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Abstract

We propose a formal model of rational exchange and exchange protocols in general, which is
based on game theory. In this model, an exchange protocol is represented as a set of strategies in
a game that is played by the protocol parties and the network that they use to communicate with
each other. Within this model, we give a formal definition for rational exchange and various other
properties of exchange protocols, including fairness. In particular, rational exchange is defined
in terms of a Nash equilibrium in the protocol game. We also study the relationship between
rational and fair exchange, and prove that fairness implies rationality, but not vice versa. Finally,
we illustrate the usage of our formal model for the analysis of existing rational exchange protocols
by analyzing a protocol proposed by Syverson. We show that the protocol is rational only under
the assumption that the network is reliable.

1 Introduction

Recently, new computing and networking paradigms have emerged, which are based on the concept
of self-organization. The most prominent examples are peer-to-peer computing and wireless ad hoc
networks. Due to their very nature, the operation of these systems is based on mechanisms that are
fundamentally different from those used in traditional computing and networking systems. Of course,
this applies not only to the basic mechanisms but to the security mechanisms as well [26, 31, 2, 16,
13,7, 28, 29].
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In this contextrational exchangdecomes particularly interesting. The concept of rational ex-
change has been introduced by Syverson in [27], where he describes an exchange protocol that is
similar to fair exchange, but in fact, it does not provide true fairness. Syverson calls the protocol
rational exchange, because it ensures that rational, self-interested parties have no reason to misbehave
and deviate from it.

Although Syverson’s protocol does not achieve fairness, it has a very appealing feature: it does
not use a trusted third party. We started to study rational exchange exactly for this reason. In the
context of the Terminodes Projég¢1.4], we are concerned with the design of self-organizing wireless
ad hoc networks. These are networks of mobile nodes where communication is based on multi-hop
relaying. In extreme cases, such networks do not rely on a fixed infrastructure at all (e.g., military
and rescue operations). In less extreme cases, ad hoc networks are considered as extensions to an
already established fixed infrastructure (e.g., multi-hop cellular networks [18, 30]). In both cases,
the use of exchange protocols that rely on a trusted third party to achieve fairness is problematic.
The reason is that, in the infrastructureless case, the existence of a trusted third party simply cannot
be assumed, while in the other case, even if a trusted third party is present, there is no guarantee
that the nodes can access it in a timely manner due to frequent and unpredictable disconnections
from the fixed infrastructure. Although fair exchange protocols that do not rely on a trusted third
party do exist (e.g., gradual secret release schemes [11] and probabilistic protocols [20]), they are
highly inefficient in the sense that they require a high number of messages to be exchanged in order
to achieve an acceptable level of fairness. As a consequence, they are not suitable for applications
in wireless ad hoc networks, where the number of transmissions should be minimized due to the
limited available bandwidth and in order to reduce the energy consumption (i.e., save battery power
and reduce interference) of the nodes. Rational exchange, on the other hand, seems to be a promising
alternative to solve the problem, because rational exchange protocols may not use a trusted third party,
they require only a few messages to exchange, and they still provide some guarantees with respect to
fairness (their relation to the property of fairness will be clarified later in this paper).

In this paper, we give a formal definition for rational exchange. The value of a formal definition
is threefold:

e First, attempting to give a formal definition itself helps to better understand the concept, which
is a prerequisite for any design.

e Second, it requires the construction of a mathematical model, in which other, similar concepts,
such as fair exchange, can also be defined and compared to rational exchange. Such a compar-
ison may also help the better understanding of rational exchange. Here we note that protocols
with a flavor similar to that of the Syverson protocol have already been proposed earlier (e.g.,
[15]), but they were inappropriately called fair exchange. A precise study on the relationship of
the two concepts helps to clarify this confusion.

e Third, a formal definition is indispensable to the rigorous verification of rational exchange pro-
tocols.

The mathematical model, in which we will develop our formal definition is based on game theory
[21]. Game theory is a set of analytical tools developed to study situations in which self-interested
parties (which want to maximize their own benefits) interact with each other according to certain rules.
Since exactly this kind of situations occur in exchange protocols, game theory appears to be a natural
choice.

http://www.terminodes.org/



Thus, we model the situation in which parties of a given exchange protocol find themselves as a
game. We call this game the protocol game. The protocol game encodes all the possible interactions
of the protocol parties. The protocol parties are modeled as players. The protocol itself (as a set of
rules) is represented as a set of strategies (one strategy for each protocol party). Misbehavior means
that a protocol party follows a strategy that is different from its prescribed strategy.

We define the concept of rational exchange in terms of properties of the protocol game and the
prescribed strategies of the protocol parties. More precisely, we have been inspired by the striking
similarity between rational exchange as defined informally by Syverson and the concept of Nash
equilibrium in games. Therefore, we define rational exchange formally in terms of a Nash equilibrium
in the protocol game.

Our model is sufficiently rich to permit the definition of other properties of exchange protocols as
well. More specifically, we can also define fairness. Representing the concepts of rational exchange
and fair exchange in the same model allows us to study their relationships. In particular, we prove that
fairness implies rationality (assuming that the protocol satisfies certain additional requirements), but
the reverse is not true in general. Thus, the result that we obtain from the model justifies the intuition
that fairness is a stronger requirement than rationality.

Finally, defining a formal model for exchange protocols and giving a formal definition for ratio-
nal exchange in this model allows us to rigorously verify existing rational exchange protocols. In
order to illustrate this, we formally prove that the Syverson protocol satisfies our definition of ratio-
nal exchange under the assumption that the communication between the protocol parties is reliable.
However, if we relax this assumption, then rationality is lost.

To the best of our knowledge, we are the first who formalized the concept of rational exchange in
its full generality, studied its relation to fair exchange, and provided rigorous proofs of rationality for
existing rational exchange protocols. Although game theory has already been applied in the context of
exchange protocols (see e.g., [23, 17]), we are not aware of any formal model with the same precision
and generality as our protocol game model. Preliminary results of our work appeared earlier in [6, 9].

The outline of the paper is the following: In Section 2, we briefly introduce some basic notions
from game theory that we will use in the development of our model. We present a general framework
for the modeling of exchange protocols as games in Section 3. Based on this, in Section 4, we for-
mally define rational exchange and various other properties of exchange protocols including fairness.
We study the relationship between rational exchange and fair exchange in the same section. In Sec-
tion 5, we illustrate the usage of our model for the analysis of existing rational exchange protocols by
analyzing the Syverson protocol. Finally, we report on some related work in Section 6, and conclude
the paper in Section 7.

2 Preliminaries

In this section, we briefly introduce some notions from game theory that we will use in the paper.

2.1 Extensive games

An extensive gamis a tuple
(P, A, Q,p,(Zi)icp, (Zi)iep)

where

e Pisasetofplayers



e Ais a set ofactions
e () is a set ofaction sequencebat satisfies the following properties:

— the empty sequencees a member of),
— if (ax)}—; € Q and0 < v < w, then(ay)j_; € Q,

— if an infinite action sequenog:,);° , satisfies(a;);_, € Q for every positive integen,
then(a)2, € Q;

If ¢ is a finite action sequence ands an action, therg.a denotes the finite action sequence
that consists of followed bya. An action sequence € @ is terminalif it is infinite or if there

is noa such thatg.a € Q. The set of terminal action sequences is denoted byror every
non-terminal action sequenge= ) \ Z, A(q) denotes the sdu € A : g.a € Q} of available
actionsaftergq.

e pis aplayer functiorthat assigns a player ifi to every non-terminal action sequence Q\ Z
(the interpretation is that playg(q) has to move after action sequenge

e 7, is aninformation partitionof player: € P, which is a partition of the seflg € @ \ Z :
p(q) = i} with the property thatd(q) = A(q’) wheneverg andq’ are in the samenformation
setl; € 7;;

e =, is apreference relatiomf playeri € P on Z.

The interpretation of an extensive game is the following: Each action sequefceepresents a
possible history of the game. The action sequences that belong to the same informatjon Zet
are indistinguishable to playér This means that knows that the history of the game is an action
sequence id; but she does not know which one. The empty sequemepresents the starting point
of the game. After any non-terminal action sequegoce @ \ Z, playerp(q) chooses an action
from the setA(q). Theng is extended withu, and the history of the game becomges. The action
sequences i represent the possible outcomes of the game, df € Z andq =<; ¢/, then playen
prefers the outcom¢ to the outcome.

The preference relations of the players are often represented in tepagaifs a vectory(q) =
(yi(q))icp of real numbers is assigned to every terminal action sequeacg in such a way that for
anyq,q' € Zandi € P,q =; ¢ iff yi(q) < vi(¢).

A finite extensive game can conveniently be represented as a tree, where the edges and the vertices
of the tree correspond to actions and action sequences, respectively. A distinguished vertex, called the
root, represents the empty sequencdevery other vertex: represents the sequence of the actions
that belong to the edges of the path between the rootiahdt us call a vertex: terminal if the path
between the root and cannot be extended beyond Terminal vertices represent the terminal action
sequences in the game. Each non-terminal vertisdabeled byp(q) whereq € @ \ Z is the action
sequence that belongs to Finally, the terminal vertices and may be labeled with payoff vectors to
represent the preference relations of the players.

Conceptually, an infinite game (i.e., a game that has infinite action sequences) can also be thought
of as a tree. In this case, the infinite action sequences of the game are represented by infinite paths
starting from the root.



2.2 Strategy

A strategy of playei is defined as a functios; that assigns an action if(q) to each non-terminal
action sequence that is in the domain of;, with the restriction that it assigns the same action to
and¢’ wheneverg and¢’ are in the same information set ©f The domaindom(s;) of s; contains
only those non-terminal action sequenge®r which p(¢) = ¢ and g is consistent with the moves
prescribed bys;. Formally, we can defindom(s;) in an inductive way as follows: A non-terminal
action sequence = (ay);’_, is indom(s;) iff p(¢q) =i and

e either there is n@ < v < w such thap((ax);_,) = i,
e orforall0 < v < wsuchthap((ar)j_;) =14, (ax)j_, isindom(s;) ands;((ag)j_;) = Gut1.

We denote the set of all strategies of playey S;.

A strategy profilds a vector(s; );c p Of strategies, where eashis a member ob;. Sometimes, we
will write (s, (s:);cp\ ;1) instead of(s;);cp in order to emphasize that the strategy profile specifies
strategys; for player;.

2.3 Nash equilibrium

Let o((s;);cp) denote the resulting outcome when the players follow the strategies in the strategy
profile (s;)iep. In other wordso((s;):cp) is the (possibly infinite) action sequenge,);’ , € Z

such that for everg < v < w we have that, 4, )»_)((akr)j_1) = av+1. A strategy profile(s});cp

is aNash equilibriumff for every player; € P and every strategy; < S; we have that

o(sj, (87)icp\{j)) =5 0(8], (57 )iep\(5})

This means that if every playérother than;j follows s}, then player; is not motivated to deviate
from s7, because she does not gain anything by doing so. Itis possible that a game has multiple Nash
equilibria.

3 Protocol games

Game theory in general, and the above introduced notions in particular, will serve as the basis of our
model of rational exchange. We describe this model in two steps: First, in this section, we introduce
a general framework for the construction of games from exchange protocols. We refer to these games
asprotocol gamesThe protocol game of an exchange protocol is intended to model all the possible
interactions of the (potentially misbehaving) protocol parties. The correct behavior of each party is
represented by a particular strategy within the protocol game. Second, in the next section, we define
rational exchange formally as a particular property that the strategies representing the correct behavior
of the protocol parties should satisfy.

We should note that we consider only two-party exchange protocols (i.e., protocols that involve
only two main parties and possibly a trusted third party) for two reasons. First, we want to make the
presentation easier. Second, most of the exchange protocols proposed in the literature are two-party
exchange protocols. However, our model could be extended to multi-party exchange protocols as
well.



3.1 System model

We assume that the network that is used by the protocol participants to communicate with each other
is reliable, which means that it delivers messages to their intended destinations within a constant time
interval. Such a network allows the protocol participants to interact in a synchronous fashion. We will
model this by assuming that the protocol participants interact with each otreurds where each

round consists of the following two phases:

1. each participant generates some messages based on her current state, and sends them to some
other participants;

2. each participant receives the messages that were sent to her in the current round, and performs
a state transition based on her current state and the received messages.

We adopted this approach from [19], where the same model is used to study the properties of dis-
tributed algorithms in a synchronous network system.

As we mentioned in the Section 1, our work was motivated by the use of rational exchange in
wireless ad hoc networks. Clearly, the synchronous model defined above is far from being realistic
for such networks in general. Nevertheless, it makes sense to start the investigation with a simpler
model as this may pave the way to the more general asynchronous case. One step in this direction
is presented in [4], where we sketch how the synchrony assumption could be relaxed and how asyn-
chronous systems could be modeled as games.

In addition, there are applications where the synchronous model defined above is not so unreal-
istic. Consider for instance two neighboring nodes of an ad hoc network that want to perform some
transaction with each other (e.g., execute an exchange protocol). Transactions between neighbors may
be common in certain types of ad hoc networks (see for instance [5, 8]). In this case, there are better
reasons to assume bounds on the message delivery delays, because the nodes communicate directly
and not via intermediate forwarding nodes. Moreover, the underlying medium access control scheme
may also provide mechanisms (e.g., the optional RTS/CTS handshake in IEEE 802.11) that makes the
communication between neighboring nodes more reliable.

3.2 Limitations on misbehavior

We want that the protocol game of an exchange protocol models all the possible ways in which the
protocol participants can misbehawgthin the context of the protocolThe crucial point here is
to make the difference between misbehavior within the context of the protocol and misbehavior in
general. Letting the protocol participants misbehave in any way they can would lead to a game that
would allow interactions that have nothing to do with the protocol being studied. Therefore, we want
to limit the possible misbehavior of the protocol participants. However, we must do so in such a way
that we do not lose generality. Essentially, the limitation that we impose on protocol participants is
that they can send only messages thatarapatiblewith the protocol. We make this more precise in
the following paragraph.

We consider an exchange protocol to be a descriptioha distributed computation that consists
of a set{m,m, ...} of descriptions of local computations. For brevity, we call these descriptions
of local computationprograms Each programry, is meant to be executed by a protocol participant.
Typically, eachr;, contains instructions to wait for messages that satisfy certain conditions. When
such an instruction is reached, the local computation can proceed only if a message that satisfies the
required conditions is provided (or a timeout occurs). We call a messaganpatible withry, if the
local computation described by, can reach a state in which a message is expectedhanduld be
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accepted. Let us denote the set of messages that are compatible, viagh)/,. Then, the set of
messages that are compatible with the protocol is definéd,as- Uy M, .

Apart from requiring the protocol participants to send messages that are compatible with the pro-
tocol, we do not impose further limitations on their behavior. In particular, we allow the protocol
participants to quit the protocol at any time, or to wait for some time without any activity. Further-
more, the protocol participants can send any messages (compatible with the protocol) that they are able
to compute in a given state. This also means that the protocol participants may alter the prescribed
order of the protocol messages (if this is not prevented deliberately by the design of the protocol).

On the other hand, we note that our model does not allow the protocol parties to run multiple
instances of the protocol in parallel (i.e., we do not consider interleaving attacks), and to eavesdrop or
modify messages sent between other parties of the protocol.

3.3 Players

We model each protocol participant (i.e., the two main parties and the trusted third party if there is
any) as a player. In addition, we model the communication network as a player too. Therefore, the
player setP of the protocol game is defined &= {p1, p2, p3, net}, wherep; andps represent the

two main parties of the protocqglg stands for the trusted third party, andt denotes the network. If

the protocol does not use a trusted third party, theis omitted. We denote the set\ {net} by P’.

It might seem that it is useless to model the trusted third party explicitly as a player, because it
always behaves correctly, and thus, its actions are fully predictable. However, usually, the payoffs
for the main parties depend on the state of the trusted third party, and it is easier to handle the state
transitions of the trusted third party if we explicitly model it as a player. In addition, modeling the
trusted third party in the same way as we model the other protocol participants leads to a more uni-
form model. After all, the trusted third party a protocol participant. We will make the distinction
between the trusted third party and the potentially misbehaving main parties of the protocol in another
way: we restrict the player that represents the trusted third party to follow a particular strategy (the
one that represents the correct behavior), whereas we allow the players that represent the potentially
misbehaving main parties to choose among several strategies.

As we mentioned before, we assume that the protocol participants interact in synchronous rounds,
where every message sent in the first phase of a round is delivered in the second phase of the same
round. It might again seem that it is useless to model the network explicitly as a player, because the
only action it can perform is the delivery of the messages that were sent in the current round, and
therefore, it does not have choices. Nevertheless, we represent the network explicitly as a player. The
reason is that it seems to be easier to present the model if we explicitly include the message delivery
actions, because they clearly identify the second phases of the rounds, and thus, the points where the
states of the players change as the result of obtaining (partial) information about the actions performed
by the other players. In addition, modeling the network explicitly as a player makes it easier to extend
our model with unreliable networks, because such networks can be modeled as real players that can
choose between delivering a message or further delaying it.

3.4 Information sets

Each playeri € P has a local stat&;(q) that represents all the information thiahas obtained
after the action sequenge If for two action sequencegandq’, ¥;(q) = 3;(¢'), theng andq’ are
indistinguishable ta. Therefore, two action sequenagandq’ belong to the same information set of
i iff itis 4's turn to move after both andq’, andX;(q) = X;(¢).



We define two types of events: send and receive events. The sendsedént, j) is generated
for playeri € P’ when she submits a messagee M, with intended destination € P’ to the
network, and the receive everv (m) is generated for player € P’ when the network delivers a
messagen € M, toi. We denote the set of all events By

The local stat&;(¢q) of player: € P’ after action sequencegs defined as a tuplev;(q), H;(q),7i(q)),
where

e «;(q) € {true, false} is a boolean, which isue iff player is still active after action sequence
q (i.e., she did not quit the protocol);

e H;(q) C E x N is playeri's local history after action sequengewhich contains the events
that were generated fortogether with the round number of their generation;

e 7;(¢) € Nis a non-negative integer that represents the round number for plafter action
sequence.

Initially, «;(e) = true, H;(e) = ), andr;(e) = 1 for every playeti € P'.

The local staté&,,.; (¢) of the network consists of a séf,,.;(q) C M, x P’ x P" which contains
those messages together with their source and intended destination that were submitted to the network
and have not been delivered yet. We cdll.;(¢) the network buffer. InitiallyM,,; (¢) = 0.

3.5 Available actions

In order to determine the set of actions available for a playe’ after an action sequengewe first

tag each message € M, with a vector(¢]"(2;(¢))):cp’ Of conditions. Eaclp]*(2;(¢)) is a logical
formula that describes the condition that must be satisfied by the locabs{ateof playeri in order

for i to be able to send messageafter action sequengge Our intention is to use these conditions to
capture the assumptions about cryptographic primitives at an abstract level. For instance, it is often
assumed that a valid digital signaturgm) of playeri on messagen can only be generated hy

This means that a messagé € M, that containsgr;(m) can be sent by a playgr+ i iff j received

a message that containeg'm) earlier. This condition can be expressed by an appropriate logical
formula for every; # i.

While the formal derivation of the condition tags attached to the messages are currently not sup-
ported by our method, we had no particular problems deriving them for the protocols that we have
analyzed. The reason may be that each of the logical formulae is concernedsiitieemessage,
or more precisely the conditions upon which that message can be sent by a given protocol participant.
Nevertheless, in our future work, we may develop a more systematic approach for this purpose in
order to avoid possible errors that this informal step might introduce in the analysis.

Now, let us consider an action sequegcafter which playei € P’ has to move. There are two
special actions, calledlle; andquit;, which are always available farafter¢. In addition to these
special actions, playercan choose a send action of the fosend;(M ), whereM is a subset of
the setM;(3;(q)) of messages thatis able to send in her current local state. Formally, we define
M;(2i(q)) as

M;(%i(q)) = {(m,j) : m € Mz, ¢;"(Ei(q)) = true, j € P\ {i}}

The setd;(X;(q)) of available actions of playerc P’ after action sequencgis then defined as
Ai(Xi(q)) = {idle;, quit;} U {send;(M) : M C M;(2;(q))}
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Note thatsend; () € A;(X:(¢)). By conventionsend;(0) = idle;.
Let us consider now an action sequencafter which the network has to move. Since the network
is assumed to be reliable, it should deliver every message that was submitted to it in the current round.
This means that there is only one action, caliediver,,.;, that is available for the network after
which means the delivery of all messages in the network buffer. Thus,

Anet (Enet (Q)> = {de”vernet}

The above defined actions change the local states of the players as follows:

e If a playeri € P’ performs the actioidle;, then the state of every playgre P remains the
same as before.

Formally: for any action sequengeafter which playei € P’ has to move, we have that
Zj(qldlez) = Z]’(q)
for everyj € P.

e If a playeri € P’ performs the actioquit;, then the activity flag of is set tofalse. The state
of every other playej € P\ {i} remains the same as before.

Formally: for any action sequengeafter which playei € P’ has to move, we have that

a;(g.quit;)) = false

Hz(qutz) = H,-(q)

ri(q.quiti) = ri(q)
and for everyj € P\ {i},

Ej(g.quit;) = X;(q)

e If a playeri € P’ performs an actiosend; (M) such thatV # (), then the messages M are
inserted in the network buffer, and the corresponding send events are generatéithiostate
of every other playej € P\ {i, net} remains the same as before.

Formally: for any action sequencg after which playeri € P’ has to move, and for any
available send actiosend; (M) € A;(X;(q)) such thatM # (), we have that

a;(g.send;(M)) = «ai(q)
H;(g.send;(M)) = H;(q)uU{(snd(m,j),ri(q)): (m,j) e M}
ri(g.send;(M)) = ri(q)

Mpei(gsend;(M)) = Mpe(q) U{(m,i,7): (m,j) € M}

and for everyj € P\ {i, net},



o If the network performs the actiogeliver,,.;, then for every message in the network buffer,
the appropriate receive event is generated for the intended destination of the message if it is
still active. Then, every message is removed from the network buffer, and the round number of
every active player is increased by one.

Formally: for any action sequengeafter which the network has to move, we have that

Mpei(g.deliver,e) = 0
and for everyi € P/,
— if a;(q) = true, then
ai(g.deliver,,) = ai(q)
Hi(g.deliver,e;) = Hi(q)U{(rev(m),ri(q)):3j € P': (m,j,i) € Myer(q)}
ri(g.deliver,e) = ri(q)+1
— otherwise
Yi(g.deliver,.) = %(q)

3.6 Action sequences and player function

The game is played in repeated rounds, where each round consists of the following two phases: (1)
each active player it® moves, one after the other, in order; (2) the network moves. The game is
finished when every player iR’ becomes inactive.

In order to make this formal, let us denote the set of players that are still active after action
sequence and have an index larger tharby P’(q, v) (i.e., P'(q,v) = {pr : pr € P, ap,(q) =
true, k > v}). Furthermore, let us denote the smallest indeR'ify, v) by k.min (¢, v).

We define the sef) of action sequences and the player functioof the protocol game together
in an inductive manner. By definition,c ). Moreover,p(e) = p;. In addition,

e if an action sequencegis in @ andp(q) = p,, then

1. g.a € Qforeverya € A, (2,,(q));
2. if P'(q.a,v) # 0, thenp(q.a) = py,....(q.a,v), Otherwisep(q.a) = net;

e if an action sequenceis in @ andp(q) = net, then

1. q.a € Q for the single actiot = deliver,.; € Apet(Xnet(q));

2. if P'(q.a,0) # 0, thenp(q.a) = py, .. (q.0,0), Otherwiseg.a is a terminal action sequence,
and thusp is not defined iny.a.

3.7 Payoffs

Now, we describe how the payoffs are determined. Let us consider the two main padigsp, of
the protocol, and the items,, and~,, that they want to exchange. We denote the values-thas
worth top; andps by u,, andu;,;, respectively. Similarly, the values tha@s, is worth top; andps

are denoted by;;l andu,,,, respectively (see also Table 1).

10



‘ Y1 Vpo
- T
b1 upl upl

Jr
P2 up2 upz

Table 1: The values that the items to be exchanged are worth to the protocol parties

Intuitively, »;~ andu; can be thought of as a potential gain and a potential loss of player
{p1,p2} in the game. In practice, it may be difficult to quanthfy andu, . However, our approach
does not depend on the exact values; we require onlythat u; for bothi € {p1,p2}, which we
consider to be a necessary condition for the exchange to take place at all. In addition, we will assume
thatu; > 0.

The payoffy;(q) for playeri € {p1,p2} assigned to the terminal action sequegde defined as
vi(q) = y; (q) — y; (q). We cally;"(q) thegainandy; (¢) thelossof playeri, and define them as
follows:

+ i ot
s [ ub e (g) =true
vila) = { 0 otherwise

and

u(q) = { u, if ¢, (q) =true

0  otherwise

whereo; (¢) and; (¢) are logical formulae. The exact form ¢f (¢) and¢; (¢) depends on the
particular exchange protocol being modeled, but the idea is¢hég) = true iff i gains access
toy; (j # 9), and¢; (¢) = true iff i loses control overy; in g. A typical example would be
¢ (q) = (3r : (rev(m),r) € H;(q)), where we assume that is the only message i/, that
containsy;.

Note that according to our model, the paygffq) of player: can take only four possible values:
ui, uf —u;, 0,and—u; for every terminal action sequeng®f the protocol game.

Since we are only interested in the payoffgpgfandp; (i.e., the players that represent the main
parties), we define the payoff of every other playe®in {p:, p2} to be 0 for every terminal action
sequence of the protocol game.

3.8 Protocol vs. protocol game

Although the protocol game is constructed from the description of the protocol, it represents more
than the protocol itself, because it also encodes the possible misbehavior of the parties, which is not
specified in the protocol (at least not explicitly). Recall that a protocol is considered here to be a set of
programsr = {1, m,...}. Each programr; must specify for the protocol participant that executes

it what to do in any conceivable situation. In this sense, a program is very similar to a strategy.
Therefore, we model the protocol itself as a set of strategies (one strategy for each program) in the
protocol game. We will denote the strategy that correspondshy s;.

4 Formal definition of rational exchange and other properties

Informally, a two-party rational exchange protocol is an exchange protocol in which both main parties
are motivated to behave correctly and to follow the protocol faithfully. If one of the parties deviates
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from the protocol, then she may bring the other, correctly behaving party in a disadvantageous situ-
ation, but she cannot gain any advantages by the misbehavior. This is very similar to the concept of
Nash equilibrium in games. This inspired us to give a formal definition of rational exchange in terms
of a Nash equilibrium in the protocol game.

Before going further, we need to introduce the conceptestricted games Let us consider
an extensive gamé&’, and let us divide the player sét into two disjoint subsets$?,.. and Py;.
Furthermore, let us fix a strategy € .S; for eachj € Py, and let us denote the vectoy;) e p,, of
fixed strategies byg,. The restricted games,, is the extensive game that is obtained frahby
restricting eachy € Py, to follow the fixed strategy;.

Note that inG|§ﬁz, only the players inP,.. can have several strategies; the player®jn are
bound to the fixed strategies i,. This means that the outcome @’fgﬁz solely depends on what
strategies are followed by the playersij... In other words, the players iR;;, becomepseudo
players, which are present, but do not have any influence on the outcome of the game.

For any playet € P.. and for any strategy; € .S; of playeri, lets; 5, denote the strategy that
s; induces in the restricted ganig;, . In addition, let us denote the resulting outcomé?i@ﬁz when
the players inPy.. follow the strategies in the strategy profils,, )icp;.. bY 0js,, ((Siss, )ic Py )-

As we said before, we want to define the concept of rational exchange in terms of a Nash equilib-
rium in the protocol game. Indeed, we define it in terms of a Nash equilibrium in a restricted protocol
game. To be more precise, we consider the restricted protocol game that we obtain from the protocol
game by restricting the trusted third party (if there is any) to follow its program faithfully (i.e., to be-
have correctly), and we require that the strategies that correspond to the programs of the main parties
form a Nash equilibrium in this restricted protocol game. In addition, we require that no other Nash
equilibrium be strongly preferable for any of the main parties in the restricted game. This ensures
that the main parties have indeed no rational interest in deviating from the faithful execution of their
programs.

Definition 1 Let us consider a two-party exchange protogok {7, w2, 73}, wherer; andw, are
the programs for the main parties, and is the program for the trusted third party (if there is any).
Furthermore, let us consider the protocol garfie of = constructed according to the framework
described in Section 3. Let us denote the strategy of playtrat belongs to the faithful execution of
T Within G by sy (k € {1,2,3}), the single strategy of the network by, ,, and the strategy vector

(52;37 S:(Let) by g'
e Rationality: 7 is said to beationaliff

- (3;1|§, s;2|§) is a Nash equilibrium in the restricted protocol gaifg,s; and

— bothp, andp, prefer the outcome c(ts;l‘g, 522\5) to the outcome of any other Nash equi-
librium in G-

Besides rationality, our model allows us to define other properties of exchange protocols as well.
Most importantly, we can give a formal definition for the propertiesaifness effectivenessand
termination Informally, fairness means that if a paryy behaves correctly, then the other paBy
cannot get the item off unlessA gets the item ofB. Effectiveness requires that if both parties
behave correctly, then both have access to the other’s item when the protocol is completed. Finally,
termination means that each correctly behaving party will eventually terminate execution.

Definition 2 Let us consider the notation introduced in Definition 1.
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e Fairness: r is said to beair iff

— for every strategy,,, 5 of p1, y;;l(q) >0 impIieSy;;2 (q) > 0, whereq = oj5(sp, s, S;2|§);
and

— for every strategy,,, s of p2, 4,1, (¢) > 0 impliesy,; (¢) > 0, whereq = 0|§(s;1|§, Spals)-
« Effectiveness:r is said to beeffectiveiff .1 (¢*) > 0andy,f, (¢*) > 0, whereg* = o‘g(s;ﬂg, s;ﬂg).

e Termination: « is said to beerminatingiff

— for every strategy,, s of p1, there exists a finite prefi of ¢, such thaty,, (¢') = false,
whereq = oj5(sp, |5, s;ﬁ); and

— for every strategy,,, s of pa, there exists a finite prefiX of ¢, such thaty,, (¢') = false,
whereq = o‘g(szl‘g, Spols)-

All the properties above are defined in the restricted game, where the trusted third party is re-
stricted to follow its program faithfully (i.e., to behave correctly). Fairness requires that if a player
follows the strategy that corresponds to the faithful execution of her program, then the other player can
have a positive gain only if the well behaving player also has a positive gain. Recall that having a pos-
itive gain represents a state where the player has access to the expected item. So our formal definition
corresponds to the informal characterization of fairness. Effectiveness requires that if both players
follow the strategy that corresponds to the faithful execution of their programs, then the outcome will
be an action sequence in which the gain of both players is positive (this represents a state, where both
players have access to the expected items). Finally, termination requires that if a player follows the
strategy that corresponds to the faithful execution of her program (i.e., she behaves correctly), then no
matter what strategy is played by the other player, the well behaving player will terminate computation
and reach an inactive state (i.e., she will performgbi action) in a finite number of rounds.

In addition to the above definitions, we also define two other properties ¢alnatlosed property
andsafe back out propertthat we will use later. The gain closed property requires that if a party
gains access to the item of the other paitythen B loses control over the same item. The safe
back out property requires that if a party abandons the exchange right at the beginning without doing
anything else, then she will not lose control over her item (i.e., it is safe to back out of the exchange).
All the protocols that we are aware of satisfy these properties; we need to define them for technical
reasons only.

Definition 3 Let us consider the notation introduced in Definition 1.

e Gain closed property:r is said to begain closedff for every terminal action sequengeof
G s we have thay, (¢) > 0 impliesy,,(¢) > 0 andy,, (¢) > 0 impliesy,, (¢) > 0.

e Safe back out property:Let Q" = {(ax)i_; € Q5 : pi((ar)i—,) = p1, o< w
pis((ar)i—,) = m}, and Ietsgllg be the strategy op; that assignsquit, to every action

sequence iQ’. Similarly, letQ" = {(ax);_; € Q5 : pi((ar)i_;) = po, < w
pis((ar)j—) = p2}, and Iet522|§ be the strategy op. that assigngjuit,, to every action
sequence ii})”. 7 satisfies thesafe back ouproperty iff

— for every strategy,, s of p1, 4, (¢) = 0, whereg = oj5(sp, s, 522|§); and

— for every strategy,,,s of p2, y,, (¢) = 0, whereqg = 0|§(sgl|§, Spols)-
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4.1 Relationship between rational and fair exchange

Proposition 1 If the protocol satisfies the effectiveness, gain closed, and safe back out properties,
then fairness implies rationality.

Proof: First, we have to prove thakp1|s, p2|s) is a Nash equilibrium itz ;| wheres = (s;,, s;et).
Let us suppose that it is not. This means that elﬁﬁqt is not the best response 9 0 Or s p
is not the best response ib e Without loss of generality, we can assume that the #lrst is the case.

This means thap; has a strategy;ﬂg such that playings, . againsts; . yields a higher payoff
for p1 than the payoff that she gets if she plays,.. In other words,y,, (¢*) < yp,(¢'), where

q = 0|§(s;1|§,s;2|§), andq’ = o‘g(s;ﬂg, S;2|§)' Sinceq* is the outcome when both parties behave
correctly and, by assumption, the protocol is effective, we haveythéy*) > 0 andy,!, (¢*) > 0.

In addition, since the protocol is also gain closed, we getghdly*) > 0 andy,,(¢*) > 0. This
means thay,, (¢*) < yp, (¢') is possible only ifyf (¢) > 0 andy,, (¢') = 0 hold. However, this is
impossible, because, from the fairness propetfytq’) > 0 impliesy,! (¢') > 0, and from the gain
closed propertyy; (¢') > 0 impliesy, (¢') > 0.

Next, we have to prove that no other Nash equilibrium is strongly preferable for any of the players.
Let us suppose the contrary, and assume that there exists a Nash equmbrium’ 0|5 ;) in G5 such
that one of the players, say, has a higher payoff |(s,p B ml ) is played than If(sp | ) pQ‘S) is
played. This means that, (¢*) < yp,(¢'), whereq* = oj5(s ol pzlg)’ andq’ = oj5(s! o5 MS).

For similar reasons as beforg,, (¢*) < yp,(¢') is possible only ify,f (¢) > 0 andy, (¢') = 0

hold. Now, from the gain closed property, we get thit(¢') > 0 impliesy,, (¢') > 0, andy,, (¢') =

0 implies 3, (¢') = 0. Therefore, the payoff,,(¢') of p2 in ¢’ is negative. However, since the
protocol has the safe back out propegty,can always do better, and achieve a non-negative payoff
by not participating in the exchange at all (i.e., quitting at the beginning of the protocol without doing
anything). This means that o5 is not the best response ﬁb |5 and thus(s’ ) cannot be a
Nash equilibriumD

We have just proved that fairness implies rationality. However, the reverse is not true in general.
In the next section, we will prove that the protocol proposed by Syverson in [27] is rational, but it is
clear that it does not provide fairness.

Our result shows that fairness is indeed a stronger requirement than rationality. Therefore, one
expects that rational exchange protocols are less complex and/or have fewer system requirements than
fair exchange protocols. This suggests that rational exchange can be viewed as a trade-off between
complexity and true fairness, and as such, it may provide interesting solutions to the exchange problem
in applications where fair exchange would be impossible or inefficient (e.g., in infrastructureless ad
hoc networks).

p1ls’ p 2|5

5 Analysis of the Syverson protocol

In this section, we analyze the rational exchange protocol proposed by Syverson in [27] using our
protocol game model and our formal definition of rationality. The Syverson protocol is illustrated
in Figure 1, whered and B denote the two protocol participanb%;l andk]g,1 denote their private
keys;item 4 anditem g denote the items that they want to exchangic 4 denotes the description of
item 4; andk denotes a randomly chosen secret key. In addien,is a symmetric-key encryption

2\We took the liberty to replacBaymenin the original protocol description wititemn 5 in our description. This change
makes the protocol more general, and it has no effect on the properties of the protocol.
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A— B: my = (dsca, enc(k,itema), w(k), sig(ky", (dsca, enc(k,item ), w(k))))
B— A: my= (itemp, mi, sig(ky', (itemp, m1)))
A—B: m3= (ka ma, Sig(k‘;l, (k7m2)))

Figure 1: Syverson’s rational exchange protocol

function that takes as input a keyand a message, and outputs the encryption afwith x; sig is
a signature generation function that takes a privaterl{e]yand a message, and returns a digital
signature on. generated Wi'[hci_l; andw is atemporarily secret commitmefunction.

The idea of temporarily secret commitment is similar to that of commitment. The difference is that
the secrecy of the commitment is breakable within acceptable bounds on time (computation). More
precisely, ifw is a temporarily secret commitment function, then giug), one can determine the
bit stringx in time ¢, wheret lies between acceptable lower and upper bounds. For details on how to
implement such a function, the reader is referred to [27].

In the first step of the protocold generates a random secret Keyencryptsitem 4 with k;
computes the temporarily secret commitmetit); generates a digital signature on the description
dsc 4 of item 4, the encryption oftem 4, and the commitment(k); and sends message to B.

When B receivesmy, she verifies the digital signature and the descriptieary of the expected
item. If B is satisfied, then she sends messageo A. ms containsitem g, the received message
my, and a digital signature dB on these elements.

When A receivesms, she verifies the digital signature, checks if the received message contains
mq, and checks if the received item matches the expectations. If she is satisfied, then she sends the
key k to B in messagens, which also contains the received messageand the digital signature of
A on the message content.

When B receivesng, she verifies the digital signature, and checks if the received message con-
tainsms. Then, B decrypts the encrypted item in, (also received as part ofiz) with the key
received inms.

5.1 Observations

When B receivesn,, she has something that either turns out to be what she wants or evidende that
cheated, which can be used agaidsh a dispute. At this pointB3 might try to break the commitment
w(k) in order to obtaink and thenitem 4. However, this requires time. fem 4 does not lose its
value in time, and the inconvenience of the delay (and the computation) is not an isdBietiien
breaking the commitment is indeed the best strategysforhe Syverson protocol should not be used
in this case. So it is assumed th&tm 4 has a diminishing value in time (e.g., it could be a short
term investment advice), and that it is practically worth nothing by the time at whican break the
commitment [27]. Therefore3 is interested in continuing the protocol by sendingto A.

When A receivesns, she might not senghs at all or for a long time. 1fA does not lose anything
until B gets access téem 4, then this is indeed a good strategy fér If this is the case, then the
Syverson protocol should not be used. So it is assumedittaes control oveitem 4 by sending it
to B in m4, even if she sends it only in an encrypted férrim this case A does not gain anything by
not sendingng to B promptly.

3More precisely, it is assumed thatloses the value thatem 4 represents for her when sendiiigm 4 in m; even
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Note, however, thatl may send some garbage instead of the encrypted item inA deterrent
against this is that the commitment can be broken anyhow, which means that the misbehavior of
can be discovered bi. In addition, sincen; is signed byA, it can be used againgt in a dispute.

If some punishment (the value of which greatly exceeds the value of the exchanged items) for the
misbehavior can be enforced, then it is not in the interest ¢d cheat. Note that this punishment
could be enforced externally (e.g., by law enforcement).

5.2 The set of compatible messages

In order to define the set of messages that are compatible with the protocol, we must first introduce
some further notation:

e the public keys ofA and B are denoted b¥ 4 andk, respectively;

e ofy is a signature verification function that takes a public kgya messagg, and a signature
o, and returnsrue if ¢ is a valid signature op that can be verified witk;, otherwise it returns
false;

e dscp denotes the description afem g;

e fit is a function that takes an itemmand an item descriptiofi as inputs, and returrtsue if ¢
matchesy, otherwise it returnfalse; and

e dec denotes the decryption function that belonge#te, which takes a key: and a ciphertext
e, and returns the decryption efwith «.

Next, we reconstruct the programs of the protocol participants:

ma(A, k;‘l,B,kB, itema, dsca,dscp, k) =
1. computes = enc(k, itema)
2. computev = w(k)
3. computer = sig(k ', (dsca,e,w))
4. send dscp,e,w,0)t0 B
5. wait until timeout or
a message: = (v, i, o) arrives such that
-p = (dsca,e,w,0)
- fit(vy, dscp) = true
- ufy(kp, (v,p), 0') = true
if timeout then go to step 9
computer” = sig(k*, (k,m))
sendk,m,o”)to B
exit

©xo~NOo

WB(B,/@;,A, ka,itemp, dscy) =
1. wait until timeout or
amessage: = (9, e,w, o) arrives such that

thoughm is encrypted. An example would be wheétem 4 is a result of some computation that has a cost4orin
this case, the mere fact thdt sendsitem 4 in m1 means thatd has already performed the computation, and thus, lost
something, althougl has not gained anything yet.
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-d =dscy
- Ufy(kAv ((5,5,(4}), U) = true

2. if timeout then go to step 6

3. computer’ = sig(kg', (itemp, m))

4. send(itemp,m,o’) to A

5. wait until timeout or

amessager’ = (k, u,c”) arrives such that

- = (itemp, m,o’)
- fit(dec(k,€), dscq) = true
- ufy(ka, (k,p), o) = true

6. exit

Once the programs of the protocol participants are given, we can easily determine the set of
compatible messages:

M, = My U My U Mg
where

M, ={(6,e,w,0) : § = dsca,
ufy(ka, (0.6,0), o) = true}

M2 = {(/YMU’? U) Ry S Mlv
fit(vy, dscp) = true,
ofy(kp, (v, 1), o) = true}

M3 = {(H7 ’)/7 67 57 w’ U’ 0-/70-,/) : (77 57 67 w? O-’ O-/) E M2!
fit(dec(k,€), dscy) = true,
ufy(ka, (k,7,0,e,w,0,0"), o) = true}

5.3 The protocol game

Once the sef\/,; of compatible messages is determined, we can construct the protocol(@ame

of the protocol by applying the framework of Section 3. The player set of the protocol game is
P = {A, B, net}, where A and B represent the main parties, andt represents the network via
which the protocol participants communicate with each other. We assume that the network is reliable.
The information partition of each playerc P is determined by’s local stateX;(¢q). In order to
determine the available actions of the player®in= P\ {net}, we must tag each messagec M,

with a vector(¢!*(2;(q))):cp of logical formulae, where each formutg”(%;(¢)) describes the
condition that must be satisfied in order foto be able to send messagein the information set
represented by the local stafg(q). For the Syverson protocol, these vectors of logical formulae are
the following:

e SinceB cannot generate valid digital signaturesigfB can send a message< M; only if she
receivedn or a message that containedearlier. In addition, we assume thétannot generate
a fake item, different fromitem 4, that matches the descriptialac 4 of item 4. Similarly, we
assume thatl cannot randomly generate a ciphertexand a key: or acommitment = w(k)
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e3(z,m,q) = (Ir<rz(q): (rev(m),r) € Hz(q))
¢'(1.0) = (Br<rp(@,m =Fp,0') € My: (rev(m'),r) € Hp(q)) v
(Fr <rp(@),m' = (', 7,1,0",0") € M3 : (rev(m'),r) € Hp(q)))

Figure 2: Definition ofp1, 2, ¢3, andy’

such thatdec(k, ) matchesisc 4. In other words, if for some message= (§,¢,w, o) € Mj,
fit(dec(w™(w),¢), dsca) = true and dec(w=!(w),e) # itema, then A can sendn only if
she receivedn or a message that containsearlier.

Formally, for anym = (6,¢,w,0) € My:

— if fit(dec(w™(w),€), dsca) = false or dec(w1(w),e) = item a:

¢4 (Xalg) = (aalq) =true)
¢5(Xp(g)) = (ap(q) =true) A ¢i(B,m,q)
Pi(Xalg) = (aalg) =true) A p1(4,m,q)
¢5(Xp(q)) = (ap(q) =true) A ¢1(B,m,q)

wherey; is defined in Figure 2.

Since A cannot generate valid digital signaturesi®f A can send a message € M, only if
she receivedh or a message that contaimsearlier. For similar reason®& can send a message
m = (v,u,0) € My only if she received. € M; or a message that contaipsearlier. In
addition, we assume thd cannot generate a fake item, different fratam g, that matches
the descriptiondscp of itemp. This means that ify # itemp, thenB can sendn only if she
receivedy or a message that contam®arlier.

Formally, for anym = (v, u, 0) € My:

— if v = itemp:
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— if v # itemp:

PR (2a(q)) = (aalg) =true) A @a(A,m,q)
9% (Ep(q) = (ap(q) =true) A ¢1(B,u,q) A ¢'(7,9)

whereyp, andy’ are defined in Figure 2.

e Since B cannot generate valid digital signaturesAf B can send a message € M3 only
if she receivedn earlier (there cannot be another message that contaiimsthis case). For
similar reasonsA can send a message = (k, 4, 0) € Ms only if she receiveqs € M, or
a message that contaipsearlier. Note, however, that in general, receiving not sufficient
for A to be able to senth = (., u, o), because if the ciphertextwithin ;. was not computed
by A using the key (e.g., if A generated randomly), thenA may not be able to guess
Nevertheless, since our proofs will rely only on the fact tAanust receive: before sending
m = (k, u, o), we generously givel the power to guess, and we consider that receivingis
also sufficient forA to be able to senth = (&, u, o).

Formally, for anym = (k, p,0) € Ms:

Ph(Xalq)) = (aalq)
¢o5(Es(q) = (as(q)

whereps is defined in Figure 2.

rue) A a(A, i, q)

t
true) A 903(B7 m, Q)

The above logical formulae allow us to complete the construction of the protocol game. Before
determining the payoffs and describing the strategies that correspond to the programs of the protocol
participants, we can already make a few simple statements:

Lemma 1l If (snd(m, B),r) € Ha(q) for some message = (k, u, o) € M3, round number € N,
and action sequencge @, then there exists’ < r such that(rcv(u), ") € Ha(q).

Lemma 2 If (snd(m, A),r) € Hp(q) for some message = (v, i1, o) € Ms, round number € N,
and action sequencge @, then there exists’ < r such that(rcv(u), ') € Hp(q).

Lemma 3 Letm be a message iff3. There is no round humber < 3 and action sequencge
such that(rcv(m),r) € Hg(q).

Lemma 4 Letm = (6,¢,w, o) be a message i/, such thatfit(dec(w ! (w),¢), dsc4) = true and
dec(w™t(w),e) # itema. There is no playei € P’, round number € N, and action sequence
q € Q such that(rcv(m), r) € H;(q).

Lemma’ Letm = (v, u,0) be a message in/, such thaty # itemp. There is no playei € P/,
round number € N, and action sequencge @ such thatrcv(m),r) € H;(q).

Lemma 1 states that il sends a message = (k, i, 0) € Ms in roundr in ¢, then she must
receivey in an earlier round”’ < r in ¢. Similarly, Lemma 2 states that i sends a message
m = (v, u, o) € My inroundr in ¢, then she must receiyein an earlier round’ < r in ¢. Lemma 3
is a corollary of the first two lemmas that states tlatannot receive a message € M3 before
round 3. Finally, Lemma 4 states that no player can ever receive a messagé), c,w,o) € M;
such thatfit(dec(w=!(w), ), dsc4) = true anddec(w~!(w), ) # item 4, and Lemma 5 states that
no player can ever receive a message- (v, i, o) € My such thaty # itemp. The proofs of these
lemmas are rather straightforward, and can be found in the Appendix.
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5.4 Strategies

Based on the programs of the protocol participants described in Subsection 5.2, we can construct the
strategies that correspond to the correct behavior of the parties:

Strategy s%

e If a4(q) = true andr4(q) = 1, then perform the actiosend 4({(m1, B)}), wherem; is as
defined in Figure 1.

o If a4(q) = true andr4(q) = 2, then perform the actioile 4.

o If aa(q) = true andr4(q) = 3, then letM be the set of those messages= (v, u,0) € Mo
for which x = m, and there exists a round numbet: 3 such thatrcv (m),r) € Ha(q). Note
that because of Lemma 5, eithef = () or M is a singleton{m} wherem = (v, u,0) € Ma,
~ = itempg, andu = my.

— If M = 0, then perform the actioquit 4.
— If M = {m}, then perform the actiosend 4 ({((k,m, sig(k}", (k,m))), B)}).

o If asa(q) = true andr4(q) = 4, then perform the actioquit 4.

Strategy sp

e If ap(q) = true andrg(q) = 1, then perform the actiomlle 5.

o If ap(q) = true andrp(q) = 2, then letM be the set of those messagesc M; for which
there exists a round number 2 such thaircv(m),r) € Hp(q).

— If M = 0, then perform the actioguit.

— If M # 0, then choose the smallest messagefrom M according to some order-
ing of the messages (e.g., the lexical ordering of bit strings), and perform the action
sendp ({((itemp, m, sig(kg", (itemp, m))), A)})

e If ap(q) = true andrp(q) = 3, then perform the actioidle .

e If ap(q) = true andrp(q) = 4, then perform the actioguit ;.

5.5 Payoffs

We must slightly modify the payoff framework introduced in Subsection 3.7, in order to take into ac-
count that the value atem 4 diminishes in timé. We also have to consider the potential punishment
for A if she sends garbage in the first message of the protocol. Taking these into consideration, we
define the payoffs of the players as follows.

Let us consider a terminal action sequenci the protocol game. The payoff of in ¢ is
ya(q) = yh(q) — y4(q), wherey?(q) is the gain and;, (¢q) is the loss ofA in g. Furthermore,
the loss ofA is defined ag/, (¢) = v (q) + v (¢), wherey’ (¢) is the loss that stems from losing

“We note that time variant values of items lead to time variant payoffs, and the definition of fairness introduced in
Section 4 may not be adequate if payoffs are time variant. Since we are not concerned with fairness here, this does not effect
our results.
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ohe) = (BreNym=(y,puo0) € M:
(y = itemp) A ((rev(m),r) € Ha(q)))

¢%(q) = (@FreNm=(6¢ew,0)€ M :
(dec(w™(w),e) = itema) A ((snd(m, B),r) € Ha(q))) V
(Fr e Nym = (k,7,0,e,w,0,0",0") € Ms :
(dec(k,e) = itemy) A ((snd(m,B),r) € Hx(q)))

(@) = @reNm=(dew,0)€ M :
(fit(dec(w™Y(w),e), dsca) = false) A ((snd(m, B),r) € Ha(q)))

¢E(Q7T) = (Hm = ("4‘7775767“)707 0_/70—,/) € M3 :
(dec(k,e) = itemy) A ((rev(m),r) € Hp(q))) A
(Fr' < r,m = (k,7,6,e,w,0,0,0") € M; :
(dec(k,e) =itema) N ((rev(m),r’) € Hgp(q)))

d5(q) = (FreNm=(y,u,0)€ My:
(v = itemp) A ((snd(m,A),r) € Hp(q)))

Figure 3: Definition ofp’;, ¢, ¢%', ¢4, andg

control overitem 4, andy’*(q) is the loss that stems from the punishment. The payof af ¢ is
ys(q) = y5(q) — yz(q), wherey(q) is the gain and/; () is the loss ofB in g.

We denote the values thatm 4 anditem g are worth toA by v, anduJAK, respectively. Similarly,
we denote the value théem g is worth toB by u ;. The diminishing value oftem 4 for B is modeled
as a functiom‘g(r), which decreases as the round numbarcreases (see part (a) of Figure 4). We
assume that there exists a round numBesuch thatug(r) = 0 for everyr > R, and that breaking a
commitment requires more tharounds. Finally, the value of the punishment is denoted'byVe
assume thaf" is much greater than’;, ] > u; > 0, andu};(3) > uj > 0 (see also part (b) of
Figure 4).

The gain ofA is uJAﬁ if A receives a message M, that containstem g, otherwise it is 0. The
value ofy% (¢q) isuy, if A sends a message M, that containsitem 4 (in an encrypted form), or if
A sends a message 3 that containgtem 4 (in an encrypted form), otherwise it is 0. In addition,
the punishmeny’"(¢) of A is F' if she sends an incorrect messagelii that, after breaking the
commitment and decrypting the ciphertext in the message, yields an item that does not match the
descriptiondsc 4; otherwise the punishment is 0.

The gain ofB is u};(r) if B receives a message M in roundr that containstem 4 and no such
message is received before round\ote that receiving only a messagelify yields no gain forB,
because we assume that by the time at which the commitment can be biteken,loses its value
for B. The loss ofBB is u if B sends a message i, that containgtem g, otherwise it is 0.

The formal definitions are given below:

+ i ot
+ _ Jouy i é5(q) =true
yala) = { 0  otherwise
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€Y (b)

g (1) ug ()

R r 3 To R r

Figure 4. The diminishing value atem 4 for B is represented by a decreasing funct@(r). We
assume that there exists a round numBeuch thatug(r) = 0 for everyr > R, and that breaking a
commitment requires more thahrounds. We also assume thgf(3) > u > 0. Finally, we define
ro as the smallest round number such thgtry) < uj(3) — up.

Vi) = { o if % (q) = true

otherwise
- _ if ¢ (q) = true
yale) = { otherW|se
uj(1) if 95(q,1) = true
N ujg if 9}(q,2) = true
Yp (@) =
if 95(q, R—1) = true
otherwise
- _ uB if 5(q) = true
vpla) = 0 other\lee

whereg’, %, ¢, ¢4, and¢, are defined in Figure 3. Note that, by definitiaf; (¢, r) = true
holds for exactly one, soy(q) is well defined.

5.6 Proof of rationality

Our proof of rationality relies on the fact that the Syverson protocol is closed for gains and it satisfies
the safe back out property:

Lemma 6 The Syverson protocol is closed for gains.
Lemma 7 The Syverson protocol satisfies the safe back out property.

The proofs of these lemmas are rather straightforward, and can be found in the Appendix.
In order to prove that the Syverson protocol is rational, we have to prove that the strateges
s, which correspond to the correct behavior of the parties, form a Nash equilibrium in the protocol
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game that we have constructed in Subsections 5.3 and 5.5. In addition, we also have to prove that no
other Nash equilibrium is strongly preferable for any of the parties.

Lemma 8 The strategy profil«ésj;”g, sg|§) is a Nash equilibrium in the restricted protocol gade,s,
wheres = (s7.,).

Proof: We have to prove that (is)j‘4|§ is the best response bcg|§, and (i) sg‘g is the best response to
Shis

| (i) Suppose that there is a strategMg for A such that the payoff ofl is higher if she pIay$’A‘g
than if she plays’ ; againstsy, .. This means thaga(¢') > ya(q*), whereg* = o|§(sj‘4|§, s*B‘g) and
qd = o‘g(sfﬂg, sj‘9|§). It is easy to verify thaya(¢*) = u} — u,. Thus,ya(q’) > ya(g*) is possible
only if y (¢) = v, v3(¢') = 0, andy’*(¢') = 0.

Fromy}(¢') = u}, it follows that A received a message = (v,4,¢,w,0,0’) € My in ¢
such thaty = itemp. This means thaB sentm in ¢’. It follows from Lemma 2 thatB can send
m only if it received(d,e,w,0) € M; from A earlier. Thus,A sent(d,e,w,0) € M;. Since
v (¢") = 0, fit(dec(w™(w),e), dsca) must betrue. Furthermore, from Lemma 4, we get that
dec(w™!(w),e) = item 4. This means thay? (¢') cannot be 0.

(i) Suppose that there is a strategly _ for B such that the payoff aB is higher if she pIaysjB‘g
than if she playsy; - againsts’ .. This means thaiz(q') > yp(q*), whereg* = 0|§(sj‘4|§, S*B|§) and
q = 0|§(52‘§, sjg‘g). It is easy to verify thays(¢*) = u5(3) — up. Letry be the smallest round
number such that};(ry) < u}(3) —uj (see part (b) of Figure 4). Themg(¢') > yg(q*) is possible
only in two cases: (@}(¢) = uj(r), wherer < ro, andyz(¢') = 0, or (b)y}(q') = uj(r), where
r < 3. However, case (b) can never occur, because of Lemma 3. Therefore, we have to consider only
case (a).

Fromy}(q') = uj(r), it follows that B received a message = (x,7,6,¢,w,0,0",0") € M
such thatdec(x,e) = item, in roundr in ¢’. This means thatl sentm in ¢'. It follows from
Lemma 1 thatd can sendn only if it received(v, d, e, w, ,0’) € M, from B earlier. Thus,B sent
(7,0,e,w,0,0') € M,. From Lemma 5, we get that = itemp. This means thag;(¢') cannot be
0.0

Lemma 9 Both A andB prefer(sf4|§, s"é'g) to any other Nash equilibrium i 5, wheres = (s7,.;).

Proof: Let us suppose that there exists a Nash equilibr@amg, S/B|§) in G5 such thaty(q') >
yalq*) = u} —u, whereq’ = 0‘5(321'5,333'5) andg¢* = 0|§(sz|§, SE|§). This is possible only if
yh(q) = v} andy’(¢') = yi(¢') = 0. Since the protocol is closed for gains} (¢') = u}y > 0
impliesy;(¢’) > 0, andy, (¢') = 0 impliesy};(¢') = 0. Therefore, ifA follows s;“g and B follows
sj3|§, thenB’s payoffisys(q¢') = y5(¢') — yz(¢') < 0. Note, however, that because of the safe back
out property, if B quits at the beginning of the game without doing anything else, then her payoff
cannot be negative, whatever strategy is followedbyr his means tha&j9|§ is not the best response
to sy 5, and thus(s'y ., s’ <) cannot be a Nash equilibrium.

Now let us suppose that there exists a Nash equilibr@sf/gqlg, sj%) in G5 such thayp(q') >
yp(q*) = uj(3) — uy. This is possible only in two cases: (a)if, (¢') = uj(r), wherer < rq (see
part (b) of Figure 4), ang;(¢') = 0, or (b) if y;(¢') = uj(r), wherer < 3. However, case (b) can
never occur, because of Lemma 3. Case (a) can be proven to be impossible using the same technique

as in the first part of this proof
From Lemma 8 and Lemma 9, we obtain the following:
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Proposition 2 The Syverson protocol is rational.

5.7 Towards an asynchronous model

In the previous subsection, we proved that Syverson’s exchange protocol [27] is rational. However,
the proof has been carried out in a model where the network is assumed to be reliable. What if we
relax this assumption and allow an unreliable network (i.e., if we assume that there are no bounds on
message delivery delays)?

In order to answer this question, our model should be extended with the notion of unreliable
network. This can easily be done by giving choices to the network. More precisely, instead of defining
the set of available actions for the network as a singl¢tiiver,,; }, which means that at the end of
each round the network delivers every message that is in the network buffer, we can define the set of
available actions for the network as

Anet(Xnet(q)) = {deliver,. (M) : M C Mpet(q)}

which means that the network can deliver any subset of the messages that are currently in the net-
work buffer. Thus, depending on the strategy followed by the network, some messages would not be
delivered immediately, but they could stay in the network buffer for some time, even forever.

Note that giving choices to the network to delay the delivery of some messages as described above
leads to a more general but still synchronous model, since each player’s local state still contains the
same current round number. It is possible to define a fully asynchronous model (see [4]), but we do
not need it in the following discussion.

On the other hand, we need to extend the definition of rationality, since we must take into account
that now the network has several strategies. An easy way to do this is to allow that the strategy vector
s with which the protocol game is restricted can contain any possible strategy of the network, and to
require that the conditions of rationality are satisfiegéwerypossible restricted protocol gang; s,
wheres = (s;;s, Snet), andsye; ranges over all the possible strategies of the network. Note that in
order to ensure that each playgeras a unique faithful strategy,, we must require that; has fixed
timeout values that specify how many roungsvaits for a given type of message.

Let us examine if the Syverson protocol satisfies this extended definition of rationality. Let us
assume that both players follow the strategy that corresponds to the faithful execution of the protocol.
Furthermore, in order to guarantee the unigueness of these faithful strategies, let us assume that each
of these strategies uses fixed timeout parameters as described above. Now, the network may follow
a strategy in whichng is delayed, so thab finally timeouts and quits the protocol. This means that
there exists a strategy vectgrand thus a restricted protocol gaifig,s, such thaty};(¢*) = 0 and
yp(q*) = uj (sincems has been sent), whegg = 0|§(5f4‘§, 5’1‘3‘5). Note that the total payoff oB
in ¢* is negative, sdB would be better off if she did not participate in the exchange at all. In other
words,s*Bﬁ is not the best response59|§ in G5, and so(sj‘lg, s*B|§) cannot be a Nash equilibrium
in G|5. This means that the protocol is not rational in this extended model.

6 Related work

Formal definitions for fair exchange are given by Gaergteal. in [12, 22]. They adopt the formalism
of concurrency theory and define fairness based on safety and liveness properties. Although their
proposal certainly has a strong potential, it is somewhat limited to fair exchange, and in particular to
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the concept of strong and weak fairmess it was defined by Asokan in [1]. They do not attempt
to formalize the concept of rational exchange, nor to investigate the relationship between rational
exchange and fair exchange.

Kremer and Raskin describe a formal approach to the analysis of non-repudiation protocols (which
are strongly related to fair exchange protocols) in [17]. They model non-repudiation protocols as
games in a similar way as we do. However, they use neither payoffs nor the concept of equilibrium to
specify properties of the protocol. Instead, they introduce a game based alternating temporal logic for
this purpose, and use model checking to verify that the protocol satisfies its specification. The paper
does not try to formalize the concept of rational exchange nor to relate it to fair exchange.

In [23], Sandholm proposes a method for managing an exchange between two agents — a supplier
and a demander — so that the gains from completing the exchange at any point are larger for both agents
than the gains from aborting it. The method consists in splitting the exchange into small chunks in
a way that the agents can avoid situations that motivate either of them to defect. Sandholm calls this
type of exchangenenforced exchangdsince it does not rely on enforcement from an external trusted
party), and relates it to Nash equilibrium. However, he does not formalize the concept of rational
exchange in general (the proposed method can be viewed as a particular rational exchange protocol),
nor does he relate his results to fair exchange.

In [3], Asokanet al. define a formal security model for fair signature exchange. The model is
described in terms of a “game”, in which a correctly behaving pdrgnd the trusted third party act
in a purely reactive fashion, while the actions of the misbehaving ga«tyare restricted only by a
few rules. Bx wins the game if it can obtain the digital signature/bn some message without
A obtaining the digital signature d#* on another message’. They define fairness to mean that the
probability thatBx wins the game is negligible (with respect to some security parameter). Although,
at first sight, the formal model of Asokaat al. might seem to be similar to our approach, in fact, it
is completely different. First of all, apart from using the tergasneandplayer, their approach has
little to do with game theory as they do not use the notion of equilibrium. Their model is much more
similar to the standard models that are used in the cryptographic literature to prove the security of
cryptographic algorithms, where one explicitly states the assumptions made about the power of the
adversary and tries to prove that the system cannot be broken without invalidating those assumptions.
As opposed to this, we completely abstract away cryptography in our model. While the formal model
of Asokanet al. is probably the most rigorous model that can be found in the literature regarding
fairness, it is somewhat restricted to signature exchange protocols. In addition, it does not seem to
be appropriate to capture the notion of rationality, which is not a limitation itself, since it was not the
goal of the authors to formalize the concept of rational exchange.

Various other approaches to formal analysis of fair exchange protocols are described in [24, 10,
25], but these papers are only loosely related to our work as they do not use game theory (although the
model of [10] could easily be related to a game) and they are concerned with fair exchange instead of
rational exchange.

7 Conclusion

We presented a formal model of exchange protocols based on game theory, and gave a formal def-
inition for rational exchange and various other properties of exchange protocols, including fairness,
within this model. Our model helped us to better understand rational exchange by relating it to the

5Strong and weak fairness have nothing to do with the distinction between fairness and rationality.
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well-known concept of Nash equilibrium in games. In addition, it also allowed us to study the re-
lationship between rationality and fairness. More specifically, we obtained a formal justification for
the intuition that fairness is a stronger requirement than rationality by proving that fairness implies
rationality, but the reverse is not true in general.

We illustrated the use of our model for the analysis of existing rational exchange protocols by
providing a thorough analysis of a rational exchange protocol proposed by Syverson. We have proved
that the Syverson protocol is rational in our model assuming that communication between the protocol
parties is reliable. However, as we have seen, if this assumption is relaxed, then the rationality property
is lost.

The most original contribution of the paper is the usage of game theory as a tool for modeling and
analyzing security protocols. It shows that game theory can successfully be used for such a task. In
fact, we believe that it is the most appropriate tool for modeling rational exchange in particular.

Our work was motivated by the “unusual” requirements that designers of exchange protocols
should consider in wireless ad hoc networks. We argued that fair exchange protocols (with and with-
out a trusted third party) may not satisfy these requirements. The question that arises is if the Syverson
protocol and rational exchange protocols in general are useful in this context. We can only partially
answer this question. On the one hand, the Syverson protocol is rational only under the assump-
tion that the communication channel between the protocol parties is reliable. As such, its possible
application in ad hoc networks is limited: it may be used between neighboring nodes where there
may be good reasons to assume bounds on the message delivery delays, while it certainly cannot be
used between distant nodes where bounds on message delivery delays are unrealistic to assume. This
argument applies to any synchronous rational exchange protocol (i.e., any exchange protocol that is
rational only under the reliable channel assumption). On the other hand, we note that the existence
of asynchronous rational exchange protocols (i.e., exchange protocols that are rational even if the re-
liable channel assumption is relaxed) is an open question. We encourage researchers to consider this
question, and if the response is affirmative, to design asynchronous rational exchange protocols.
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Appendix: Proofs

Lemma 1l

The lemma states that 4 sends a message = (k,u,0) € Ms in roundr in ¢, then she must
receivey, in an earlier round’ < rin q.

Proof: Let us suppose that sendsm in roundr in ¢, but she does not receiyebefore round- in

g. It can be seen from the formulae with which we tagged the messadéds ithat A can sendn in
roundr only if she receives or a message if/3 that containg: in an earlier round. By assumption,
A does not receivg before round-, and thus A must receive a messageliy; that containg: before
roundr.

Let Ms(n) = {(x',p/,0") € M3 : u/ = u} (i.e., M3(n) contains those messageshify that
containyu). Letr* be the earliest round ig in which A receives a message M3(y:), and let this
message be*. Suchr* andm* exist because (i) we know that must receive a messageitis (1)
before round- in ¢, and (ii) round numbers are positive integers. In addition, from (i), we get that
r* < r must hold.
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Since the network is reliable, A receivesn* in roundr*, thenB sendsn* in roundr*. However,
it can be seen from the formulae with which we tagged the messadés that this is possible only
if B receivesm™* in an earlier round® < r*. This means thatl sendsn* in round#. Again from
the formulae with which we tagged the message¥/y it can be seen that can sendn* € Ms(u)
in round7 only if she receiveg. or a message in/3;(n) before round*. By assumptionA cannot
receiveu before round® < r* < r. Thus, she must receive a messag@/#(n) before round:. But
this contradicts the fact that the earliest round in which such a message is receifas /by O

Lemma 2

The lemma states that B sends a message = (v, u,0) € M, in roundr in ¢, then she must
receiveu in an earlier round’ < rin q.

Proof: Let us suppose thdk sendsn in roundr in ¢, but she does not receiyebefore round- in
g. It can be seen from the formulae with which we tagged the messagés ihat B can sendn in
roundr only if she receiveg. or a message i/, or in M3 that containg: in an earlier round. By
assumptionp does not receivg before round-, and thus,B must receive a messageli, or in M3
that containg: before round-.

Let Ma(u) = {(Y/,1/,0") € My : p/ = p} andMs(u) = {(x',+, 1/ 0',0") € M3 : i/ = u}
(i.e., M>(p) and M3(p) contain those messages i, and in Ms, respectively, that contain). If
B does not receive any messagelifi (1) before round- in ¢, then letr; = r, otherwise, let5 be
the earliest round ig in which B receives a message M, (x). Similarly, if B does not receive any
message if/3(u) before round- in g, then letr; = r, otherwise, let; be the earliest round iqin
which B receives a message Ms ().

Now, we can distinguish two cases: (§)< r; and (b)r; < r3.

Case (a): Recall thatB must receive a message M, () or in Ms(u) before round- in ¢. This is
not possible if- = r;. Thus,r; < r must hold. This also means th&treceives a message (1)
in roundr;. Let us denote this messageiny.

If B receivesmj in roundr;, then A sendsmj in roundr;. However, it can be seen from the
formulae with which we tagged the messages\in that A can sendnj in roundr; only if she
receives (iymj or (i) a messagen; = (x',m3,0’) € M3(u) in an earlier round < r5. We show
that neither (i) nor (ii) is possible.

(i) If A receivesn’ € My(u) in round#, then B sendsm3 in roundr. It can be seen from the
formulae with which we tagged the messagedin that this is possible only i3 receivesy or a
message i/ (1) orin Ms(u) before round’. By assumption3 does not receivg before round-.
Thus, B must receive a messagelity (1) or in M3(u) before round* < r3 < r3. However, because
of the definitions of-5 andr;, B cannot receive any messagelify (1) beforer; and any message in
Ms () beforers.

(ii) If A receivesmf, = (x',m3,0") € Ms(u) in roundr, then B sendsmj in round#. It can
be seen from the formulae with which we tagged the messagks ithat this is possible only i3
receivesm); before round® < r3 < r3. However, because of the definition«df, B cannot receive
any message in/3(u) before round-;.

Case (b):If r5 < r3, thenr; < r must also hold (since otherwisé would be greater than, which
is not possible by definition). This means tliareceives a message M3 (y) in roundr;. Let this
message bev; = (k*, 7", u, 0%, 0™). If B receivesn} in roundr;, then A sendsmj in roundrs.
However, from Lemma 1, we know that can sendn; in roundr; only if she receives a message
mb = (v*, u,0*) € Ma(p) in an earlier round® < 3. This means thaB sendsmn/, in round7. It
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can be seen from the formulae with which we tagged the messagés tinat this is possible only if
B receivesu or a message i/ (u) orin Ms(u) before round’. By assumptionpB does not receive
p before round-. Thus,B must receive a messagel (1) or in Ms(u) before round™ < 75 < r3.
However, because of the definitionsgf andr;, B cannot receive any messagelfy(y) before
roundr; and any message 3(y) before round. O

Lemma 3
The lemma states th&@ cannot receive a messagec M before round 3.

Proof: Let us assume tha® receivesn = (k,~, i1, 0, 0’) in roundr, wherer < 3. This means that

A sendsn in roundr. According to Lemma 1, this is possible onlyAfreceivesn’ = (v, u, o) inan
earlier round”’ < r. Thus,B sendsn’ in roundr’. According to Lemma 2, this is possible onlyFf
receivesu in an earlier round” < r’ < r. But this is impossible, since round numbers are positive
integers, and < 3. 0

Lemma 4

The lemma states that no player can ever receive a message (,¢,w,0) € M; such that
fit(dec(w=(w), ), dsca) = true anddec(w=!(w),e) # item a.

Proof: Let us suppose that there exist a player P’, a round number € N, and an action sequence
q € @ such thafrcv(m),r) € H;(q). This means that a playgrsendsn in roundr in g. According
to the logical formulae with which we tagged the messagedinthis is possible only ifi receives
m Or a message i/, or in M3 that containsn before round- — no matter whethej is A or B.

Let Ma(m) = {(v/, 1, 0") € My : i/ = m} andMs(m) = {(x',+, 1/, 0',0") € M3 : up = m}.
If no player receivesn before round- in ¢, then letr] = r, otherwise let-} be the earliest round in
q in whichm is received by any of the players. If no player receives any messai (im) before
roundr in ¢, then letrs = r, otherwise let be the earliest round ipin which a message if/z(m)
is received by any of the players. Finally, if no player receives any message(in) before round
rin ¢, then letr; = r, otherwise let-; be the earliest round i@ in which a message in/3(m) is
received by any of the players.

Now, we can distinguish three cases: €p)< r3, 5, (b) 5 < rj,r3, and (C)rs < r},r3.
Case (a): Recall thatj receivesm or a message i/y(m) or in Ms(m) before round- in ¢q. Note
that if r; = r, then no player receives or any message it/z(m) or in Ms(m) before round- in
g. Thus,r7 < r must hold. This means that a player receives roundr]. If a player receivesn
in roundr}, then a player must send in roundr}. According to the logical formulae with which
we tagged the messagesiif, this is possible only if that player receivesor a message in/z(m)
or in M3(m) in an earlier round: < r§ < r3, r;. However, because of the definitionsigf 3, and
3, no player can receive, before round-;, a message in/z(m) before round-;, and a message in
Ms(m) before round-;.
Case (b): Recall thatj receivesm or a message i/y(m) or in Ms(m) before round- in ¢. Note
that if 5 = r, then no player receives or any message in/z(m) or in Ms(m) before round- in g.
Thus,r5 < r must hold. This means that a player receives a message (1',m,o’) € Ma(m) in
roundr;. If a player receives:’ in roundr;, then a player must send’ in roundr;. According to
the logical formulae with which we tagged the messagedinA can sendn’ in roundr; only if she
receivesn’ € My(m) or a message i3 (m) that containsr’ in an earlier round < r3 < r},73.
FurthermoreB can sendn’ in roundr; only if it receivesm or a message if/z(m) orin Ms(m) in
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an earlier round < r5 < r7,r;. However, because of the definitionsi¢f 3, andrj;, no player can
receivemn before round-j, a message il/>(m) before round-3, and a message itz (m) before
roundr;.

Case (c):Recall thatj receivesn or a message if/z(m) or in Ms(m) before round- in ¢. Note that
if 75 = r, then no player receives or any message i/ (m) or in M3(m) before round- in g. Thus,
r3 < r must hold. This means that a player receives a message (x',~',m,o0’,0”) € Ms(m)
in roundrj. If a player receives:’ in roundrs, then a player must send’ in roundr;. According
to the logical formulae with which we tagged the messagédinA can sendr’ in roundr; only if
she receive$y’,m,o’) € Ma(m) or a message in/3(m) that containg~’, m, ') in an earlier round
7 < r5 < r}. FurthermoreB can sendn’ in roundr; only if she receivesn’ € M3(m) in an earlier
rounds < r;. However, because of the definitionsigf andr3, no player can receive a message in
M (m) before round;, and a message itz (m) before round-;. O

Lemmab
The lemma states that no player can ever receive a messagéy, i, o) € M, such thaty # itemp.

Proof: Let us suppose that there exist a plaiyer P’, a round number € N, and an action sequence
q € @ such thafrcv(m),r) € H;(q). This means that a playgrsendsn in roundr in g. According
to the logical formulae with which we tagged the messagéd-nthis is possible only if receives a
message i/, or in M3 that containgy before round- — no matter whethef is A or B.

Let Ma(y) = {(v',1',0") € Mz : o = v} andMs(v) = {(+',7/, 1/, 0',0") € Mz : v = ~}.
If no player receives any messagelify(y) before round- in ¢, then letr; = r, otherwise let; be
the earliest round i in which a message itz (~) is received by any of the players. If no player
receives any message Mis(y) before round- in ¢, then letr = r, otherwise let} be the earliest
round ing in which a message in/3() is received by any of the players.

Now, we can distinguish two cases: (§)< r3, and (b)rj < r3.
Case (a): Recall thatj receives a message Ma(y) or in M3(~y) before round- in ¢. Note that if
r3 = r, then no player receives any messagé/f(y) or in Ms(~y) before round- in ¢. Thus,rj < r
must hold. This means that a player receives a message (v, u/,0’) € Ma(y) in roundrj. If
a player receives:’ in roundr3, then a player must send’ in roundr;. According to the logical
formulae with which we tagged the messagedfsn A can sendr’ in roundr; only if she receives
m' € Ms(v) or a message in3(v) that containsn’ in an earlier round < r5 < r5. Furthermore,
B can sendn’ in roundr only if it receives a message i, () or in Ms(~) in an earlier round
7 < ry < ri. However, because of the definitionsigfandr3, no player can receive a message in
M>() before round-;, and a message it/ (y) before round-;.
Case (b): Note thatr; < » must hold (since otherwise; would be greater than, which is not
possible by definition). This means that a player receives a messagg«’, v, i/, o', 0") € Ms(v)
in roundrj. If a player receives:’ in roundr;, then a player must send’ in roundr. According
to the logical formulae with which we tagged the messagédinA can sendr’ in roundr; only if
she receives$y, i/, 0’) € Ms(v) or a message in/3(v) that containg~y, i/, o’) in an earlier round
7 < rj < rj. FurthermoreB can sendn’ in roundr} only if she receivesn’ € M3(y) in an earlier
roundr < r3. However, because of the definitionssgfandr;, no player can receive a message in
M>() before round;, and a message itz () before round-;. O

Lemma 6

The lemma states that the Syverson protocol is closed for gains.
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Proof: Itis enough to prove that for every terminal action sequeriogs s, (i) ¢ (q) impliesg5(q)
and (ii) for everyr, ¢'5(g,r) implies ¢* (¢). Both (i) and (ii) follow from the fact that there are only
two playersA and B who send messages, which means that if playef A, B} receives a message
m, then the other player € { A, B}, j # i must sendn. O

Lemma 7

The lemma states that the Syverson protocol satisfies the safe back out property.

Proof: If A does not send any messages in an action sequgticens® (¢) = false and¢’’(¢q) =
false, and thusy, (¢) = 0. If B does not send any messages in an action sequgtiteng;(q) =
false, and thugy;(¢) = 0. O
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