MULTILEVEL SECURE TRANSACTION PROCESSING

The Kluwer International Series on ADVANCES IN DATABASE SYSTEMS

Series Editor Ahmed K. Elmagarmid

Purdue University West Lafayette, IN 47907

Other books in the Series:

FUZZY LOGIC IN DATA MODELING, Guoqing Chen ISBN: 0-7923-8253-6
INTERCONNECTING HETEROGENEOUS INFORMATION SYSTEMS, Athman Bouguettaya, Boualem Benatallah, Ahmed Elmagarmid ISBN: 0-7923-8216-1
FOUNDATIONS OF KNOWLEDGE SYSTEMS: With Applications to Databases and Agents, Gerd Wagner ISBN: 0-7923-8212-9
DATABASE RECOVERY, Vijay Kumar, Sang H. Son ISBN: 0-7923-8192-0
PARALLEL, OBJECT-ORIENTED, AND ACTIVE KNOWLEDGE BASE SYSTEMS, Ioannis Vlahavas, Nick Bassiliades ISBN: 0-7923-8117-3
DATA MANAGEMENT FOR MOBILE COMPUTING, Evaggelia Pitoura, George Samaras ISBN: 0-7923-8053-3
MINING VERY LARGE DATABASES WITH PARALLEL PROCESSING, Alex A. Freitas, Simon H. Lavington ISBN: 0-7923-8048-7
INDEXING TECHNIQUES FOR ADVANCED DATABASE SYSTEMS, Elisa Bartino, Bang Chin Ooi, Bon Sacks-Davis, Kian-Lee Tan, Justin Tobel, Boris

Bertino, Beng Chin Ooi, Ron Sacks-Davis, Kian-Lee Tan, Justin Zobel, Boris Shidlovsky, Barbara Catania ISBN: 0-7923-9985-4 INDEX DATA STRUCTURES IN OBJECT-ORIENTED DATABASES, Thomas

INDEX DATA STRUCTURES IN OBJECT-ORIENTED DATABASES, Thomas A. Mueck, Martin L. Polaschek ISBN: 0-7923-9971-4

DATABASE ISSUES IN GEOGRAPHIC INFORMATION SYSTEMS, Nabil R. Adam, Aryya Gangopadhyay ISBN: 0-7923-9924-2

VIDEO DATABASE SYSTEMS: Issues, Products, and Applications, Ahmed K. Elmagarmid, Haitao Jiang, Abdelsalam A. Helal, Anupam Joshi, Magdy Ahmed ISBN: 0-7923-9872-6

REPLICATION TECHNIQUES IN DISTRIBUTED SYSTEMS, Abdelsalam A. Helal, Abdelsalam A. Heddaya, Bharat B. Bhargava ISBN: 0-7923-9800-9

SEARCHING MULTIMEDIA DATABASES BY CONTENT, Christos Faloutsos ISBN: 0-7923-9777-0

TIME-CONSTRAINED TRANSACTION MANAGEMENT: Real-Time Constraints in Database Transaction Systems, Nandit R. Soparkar, Henry F. Korth, Abraham Silberschatz ISBN: 0-7923-9752-5

DATABASE CONCURRENCY CONTROL: Methods, Performance, and Analysis, Alexander Thomasian, IBM T. J. Watson Research Center ISBN: 0-7923-9741-X

MULTILEVEL SECURE TRANSACTION PROCESSING

by

Vijay Atluri Rutgers University

Sushil Jajodia George Mason University

Binto George Western Illinois University

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication Data

Atluri, Vijay, 1956-

Multilevel secure transaction processing / by Vijay Atluri, Sushil Jajodia, Binto George.
p. cm. -- (The Kluwer international series on advances in database systems; 16)
Includes bibliographical references and index.
ISBN 978-1-4613-7055-0 ISBN 978-1-4615-4553-8 (eBook)
DOI 10.1007/978-1-4615-4553-8

1. Database management. 2. Transaction systems (Computer systems) 3. Database security. I. Jajodia, Sushil. II. George, Binto, 1970- III. Title. IV. Series.

QA76.9.D3 A894 1999 005.4'34--dc21

99-047413

Copyright [©] 2000 Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

Contents

List of Figures			ix	
List o	f Tables		xi	
Prefac	e		xiii	
1. INTRODUCTION				
1	Multi	level Secure Databases	2	
	1.1	Why DAC is not enough?	2 4	
	1.2		6	
	1.3	Multilevel Secure DBMS Architectures	8	
2	Adva	nced Database Application Domains	12	
3		lization of the book	13	
2. TRADITIONAL TRANSACTION PROCESSING				
1	ACID	Requirements	15	
2		arrency Control Protocols	16	
3		nit Protocols	18	
3. TR	ANSAC	FION PROCESSING IN MLS DATABASES	21	
1	Proble	ems with solutions in traditional environment	21	
2	Revis	ed Requirements	23	
3	Comn	nercial Solutions	24	
4	Resea	rch Solutions for Replicated Architecture	25	
5	Resea	rch Solutions for Kernelized Architecture	27	
	5.1	Single version algorithms	27	
	5.2	Multiversion algorithms	28	
		5.2.1 Keefe-Tsai's scheduler	29	
		5.2.2 Jajodia-Atluri's scheduler	29	
		5.2.3 Snapshot Approaches	30	
	5.3	Weaker Correctness Criteria	31	
		5.3.1 Levelwise Serializability	31	
		5.3.2 One-item Read Serializability	33 34	
	5.4	5.3.3 Pairwise Serializability Using Transaction Analysis to Achieve Serializability	34	
	5.1	come runsaction runsis to remeve Senanzaonity	55	

		5.5 5.6		el Transactions Commit Protocols Secure Early Prepare (SEP)	36 37 39
1	SECI			ION PROCESSING IN REAL-	39
4.		DATA		ION PROCESSING IN REAL-	43
	1	Introdu 1.1		eal-Time Databases Assignment Policies	44 47
	2	Additio 2.1	onal Requi	-	47 47
	3		rrency Con	ntrol ne protocols 2PL High Priority	48 48 49 49 50 50
		3.2 3.3		Secure 2PL (AS2PL)	50 52 54 56
	4	3.4 3.5 Conclu	Fairness	eal-Time Two-Phase Locking Protocol	56 59 61
5					63
5.	1		ction to W Workflov Workflov	Vorkflow Systems v Technology and Products v Product Categories v Standards	64 64 65 66
	2		low Transaction Model 6		
	3	Multile	evel Secure Workflow Model 6		
	4	Solutio 4.1	Semantic	cute MLS Workflows Classification of Task Dependencies in MLS	70
		4.2	workflow Redesign 4.2.1 4.2.2 4.2.3	ing of MLS Workflows Splitting the High Task:	71 75 75 76 78
		4.3	Alternativ	ve Solutions: Maintaining Multiple Versions:	78
	5	The MI	LS WFMS	Architecture	79
6.	SECU	SECURE BUFFER MANAGEMENT 8			
	1				81
	2	Require			82
	3	Solution 3.1	*-DBS B 3.1.1	uffering System Buffer Allocation	83 84 84
			3.1.2 3.1.3	Replacement Synchronization	85 85

	3.1.4	Design Issues	86
		Implementation	87
		nce Analysis	87
4	Secure Real-Time	Database Buffer Management	88
	4.1 Secure Bu	ffering Algorithm for RTDBS	88
	4.1.1	Security Features	89
	4.1.2	Real-Time Features	89
	4.1.3	Search and Slot Selection	90
	4.1.4	Fairness Features	91
	4.2 Performar	ice Study	91
5	Conclusions		93
7. APF	LICATIONS TO H	ERARCHICAL AND	
	LICATED DATABA		95
1	Hierarchical Data	Dases	95
	1.1 Hsu-Chan	Protocol	97
	1.2 Ammann	et al. Protocol	97
2	Replicated Databa	ses	99
8. CH	ALLENGES		105
1	Using advanced tr	ansaction model paradigms	105
2	•	tion Transaction Processing	107
3	Recovery Method	6	109
Referen	ices		111

Index

123

List of Figures

1.1	Before the Trojan Horse Attack	5
1.2	After the Trojan Horse Attack	6
1.3	Example of a Covert Channel	7
1.4	The Integrity Lock Architecture	9
1.5	Vulnerability of The Integrity Lock Architecture	9
1.6	The Kernelized Architecture	10
1.7	The Replicated Architecture	11
1.8	The Trusted Subject Architecture	12
2.1	An incorrect concurrent execution	16
2.2	A correct concurrent execution	17
2.3	Basic 2PC Protocol	19
2.4	EP Protocol	20
3.1	A covert channel with two-phase locking protocol	22
3.2	A non-serializable history	22
3.3	The serialization graph corresponding the history in fig-	
	ure 3.2	23
3.4	A Crown	26
3.5	A multiversion schedule that can be generated by the	
	Trusted Oracle	33
3.6	The distributed schedule D	38
3.7	SEP Protocol	41
4.1	Utility Function	45
4.2	Real-Time Database	46
4.3	Secure Priority Assignment	48
4.4	Secure Real-Time Concurrency Control	48
4.5	Adaptive Secure 2PL	53
4.6	MCC architecture for Dual Approach	55
4.7	Secure Real-Time Two-Phase Locking Protocol	57
4.8	GUARD Admission Control	59

x MULTILEVEL SECURE TRANSACTION PROCESSING

5.1	Inter-level dependencies of the multilevel workflow trans-	
	action in example 1	70
5.2	Task dependencies in the MLS workflow in example 5.2	72
5.3	Modified Workflow after executing split task for exam-	
	ple 5.1	76
5.4	An example demonstrating the closest ancestor	76
5.5	Modified Workflow after executing compensate task for	
	example 5.2	78
5.6	Approach for redesigning each type of dependency	78
5.7	The MLS WFMS Architecture	80
7.1	An Example of Class Hierarchy in a Hierarchically De-	
	composed Database	96
7.2	A Planar Lattice	99
7.3	A crown-free DAG	101
7.4	Two forests produced by the DAG protocol on the DAG	
	of figure 7.3	102
7.5	A DAG with crowns	103
7.6	A solution with a trusted node	103
7.7	A non-forest solution	104

List of Tables

5.1	A list of possible control flow dependencies	68
5.2	Some RD type dependencies and their inverse	77

Preface

Information security has been gaining a great deal of importance as computers are increasingly being used to process sensitive information. A *multilevel secure database management system* (MLS DBMS) is designed to store, retrieve and process information in compliance with certain mandatory security requirements, essential for protecting sensitive information from unauthorized access, modification and abuse. Such systems are characterized by data objects labeled at different security levels and accessed by users cleared to appropriate security levels. Unless transaction processing modules for these systems are designed carefully, they can be exploited by clever malicious users to leak sensitive information to unauthorized users.

Considerable research effort has been devoted since 1990 that has impacted the design and development of trusted MLS DBMS products. This book is a reflection of the progress and achievements made in this area. It covers the state-of-the-art of the research in developing secure transaction processing for popular MLS DBMS architectures: kernelized, replicated, and for distributed MLS DBMS as well as with advanced transaction models such as workflows, long duration and nested. Further, it explores the technical challenges that require future attention.

This book comprises of three logical parts. The first part of the book provides introduction and identifies the challenges in secure transaction processing. In particular, it gives an introduction to MLS databases including the different MLS DBMS architectures and an overview of traditional transaction processing approaches. It then identifies the desirable properties and the additional requirements imposed by multilevel security on transaction processing. It explains why conventional transaction processing techniques can conflict with the multilevel security constraints, discusses how they must be modified to comply with the security policy, and notes the challenges of doing so with acceptable responsiveness and with little or no trusted code.

The second part of the book provides secure transaction processing solutions for conventional databases. It examines the published solutions adopted by commercial vendors in their trusted DBMS products, that is, the extent to which they have succeeded in meeting the competing needs of multilevel transaction processing and efficiency. It presents secure concurrency control algorithms, based on locking and multiversion timestamp ordering, developed for replicated and kernelized trusted DBMS architectures, and provides an assessment of them. This book describes research in multilevel transaction correctness, where an individual transaction are able to write data at multiple security levels that leads to an additional trade-off between security and atomicity. It then discusses distributed multilevel secure DBMSs and describes the research on the impact of multilevel security on commit protocols for coordinating the execution of distributed transactions. Finally, this part discusses the impact of real-time constraints on secure transaction processing and reviews the research solutions in this area.

The third part deals with secure transaction processing in advanced application environments and more recent issues addressed. In particular, it discusses issues of transaction processing considering advanced transaction models such as workflow models and the buffer management issues in a MLS DBMS environment. It also presents the application of secure transaction processing solutions to hierarchical and replicated databases. Finally, the book concludes by identifying technical challenges in multilevel transaction processing that have yet to receive significant attention, including secure transaction processing using advanced transaction models such as nested and long duration models, and secure recovery.

This book is targeted towards researchers and developers in the area of multilevel secure database systems. It can also serve as a reference book for a graduate course on Database Security, Information Systems Security, Advanced Database Systems, and Transaction Processing.

Acknowledgments: The authors would like to acknowledge many contributors of this book. We thank the series editors, Ahmed Elmagarmid and Scott Delman, for their encouragement of this project, and Melissa Fearon of Kluwer for handling the logistics of getting the book through the publication process. We are grateful to Tom Keefe for his contribution to the section on recovery in chapter 8, Wei-Kuang Huang for allowing to use material from his dissertation in chapter 5, and Jayant Haritsa for his input to chapters 4 and 6. We also gratefully acknowledge the research funding of the National Science Foundation (IRI-9624222).