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ABSTRACTDolev and Yao initiated an approa
h to studying 
rypto-graphi
 proto
ols whi
h abstra
ts from possible problemswith the 
ryptography so as to fo
us on the stru
tural as-pe
ts of the proto
ol. Re
ent work in this framework hasdeveloped easily appli
able methods to determine many se-
urity properties of proto
ols. A separate line of work, initi-ated by Bellare and Rogaway, analyzes the way spe
i�
 
ryp-tographi
 primitives are used in proto
ols. It gives asymp-toti
 bounds on the risk of failures of se
re
y or authenti
a-tion.In this paper we show how the Dolev-Yao model may beused for proto
ol analysis, while a further analysis givesa quantitative bound on the extent to whi
h real 
rypto-graphi
 primitives may diverge from the idealized model.We develop this method where the 
ryptographi
 primitivesare based on Carter-Wegman universal 
lasses of hash fun
-tions. This 
hoi
e allows us to give spe
i�
 quantitativebounds rather than simply asymptoti
 bounds.
1. INTRODUCTIONCryptographi
 proto
ols are simple sequen
es of messagesthat use 
ryptography to a
hieve se
urity goals su
h as au-thenti
ation and establishing new shared se
rets. Despitetheir simpli
ity, they are often wrong, sometimes disastrously.Mu
h work (in
luding [5, 15, 16, 13, 21, 18, 22, 11℄) has beendone to develop methods to ensure their 
orre
tness, start-ing with Dolev and Yao [8℄, who represent en
ryption as afree operator on terms, and abstra
t from the mathemati-
al properties of parti
ular 
ryptographi
 primitives. If anatta
k su

eeds against a proto
ol assuming this abstra
t,perfe
t 
ryptography, then the same atta
k will also su
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when the proto
ol is implemented with real 
ryptographi
primitives. By 
ontrast, a proof that there are no atta
ks,based on the assumption of abstra
t 
ryptography, will nolonger be valid when 
on
rete, less-than-perfe
t primitivesare sele
ted. Possibly a penetrator 
an manipulate the de-tails of the 
ryptography to 
reate atta
ks that would notsu

eed against abstra
t en
ryption.Goals of this paper One form of the Dolev-Yao ap-proa
h, the strand spa
e theory, has now developed 
onve-nient methods to �nd what authenti
ation and 
on�dential-ity goals a proto
ol a
hieves [11℄; to determine when proto-
ols may safely be 
ombined [10℄; to determine when type in-formation may safely be omitted from a proto
ol [12℄; and togenerate proto
ols automati
ally to a
hieve given goals [19℄.However, the approa
h relies on Dolev-Yao abstra
t 
ryp-tography. In this paper, we begin to adapt the strand spa
etheory to the realities of 
ryptographi
 operators.First, we show how to quantify the divergen
e between
on
rete 
ryptographi
 operators and traditional abstra
ten
ryption in the Dolev-Yao style, as used in a proto
ol,introdu
ing the notion of �-faithfulness. A proto
ol se
u-rity goal, proved using abstra
t en
ryption, is �-faithful toa 
ryptographi
 primitive if the probability that exe
utionof the proto
ol|implemented using that primitive|violatesthe goal is � �. Establishing �-faithfulness requires somesto
hasti
 assumptions. The se
urity goals we will 
onsiderin this paper are authenti
ation goals [24, 14, 22℄.Se
ond, for a parti
ular primitive, we give pre
ise, quan-titative bounds on this divergen
e. If an atta
k does notsu

eed against a proto
ol with the perfe
t abstra
t 
ryp-tography of the Dolev-Yao approa
h, then the likelihood itsu

eeds against the same proto
ol when implemented us-ing this 
ryptographi
 primitive is below the bound �. Theparti
ular primitive we 
onsider here is a type of messageauthenti
ation 
ode. A fun
tion is 
hosen (using a sharedse
ret) from a universal 
lass in the sense of Carter andWegman [7, 23℄; the proto
ol parti
ipants apply the 
hosenfun
tion to their messages to 
onstru
t tags. The tag servesto authenti
ate that an atta
ker not privy to the sharedse
ret has not originated the message, or altered it beforedelivery. We expe
t that our methods will also extend tosome other primitives, possibly symmetri
 key en
ryptionalgorithms under statisti
al assumptions.For Carter-Wegman tagging fun
tions, we a
hieve spe-
i�
 bounds for a probability of failure su
h as � = 2�32(see Se
tion 4.4). The bounds are based on parameters.One parameter is the se
urity parameter k, whi
h summa-rizes the lengths of randomly 
hosen values, su
h as keys.



Another parameter is the number of runs; it bounds howmany guesses the penetrator may make and how many ran-dom values the regular parti
ipants must 
hoose. In e�e
t,this parameter di
tates a re-keying s
hedule. Keys must be
hanged often enough to limit the number of sessions beforere-keying, 
ounting all sessions by non-penetrator parti
i-pants.Our main ideas We use two main ideas to a
hieve ourgoals. Both fo
us on the bundle as de�ned in previous workon strand spa
es [22, 11℄, whi
h provides a model of pro-to
ol exe
ution. A bundle is a dire
ted graph des
ribingthe behavior of the penetrator as well as the regular (non-penetrator) prin
ipals. The arrows represent either messagetransmission and re
eption (in whi
h 
ase they are writ-ten as single arrows !) or the transition of a single prin
i-pal through su

essive a
tions of a single session (in whi
h
ase they are written as double arrows )). Bundles repre-sent proto
ol exe
ution using abstra
t en
ryption when themessages transmitted and re
eived belong to a suitable freealgebra. They represent proto
ol exe
ution with parti
u-lar 
ryptographi
 primitives when the messages transmittedand re
eived are bitstrings generated using those primitives.We 
all bundles whose messages belong to a free algebraabstra
t bundles, while we 
all bundles whose messages arebitstrings 
on
rete bundles.Our �rst idea interrelates 
on
rete and abstra
t bundles.For ea
h 
on
rete bundle B
, there is a possibly empty set�(B
) of 
orresponding abstra
t bundles. The 
orrespon-den
e � has the property that if there exists an abstra
tbundle Ba su
h that Ba 2 �(B
) and Ba satis�es an au-thenti
ation goal, then B
 satis�es the same authenti
ationgoal. We �nd a 
ondition on 
on
rete bundles su
h that,for any 
on
rete bundle B
 satisfying this 
ondition, �(B
)is non-empty. Therefore, if a 
on
rete bundle B
 is a 
oun-terexample to some authenti
ation goal proved to hold of allabstra
t bundles, then B
 does not satisfy our 
ondition.Our se
ond idea helps quantify the probability that �(B
) =; for a 
on
rete bundle B
. We 
onsider a random variable B(in the sense of probability theory) taking 
on
rete bundlesas values. We make some sto
hasti
 assumptions about B,that 
ertain parameters of the resulting bundles are sto
has-ti
ally independent of ea
h other. We also assume that 
er-tain parameters of the bundles are uniformly distributed.From these assumptions, it follows that the probability thatB takes a value B
 su
h that �(B
) = ; is less than a suitable�. These two ideas therefore bound the divergen
e betweenwhat may happen in 
on
rete bundles B
 using the 
on
rete
ryptographi
 primitive, when all abstra
t bundles Ba sat-isfy some se
urity goal.Related Work Re
ent works by P�tzmann et al. andAbadi and Rogaway [20, 1℄ have studied types of 
on
rete
ryptography that do not introdu
e additional atta
ks, be-yond those predi
ted by the abstra
t proto
ol analysis. Ormore pre
isely, any strategy of the penetrator has a neg-ligible probability of produ
ing an atta
k. \Negligible" isde�ned asymptoti
ally in this line of work, to mean that theprobability of su

ess de
reases faster than 1=p(k), for anypolynomial p, as the se
urity parameter k in
reases.These 
on
lusions are akin to those of Bellare and Rog-away [4℄, who studied proto
ols without abstra
ting from
ryptography, and established se
urity results for spe
i�


A Na ! B A Na ! B��w [[B�A�Na�Nb ℄℄f � ��w �w  [[B�A�Na�Nb ℄℄f ��w��w [[A�Nb ℄℄f ! � ��w �w [[Nb ℄℄f ! ��wFigure 1: Intended Runs of map1 (left) and map1.1Proto
olsproto
ols dire
tly from the way that spe
i�
 
ryptographi
operators are used in them. However, the newer work ofAbadi and Rogaway is a more 
onvenient way to rea
h theseresults, although the penetrator model of [1℄ is limited to apassive adversary. The problem is split into a part spe
i�
to the 
ryptographi
 primitives and a separate part spe
i�
to the proto
ol. The proto
ol-spe
i�
 part uses the abstra
t
ryptography of the Dolev-Yao tradition. Similarly, P�tz-mann et al. [20℄ separate a 
ryptographi
 lower layer froman upper layer that applies formal methods (state ma
hinesimulation, in their approa
h) to proto
ol analysis.The asymptoti
 approa
hes do not lead to results as spe-
i�
 as ours. They show only that, for any polynomial p,there exists some K0 su
h that for k � K0, the likelihood ofsu

ess for the penetrator is below 1=p(k). They provide noway to show a key length su
h as k = 128 bits is suÆ
ient,when the toleran
e is � = 1=(p(128)) for a parti
ular p.Not all work is asymptoti
 [2, 3℄, but the 
urrent paperfo
uses on proto
ols with more multiparty intera
tion andhas a ri
her penetrator model.
2. BACKGROUNDIn this se
tion, we �rst des
ribe the 
lass of \pure authen-ti
ation proto
ols" that will be our fo
us in this paper, andgive an example (Se
tion 2.1). We then review the strandspa
e ideas (Se
tion 2.2).
2.1 Pure Authentication ProtocolsThe proto
ols that interest us in the 
urrent paper arepure authenti
ation proto
ols that involve honest parti
i-pants, whom we will 
all regular prin
ipals, and a penetra-tor. The regular prin
ipals agree on a tagging fun
tion f ,shared among all of themselves, 
hosen from a large 
lassof possible fun
tions. We assume the penetrator does notknow whi
h fun
tion has been 
hosen.For example, 
onsider the proto
ol map1 of Bellare andRogaway [4℄, whose intended behavior is summarized onthe left in Figure 1. In this proto
ol, the initiator (
alledA here) sends in the 
lear a non
e (random bit string) ofthe form Na to start an ex
hange intended for a responder(
alled B here). The responder B generates a fresh non
eNb, whi
h we assume is distin
t from Na, and responds toA's message by sending a term of the form [[B�A�Na�Nb ℄℄f =(B�A�Na�Nb) � f(B�A�Na�Nb). Sin
e f is unknown to thepenetrator, the value f(B�A�Na�Nb) is intended to serve asa signature, guaranteeing the integrity of the message to there
ipient. When the A re
eives [[B�A�Na�Nb ℄℄f , it respondswith [[A�Nb ℄℄f , thereby assuring B that the value Nb hasbeen re
eived by A. Again, [[A�Nb ℄℄f is really a 
on
atena-tion (A�Nb) � f(A�Nb).map1 is a pure authenti
ation proto
ol: If A has had arun with intended respondent B, then B has undertaken at



least the �rst two steps of a run with intended initiator A,and the runs agree on the non
es Na; Nb. Conversely, if Bhas had a run with intended initiator A, then A has had arun with intended respondent B, and the runs agree on thenon
es Na; Nb.The proto
ols we 
onsider here do not have the goal of
ausing the parti
ipants to agree on any new se
ret. Of
ourse, preserving the se
re
y of the 
hoi
e of f is ne
essary.However, if the se
re
y of f fails, then the authenti
ationgoals will also fail. Hen
e, we will not need to treat se
re
ygoals dire
tly.Authenti
ation goals require some freshness assumptions,or as we 
all them, origination assumptions. For instan
e,non
es should not be reused. In map1, if B reuses the non
eNb, then the penetrator 
an save [[A�Nb ℄℄f , start sessionspurporting to be A, and 
omplete the run as soon as B re-uses Nb. We assume that in a bundle involving the valueNb, there will be just one point in one session at whi
h Nboriginates. By origination, we mean a message transmissionin whi
h Nb is sent without having been re
eived previouslyin that session.Using the authenti
ation test method of [11℄, we 
an easilyshow that map1 a
hieves its authenti
ation goals. Indeed,we may wonder about �ne points, su
h as whether A's nameis needed in the last message. Again using the same meth-ods, we 
an show that the answer is no, and that the modi-�ed proto
ol map1.1, shown in Figure 1 on the right, whi
homits A's name from the last message, a
hieves the sameauthenti
ation goals for essentially the same reasons.
2.2 Strand SpacesWe very brie
y summarize the ideas behind the strandspa
e model [22, 11℄; see also Appendix A. Let A be aset of messages that 
an be sent between prin
ipals; we areinterested in various 
hoi
es of A. For ea
h 
hoi
e of A, weassume that there is a subterm relation, written t < t0.A strand is a sequen
e of message transmissions and re-
eptions, where transmission of a term t is represented as +tand re
eption of term t is represented as �t. Ea
h verti
al
olumn in Figure 1 shows a strand, assuming that parti
ularvalues are 
hosen for the parameters A;B;Na, and Nb. Astrand element is 
alled a node. A strand spa
e � is a set ofstrands. (See De�nition A.1.)If s is a strand, hs; ii is the ith node on s. The rela-tion n ) n0 holds between nodes n and n0 if n = hs; iiand n0 = hs; i + 1i. The relation n ! n0 represents inter-strand 
ommuni
ation; it means that term(n1) = +t andnode term(n2) = �t. The two relations ) and ! jointlyimpose a graph stru
ture on the nodes of �. The verti
es ofthis graph are the nodes, and the edges are the union of )and !.A term t originates at a node n = hs; ii if the sign of n ispositive; t < term(n); and t 6< term(hs; i0i) for every i0 < i.Thus, n represents a message transmission that in
ludes t,and it is the �rst node in s in
luding t. If a value originateson only one node in the strand spa
e, we 
all it uniquely orig-inating ; uniquely originating values are desirable as non
es.(See De�nition A.2.)A bundle is a 
ausally well-founded 
olle
tion of nodes andarrows of both kinds. In a bundle, when a strand re
eivesa message m, there is a unique node transmitting m fromwhi
h the message was re
eived. By 
ontrast, when a strandtransmits m, many strands (or none) may re
eive m. (See

De�nition A.3.)A strand represents the lo
al view of a parti
ipant in arun of a proto
ol. For a legitimate parti
ipant, it representsthe messages that parti
ipant would send or re
eive as partof one parti
ular run of his side of the proto
ol. We 
all astrand representing a legitimate parti
ipant a regular strand.Typi
ally, the regular strands of � are the instan
es of a�nite number of parameterized strands (See Se
tion 3.1.)For the penetrator, the strand represents an atomi
 de-du
tion. More 
omplex a
tions 
an be formed by 
onne
t-ing several penetrator strands. While regular prin
ipals arerepresented only by what they say and hear, the behaviorof the penetrator is represented more expli
itly, be
ause thevalues he dedu
es are treated as if they had been said pub-li
ly. We partition penetrator strands a

ording to the oper-ations they exemplify. C-strands and S-strands 
on
atenateand separate terms, respe
tively; K-strands emit keys froma set of known keys; andM-strands emit known atomi
 textsor guesses. In proto
ols whi
h use a genuine en
ryption op-erator, E-strands en
rypt when given a key and a plaintext;D-strands de
rypt when given a de
ryption key and mat
h-ing 
iphertext. (See De�nition A.6.) We will adapt the E-strands and D-strands below to re
e
t our 
urrent interestin pure authenti
ation proto
ols using tagging.As an example of an authenti
ation goal, 
onsider the re-sponder's guarantee in map1. Suppose that the responderB has a run apparently with A, using the non
es Na andNb. B may assume that the non
e Nb is uniquely origi-nating, be
ause he generates it himself using highly randommethods. B's authenti
ation guarantee is the impli
ation:AB : if Nb is uniquely originating, then A has had a mat
h-ing run apparently with B, using the non
es Na andNb.
3. PROTOCOLS AND THEIR IMPLEMEN-

TATIONSWe turn now to the questions how to represent proto-
ols in the strand spa
e theory (Se
tion 3.1), and what itmeans to implement proto
ols using 
on
rete primitives orabstra
t messages. We talk about algebras of bitstrings inSe
tion 3.2, and relate them to abstra
t (free) message al-gebras in Se
tion 3.3.
3.1 Representing Protocols in Strand SpacesA proto
ol requires regular parti
ipants to play a numberof di�erent roles, su
h as initiator, responder, or key server.The proto
ol itself 
onsists of a number of s
hemati
 strands,one for ea
h role played by the regular prin
ipals. Theses
hemati
 strands may be determined by programs exe
utedby the prin
ipals against their lo
al state; our 
on
ern isex
lusively with the resulting behaviors.A s
hemati
 strand 
onsists of a parameter listX1; : : : ; Xn,together with a sequen
e of a �xed number of signed s
he-mati
 terms in whi
h the parameters may o

ur. A signeds
hemati
 term, in turn, is + or � together with a term inwhi
h some parts have been repla
ed by parameters Xi. Forinstan
e, the s
hemati
 strand map1Init[A;B;Na; Nb℄ thathas parameters A;B;Na; Nb and signed termsh+Na; �[[B�A�Na�Nb ℄℄f ; +[[A�Nb ℄℄f ide�nes the map1 initiator's behavior. The responder's be-havior map1Resp[A;B;Na; Nb℄ is the 
omplementary s
he-



mati
 strand with behaviorh�Na; +[[B�A�Na�Nb ℄℄f ; �[[A�Nb ℄℄f i:The parameters A;B range over names, while the param-eters Na; Nb range over non
es. No parameter here rangesover 
on
atenated terms su
h as A�Na.Given some parti
ular algebra of messages A, we mayinstantiate a s
hemati
 strand by 
hoosing suitable valuesfrom A for the parameters X1; : : : ; Xn. The result is astrand. The messages sent and re
eived are the results of�lling in these values in pla
e of the parameters in the su
-
essive signed s
hemati
 terms.We identify a proto
ol with the set of s
hemati
 strandswhi
h spe
ify it. A proto
ol may also have parameters. Inmap1, the shared se
ret f is a parameter of the proto
olitself; given a value for f , all of the regular parti
ipantsuse that value. That is why f is not listed as a param-eter of the s
hemati
 strands. Thus, map1, a
ting withshared se
ret f , as the set with two parametri
 strands,�f = fmap1Init[A;B;Na; Nb℄;map1Resp[A;B;Na; Nb℄g.Given a message algebra A, a proto
ol � determines astrand spa
e �, whi
h we 
all the strand spa
e generated by� over A. The instan
es of a s
hemati
 strand are all be-haviors resulting from 
hoosing values in A of appropriatetype for ea
h parameter. The strand spa
e � 
ontains, asits regular strands, instantiations of ea
h s
hemati
 strandswith ea
h appropriate value, for instan
e all bitstrings ofthe 
orre
t length for a non
e Na, and all properly formeddomain names or IP addresses for a parameter ranging overnames. In map1, no strand 
an be an instan
e of both s
he-mati
 strands, be
ause the patterns of + and � terms aredi�erent, and this is e�e
tively always the 
ase.There are two types of message algebra A that spe
iallyinterest us, ea
h of whi
h generates a strand spa
e � froma �. First, there are free algebras, in whi
h [[A�Nb ℄℄f is aterm distin
t from any 
onstru
ted in a di�erent way. Se
-ond, there are algebras 
onsisting of bitstrings, in whi
h
on
atenation is an operator (possibly a partially de�ned op-erator) produ
ing bitstrings from bitstrings. Likewise, thetagging operator produ
es parti
ular bitstrings when givenbitstrings as arguments, and it has 
ollisions, i.e. 
ases inwhi
h di�erent messages yield the same tag.Inmap1, the parameters range only over names and non
es,not over 
on
atenated or tagged terms. This is the 
ase forall (natural) pure authenti
ation proto
ols, so we will as-sume it throughout the remainder of the paper. The as-sumption would not hold for other proto
ols, parti
ularlyshared-key proto
ols using a key server, su
h as Otway-Rees [17℄ or Carlsen [6℄; see [11, Se
tion 5.1.3℄ for an ex-planation.
3.2 Implementing Protocols with BitstringsWe 
onsider �rst s
hemes that may be used to en
odemessages via bitstrings.An Example An atom 
onsists of one letter followedby a string of hexade
imal digits. The letter indi
ates itsintended use. Names or addresses begin with a. Randomly
hosen non
es begin with n; the set of su
h atoms is N. Tagsfor verifying integrity begin with v; the set of su
h atoms isV. Con
atenations are s-expressions in the style of Lisp.Two terms t0 and t1 are 
on
atenated to form the string`(t0 . t1)'.

This is an unambiguous en
oding, sin
e it is always 
learwhether a string represents an atom or a 
on
atenation, andif it is a 
on
atenation, where ea
h of the two argumentsbegin and end. Every message is built from atoms by a�nite number of 
on
atenations. The result of 
on
atenationmay not always be a valid message. If the total number of
hara
ters ex
eeds some maximum, then the message maybe reje
ted be
ause it over
ows the re
eiver's input bu�er.If the depth of nested parentheses ex
eeds some maximum,then it may be reje
ted be
ause parsing it requires too largea sta
k.Tagging fun
tions, by 
ontrast, be
ause they have 
olli-sions. The output bitstrings are tags in V, typi
ally of lim-ited length, and the inputs may be bitstrings of arbitrarylength. However, in the 
ase of map1, ea
h tag immediatelyfollows the message body it is meant to validate. Given amessage body su
h as t = B�A�Na�Nb, the re
ipient knowsthat the next 
omponent must be f(t). Thus, if tags in Vo

ur only in the 
ontext t�f(t), then there is never any am-biguity about the body to whi
h the tag applies, and everyo

urren
e of a tag 
ontributes to representing an authen-ti
ated message [[ t ℄℄f with no 
hoi
e about what t is beingtagged. Tags o

ur nowhere else.Rigid S
hemes In a s
heme su
h as the one we havejust des
ribed, any bitstring re
eived by a prin
ipal 
an beinterpreted as a proto
ol message in at most one way, andany message sent 
an be 
onstru
ted in at most one way, givethe parameters sele
ted. Thus, a prin
ipal always knowsuniquely what strand parameters are 
ompatible with thebitstrings it has re
eived and sent. We say that a s
hemefor en
oding messages is rigid for a proto
ol when it has thisproperty.A rigid s
heme for a proto
ol �f 
onsists three ingredi-ents: a set of bitstringsM , a 
on
atenation fun
tion �, and aset F of possible tagging fun
tions (where f 2 F). We againrefer to the tags as V, and require that all f 2 F have typef : M ! V. The atoms of the s
heme, written atom(M),are all values x 2M su
h that x is not of the form t0�t1 forany t0; t1 2 M ; we require that V � atom(M). We assumethat a bitstring in M 
an be a 
on
atenation in at most oneway, and that every member of M may be built from atomsby a �nite sequen
e of 
on
atenations.We also require that tags v 2 V o

ur only in the form t�v,where v = f(t), in messages of �f . Thus, tags 
ontributeonly to tagging messages [[ t ℄℄f .Definition 3.1. If (M; �;F) is a rigid s
heme, then thesubterm relation for it, written t0 < t1, is the smallest re-
exive, transitive relation su
h that t < t�t0 and t0 < t�t0.A bundle, whose messages are en
oded as bitstrings using arigid s
heme, will be 
alled a 
on
rete bundle, and usuallydenoted by B
.Given a proto
ol under a rigid s
heme and a bundle B
,ea
h regular strand in B
 has a unique set of possible param-eters, whi
h are names (of parti
ipants) or non
es. Thus,parameters are in atom(M) n V, the set of atoms that arenot tags.Penetrator Strands In the 
on
rete model, the pen-etrator 
an do anything. The penetrator 
an 
hoose anybitstring to deliver, or given a number of bitstrings, 
an ap-ply any fun
tion g to them to determine a new bitstring todeliver. Thus any strand of the form h�x1 ) � � � � xn )



+g(x1; : : : ; xn)i is a penetrator strand, whi
h we 
all a g-strand.In 
ase n = 0, a g-strand amounts to guessing a 
onstantvalue g() independent of input; for instan
e, the penetratormay 
hoose any pair a � v to deliver when a tagged valueis needed. Indeed, he may 
hoose a � v for v = f(a) with-out knowing that he did so, and may thus apply f -strandsunknowingly.
3.3 Free Message AlgebrasGiven a rigid s
heme for a proto
ol �f , we de�ne an as-so
iated abstra
t (free) en
ryption algebra. We regard theset of tagging fun
tions as if they were keys, be
ause theyare a shared se
ret. Being fun
tions, though, these \keys"are never transmitted as part of a message belonging to theproto
ol.Definition 3.2. Let (M; �;F) be a rigid s
heme for �f .The algebra E of abstra
t tagging over (M; �;F) is freelygenerated from:� two sets: texts in atom(M) n V and \keys" in F,� via two operations: 
on
atenation �E and tagging [[ t ℄℄ffor t 2 E and f 2 F.If the proto
ol �f 
onsists of a set of parameterized strandsRolei[X1; : : : ; Xni ℄, and the parameters Xj range only overatoms in atom(M)nV, then we 
an regard it as determiningmessages in either M or E. We write RoleMi or RoleEi whenwe want to distinguish them.What prote
tion is o�ered by tagging? Although onlysomeone possessing f 
an 
reate [[ h ℄℄f from h, anyone 
anextra
t h from [[h ℄℄f . Thus, we adapt the penetrator strandsshown in De�nition A.6 slightly, repla
ing the de
ryptionpenetrator strand with the untagging strand shown here,and updating the en
ryption strand to our tagging notation:Eh;f En
ryption: h�f; �h; +[[h ℄℄f iUh Untagging: h�[[h ℄℄f ; +hiWe refer to these strands and the remaining M, K, C, and Sstrands from De�nition A.6 as abstra
t penetrator strands.We are interested in the 
ase where the proto
ol �f isexe
uted using a se
ret tagging fun
tion hidden from thepenetrator, so we assume that f 62 KP , the set of keys ini-tially available to the penetrator.
3.4 Bundle AbstractionSuppose that we have a pure authenti
ation proto
ol � =fRolei[X1; : : : ; Xni ℄ : 1 � i � ng, implemented using a rigids
heme (M; �;F). Let B
 be a 
on
rete bundle, and supposes is a regular strand with some nodes o

urring in B
. Possi-bly only an initial segment of s is in B
. We say the B-heightof a strand is the number of nodes of s in B. If s has nonodes in B, then its B-height is 0.Sin
e the operations yield bitstrings as determined by(M; �;F), the messages sent and re
eived in s are parti
-ular bitstrings in M . From Se
tion 3.2, we know that thereis a unique parameterization of s as some RoleMi [~a℄, and theparameters ~a are atoms of M whi
h are not tags. Therefore,these parameters are also atoms of E, the algebra of abstra
ttagging 
orresponding to (M; �;F), and there is also an ab-stra
t strand s0 = RoleEi [~a℄, in whi
h the same parameters

determine abstra
t terms using the free algebra. The ab-stra
t skeleton of B
 is the result of transforming ea
h reg-ular strand s of B
 in this way, annotating ea
h resultingstrand with the B
-height of s.Definition 3.3. The abstra
t skeleton of B
, whi
h wewrite skel(B
), is the set of pairs (s0; h) where s0 = RoleEi [~a℄and h > 0 is the B
-height of s = RoleMi [~a℄.The abstra
t skeleton skel(B
) is not an abstra
t bundle; itis simply a set of regular strands annotated with heights.We also sometimes regard it as a set of nodes, namely the�rst h nodes on s when (s0; h) is in skel(B
).Although skel(B
) is not a bundle, we may be able toturn it into a bundle by adding abstra
t penetrator strandsand 
onne
ting message transmissions and re
eptions usingarrows !. There may be multiple ways to do so. Alterna-tively, if the penetrator exploited something pe
uliar in theway the bitstrings worked out in B
, it may be impossible tomimi
 this via abstra
t penetrator strands. We then regardB
 as having been a lu
ky out
ome from the penetrator'spoint of view.Definition 3.4. �(B
) is the set of all abstra
t bundlesBa su
h that for regular strands s0, the Ba-height of s0 = hand h > 0 if and only if (s0; h) 2 skel(B
).If �(B
) = ;, then B
 is a lu
ky strike.A lu
ky strike is a 
on
rete bundle that is inexpli
able, rel-ative to the abstra
t model of the powers of the penetrator.The penetrator either guessed or did something spe
i�
 tothe way that 
on
atenation and tagging intera
t with thebitstrings in M .
3.5 Lucky Strikes and ForgeriesThere is only one way that a lu
ky strike 
an o

ur: Thepenetrator sele
ts a tag v 2 V, and delivers t�v to a reg-ular parti
ipant, who veri�es that v = f(t). We 
all thisa forgery. Of 
ourse, it is anomalous only if no regular par-ti
ipant has previously sent t�v. We understand previouslyby the bundle partial ordering �B (De�nition A.4) a

ord-ing to whi
h n0 �B n1 if there is a path of zero or morearrows ! and ) in B leading from n0 to n1.Definition 3.5. A forgery is a negative regular node n1 2B
 su
h that t�f(t) < term(n1) and there is no positive regu-lar node n0 2 B
 su
h that n0 �B
 n1 and t�f(t) < term(n0).In the Introdu
tion we mentioned the need for a propertythat ensures that �(B
) is non-empty. This is the propertyof 
ontaining no forgeries.Proposition 3.6. If B
 is a lu
ky strike, then there existsa forgery n1 2 B
.Proof. Suppose that there is no forgery in B
; we showthat B
 is not a lu
ky strike by building an abstra
t bundleBa from skel(B
). We do so by starting with the emptyabstra
t bundle B0. Indu
tively we de�ne a sequen
e ofabstra
t bundles; at ea
h step Bi+1 has one new regularnode, together with 0 or more penetrator nodes and newarrows as needed.If all of the nodes in skel(B
) have been used, then wehave 
onstru
ted Ba. Otherwise, let n
 be a regular nodein B
 that is �-minimal (in the pre
eden
e ordering for B
)among nodes not yet used, and let na be the 
orresponding



node in skel(B
). Bi+1 will 
ontain na. To satisfy the bundlede�nition, we must 
onstru
t term(na) from nodes alreadyin Bi together with new penetrator nodes if needed. UsingC-strands, we 
an build term(na) if given all of its atomi

omponents and all of its tagged 
omponents [[ t ℄℄f .If m is an atomi
 
omponent of term(na), then as notedbefore De�nition 3.2, m is not a key f 2 F ; keys are nottransmitted in these proto
ols. Thus, we may add an M-strand initiating m. If [[ t ℄℄f is a tagged 
omponent, then bythe assumption that there is no forgery in B
, some regularnode n0 � n
 emits the 
orresponding bitstring. By the�-minimality of n
, the regular node 
orresponding to n0 isalready in Bi.Thus, in all 
ases, we may 
onstru
t Bi+1. By the �nite-ness of B
 this pro
ess must terminate with all of the nodesin skel(B
) used. �By this proposition, if an authenti
ation property holds ofall abstra
t bundles, then a 
on
rete bundle is not a 
oun-terexample unless it has a forgery. To quantify the diver-gen
e between possible 
on
rete behaviors and the abstra
t,Dolev-Yao model, and to prove �-faithfulness in the senseof our Introdu
tion, we must show that the probability of abundle having a forgery is � �. We show how to do this inSe
tion 4.3.There is another reason why authenti
ation may fail, apartfrom forgery. An authenti
ation theorem su
h as AB inSe
tion 2.2 states an impli
ation: if a regular parti
ipant
hooses uniquely originating non
es, then its peer has en-gaged in a mat
hing strand. However, two regular prin
ipals
ould 
hoose the same non
e. Then the 
on
lusion might notbe true.In Se
tion 4.4, we bound the probability of this event.We 
ombine the bound on the likelihood of forgery with thebound on the likelihood of non
e 
ollision to infer an overallbound on the risk of authenti
ation failure, assuming theproto
ol is 
orre
t in the abstra
t Dolev-Yao model.
4. STOCHASTIC MODELTo bound the probability that a 
on
rete bundle 
ontainsa forgery, we need a sto
hasti
 model of proto
ol behavior.This model 
onsists of an underlying probability spa
e, to-gether with some random variables1 that extra
t aspe
ts ofthe behavior. We must assume some 
onstraints, whi
h re-quire either that a random variable is uniformly distributed,or else that random variables are independent of one an-other.We 
all the probability spa
e (
;P). For 
onvenien
e, weassume that it is �nite, as we may do be
ause the sets ofmessages (bitstrings of bounded size) are �nite and the sizeof the bundles of interest are bounded. (
;P) en
apsulatesan array of information in
luding the 
hoi
e of non
es andof interlo
utors by the regular parti
ipants.We assume that the penetrator has some strategy. Itdetermines his behavior as a fun
tion of two arguments,namely �rst what he observes of the regular parti
ipantsand se
ond some random 
hoi
es determined by the prob-ability spa
e. The strategy determines the behavior of thepenetrator, in
luding his 
hoi
es about what genuine mes-sages to deliver, and espe
ially what messages and tags totry as forgeries. A proto
ol implementation is �-faithful to1A random variable (sometimes we write just \variable") isa fun
tion on the underlying probability spa
e.

an authenti
ation goal A if the � bounds the probability ofthe event that a bundle is 
hosen in whi
h A fails.
4.1 Random VariablesEa
h 
hoi
e of ! 2 
 determines a bundle B(!). Weassume that the regular strands of B(!) are ordered in somearbitrary way, so that Si(!) enumerates skel(B(!)), as afun
tion of i. The model fo
uses on 4 random variables.1. The random variable F : 
! F determines the se
rettagging fun
tion f .2. The random variable R : 
 ! f0; 1g� is the penetra-tor's sour
e of randomness.3. The random variable N : 
 ! (N � N) ! N deter-mines, given integers i and j, the jth non
e 
hosen to orig-inate on the ith regular strand Si(!).4. The random variable T : 
! (N�N) ! (M�V) de-termines, given integers i and j, the jth tagged value t�f(t)sent by the ith regular strand Si(!).In map1, regular strands use a single non
e, so N(!)(i; j) isde�ned only when j = 1. Likewise, they send a single taggedmessage ea
h, so T (!)(i; j) is also de�ned only when j = 1.T is 
ertainly not independent of N , sin
e a fresh non
eis part of ea
h tagged message sent by a regular strand.Likewise, T is not independent of F , be
ause the values Tdelivers are pairs ht; f(t)i. However, we assume below thatthis is the only dependen
e of T on F , i.e. that the values ofthe �rst 
omponents t are independent of F (Assumption 2).The key aspe
t of penetrator behavior is the set of forgeryattempts. We formalize the penetrator strategy by a fun
-tion G(T (!); R(!)) whi
h, given the signed messages sentby the regular parti
ipants and the penetrator's random-ness, returns a set of pairs (b; v) 2 M � V. The pene-trator's forgery attempts in B(!) are the messages b�v for(b; v) 2 G(T (!);R(!)). For these to be forgeries rather thanreplays, the messages b must be di�erent from those sent bythe regular parti
ipants, so we assume that there is no mes-sage b and tags v; v0 su
h that (b; v) 2 G(T (!); R(!)) and(b; v0) = T (!)(i; j).B(!) has a su

essful forgery if a value in G(T (!); R(!))has the form b�f(b) where f = F (!). Thus, we are interestedin the eventforge = f! : for some (b; v) 2 G(t; r); v = F (!)(b)gwhose probability we want to show is small, 
onditional onany parti
ular values T (!) = t and R(!) = r.
4.2 Model AssumptionsWe need to make assumptions that some of the variablesare independent and that some are uniformly distributed.We regard N(!)(i; j) as a family of non
e-valued randomvariables indexed by i and j.Assumption 1. Any two di�erent variables N(!)(i; j) andN(!)(i0; j0) are independent, and ea
h variable N(!)(i; j) isuniformly distributed.This assumption is used only in Se
tion 4.4.Let fst be the fun
tion that delivers the �rst 
omponent ofa pair, so that fst ÆT is the fun
tion that delivers the bodiesbut not the tags of the tagged messages sent by regularparti
ipants.



Assumption 2. The variable F is sto
hasti
ally indepen-dent of R and T 0 = fst ÆT taken jointly:PfF (!) = f ^ T 0(!) = x ^ R(!) = rg =PfF (!) = fg � PfT 0(!) = x ^ R(!) = rgHen
e, F and R are pairwise independent, as are F and T 0.Assumption 3. The distribution of F on F is uniform,that is, for any E � FPfF (!) 2 Eg = 
ardE
ardFThe proto
ol limits the number of new non
es sent by asingle regular strand. It also limits the number of signedexpressions sent by a single regular strand. And it limitsthe number of signed expressions that 
an be re
eived by asingle regular strand. In map1, all of these numbers equal 1,though in another proto
ol they may have some maximum�. Therefore, if a bundle B
 has at most � many regularstrands, the risk of two strands re-using a non
e is limitedbe
ause only � = � times � non
es are used. The numberof samples of the tagging fun
tion f that the regular parti
-ipants show the penetrator is limited by �. And the numberof forgeries that the penetrator may submit to the regularparti
ipants is bounded by �.Assumption 4. The number of non
es, tagged values sent,and tagged values re
eived on regular nodes in B(!) is boundedby some value �.This assumption is part of the justi�
ation for taking 
 tobe �nite. The restri
tion to no more than � many regularstrands is ultimately justi�ed by a re-keying s
hedule. Werequire the parti
ipants to agree on a new value of f before� many sessions 
an have o

urred.
4.3 The Probability of ForgeryGiven a parti
ular !, the penetrator may observe t =T (!) and r = R(!), the �rst being the tagged messages
hosen by the regular parti
ipants and the se
ond being thepenetrator's sour
e of randomness. The penetrator usesG to
hoose forgery attempts, so we must bound P(forge j T (!) =t ^R(!) = r), i.e.Pffor some (b; v) 2 G(t; r); v = F (!)(b)j T (!) = t ^ R(!) = rgThe penetrator, having observed the regular parti
ipantssending the signed messages in T (!), 
an ex
lude some tag-ging fun
tions f 2 F , be
ause they are in
ompatible witha signed message t�v = T (!)(i; j). We refer to the set ofremaining 
andidates as the part of F 
ompatible with !,or F!, whereF! = fg 2 F : 8i; j; t; v :T (!)(i; j) = (t; v) implies g(t) = vgCal
ulation using Assumptions 2 and 3 yieldsP(forge j T (!) = t ^R(!) = r) =
ard(fg 2 F! : 9(b; v) 2 G(t; r) ; g(b) = vg)
ard(F!)whi
h in turn equals P(fg 2 F! : 9(b; v) 2 G(t; r) : g(b) =vg), by uniformity.

Suppose now that the set of tagging fun
tions F is a uni-versal 
lass, following the 
lassi
 papers by Carter and Weg-man [7, 23℄. We de�ne the notion in the form:Definition 4.1. A set of fun
tions F � Y X is n-stronglyuniversal just in 
ase the following two 
onditions are met:(1) 
ard(X) is at least n, and (2) if x1; : : : ; xn are any npairwise distin
t values in X, then the distribution of theevaluation mapping f 7! hf(x1); : : : ; f(xn)i is uniformly dis-tributed.In Appendix B we give an example of an n-strongly universal
lass (Example B.4), and derive a key lemma (Lemma B.7):Lemma 4.2. If F � Y X is n-strongly universal then F,then for any ` � n and x1; : : : ; x` 2 X, and any y1; : : : ; y` 2Y , Pff 2 F : 9i � ` : f(xi) = yig � `
ardY :Observe that if F is n-universal and T (!) provides at mostm tagged messages, then F! is (n�m)-universal. We there-fore take F to be (2�)-universal and apply Lemma 4.2, in-stantiating F with F!, and observing that ` � �. Thislast inequality is justi�ed be
ause � bounds the number offorgery attempts `. Thus,P(forge) � �
ard(V) :
4.4 Likelihood of AnomaliesIn the analysis of bundles by the abstra
t bundle represen-tation theorem (Proposition 3.6), there are two events whoselikelihood we would like to bound. Either 
ould 
ause a fail-ure of the 
on
lusion that the bundle 
ontains a mat
hingstrand, as in the authenti
ation goal AB of Se
tion 2.2. Oneis forge; the other is that the regular parti
ipants 
hoose
lashing non
es, whi
h we de�ne:
lash = f! : N(!)(i; j) = N(!)(i0; j0)where i 6= i0 or j 6= j0gSin
e by Assumption 1 the random variables N(!)(i; j) areuniformly distributed and mutually independent, determin-ing a bound on the likelihood of a non
e anomaly is a spe-
ial 
ase of the \birthday problem" [9℄. The total numberof 
hoi
es is bounded by �, so the likelihood of at least one
ollision is bounded above by �(� � 1)=2 
ard(N).As an example, 
onsider a toleran
e of � = 2�32 for thelikelihood of forgeries and 
lashes together, where we willallo
ate half of � for ea
h type of anomaly. If non
es aregiven by 64-bit strings, then 
ard(N) = 264. To ensure thatindependent 
hoi
es of � non
es has probability of anomalybelow �=2, it suÆ
es to restri
t � so that �2=2�264 � 2�33,i.e., � � 216 = 65; 536. If, for example, we would like to usea shared se
ret 
hoi
e of f without 
hange for a year, thiswould allow 175 strands per day, sin
e 65; 000=365 > 175.For the 
ase of forgeries, P(forge) � �= 
ard V. We mustuse Carter-Wegman hash fun
tions whi
h are (2�)-stronglyuniversal with � = 216 as before, i.e. 217 � universal. Toensure that �= 
ardV � 2�33, we need 
ard V � 249, so that64-bit tags are ample.Thus with � = 216, the likelihood of an authenti
ationfailure is� � P(forge) + P(
lash) � 2�33 + 2�33 � 2�32



Ea
h tag 
al
ulation requires substantial 
omputation, butthe rekeying is infrequent and the risk of authenti
ation fail-ure is very low. These numbers are only illustrative; thepoint is that we have des
ribed a 
omprehensive methodthat yokes abstra
t proto
ol design and veri�
ation usingstrand spa
es to low-level 
al
ulations of the risk of se
urity
ompromise.
5. CONCLUSIONIn this paper we have shown that abstra
t en
ryption isfaithful in the sense that, when a proto
ol meets its se
u-rity goals in an abstra
t model like the strand spa
e model,then the probability that a penetrator 
an defeat it is be-low a suitable � su
h as 2�32. Spe
i�
ally, we have estab-lished this in the 
ase in whi
h the 
ryptographi
 primitiveis Carter-Wegman hashing; the proto
ol uses a single se
retshared among all parti
ipants; and the implementation ofthe proto
ol is rigid in the sense of Se
tion 3.2. It is likelythat the restri
tion to a single shared se
ret is unne
essary.It is also likely that some other types of 
ryptography leadto analogous results.
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APPENDIX

A. STRANDS AND THE PENETRATORIn this appendix, we de�ne the basi
 strand spa
e notionsused in the body of the paper. This material is derivedfrom [22, 11℄.
A.1 Strand SpacesConsider a set A, the elements of whi
h are the possi-ble messages that 
an be ex
hanged between prin
ipals in aproto
ol. We will refer to the elements of A as terms. Weassume that a subterm relation is de�ned on A. t0 < t1means t0 is a subterm of t1. We also assume that A has a
on
atenation operator � and possibly also a 
ryptographi
operator. We write fjtjgK for the result of applying the 
ryp-tographi
 operator to t using the se
ret K.In a proto
ol, prin
ipals 
an either send or re
eive terms.We represent transmission of a term as the o

urren
e ofthat term with positive sign, and re
eption of a term as itso

urren
e with negative sign.Definition A.1. A signed term is a pair h�; ai with a 2A and � one of the symbols +;�. We will write a signedterm as +t or �t. (�A)� is the set of �nite sequen
es ofsigned terms. We will denote a typi
al element of (�A)� byh h�1; a1i; : : : ; h�n; ani i.A strand spa
e over A is a set � together with a tra
emapping tr : �! (�A)�.By abuse of language, we will still treat signed terms asordinary terms. For instan
e, we shall refer to subterms ofsigned terms. We will usually represent a strand spa
e byits underlying set of strands �.Definition A.2. Fix a strand spa
e �.1. A node is a pair hs; ii, with s 2 � and i an integersatisying 1 � i � length(tr(s)). The set of nodes isdenoted by N . If n = hs; ii 2 N then index(n) = i andstrand(n) = s. De�ne term(n) to be (tr(s))i, i.e. theith signed term in the tra
e of s.2. There is an edge n1 ! n2 if and only if term(n1) = +aand term(n2) = �a for some a 2 A. Intuitively, theedge means that node n1 sends the message a, whi
his re
eived by n2, re
ording a potential 
ausal link be-tween those strands.3. When n1 = hs; ii and n2 = hs; i + 1i are members ofN , there is an edge n1 ) n2. Intuitively, the edgeexpresses that n1 is an immediate 
ausal prede
essorof n2 on the strand s.4. Suppose I is a set of unsigned terms. The node n 2 Nis an entry point for I i� term(n) = +t for some t 2 I,and whenever n0 )+ n, term(n0) 62 I.5. An unsigned term t originates on n 2 N i� n is anentry point for the set I = ft0 : t < t0g.6. An unsigned term t is uniquely originating in a set ofnodes S � N i� there is a unique n 2 S su
h that toriginates on n.7. An unsigned term t is non-originating in a set of nodesS � N i� there is no n 2 S su
h that t originates onn.

A.2 Bundles and Causal PrecedenceA bundle is a �nite subgraph of the graph hN ; (! [ ))i,for whi
h we 
an regard the edges as expressing the 
ausaldependen
ies of the nodes.Definition A.3. Suppose !C � !; suppose )C � );and suppose C = hNC; (!C [ )C)i is a subgraph of hN ; (![ ))i. C is a bundle if:1. NC and !C [ )C are �nite.2. If n2 2 NC and term(n2) is negative, then there is aunique n1 su
h that n1 !C n2.3. If n2 2 NC and n1 ) n2 then n1 )C n2.4. C is a
y
li
.In 
onditions 2 and 3, it follows that n1 2 NC , be
ause C isa graph.Definition A.4. If S is a set of edges, i.e. S �! [ ),then �S is the transitive 
losure of S, and �S is the re
ex-ive, transitive 
losure of S.The relations �S and�S are ea
h subsets of NS�NS , whereNS is the set of nodes in
ident with any edge in S.Proposition A.5. Suppose C is a bundle. Then �C is apartial order, i.e. a re
exive, antisymmetri
, transitive re-lation. Every non-empty subset of the nodes in C has �C-minimal members.
A.3 Penetrator StrandsThe a
tions available to the penetrator in the abstra
tDolev-Yao model are relative to the set of keys that thepenetrator knows initially. We en
ode this in a parameter,the set of penetrator keys KP .Definition A.6. A penetrator tra
e relative to KP is oneof the following:Mt Text message: h+ti where t 2 TKK Key: h+Ki where K 2 KPCg;h Con
atenation: h�g; �h; +g�hiSg;h Separation: h�g�h; +g; +hiEh;K En
ryption: h�K; �h; +fjhjgK iDh;K De
ryption: h�K�1; �fjhjgK ; +hiP� is the set of all strands s 2 � su
h that tr(s) is a pene-trator tra
e.A strand s 2 � is a penetrator strand if it belongs to P�,and a node is a penetrator node if the strand it lies on is apenetrator strand. Otherwise we will 
all it a regular strandor node.
B. CARTER-WEGMAN HASH FUNCTIONSWe now develop Carter-Wegman universal 
lasses [7, 23℄to establish Lemma 4.2.Definition B.1. � : X ! Y is uniformly distributedi� � maps the uniform distribution on X to the uniformdistribution on Y . Thus,
ard���1(A)�
ard(X) = 
ard(A)
ard(Y )for every A � Y .



Alternatively, � is uniform i� the inverse image of ea
hy 2 Y has 
ardinality 
ard(X)= 
ard(Y ).For any � : X ! Y , X is the disjoint union of the sets��1(y) for y 2 Y . Uniform distribution means that all thesesets have the same 
ardinality. Intuitively, uniformly dis-tributed maps de
ompose X as a \produ
t" Y �H.Example B.2. Let V;W be �nite dimensional ve
tor spa
esover the �nite �eld Fq . An linear map T : V ! W is uni-formly distributed i� it is surje
tive. This will be the 
ase i�dimV � dimkerT = dimW .Proof. If T is surje
tive and w 2 W , then T�1(w) is ansubspa
e of dimension T�1(0).Definition B.3. A set of fun
tions F � Y X is n-stronglyuniversal i� 
ard(X) is at least n and for any pairwise dis-tin
t x1; : : : ; xn 2 X, the evaluation mappingf 7! hf(x1); : : : ; f(xn)iis uniform. Equivalently, for pairwise distin
t x1; : : : ; xn 2XPff 2 F : hf(x1); : : : ; f(xn)i = hy1; : : : ; ynig = 1(
ardY )nThe de�nition requires that the x1; : : : ; xn be pairwise dis-tin
t. If some of the xi's 
oin
ide, then hf(x1); : : : ; f(xn)ilies on a proper subspa
e of Y n, in whi
h 
ase the evaluationmapping is non-uniform.Example B.4. If q � n, the spa
e of polynomial fun
-tions p : Fq ! Fq with deg(p) � n � 1 is n-strongly univer-sal. This follows from linearity of the evaluation mappingp 7! (p(�1); : : : ; p(�n)) and Lagrange interpolation.As a spe
ial 
ase, the spa
e of aÆne mappings x 7! ax + bon �nite �elds is 2-strongly universal.Note that the usual de�nition of n-strong universality doesnot require that 
ard(X) be at least n. However, withoutthis assumption, the following lemma fails.Lemma B.5. If F � Y X is n-strongly universal then Fis m strongly universal for m � n.Proof. If x1; : : : xm are pairwise distin
t, extend to a pair-wise distin
t sequen
e x1; : : : xn, whi
h exists sin
e 
ard(X)is at least n, and use the fa
t the 
omposition of uniformmappings is uniform. �Given x1; : : : x` 2 X, let us refer to a set of the formfi : 1 � i � `^xi = xg as an index 
lass. The set C of index
lasses 
learly partition the set f1; : : : ; `g.Lemma B.6. If F � Y X is n-strongly universal, then forany x1; : : : ; xn 2 X (distin
t or not) and y1; : : : ; yn 2 Y ,Pff 2 F : hf(x1); : : : ; f(xn)i = hy1; : : : ; ynig = � (
ardY )�`or 0where ` � n is the number of distin
t x1; : : : ; xn.Proof. Consider the two 
ases: yi = yj whenever i; j be-long to the same index 
lass and yi 6= yj for some i; j be-longing to the same index 
lass. In the �rst 
ase, we 
anredu
e the result to the previous 
ase by 
hoosing an i inea
h index 
lass. In the se
ond 
ase, there 
learly 
an be nof 2 F in the preimage of hy1; : : : ; yni. �We write hx1; : : : ; xni 1 hy1; : : : ; yni to mean that 
orre-sponding elements are distin
t, i.e. xi 6= yi for all i with1 � i � n.

Lemma B.7. If F � Y X is n-strongly universal, then forany ` � n and x1; : : : ; x` 2 X, y1; : : : ; y` 2 YPff 2 F : hf(x1); : : : ; f(x`)i 1 hy1; : : : ; y`ig � 1� `
ardY :Equivalently, Pff 2 F : 9i � ` : f(xi) = yig � `=
ardY .Proof. Assume �rst x1; : : : ; x` 2 X are distin
t. By `-strong universality, for ea
h z1; : : : ; z` 2 Y withPff 2 F : hf(x1); : : : ; f(x`)i = hz1; : : : ; z`ig = � 1
ardY �`:Now sum the previous inequality over z1; : : : ; z` for whi
hfor all i; 1 � i � `, zi 6= yi. The 
ardinality of this set is�
ardY � 1�` so 
learly in this 
asePff 2 F : hf(x1); : : : ; f(x`)i 1hz1; : : : ; z`ig��1� 1
ardY �`�1� `
ardY :as 
laimed.Now 
onsider the 
ase in whi
h there is one index 
lass,but the yi's are all distin
t. In this 
ase, the only way to gethf(x1); : : : ; f(x`)i 1 hy1; : : : ; y`i is by 
hoosing the 
ommonvalue of f(xi) distin
t from all y1; : : : ; y`. By Assumption 3,the likelihood of this happening is 1� `= 
ard(V ).The other 
ases fall somewhere in between. The 
ase inwhi
h yi = yj whenever i; j belong to the same index 
lasseasily redu
es to the �rst 
ase, by sele
ting an iC 2 C forea
h index 
lass C.In the general 
ase, note that the inequality worsens (thatis, the left hand side de
reases) as the number of yj 's in-
reases for ea
h index 
lass. Thus if we assume the numberof yj 's is as large as possible for ea
h index 
lass C, namely
ard(C) we obtain:Pff 2 F : hf(x1); : : : ; f(x`)i 1hz1; : : : ; z`ig�YC2C�1� 
ardC
ardY ��1�XC2C 
ardC
ardY=1� `
ardY


