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Abstract

The number of computer attacks has been growing dramatically as the Internet
has grown. Attackers currently have little or no disincentive to conducting at-
tacks because they are able to hide their location effectively by creating a chain
of connections through a series of hosts. This method is effective because most
current host audit systems do not maintain enough information to allow associa-
tion of incoming and outgoing network connections. In this paper, we introduce
an inexpensive method that allows both on-line and forensic matching of in-
coming and outgoing network traffic. Our method makes small modifications
to the operating system that associate origin information with each process in
the system process table, and enhances the audit information by logging the
origin and destination of network sockets. We present implementation results,
show that our method can effectively record origin information about a variety
of attacks, and describe the limitations of our approach.

1 Introduction

As the Internet has become a widely accepted part of the communications in-
frastructure there has been an increase in the number of network attacks [7].
One factor in the growth of attacks is that network attackers are only rarely
caught and held accountable for their actions, giving them relative impunity
in action. This situation has arisen, in part, because of the relative ease that
attackers have in hiding their location, making it difficult and expensive for
investigators to determine the origin of an attack. The easy availability of so-
phisticated tools, coupled with this lack of accountability, has lead to a situation
in which Internet attackers can and do repeatedly strike with impunity.

To draw an analogy, this is like a neighborhood responding to a series of
muggings by simply having the victims and other concerned citizens buy armor
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or take self-defense classes. While this might improve individual resistance to
attack, members of the community who were unwilling or unable to acquire
such measures, or who were simply slow to do so, would be still be vulnerable
to the free-roaming muggers. Because the thieves are not held accountable for
their actions, there are no disincentives for them not to strike again. A better
solution is for the community to take action to find the attacker and hold them
accountable for their actions so that the attacks decrease or stop. The work
presented here is a step in that direction.

In this paper we present an extended discussion of a simple and inexpensive
method for maintaining the necessary information to correlate data entering a
host with data leaving a host that first appeared at the 2002 Usenix Technical
Conference [4]. The goal of this work is to provide additional audit data that
can help determine the source of network attacks. We include results from an
implementation for the FreeBSD 4.1 kernel that show the technique is effective in
providing information useful in tracing common attack situations, particularly
for tracing stepping stones and denial-of-service attack zombies.

2 Background

The goal of network traceback research is to allow attack attribution, so that the
source of attack traffic, which is a particular host used by a human to initiate
an attack, can be identified and appropriate real-world investigative techniques
used to locate the person responsible.

In general, attackers use two different methods to hide their location [17].
One method, common in denial-of-service attacks, is to spoof the source address
in IP packet headers so that recipients cannot easily determine the true source.
As discussed further in Section 7, this has been an area of significant research
in recent years, and a number of proposals for tracking and filtering such traffic
have been presented.

The other method, which has received significantly less attention from the re-
search community, is for attackers to sequentially log into a number of (typically
compromised) hosts, as shown in Figure 1. These forwarding hosts, often called
stepping-stone hosts [44], effectively disguise the origin of the connection, as each
host on the path sees only the previous host on the connection chain. This is an
effective method of providing anonymity, similar to the mechanism used in co-
operative protocols designed to provide privacy through anonymity [29, 28, 18].
A victim of an attack therefore might not be able to determine the original
source of an attack without tracing the path back through all intermediate
stepping-stone hosts.

There have been two general mechanisms proposed to do this. The first
mechanism, named stream matching, attempts to follow the path by examining
the flow of data through the network. As described further in Section 7, this
seems to be a promising technique, though no definitive method or rate of
accuracy has been determined. These techniques also seem vulnerable to the
attacker manipulating characteristics of the data flow.
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Figure 1: A sample connection chain

The more common method of tracing an attack is to sequentially visit each
host on the connection chain, and to examine the state of the machine or its
logs for evidence about the prior hop. This can be difficult. First, attackers who
compromise systems take steps to hide their activity. This includes modifying
the operating system to not report their running processes, and altering or
deleting log entries to hide the address of the machine they connected from.
Protecting the operating systems and its logs is a common problem and is
generally outside the scope of our work. We assume that the system logs are
protected by cryptographic mechanisms [32] or by the more common techniques
of being written to write-only media or being sent to a more secure central-
logging facility. In the event of the system or logs being compromised, however,
tools like The Coroner’s Toolkit [12] can be used to attempt to discover hidden
and deleted files and use access times to deduce system activities. Such forensic
analysis may not recover adequate information for traceback if it did not exist
in the first place, or was overwritten by the attack or the operating system.

The larger problem, and the one we address with our work, is that systems
generally do not log the information necessary to trace a connection
back to its source, so that even if logs are protected or recovered, there may be
inadequate information to trace the connection back. While most systems track
users by the times they were logged in and from where, they do not track what
outgoing connections a user initiates. This means that while it may be easy
to track an intruder through a system that has only one or a few users, it can
become very difficult to track an intruder across a system that has many users.
This is because even though an investigator can determine which users were
logged on, it may be impossible to determine which individual is responsible
for the outgoing network traffic that created the next step. The investigator
might then need to examine many different possible last hops corresponding to
all users on the system at the time — a task that can be daunting or impossible.
The goal of our work is to create mechanisms to address this problem, and allow
forensic association of outgoing traffic with the source of incoming traffic which
created it.

3 Host causality

Though certain aspects of the network traceback problem have been addressed,
a new area of research that is concerned with data transformations or data
flow tracking through a host is needed for a complete picture for attack origin
traceback. We call this new area host causality, because we are attempting to



determine what network input causes other network output across a host.

Common operating systems do not currently provide information that can
match incoming and outgoing network traffic. While there has been some work
that attempts to use existing system information to match active incoming and
outgoing streams [16, 6], this work has been either shown to be impractical to
securely implement [3], or requires an external trigger to store forensic infor-
mation. Ideally, it should be possible to determine whether network traffic was
originated directly from a particular host or occurred as a result of a connec-
tion from some other remote machine, and, if possible, which remote machine
is involved. This would not only help in tracing back to the source of a net-
work attack, but could be useful in showing due diligence, so that the owner
of a machine used in an attack could demonstrate that the attack originated
elsewhere.

A solution that addresses the problem of tracing connections through a host
is necessary because a host on the network can transform data passing through
it in such a way that, from the network’s point of view, it can no longer be easily
related to traffic leaving it. This might be the case in a stepping stone scenario,
if the traffic is delayed, or differently compressed or encrypted. Also, in attacks
like a distributed denial-of-service (DDoS) attack [43], control traffic cannot be
linked to the resulting attack traffic. In such an attack, packet source-location
techniques might identify the source of a particular attack stream, but will not
allow identification of the master or the controlling host. This is due to the fact
that the datagrams that are used to perform the attack are seemingly unrelated
to those that control the client. What is missing is information within the host
that can be used to associate an incoming control packet with outgoing attack
data.

3.1 Required and Desired Properties

The following properties need to be fulfilled in order to achieve a practical
solution to the host causality problem:

e It must be possible to determine whether a given process on the host was
started by a local user or remotely.

e If a process was started by a user at a remote location, information about
that source must be maintained and associated with the process.

e An audit facility must exist that allows the logging of incoming network
traffic and processes that receive it. This will allow correlation between
the source of a process and the source of incoming network packets.

e An audit facility must exist that allows the logging of individual outgoing
network traffic and processes that send it. Combined with the facility
above, one could then relate incoming and outgoing traffic processed by
the same process.



e Processes that spawn other processes need to pass on their source infor-
mation to their children, or, if they provide a remote login service, pass
on the remote location as the child’s new source.

Furthermore, the following properties are desirable so that a correct and efficient
correlation is possible on a system:

e The logs maintained about origin information should be resistant to mod-
ifications by attackers. This is a general problem with many types of logs,
and other work addresses this problem [32].

e The modifications to a system should be minimal so that they do not
interfere with existing software.

e Due to restricted logging space, it should be possible to use rules to control
what data the audit system collects.

e It should be possible to quickly identify processes that were not started
locally together with their remote location.

4 Host Causality Mechanisms

A process on a computing host is an executing instance of a program [37].
Processes are therefore, among many other things, responsible for receiving and
generating network data on a host that is connected to a network.
Processes can be started:

e explicitly by a human being

e by the system

A human being can start processes:

e while physically present at the host
e from a remote location

e indirectly through some other process he or she started
The system can start processes:

e through startup scripts (including init and .profile)
e through scheduling services like cron and at

e through system services like inetd or sshd

The origin of a process is the information about how any process running
on the system was started in regard to the above possibilities. For the purpose
of this paper only a distinction between a process that was started by a human
being from a remote location (remote origin) and the other ways (local origin)
is of importance, with the exception of the special case of indirectly started
processes.



In case of a remote origin for a process, the origin information should include
that remote location. If the system tracks the origin of a process and it is
of remote origin and sends out network traffic, then the system can make a
connection between the traffic that was sent out and the traffic that was received
from the origin of the process over the network. The traffic could be individual
datagrams, or they can be part of an established connection.

In order to gain access to a system from a remote location and start new
processes there, a user has to make use of a service offered on that particular
system. Usually most systems provide well-known services such as telnet, rsh,
or ssh that will give a remote user a shell on the system. However, there are
other possibilities to create new processes that do not involve an interactive
shell. In fact, any process listening on an open port on the system may be used
or misused for such purposes. Our solution does not address these problems,
and they are a topic for future investigation.

As the only legitimate remote access to a system is through its well-known
services, it is feasible to store information about the existing connection with
the newly created child process. After a successful login procedure, the source
of the new process should reflect the information stored about the connection.
Note that the origin of a process and its subsequent children is set at the time
a user gains access to the system. All programs that will be started during
that remote session will inherit that origin. At this point time delays become
irrelevant, as origin information is stored with the processes no matter whether
or not processes become dormant for any amount of time.

4.1 Information Storage

From the viewpoint of a host, all that can be deduced about the origin of an
arriving network packet is the interface that it arrived on and the information
that is contained in the packet itself. A host on its own cannot determine
whether a network datagram was spoofed or not. Therefore, for IP packets,
the five-tuple consisting of source and destination IP addresses and source and
destination ports and the protocol number must suffice to distinguish source
information maintained about processes on a host. If packet traceback schemes
are deployed and can provide additional information, it is possible to maintain
that information as well.

While storing information about active processes can be useful, for complete
analysis of attacks, some additional information needs to be logged as well. The
logging mechanism can maintain more explicit information than simply storing
the IP five-tuples. Along with the five-tuple and timestamp, the system can also
store the interface on which the packet arrives and the process id. If the system
logs individual packets, it can also store a checksum of the non-changing parts
of each packet header and maybe even the payload of each packet that is logged
in case the need for a more detailed post-analysis matching arises. Answers to
questions like: “Have you seen this packet?” could then be easily answered.
Furthermore, it would be expensive and impractical to log an entire stream of
packets that make up the entirety of a TCP stream. Since TCP is a connection



oriented transport layer protocol, it is sufficient to only regard incoming and
outgoing SYN requests for the purposes of logging.

Unfortunately, UDP is a connection-less protocol. Thus for UDP, all packets
might need to be logged. Depending on the level of detail that is desired,
however, one can apply certain log-reducing mechanisms. For example, one
could exclude UDP packets to and from well-known services that heavily utilize
UDP, such as NFS or syslog. To reduce logging for large amounts of UDP
packets, such as the traffic that a DoS client might generate, one could log only
the first packet of a UDP stream and keep a count of packets sent as part of
that stream in the future. Each new packet of the stream would extend a time
interval which, once expired, would trigger the log entry to be written with the
accumulated information.

4.2 Limitations on Information Availability

For well-known services we can assume that there will only be one open network
connection for each child process spawned. Non-standard server programs might
behave differently, however, and there might be multiple open connections when
we try to determine the origin information. In this case, it is impossible to be
sure which connection should be considered as the origin of the process. Because
of this, there can be a problem with using the latest data from the accept
system call as the origin information. If a server program allows multiple open
sockets before the call to login, then there is a possibility that the wrong origin
information is stored with the process. It is possible to design a program that
after accepting a connection opens another listening socket to receive a decoy
connection from a completely different remote site or, even worse, from the local
host itself. This would set the information obtained from the accept call to
the new socket’s source data, before login was invoked. After a successful login
procedure, the origin information would be incorrect. If a local user installs such
a program, then any attacks originating from it can be viewed as originating
from the host, which is consistent with our definition of local origin.

Another problem is that a remote user may still hide his real origin by cre-
ating a connection from the system to itself. In this case the origin information
of the process gets changed to the source information of the local host. While
the process is still being considered of remote origin, it is of no value from a
traceback perspective. If many remote processes “change” their origin in such
a fashion, one cannot determine anymore what the “real” origin of any of those
was. In order to prevent this obscuring of the origin of a process, one needs
to log an inheritance line for remote processes. Starting from a process with
remote origin, each time the process or one of its children spawns another child
process, this information needs to be recorded, with an entry such as“Process
x spawned process y”. Instead of logging only the process numbers of parents
and children when processes fork, a simple extension would be to add the origin
of the parent process to the log entry. This would establish a chain of ancestors
for all processes that originated from a process of remote origin, and this chain
could easily be reconstructed from the logs. Using this technique, even if any



of the child processes attempt to change their origin to a local connection the
original origin also can be reconstructed from the logs.

5 Implementation

The model described above was implemented in the FreeBSD 4.1 operating
system on a PC with an x86 architecture. While the implementation is therefore
specific to the UNIX operating system, the general principles of the model should
be applicable to other systems as well.

All processes that accept network connections do need to make use of the
socket system calls provided by the system. Stevens [36] describes the necessary
steps to set up a TCP or UDP server. They involve system calls to bind, listen,
and accept (recvfrom in the case of UDP), in that order. Thus any connection
between two systems must have successfully undergone a call to accept on the
server side. In the case of TCP, accept returns after a successful three-way
handshake. In the case of UDP, recvfrom returns upon reception of a packet
that matches the socket characteristics.

As a successful connection implies a successful return from the accept sys-
tem call, it seems reasonable to make modifications there in order to obtain
location information. Specifically, with the assumption of only one open net-
work connection, it is sufficient to record the data from the last call to accept.
This information will then be accessible to the child process created by the
fork system call. Finally, after a successful login procedure, the source of the
new process should reflect the information stored about the connection. As
the login program lies in user space and not all well-known servers utilize it,
it will be necessary to perform this step through one of the system calls such
as setlogin. All user-space programs and also all libraries that provide login
services (i. e., changes of real and effective user IDs) use those system calls, so
it is sufficient to modify the system calls.

All the necessary information described in Section 4 is available within data
structures used by the accept system call. Once the connection has been es-
tablished, the socket descriptor contains the source IP address and the source
port of the purported source of the traffic. To determine the destination IP
address and port that was used to establish the connection, the system also has
to access the protocol control block (PCB) that is associated with the socket
and that is pointed to from the socket data structure'. The information can be
obtained through simple pointer lookups.

5.1 Where to store source information

We decided to maintain the information directly in the process table itself, be-
cause it is simple to add another field that contains the necessary information,
and creation and termination of processes is handled automatically. The inher-
itance problem is taken care of as well, as the fork system call causes certain

1See McKusick et al. [19] or Wright and Stevens [39] for further details.



fields of the process table to be copied to the child. The only time we therefore
need to access the field in the process table is when origin information changes.
The disadvantage of this approach is that some auxiliary programs such as top
and ps might have to be adjusted to accommodate the changes.

It is possible to utilize existing logging facilities, such as syslog to record
the data, or a logging program can develop its own format and location to store
the information [26]. Ideally, there would be some mechanism to ensure the
integrity of the logs. Write-once, read-many media, or a secure logging facility
could be used [32].

5.2 Data structures and kernel modifications

For the source information, a new data type, struct porigin, was created as
shown in Figure 2. The type field denotes whether the source is local (0) or
remote (1). If the type is 0, all other fields are undefined and can be ignored.
The next five fields are the typical four-tuple for a TCP or UDP connection,
consisting of source and destination IP addresses as well as source and destina-
tion ports, plus the protocol number. The last parameter is a timestamp, which
denotes the time the connection was established in network time format [20].

struct porigin {
char type;
struct in_addr source_ip;
struct in_addr dst_ip;

u_short source_port;
u_short dst_port;
u_short proto;
time_t tstamp;

Figure 2: The process origin data structure

Note that the network interface is not included here. In most cases it can be
obtained with the information stored if necessary. In some situations, though,
this is not possible. For these cases, it is desirable to have the interface infor-
mation available as part of the origin information. However, this would require
non-trivial modifications of the network stack data structures, as that infor-
mation is not retained as data is passed among the stack levels. A special
implementation for hosts where the interface information cannot be determined
by the 4-tuple might be the best solution.

In order to keep track of the corresponding source information for each pro-
cess, the process table data structure (struct proc) was modified in two loca-
tions, as shown in Figure 3. It is necessary to retain the actual source infor-
mation as well as information about the last accepted connection of a process.
The latter is needed because all common TCP/IP based network services that
provide a remote login facility first accept the connection and then fork off a
child process where login is called. Hence, two fields, origin and lastaccept
were added to the process table structure, both of type struct porigin. The



fields are located in the area that gets copied in the fork system call.

struct proc {

/* The following fields are all copied upon creation in fork. */

#define p_startcopy p_sigmask
sigset_t p_sigmask; /* Current signal mask. */
struct porigin lastaccept; /* origin of last accepted conn */

struct porigin origin;

/* End area that is copied on creation. */
#define p_endcopy p_addr
struct user *p_addr; /* Kernel virtual addr of u-area (PROC ONLY). */

};

Figure 3: The modified process table data structure

The copying of the origin field provides a simple and elegant solution for
the inheritance mechanism. All it takes is a few more bytes to be copied in
the fork system call, as the process structure is copied anyway. Thus, a child
process always inherits the source information from its parent.

This leaves the question of where the two fields, lastaccept and origin
are to be set. As the name already suggests, lastaccept is set in the accept
system call, after a successful accept of an incoming connection. The modified
accept system call was implemented as shown in Figure 4, which shows how to
retrieve information from the PCB.

Note that acceptl is called from the actual accept system call. The con-
nection will be accepted in the procedure soaccept. If the call is successful,
the type is set to 1, and the four-tuple is obtained from the PCB associated
with the socket via the pointer inp. Note that this will only work for a TCP
connection, which is used by services which provide a shell. For future work,
other protocol types need to be considered. For instance, in the case of UDP,
the recvfrom system call may be modified in a similar fashion. Since there
are no well-known services that provide a shell and utilize UDP, however, the
modification of TCP’s accept is sufficient for our purposes. Section 8 discusses
the future work in more detail.

The origin field will be copied from a parent process to its child. How-
ever, as discussed above, each time a login is performed within a process, the
source information of the last accepted socket should become the new origin
information for that process. Thus, at an invocation of login, the lastaccept
field should be copied into the origin field. However, as discussed above, login
is only a program in user space that simply utilizes several system calls to per-
form the actual user login. One could supply a separate system call to have the
lastaccept field copied to the origin field, but that would imply that every
program that supplies a login service to be changed and use it. Therefore, one
of the system calls used by every login service, setlogin was modified so that
the field is copied after a successful call.
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accept1(p, uap, compat)

{
(void) soaccept(so, &sa);
inp = sotoinpcb(so);
p—->lastaccept.type = 1;
p->lastaccept.source_ip = inp->inp_faddr;
p->lastaccept.dst_ip = inp->inp_laddr;
p->lastaccept.source_port = inp->inp_fport;
p->lastaccept.dst_port = inp->inp_lport;
p—>lastaccept.proto = IPPROTO_TCP;
p->lastaccept.tstamp = time(0);

}

Figure 4: The modified accept system call

To keep track of the inheritance line for a remote process, it is necessary to
modify the fork system call, as well. It is sufficient to record the process IDs
of the parent and child processes in case the parent is of remote origin. From
this information, it is possible to reconstruct the entire inheritance line for a
remote process up to the first parent that was of remote origin. The syslog
facility provides an easy way to log kernel messages, and was chosen to record
the information out of reasons of simplicity. Figure 5 shows the modifications
made to fork. In future work, this recording mechanism needs to be refined
and optimized.
int
fork(p, uap) {

error = forki(p, RFFDG | RFPROC, &p2);
if (error == 0) {
p->p_retval[0] = p2->p_pid;
p->p_retval[l]l = 0;
if (p—>origin.type)
log(LOG_INFO,

"remote process %d spawned child %d\n",
p->p_pid, p2->p_pid);

Figure 5: The modified fork system call

5.3 System calls

In order to access the source information for a given process, a new system call,
getorigin was added to the system. It takes as parameters a process identifier
and a buffer, into which the source information is copied. The getorigin
call is shown in Figure 6. Note that there is no system call to set or reset
the origin field. With the getorigin system call, it is now possible to design
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logging facilities and administrative programs within user space that make use
of the source information of a process. For reasons of simplicity, the call was
implemented to be unrestricted.

struct getorigin_args {
pid_t pid;
char *origin;
};
int
getorigin(p, uap)
struct proc *p;
struct getorigin_args *uap;

int error;
struct proc *pt;

if ((pt = pfind(uap->pid)) == 0)
return ESRCH;

if ((error = copyout(&pt->origin,
uap->origin,
sizeof (struct porigin))))
return error;

return (0);

Figure 6: The new getorigin system call

Another system call, portpid, was added to give support for the logging
facility described below and is shown in Figure 7. If one wants to associate
incoming TCP or UDP packets with the receiving process, one needs to find
the process id of the socket that will handle an TP packet. The same is true for
sockets that are responsible for outgoing packets. Those sockets are identified
in the network layer by the four-tuple of source and destination addresses and
ports, but, unfortunately, there is no efficient mechanism in FreeBSD to obtain
that information within user space. It is possible to determine the open socket
for a given process id but there is no direct lookup from socket to process id.
Thus, in order to avoid iterating through all processes on a system, the system
call portpid will take a four-tuple as well as a protocol identifier (TCP or UDP)
and will return the process id of the process that belongs to the listening socket
that will accept packets matching the four-tuple, or belonging to the socket that
sent the packet. If there is no such socket, an error will be returned. A weakness
of this design is that a process may exit and be removed from the process table
before the portpid call occurs. This problem is detailed in Section 8 below.

The FreeBSD operating system uses protocol control blocks (PCBs) to de-
multiplex incoming IP packets. The PCBs are chained together in a linked list
and contain IP source and destination addresses and TCP or UDP ports or
wildcard entries for incoming packets to match against. Each PCB also con-
tains a pointer to the socket that is destined to receive a packet, should it match
the four-tuple specified in the PCB. From the socket, one can then look in the

12



struct portpid_args {
pid_t *pid;

int proto;
int dport;
int sport;
u_long dip;
u_long sip;
};
int

portpid(p, uap)
struct proc *p;
register struct portpid_args *uap;

{
struct inpcb *inp;
struct inpcb *res;
pid_t pid;
int error;
struct inpcbhead *head;
if (uap->proto == IPPROTO_UDP) {
head = &udb;
}
else if (uap->proto == IPPROTO_TCP) {
head = &tcb;
}
else
return(1);
res = NULL;
LIST_FOREACH(inp, head, inp_list) {
if ((inp->inp_lport == uap->dport)
&& (inp->inp_laddr.s_addr = uap->dip))
res = inp;
}
if (res == 0) return(l);
pid = res->inp_socket->so_rcv.sb_sel.si_pid;
if ((error = copyout(&pid, uap->pid, sizeof(pid_t))))
return error;
return(0) ;
}

Figure 7: The new portpid system call
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receive or write buffer to obtain the actual process id of the receiving or sending
process, respectively. In order to determine which process will receive a packet
or which process sent a packet, one needs to traverse the list of PCBs until the
best match is found, and then obtain the process id of the socket associated
with the PCB.

5.4 Logging facility

The logging facility that was implemented is merely a proof of concept, and
there are many feasible ways to design and implement one. Our implementation
of the logging facility uses the libpcap library, which is part of the Berkeley
Packet Filter (BPF). The BPF will make a copy of each incoming and outgoing
network packet that matches given filter criteria and supply that copy to the
process utilizing the filter.

This prototype logging facility can therefore be considered as a network
sniffer, but a more robust and efficient implementation would be one that is part
of the kernel itself. For each TCP SYN or UDP packet seen by the sniffer, the
portpidsystem call is invoked to obtain the process id of the process responsible
for the packet. Once the process id is obtained, getorigin is called for that
process id to determine whether the process is of remote origin or not. If it is
of remote origin, then the packet as well as the origin information is printed
out. Figure 8 shows the interaction of the different parts of the system with
the logging facility, and Figure 9 shows the important parts of the routine that
processes the packets passed on by the BPF. For better readability, unimportant
parts such as the conversion of IP addresses to strings have been omitted.

In our prototype, there is a problem with logging outgoing UDP packets.
The portpid system call relies on the socket that sent the packet to be still
open so that it can find it in the PCB list. If an application opened a socket,
wrote one UDP packet, and immediately closed the socket again, there would
be a chance that the socket no longer existed when the packet was examined
by the logging facility. DDoS clients usually keep the socket they send packets
from open so that packets can be sent at a faster rate, but for outgoing control
packets, this is a limitation. For TCP, this is not a serious issue, as there is either
a three-way handshake or a time-wait period at the end of each connection.

One method to solve the outgoing UDP packet problem could entail further
modification of the kernel, keeping the process ids of sending processes in a
cache and making that information available to the portpid system call. A
similar approach could also improve lookup performance for incoming packets.
Instead of duplicating the de-multiplexing effort made in the networking stack,
modifications to the stack could result in a new data structure that returns the
correct process id for a given five-tuple.
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if (ip->ip_p == IPPROTO_TCP) {
/* set pointer to TCP header within the packet */
tcp_h = (struct tcphdr *) (ptr + ip_hlen * 4);
sport = tcp_h->th_sport;
dport = tcp_h->th_dport;
/* determine if start of a new connection */
if ((tcp_h->th_flags & TH_SYN) && (!(tcp_h->th_flags & TH_ACK))) {
log = 1;
}

}
else if (ip->ip_p == IPPROTO_UDP) {
udph = (struct udphdr *) (ptr + ip_hlen * 4);
sport = udph->uh_sport;
dport = udph->uh_dport;
log = 1;
}
if (log) { /* calls to portpid */
if (direction == INCOMING)
ret = syscall(282, &pid, ip->ip_p, dport, sport,
ip->ip_dst.s_addr, ip->ip_src.s_addr);
else if (direction == OUTGOING)
ret = syscall(282, &pid, ip->ip_p, sport, dport,
ip->ip_src.s_addr, ip->ip_dst.s_addr);
else
ret = -1;

if (ret == 0) {
/* call to getorigin */
ret = syscall(281, pid, o);
if (o->type) {
if (direction == INCOMING) {
printf ("%s:%d->%s:%d (%d) received by pid %d\n",
source_str, ntohs(sport),
dest_str, ntohs(dport),
ip->ip_p, pid);
printf("Origin: (%s)%s:%d-%s:%d\n",
protocol, osrc_str, ntohs(sport), odst_str, ntohs(dport));
}
else if (direction == OUTGOING) {
printf ("%s:%d->%s:%d (/%d) sent by pid %d\n",
source_str, ntohs(sport),
dest_str, ntohs(dport),
ip->ip_p, pid);
printf("Origin: (%s)%s:%d-%s:%d\n",
protocol, osrc_str, ntohs(sport), odst_str, ntohs(dport));

Figure 9: The packet processing routine of the logging facility
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6 Implementation Results

The modified kernel was installed on an Intel Pentium III Celeron PC. The
machine used is part of a small networking lab. We will discuss the effects of
the changes on the normal system behavior as well as give two examples of
processes of remote origin handling traffic.

6.1 Effects on normal system behavior

As the changes to the system were only few and cheap, the impact on the system
is minimal. The getorigin copies a few bytes from the process table and is
only executed for TCP SYN and UDP packets. For those packets, the call to
portpid causes a linked-list traversal of the protocol control blocks in the same
manner the networking stack does its de-multiplexing. In every call to accept,
the lastaccept field is set from the socket information. These operations are
very few and inexpensive compared to the entire set of operations within accept.
In every call to fork, an extra few bytes need to be copied to pass on the origin
information to a process’s child. The way the syslog facility was used to keep
record of an inheritance line is very inefficient. On a system where processes
spawn many children, the logs may quickly wrap around. That and the fact that
the inheritance line needs to be reconstructed manually from the logs suggests
the need for a re-design of the inheritance line for future work, as described in
Section 8.

6.2 Examples
6.2.1 Stepping Stone

In this example, bliss was used as a stepping stone. A user from evil
(10.0.0.1) logged into bliss (192.168.0.1) via ssh. From there, he used
ssh again, to log into final (172.16.0.1). The actual host names and IP ad-
dresses have been replaced by fictitious ones. This setup is equal to the example
given in Figure 1 with the exception of the very last host.

The logging facility recorded the following entry from this:

192.168.0.1:1022->172.16.0.1:22 (6) sent by pid 285
Origin: (TCP)10.0.0.1:1022-192.168.0.1:22

One can observe, that the origin information indicates the connection from
evil, port 1022, to bliss, port 22 (ssh). The logging mechanism didn’t log
the connection from evil to bliss, as sshd is a local process. However, evil is
clearly shown as the origin for the process that connected to final. Therefore
one can now associate the stream from bliss to final to the one from evil to
bliss for traceback purposes.

6.2.2 DDoS Client

In this example, a distributed denial-of-service trinoo client was obtained from
the Packet Storm archive [23] and was installed on bliss from evil as shown
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in Figure 10. The corresponding master was installed on another machine,
master (192.168.0.2). Bliss was then used via master to perform a denial
of service attack against victim (172.16.0.2), a third machine in the test
network. Again, host names and IP addresses have been changed. A sample of
the logging output is presented in Figure 11.

DDoS
Master

Location
of attacker

master

install control

DDoS client client
DDoS
Client
DoS attack
Y
victim Victim

Figure 10: Setup for the DDoS attack

The first logged event is a UDP packet from bliss to master, notifying the
trinoo master that a client is active. The next event is then a UDP packet
from master to bliss, triggering the DoS attack. The rest of the log shows
UDP packets sent from bliss to victim as part of the attack.

All the traffic can be unambiguously associated with the process 3760, the
DDoS client. From the origin, one can see that the process was started from
evil. In this example, it is clear that the attack was controlled from master.
This might not always be possible, as multiple packets from different locations
could be received by the process just before an attack. However, by examining
the logs a good estimate might be derived. At the very least it will give a
list of possible hosts from where the attack was launched, which could be used
to determine the location from where the software was set up and the master
could now be investigated in the same manner as bliss to determine more
information about the attack and the location of the attacker.
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192.168.0.1:1117->192.168.0.2:31335 (17) sent by pid 3760
Origin: (TCP)10.0.0.1:32155-192.168.0.1:13419

192.168.0.2:39805->192.168.0.1:27444 (17) received by pid 3760
Origin: (TCP)10.0.0.1:32155-192.168.0.1:13419

192.168.0.1:1135->172.16.0.2:12865 (17) sent by pid 3760
Origin: (TCP)10.0.0.1:32155-192.168.0.1:13419
192.168.0.1:1135->172.16.0.2:59850 (17) sent by pid 3760
Origin: (TCP)10.0.0.1:32155-192.168.0.1:13419
192.168.0.1:1135->172.16.0.2:10435 (17) sent by pid 3760
Origin: (TCP)10.0.0.1:32155-192.168.0.1:13419
192.168.0.1:1135->172.16.0.2:4577 (17) sent by pid 3760
Origin: (TCP)10.0.0.1:32155-192.168.0.1:13419

Figure 11: Logged network traffic of process 3760 on bliss: control traffic with
the master and DoS traffic to the victim

7 Related Work

7.1 Packet Source Determination

In normal operation, a host receiving packets can determine their source by
direct examination of the source address field in the IP packet header. Unfor-
tunately, this address is easy to falsify, making it simple for attackers to send
packets that have their source effectively hidden. This is more common for
one-way communication, such as the UDP and ICMP packets used in denial-of-
service attacks, but has been of use in attacks using TCP streams in which the
TCP sequence numbers are guessable [22, 2]. There has been significant recent
research in how to locate the source of such packets, primarily motivated by
distributed denial-of-service (DDoS) attacks in early February of 2000. While
it is generally recommended that routers be configured to perform ingress or
egress routing [13], it is clear from continuing denial-of-service attacks [21] that
this is not widely done. There have been other methods proposed to perform
filtering to limit the effect of such attacks [25, 15, 41].

As it is currently not possible to prevent such attacks, recent work has
focused on how to locate the source of attacks. Some methods add or collect
information at routers to allow traceback of DoS traffic [30, 38, 8, 33]. Other
methods add markings to the packets to probabilistically allow determination
of the source given sufficient packets [31, 34, 24, 9, 10, 1], or forward copies of
packets, encapsulated in ICMP control messages, directly to the destination [40].
A more innovative method uses counter-DoS attacks to locate the source of on-
going attacks [5]. While we do not require that these schemes be available, we
can make effective use of the traceback information they provide in the event
spoofed packets are used.

7.2 Correlating Streams

Up to now, research addressing determination of the source of a connection chain
has mainly focused on correlating streams of TCP connections observed at dif-
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ferent points in the network. The initial work in matching streams constructed
thumbprints of each stream based on content [35]. While this technique could
effectively match streams, it would be ineffective in compressed or encrypted
streams as are common today. Other work compared the rate of sequence num-
ber increase in TCP streams as a matching mechanism, which can work as long
as the data is not compressed at different hops and does not see excessive net-
work delay [42]. Another technique, which relies solely on the timing of packets
in a stream, is effective against encrypted or compressed streams of interac-
tive user data [44]. This work was originally intended for intrusion detection
purposes but was also proposed as an effective method for finding the source
of connection chains. While performing stream matching might be effective in
some cases, such methods rely on examining network information, and might
be vulnerable to the same methods that can be used to defeat network intru-
sion detection systems [27]. More recent work has examined the effectiveness of
attackers attempting to defeat stream matching by adding delay or additional
packets to the data stream, but did not propose a method of directly matching
streams [11].

8 Limitations and Future Work

This paper presents a first attempt at a mechanism designed to address the
problem of determining host causality. While it is progress in a forward di-
rection, it is not a complete solution to a problem, though its use could prove
beneficial in many cases. We hope that discussion of the limitations will foster
other research on the problem.

While available origin information is maintained for processes that utilize
setlogin, there are other mechanisms that attackers can use to start processes
on a system. Remotely, attackers might gain access to a system using processes
that service network requests, such as mail, web, or ftp servers. Exploits such as
buffer overflows against these processes can produce user shells for the attacker,
bypassing the system call. In these cases, origin information will not be properly
recorded. For these cases the question arises when exactly to set the origin
information so that it is meaningful. Furthermore, an attacker who gains access
to a system might use a cron or at job to create a process after the attacker
has logged off; this would also result in processes that lack the correct origin
information. A solution to this problem might be to include origin information
in the file system so that when the new process was started the appropriate
location information was available.

Sometimes login servers can open a second connection to the client for out-
of-band data. Currently this scenario is not handled in the design. However,
its seems that in the worst case the wrong port is recorded for the origin within
the modified accept system call.

An attacker also might use a covert channel between processes to obscure the
proper location information. In this scenario, an attacker, who perhaps enters
the system though a mechanism that invokes setlogin and whose processes
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therefore have correct origin information, uses some form of IPC to cause a
process that has other origin information to send data into the network. This
is a difficult problem to deal with, as it has always been [14], and we do not
have an immediate solution for it. Any process that listens on a covert channel
needs to have been started either locally or remotely, however, and in the case
of an external attacker, most likely remotely. Thus, any outgoing traffic from
that process will still be logged.

When two processes with different remote origins communicate with each
other, perhaps using IPC or a shared file or shared memory, and data is later
sent from either process to the network, we would like to be able to determine
which of the processes was responsible for the output or whether both of them
were the cause. To do this, the kernel would have to be able to trace the
information flow of each process or more specifically the program the process
is running. In the general case, this is an undecidable problem. One solution
would be to only allow “origin information-friendly” applications to be run on
a system, where the information flow has been determined in advance through
static analysis. Apart from a large up-front cost in the static analysis, strict
and reliable access control mechanisms are needed to enforce this approach. A
second solution lies in allowing more than one possible origin for a process and
devising a model that governs propagation of those origins based on information
exchanges between processes and space limitations. This second solution is part
of our current research and outside the scope of this paper.

While our implementation only operates on TCP and UDP packets, any
protocol could be used by an attacker. For example, some DDoS tools use
ICMP messages to send control messages over the network. In this case, an
attacker would either have to modify the routines for ICMP processing in the
kernel or may have to sniff the incoming traffic using a library like 1ibpcap.
If the attacker has modified the kernel to listen to and process these messages,
there seems to be little that can be done to establish the origin information for
a process, because if the kernel can been modified by the attacker, the origin
information can be tampered with as well. In the latter case one can check for
open BPF filters and also be aware of processes that utilize other protocols or
do not receive network packets from the networking stack but rather through
the packet filter.

The mechanism for keeping track of the inheritance line for a process needs
to be improved. The current mechanism, while very simple to implement, is the
only part of the modifications we made that affects the system in a noticeable
fashion. Omne problem is that with each new child process, more information
needs to be stored, even though it is small. Once a separate data structure
for keeping inheritance lines is used, a simple improvement would be to delete
inheritance lines or parts of it where all the processes involved have terminated.
However, overall management of the inheritance lines remains as future work.

In the event of a system compromise, in which an attacker gains root capa-
bilities, the origin information in the kernel and recorded information in the file
system is just as vulnerable to modification or deletion as any other kernel or
file system information. We consider this outside of the scope of our work, but
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point to other work that attempts to make audit information survive such at-
tacks [32], and suggest that current forensics tools could be modified to recover
the altered origin information in some cases.

Finally, as mentioned above, the packet logging system is a prototype only;
a more effective design would be to include the logging mechanism in the kernel
itself. Instead of sniffing for outgoing packets, writes to a network socket would
cause the outgoing packet to be logged before the socket could be closed, alle-
viating the problem with trying to find the source of UDP packets mentioned
in Section 8 above. Additionally, the current mechanism logs all TCP SYN and
UDP packets, creating a denial-of-service opportunity for attackers to fill up
disk space, so a more selective approach to recording packets is clearly in order,
where possible.

8.1 Future work in Host Causality

Even though the origin information was designed with network traceback in
mind, there are other applications or foundations for new modifications of the
system:

e A system administrator can use the origin information to determine the
origins of all running processes and identify ones that have a very unusual
source. This can lead to the discovery of running DDoS clients on a
machine, for example.

e The origin information can be incorporated into the file system. By storing
a process’s origin information with a file whenever the process writes to
the file system. Not only can this help in solving the problem with cron
and startup scripts, but it can also aid in locating suspicious programs
in users’ home directories. This would be especially effective with logging
file systems, so that the changes in files could be tracked by location as
well.

e Origin information adds another dimension to access control. Access con-
trol mechanisms can be altered so that they take origin information into
account and grant certain privileges only when certain origin conditions
are met.

e Statistics based on origin of processes can be gathered, which can be used
to profile normal system behavior or to locate trends that may help in
better system administration.

Origin information may well benefit in other security related fields. The
prospect of access control in combination with origin information seems to be
an especially interesting area. Research in that direction may well improve
overall robustness of the origin mechanism itself.
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9 Conclusion

In this paper, we have introduced the notion of host causality as a mechanism
to complement current research in network traceback. With the addition of
origin information to a process, we have developed a mechanism that, with
only minor changes to the given system adds audit data allowing traceback of
information through a host. The two examples show that important information
for network traceback can be obtained with origin information and the new
logging possibilities that result from that.

The work presented here is only the start of work in the overall area. We
have identified many limitations of our mechanism, and outlined what future
work needs to be done to better address the problem. Host causality is not a
complete solution to all the problems that occur in tracing connections through
a network, but providing solutions could prove a valuable tool to help improve
security in a future networking environment.
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