ky4. For the opposite containment, we prove by induction
on j that (T T j)(n, %) C l(n,k') for all j € N, n € Ny, and k¥ € K;. The base case
j = 0 is trivial. For the induction step, suppose that j = j' 4+ 1 and k¥” € (T,» T j)(n,X).
Thus, k" € (Tw(Tw T j'))(n, '), which means that k" € [p]u/ 1,1 % for some principal
expression p such that n — p € ¢/(k’). There are two possibilities: (1) n — p € ¢(k’) or
(2) n— p € d(X) — c(K'). In case (2), p must be of the form py, 4 50 [pPlu,7,, 1% = {k1}
and k; = k”. But in this case, by construction, k" € I(n,k’). In case (1), using the induction
hypothesis and the fact that global names and keys in p have the same interpretation in w
and w' (this interpretation being a subset of K'), we get that [pluw 7, 1j/x € [Plwx- Thus,
k" € [p]w,ix- Because [is w-consistent and n —— p € ¢(k’), we again obtain that k" € I(n,k’),
as required.

Since 1,/ (n,k’) is the union of the (T3 1 j)(n, k'), it follows that l,(n,k’) = I(n,k’). This
completes the proof of (2). I

Proposition 3.8: Let I' be any c-satisfiable boolean combination of formulas of the form
k cert ¢, and let A be any boolean combination of formulas of the form p — q where neither
p nor q contains a local name. Then |=. T = A iff =c A.

Proof: Clearly . A implies =. I' = A. For the converse, suppose by way of contradiction
that =c I' = A and there is a world w = (3, ¢) and a principal k such that w,k =, =A. Since
' is assumed to be c-satisfiable, there exists a world w’ = (', ¢’) and a principal k" such that
w' ¥ . T'. Let w” be the world (3,c). Then a straightforward induction shows that for all
principal expressions p not containing a local name, we have [p]w ;1 , x = [Plw i, k- Moreover,
for all keys ky and formulas ¢, we have w” k [=. k1 cert ¢ iff w' k" ¢ ki cert ¢. It follows that
w”, k . T' A=A, giving us our desired contradiction. i

Theorem 4.1: Suppose ki, ko are principals, w = (5,¢) is a world, and p is a principal
expression. Let F,, be the set of all the formulas g — k for all global names g and keys
k € [(g) and the formulas k cert ¢ for all keys k and formulas ¢ € c(k). The following are
equivalent:

29

1. k1 € REF2(ky, 3, ¢,p),
w, ko e p — ki,
w', ko e p — ky for all worlds w' > w,

Ey ':c k2’s p+— ki,

Cro e

E, Eoka's pr— k.

Proof: The presentation of REF2 in Figure 1 is still slightly informal, combining recursion
and nondeterminism. To make it fully precise, define a computation tree of REF2 to be a finite
tree labelled by expressions of the form “k; € REF2(kq, 53, ¢,p)”, such that if N is a node so
labelled, then one of the following four conditions holds:

1. pis a key k, we have k = k1 = ko, and N is a leaf of the tree,
2. pis a global name g and k; € ((g),

3. p is a local name n and c(ky) contains a formula n —— q and N has exactly one child,
labelled “k; € REF2(ko, 3,¢,q)”,

4. p is of the form g’s r and N has exactly two children, labelled “k € REF2(ks, 3,¢,q)”
and “k; € REF2(k, 3,¢,x)”, for some key k.

We take k; € REF2(ks, 3, ¢,p) to mean that there exists a computation tree of REF2 with root
labelled “k; € REF2(ka, 5, ¢,p)”.

Given a world w = (f,¢) and m € N, let [, = T, T m. The following result establishes
a correspondence between the stages of the computation of [, and the computation trees of
REF2. The proof is by a straightforward induction on m, with a subinduction on the structure
of p.

Lemma A.10: For all m € N, keys kq, ks, worlds w = (0, c), and principal expressions p, we
have k1 € [plw.i., k., iff there ezists a computation tree of REF2 of height at most m whose root
is labelled “k; € REF2(ke, 3,¢,p)”.

Using the fact that 1, = U{l,, : m € N}, Lemma A.1, and Lemma A.10, we obtain the
equivalence between (1) and (2).

The proof of the implication from (2) to (3) is by a straightforward induction on the structure
of p; that is, for fixed v’ > w, we show by induction on the structure of p that if w,ky =
p — ki then w',ky ¢ p — ki. The opposite implication from (3) to (2) is trivial, since
w > w. For the implication from (3) to (4), suppose that (3) holds and (4) does not. Then
for some world w’ and key k we have w' .k . E, and v,k = —(k’s p — k1). The
latter implies w’, ko F=c —(p — k). Since w',k [=¢ Ey, it follows that v’ > w. Thus, by (3),
w', k9 Ec p — ki, contradicting our assumption. The implication from (4) to (3) is immediate,
since w', ko = Ey, for all w’ > w. Finally, the equivalence between (4) and (5) is just a special
case of Theorem 3.5. I

30

Proposition 5.1: If M represents w and | then for all principal expressions p and x,y €
KUGUN we have M = 7, 4(p) iff v,y € K and w,l,z Ep+—y.

Proof: By a straightforward induction on the structure of p. The base cases, where p €
K UGU N, are immediate from the definition of “represents” and the semantics of the logic.
The inductive case, where p = q’s r, is immediate from the semantics and the definition of the
translation. il

Theorem 5.2: The minimal Herbrand model M, of ¥, represents w and ly,.

Proof: (Sketch) The proof proceeds by showing a direct correspondence between the construc-
tion of the minimal Herbrand model of ¥, and the fixpoint construction of [,,.

The theory of logic programming [L1o87] associates with the Horn theory ¥,, an operator
®,, on the space of Herbrand models on the vocabulary V', defined by name(z,y, z) € ®,,(M) if
there exists a substitution instance of a formula in ¥, of the form B = name(z,y, z) such that
M [= B. The least Herbrand model M,, of ¥, is then equal to ®,, T w = U,;,en Pw T m, where
O, 10=0and @, T m+1=Pu(P, T m) for m > 0.

Let T, be the operator on local name assignments defined in the proof of Theorem 3.1.
Using Proposition 5.1 to handle the rules in ¥, corresponding to certificates, we may then
show by a straightforward induction on m that for all m > 1, the Herbrand model ® T m
represents the world w and the local name assignment 75, T m. It follows that M,, = ® T w
represents [, =T, T w. I

Theorem 6.1: AX‘;S}f (resp., AXJffof) is a sound and complete aziomatization of LLNC® with
respect to the open semantics if K is infinite (resp., K is finite).

Proof: The argument is very similar to that in the proof of Theorem 3.2. First suppose that
K is infinite.

We add the following clauses to the definition of P:

6. Self € P,

7. if n € P is a local name then Self’'sn € P.

We also add the following clauses to the definition of S, corresponding to the new axioms for
Self.

(CISP) if Self’sp € P then Self’spr——p € St and p—— Self'spe ST,
(CIPS) if p’s Self € P then p’s Self — p € ST and p — p’s Self € ST,
(CISE) if Self —p € ST and p's k — k € ST then p — Self € ST.

Lemma A.5 still applies. The definitions following this lemma, up to and including that of
S* are unchanged. However, the construction of the model changes slightly. We no longer
use kg to represent the “current principal”’, instead, we use the key k, that the construction
associates with Self. This could be either a key in P; or one of the keys k. for ¢ € O, depending

31

on whether Self is key-equivalent or open. Note that we cannot have Self empty (thanks to
the Identity axiom). If Self is key-equivalent, then by (CIKD) it is equivalent to at most one
key k € P. In this case, we define k, = k. If Self is open we define k, to be k., where
¢ = [Self].

We now define w and [exactly as before, except that we now set [(ko,n) = (), since we no
longer use kg as the “current principal.” The following lemma is the analogue of Lemma A.7.

Lemma A.11: For all expressions p € P, we have [p]w,x, = I(p)-

Proof: The proof is very similar to that of Lemma A.7; we just describe the modifications
required. The base cases for p a global name or a key are identical.

When p = n is a local name, we proceed as follows. There are two possibilities, depending
on whether k, € P or not. Suppose first that k, € P. Then we have k, =~ Self and, by
(CILM) and (CISP), k,’s n = Self’s n ~ n. It then follows by (CIT) and construction of [that
n— ke S*iff k,’sn+—— k € S* iff k € I(ky,n), as required.

If k. = k. for ¢ an open class, we proceed as follows. If k € I(n), then we consider two cases,
depending on whether k € P;. If k € P;, then n —— k € ST and it follows that Self’s n —— k
by (CISP) and (CIT). Since Self ~ Self it is immediate that k € [p]y k.. Alternatively, if
k = kg, for d € O, then we have n — q € ST for some q € d. By (CISP) and (CIT) it follows
that Self’sn+— q € ST, hence Self’s n — k € S*. As before, this implies that k € [n], k., -

For the opposite inclusion, suppose that k € [n], x,. Since we are assuming that Self
is open, there must be some q ~ Self such that q’s n — k € S§*. By (CILM), we have
Self’sn+—— q’sn € ST. It follows using (CIT) that Self’s n — k € S*, hence n — k € S*.
This completes the argument for the base case of n a local name.

There is now an additional base case for p = Self. Here, note that [Self], ;x, = {k.}. We
therefore need to show that Self — k € S* iff k = k,. When k, € P;, we have Self =~ k,, so
Self — k € S* iff k, — k, and the claim follows by (CIKD) and (CIT) as in the base case
for keys. The alternative is that k. = k. for ¢ = [Self]| € O. Since have Self — k., € S* by
construction of S*, it remains to prove that if Self —— k € S* then k = k.. Now we cannot
have Self — k € §* for k € P, for then by the argument above that Self is nonempty and
(CISE), we have k —— Self € ST, contradicting the assumption that ¢ is open. Thus, we must
have k = k4 for some d € O. In this case, there exists q € d such that Self — q € ST. Since
d is open, we have q’s kg — kg € ST, hence q — Self € ST by (CISE). Thus, Self ~ q, and
it follows that d = ¢, hence k = k, as required. This completes the argument for the base case
where p = Self.

The inductive case is exactly as before, except that we need to consider the new case
p’s Self. Here, we note that [p’s Self], ;x, = [P]w,ix.. Thus, by the induction hypothesis, we
are required to prove that p — k € S* iff p’s Self — k € S*. This follows using (CIPS) and
(CIT). 1

The remainder of the proof in the case that K is infinite proceeds as before, using k, in
place of k.

If K is finite, the proof is even closer to that for the logic without Self. As sketched in
the main text, because S is consistent, it follows from Identity, Witnesses, and Self-is-key that

32

there must be some key k, € K such that Self — k, € S. For this key k,, we must have
k,sn—— k € Siff n —— k € S. Thus, k, plays the role of kg in the earlier argument. (Note
that we now no longer need Current Principal to ensure the existence of kg.) The rest of the
argument is unchanged.) I

Acknowledgments

Work on this paper was done while the second author was with the School of Computing
Sciences, University of Technology, Sydney. This work was supported in part by NSF under
grant TRI1-96-25901 and by a UTS internal research grant. A preliminary version of this paper
appeared in the Proceedings of the 12th IEEE Computer Security Foundations Workshop, 1999,
pp. 111-122.

References

[Aba9g| M. Abadi. On SDSI’s linked local name spaces. Journal of Computer Security,
6(1-2):3-21, 1998.

[ABLP93] M. Abadi, M. Burrows, B. Lampson, and G. D. Plotkin. A calculus for access
control in distributed systems. ACM Transactions on Programming Languages
and Systems, 15(4):706-734, 1993.

[BFLI6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Pro-
ceedings 1996 IEEE Symposium on Security and Privacy, pages 164-173, 1996.

[Bir67] G. Birkhoff. Lattice Theory. American Mathematical Society, Providence, R.I., 3rd
edition edition, 1967.

[EK76] M.H. van Emden and R. A. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM, 23(4):733-742, 1976.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, Mass., 1995.

[GH93] A. J. Grove and J. Y. Halpern. Naming and identity in propositional logics, Part
I: the propositional case. Journal of Logic and Computation, 3(4):345-378, 1993.

[Gro98] SPKI Working Group. Simple public key infrastructure, internet draft. at
http://www.ietf.org/html.charters/spki-charter.html, 1998.

[HM90] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549-587, 1990. A preliminary version

appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

[HvdM99] J. Y. Halpern and R. van der Meyden. Adding revocation and timestamps to a
logic for sdsi’s linked local name spaces. unpublished manuscript, 1999.

33

[HvdMS99] J.Y. Halpern, R. van der Meyden, and F. Schneider. Logical foundations for trust

[LABW92]

[L1087]

[LNS82]

[RLY6]

[U1188]

[U1189]

management. manuscript, 1999.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265-310, 1992.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 2nd
edition edition, 1987.

J.-L. Lassez, V. L. Nguyen, and E. A. Sonenberg. Fixed point theorems and se-
mantics: a folk tale. Information Processing Letters, 14(3):112-116, 1982.

R.L. Rivest and B. Lampson. SDSI — a simple distributed security infrastructure.
at http://theory.lcs.mit.edu/~cis/sdsi.html, 1996.

J. D. Ullman. Principles of Database and Knowledge Base Systems, Volume I
Computer Science Press, 1988.

J. D. Ullman. Principles of Database and Knowledge Base Systems, Volume II:
The New Technologies. Computer Science Press, 1989.

34

