
A Comparison between Strand Spaces and Multiset
Rewriting for Security Protocol Analysis? ??

I. Cervesato1, N. Durgin2, P. Lincoln3, J. Mitchell2, and A. Scedrov4

1 Advanced Engineering and Sciences Division, ITT Industries, Inc.
2560 Huntington Avenue, Alexandria, VA 22303-1410 — USA

iliano@itd.nrl.navy.mil
2 Computer Science Department, Stanford University

Stanford, CA 94305-9045 — USA
fnad, jcm g@cs.stanford.edu

3 Computer Science Laboratory, SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025-3493 — USA

lincoln@csl.sri.com
4 Mathematics Department, University of Pennsylvania

209 South 33rd Street, Philadelphia, PA 19104-6395 — USA
scedrov@cis.upenn.edu

Abstract. Formal analysis of security protocols is largely based on a set of as-
sumptions commonly referred to as the Dolev-Yao model. Two formalisms that
state the basic assumptions of this model are related here: strand spaces [FHG98]
and multiset rewriting with existential quantification [CDL+99,DLMS99]. Strand
spaces provide a simple and economical approach to state-based analysis of com-
pleted protocol runs by emphasizing causal interactions among protocol partic-
ipants. The multiset rewriting formalism provides a very precise way of spec-
ifying finite-length protocols, with a bounded initialization phase but allowing
unboundedly many instances of each protocol role, such as client, server, initia-
tor, or responder. Although it is fairly intuitive that these two languages should be
equivalent in some way, a number of modifications to each system are required
to obtain a meaningful equivalence. We extend the strand formalism with a way
of incrementally growing bundles in order to emulate an execution of a protocol
with parametric strands. We omit the initialization part of the multiset rewrit-
ing setting, which formalizes the choice of initial data, such as shared public or
private keys, and which has no counterpart in the strand space setting. The corre-
spondence between the modified formalisms directly relates the intruder theory
from the multiset rewriting formalism to the penetrator strands. The relationship
we illustrate here between multiset rewriting specifications and strand spaces thus
suggests refinements to both frameworks, and deepens our understanding of the
Dolev-Yao model.

? Partial support for various authors by OSD/ONR CIP/SW URI “Software Quality and Infras-
tructure Protection for Diffuse Computing” through ONR Grant N00014-01-1-0795, by NRL
under contract N00173-00-C-2086, by DoD MURI “Semantic Consistency in Information Ex-
change” as ONR grant N00014-97-1-0505 and by NSF grants CCR-9509931, CCR-9629754,
CCR-9800785, CCR-0098096, and INT98-15731.

?? This paper is a revised version of [CDL+00].

1 Introduction

Security protocols are widely used to protect access to computer systems and to pro-
tect transactions over the Internet. Such protocols are difficult to design and analyze for
several reasons. Some of the difficulties come from subtleties of cryptographic primi-
tives. Further difficulties arise because security protocols are required to work properly
when multiple instances of the protocol are carried out in parallel, where a malicious
intruder may combine data from separate sessions in order to confuse honest partic-
ipants. A variety of methods have been developed for analyzing and reasoning about
security protocols. Most current formal approaches use the so-called Dolev-Yao model
of adversary capabilities, which appears to be drawn from positions taken in [NS78]
and from a simplified model presented in [DY83]. The two basic assumptions of the
Dolev-Yao model, perfect (black-box) cryptography and a nondeterministic adversary,
provide an idealized setting in which protocol analysis becomes relatively tractable.

One recent setting for stating the basic assumptions of the Dolev-Yao model is given
by strand spaces [FHG98,FHG99,Man99]. Strand spaces provide a way of presenting
information about causal interactions among protocol participants. Roughly, a strand is
a linearly ordered sequence of events that represents the actions of a protocol partic-
ipant. A strand space is a collection of strands, equipped with a graph structure gen-
erated by causal interaction. Strand spaces provide a simple and succinct framework
for state-based analysis of completed protocol runs. State space reduction techniques
based on the strand space framework are utilized in an efficient automated checker,
Athena [Son99].

Protocol transitions may also be naturally expressed as a form of rewriting. This ob-
servation may be sharpened to a rigorous, formal definition of the Dolev-Yao model by
means of multiset rewriting with existential quantification [CDL+99,DLMS99]. In this
framework protocol execution may be carried out symbolically. Existential quantifica-
tion, as commonly used in formal logic, provides a natural way of choosing new values,
such as new keys or nonces. Multiset rewriting provides a very precise way of specify-
ing security protocols and has been incorporated into a high-level specification language
for authentication protocols, CAPSL [DM99]. As presented in [CDL+99,DLMS99], a
protocol theory consists of three parts: a bounded phase describing protocol initial-
ization that distributes keys or establishes other shared information, a role generation
theory that designates possibly multiple roles that each principal may play in a proto-
col (such as initiator, responder, or server), and a disjoint union of bounded subtheories
that each characterize a possible role. The multiset rewriting formalism allows us to
formulate one standard intruder theory that describes any adversary for any protocol.

One would expect that strand spaces and multiset rewriting should be equivalent in
some way. However, a meaningful equivalence may be obtained only after a number
of modifications are made in each setting. To this end, we extend the strand space set-
ting by introducing several dynamic concepts that describe the evolution of parametric
strands as an execution of a protocol unfolds. In particular, we present a formalized
notion of parametric strands and we describe a way of incrementally growing strand
space bundles in order to emulate an execution of a protocol with parametric strands.
In addition to contributing to the understanding of the strand space setting, these exten-
sions make possible the comparison with multiset rewriting specifications. In order to

obtain a precise equivalence, we also must drop the initialization part of the multiset
rewriting formalism, which specifies the choice of initial conditions. In many proto-
cols, the initial conditions specify generation of fresh shared, public, or private keys.
The initialization phase generating fresh initial data has no counterpart in the strand
space setting. We also anticipate the validation of variable instantiations to the very
beginning of the execution of a role. After these modifications, there is a straightfor-
ward and direct correspondence between strand spaces and multiset rewriting theories.
Moreover, the correspondence directly relates the intruder theories from the multiset
rewriting formalism to penetrator strands. We believe that the investigation of the exact
nature of the relationship between the two formalisms deepens our understanding of
the Dolev-Yao model and can suggest extensions and refinements to these and other
specification languages based on strand spaces.

Shortly after publishing the first version of this paper, the authors noticed an error
in Lemma 4.1 in [CDL+00]. The corrected version of this lemma is Corollary 1 in the
present paper, which rectifies the error and propagates the resulting changes. It also
reorganizes the material into a more clear and straightforward presentation.

This paper is organized as follows: the multiset rewriting formalism is discussed in
Section 2. In section 3, we discuss strand spaces and present our extensions. The trans-
lation from multiset rewriting to strand spaces is presented in Section 4. The translation
from strand spaces to multiset rewriting is presented in Section 5.

2 Multiset Rewriting Theories

In Section 2.1 we recall a few multiset rewriting concepts, and, in Section 2.2, we apply
them to the specification of cryptoprotocols. We present the multiset rewriting rules
implementing the Dolev-Yao intruder in Section 2.3.

2.1 Multiset Rewriting

A multisetM is an unordered collection of objects orelements, possibly with rep-
etitions. Theempty multisetdoes not contain any object and will be written “�”. We
accumulate the elements of two multisetsM andN by taking theirmultiset union, de-
noted “M ;N ”. The elements we will consider here will be first-order atomic formulas
A(t) over some signature.

We will make use of the standard definitions pertaining to the variables of first-
order logic. In particular, we writeVar(A0; : : : ; An) for the set of variables occurring
in the multiset of atomic formulasA0; : : : ; An. We say that a (multiset of) formula(s)
is ground if no variable appear in it. Finally, substitutions (generally written�) are as
usual mapping from variables to generic terms. We writeA[�] for the application of a
substitution� to a formulaA, and use a similar notation for multisets of formulas.

In its simplest form, amultiset rewrite ruler is a pair of multisetsF andG, re-
spectively called theantecedentandconsequentof r. We will consider a slightly more
elaborate notion in whichF andG are multisets of first-order atomic formulas with
variables amongx. We emphasize this aspect by writing them asF (x) andG(x).

Initiator

rA0 : �A(A;B) ! A0(A;B); �A(A;B)

rA1 : A0(A;B) ! 9NA:A1(A;B;NA); N(fNA; AgKB)

rA2 : A1(A;B;NA); N(fNA; NBgKA) ! A2(A;B;NA; NB)

rA3 : A2(A;B;NA; NB) ! A3(A;B;NA; NB); N(fNBgKB)

Responder

rB0 : �B(A;B) ! B0(A;B); �B(A;B)

rB1 : B0(A;B); N(fNA; AgKB) ! B1(A;B;NA)

rB2 : B1(A;B;NA) ! 9NB:B2(A;B;NA; NB); N(fNA; NBgKA)

rB3 : B2(A;B;NA; NB); N(fNBgKB) ! B3(A;B;NA; NB)

where�A(A;B) = Pr(A); PrvK (A;K�1
A); Pr(B); PubK (B;KB)

�B(B;A) = Pr(B); PrvK (B;K�1
B); Pr(A); PubK(A;KA)

Fig. 1. Multiset Rewriting Specification of the Needham-Schroeder Protocol

Furthermore, we shall be able to mark variables in the consequent so that they are in-
stantiated to “fresh” constants, that have not previously been encountered, even if the
rule is used repeatedly. A rule assumes then the form

r : F (x)! 9n:G(x;n)

wherer is a label and9n indicates that the variablesn are to be instantiated with
constants that ought to be fresh. Amultiset rewriting systemR is a set of rewrite rules.

Rewrite rules allow transforming a multiset into another multiset by making local-
ized changes to the elements that appear in it. Given a multiset of ground factsM ,
a ruler : F (x)! 9n:G(x;n) is applicableif M = F (t);M 0, for termst. Then,
applyingr toM yields the multisetN = G(t; c);M 0 where the constantsc are fresh
(in particular, they do not appear inM), x andn have been instantiated witht andc
respectively, and the factsF (t) in M have been replaced withG(t; c) to produceN .
Here,� = [t=x; c=n] is theinstantiating substitutionof rule r with respect toM . We
denote the application of a single rule and of zero or more rewrite rules by means of the
one-stepandmultistep transitionjudgments:

M
r�!RN M

r�!�
RN

respectively. The labelsr andr identify which rule(s) have been applied together with
its (their) instantiating substitution(s). Thus,r acts as a complete trace of the execution.

2.2 Regular Protocol Theories

We model protocols by means of specifically tailored multiset rewriting systems that
we call regular protocol theories. We present here a simplified version of the model
introduced in [CDL+99,DLMS99]. We rely upon the following atomic formulas:

Persistent information: Data such as the identity of principals and their keys often
constitute the stage on which the execution of a protocol takes place, and does
not change as it unfolds. We will represent and access thispersistent information
through a fixed set ofpersistent predicatesthat we will indicate using a slanted font
(e.g.KeyP , as opposed toN).
In [CDL+99,DLMS99], we described the choice of the persistent data by means
of a set of multiset rewrite rules of a specific form, that we called theinitialization
theory. We showed that the application of these rules can be confined to an initial-
ization phase that precedes the execution of any other rule. Let� be the resulting
set of ground facts (constraints on the initialization theory prevent� from contain-
ing duplicates [CDL+99,DLMS99]). Strand constructions assume instead that the
persistent information is given up-front as a set. We reconcile the two approaches
by dropping the explicit initialization phase of [CDL+99,DLMS99] and assuming
� given. We will allow individual rules to query� (but not to modify it).

Network messages:Network messages are modeled by the predicateN(m), where
m is the message being transmitted. Having a distinct network predicate for each
message exchanged in a protocol specification, as done in [CDL+99,DLMS99], is
equivalent, but would obscure the translation in Section 5. In this paper, messages
will consist of the class of terms freely generated from atomic messages (principal
names, keys, nonces, etc.) by the operators of concatenation, denoted “; ”, and
encryption, written “f g ”.

Role states: We first choose a set ofrole identifiers�1; : : : ; �n for the different roles
constituting the protocol. Then, for each role�, we have a finite family ofrole state
predicatesfA�i(m) j i = 0 : : : l�g. They are intended to hold the internal state of
a principal in role� during the successive steps of the protocol.
This scheme can immediately be generalized to express roles that can take condi-
tional or non-deterministic actions (e.g.toss a coin to choose among two messages
to send — useful for zero-knowledge proofs for examples — or respond in two
different ways depending on the contents of an incoming message — useful for
intrusion detection). We simply need to alter our naming convention for role states
and rules (below) to take alternatives into account. Indeed, any partial ordering of
the role state predicates will implement awell-founded protocol theory, as defined
in [CDL+99,DLMS99]. This paper will consider only linearly ordered role states,
as the layer of technicality required to treat the general case would obscure the
comparison with strands.

The additional predicate symbolI is needed to model the intruder’s knowledge and its
actions. It will be discussed at length in Section 2.3.

We represent each role� in a protocol by means of a singlerole generation rule
and a finite number ofregular protocol execution rules. The purpose of the former is to
prepare for the execution of an instance of role�. It has the form

r�0 : �(x)! A�0(x);�(x):

where, here and in the rest of the paper,�(x) denotes a multiset of persistent atomic
formulas that may mention variables amongx. Notice how persistent information is
preserved. The execution rules describe the messages sent and expected by the principal

acting in this role. Fori = 0 : : : l� � 1, we have a ruler�i+1 of either of the following
two forms:

Send: A�i(x) ! 9n: A�i+1(x;n); N(m(x;n))

Receive:A�i(x); N(m(x;y)) ! A�i+1(x;y)

wherem(v) stands for a message pattern with variables amongv. In the first type of
rules, we rely on the existential operator9n to model the ability of a principal to create
nonces when sending a message. Situations where a principal both sends and receives
a message, or sends multiple messages, can easily be expressed by these rules.

A protocol is specified as a setR of theseregular roles. EveryR constructed in this
way is trivially a well-founded protocol theory [CDL+99,DLMS99]. As an example,
Figure 1 shows the encoding of the familiar simplified Needham-Schroeder public key
protocol in the multiset rewriting notation. For the sake of readability, we omitted the
keys in the persistent state predicates.

A stateis a multiset of ground factsS =� ;A;N ; I , whereA is a multiset of role
statesA�i(t),N is multiset of messagesN(m) currently in transit, andI is a collection
of predicatesI(m) summarizing the intruder’s knowledge. Notice in particular that the
initial state, denotedS0, is just� ; I0, whereI0 contains the information (e.g.keys)
initially known to the intruder.

The aboveregular protocol theories upgrade our original definition of (unquali-
fied) protocol theories [CDL+00] with the requirement that all the persistent infor-
mation used during the execution of a role be accessed in its role generation rule:
in [CDL+99,DLMS99],�(z) can occur in execution rules as well. While the two def-
initions are equally acceptable in general, the regularity restriction brings us one step
closer to the strand world, where all accessory values are chosen up-front. We discov-
ered however that this is a slippery step as protocol theories cannot be regularized in
general without losing transition sequences (see Section 4.1 for additional details on this
issue). This is one more restriction that our multiset rewriting formalism shall abide by
in order to set up a fair comparison with strand spaces.

2.3 Intruder Theory

The knowledge available at any instant to the intruder consists of the persistent informa-
tion in� , of the unused portion of its initial knowledgeI0 (e.g.the keys of dishonest
principals), and of intercepted or inferred messages. We use the state predicateI() to
contain each piece of information known to the intruder. In particular, we represent the
fact that the intruder “knows”m (a message, a key, etc.) asI(m). The overall knowl-
edge of the intruder at any particular instant is indicated withI . As mentioned above,
we writeI0 for the intruder’s initial knowledge.

The capabilities of the intruder are modeled by thestandard intruder theoryI dis-
played in Figure 2. These rules are taken verbatim from [CDL+99,DLMS99].I imple-
ments the Dolev-Yao model [DY83,NS78] in our notation. For the sake of readability,
we have grayed out the information produced by each rule. Observe that these rules dis-
play an overly conservative bookkeeping strategy for the known messages: knowledge
is never discarded, but carried along as new messages are inferred.

rec : N(m) ! I(m)

dcmp : I(m1;m2) ! I(m1); I(m2) ; I(m1;m2)

decr : I(fmgk); I(k
0);KeyP(k; k0) ! I(m) ; I(fmgk); I(k

0);KeyP(k; k0)

snd : I(m) ! N(m) ; I(m)

cmp : I(m1); I(m2) ! I(m1;m2) ; I(m1); I(m2)

encr : I(m); I(k) ! I(fmgk) ; I(m); I(k)

nnc : � ! 9n: I(n)

pers : �(m) ! I(m) ; �(m)

Fig. 2. The Standard Intruder TheoryI

rec0 : N(m) ! I(m)

dcmp0 : I(m1;m2) ! I(m1); I(m2)

decr0 : I(fmgk); I(k
0);KeyP(k; k0) ! I(m);KeyP(k; k0)

snd0 : I(m) ! N(m)

cmp0 : I(m1); I(m2) ! I(m1;m2)

encr0 : I(m); I(k) ! I(fmgk)

nnc0 : � ! 9n: I(n)

pers0 : �(m) ! I(m); �(m)

dup : I(m) ! I(m); I(m)

del : I(m) ! �

Fig. 3. The Modified Intruder TheoryI0

The intruder capabilities formalized in the strand model relies on a slightly different
strategy for managing captured knowledge: inferring new information has the effect of
deleting the data it was constructed from. Moreover, it can discard information. How-
ever, explicit duplication is possible. We express this behavior by the set of rulesI 0 in
Figure 3.

Clearly, our original intruder modelI can easily be simulated by a systematic use of
the duplication rule ofI 0. Going in the other direction is slightly trickier asI never dis-
cards any information. The substantial equivalence of these two systems is summarized
in the following result.

Property 1. LetR be an arbitrary protocol theory, andS1 andS2 two states.

– For every rule sequencer in R; I such that S1
r�!�

R;IS2, there exists a rule
sequencer 0 in R; I 0 such thatS1

r0�!�
R;I0S2.

– For every rule sequencer 0 in R; I 0 such that S1
r0�!�

R;I0S2, there exist a rule
sequencer in R; I and an intruder stateI 0 such thatS1

r�!�
R;IS2; I

0.

Proof: The idea underlying the proof of the first statement is that every rule inI can be
emulated by the corresponding rule inI 0 preceded by one or more applications ofdup.
Ruledel is never used. The transition sequencer 0 is derived fromr according to this
strategy. A formal proof proceeds by induction onr.

The proof of the second half of this property is based on the observation that rule
dup can be emulated inI by applyingsnd andrec in succession. The additional intruder
stateI 0 consists of copies of intermediate information produced by the rules ofI plus
whatever data were explicitly discarded by usingdel. Again, this is formally proved by
induction onr 0. 2

3 Strand Constructions

We now define strands and related concepts. In order to simplify this task, we first recall
some basic definitions from graph theory in Section 3.1. In Section 3.2, we adapt the
definitions in [Son99], which is more concise than [FHG98]. In Section 3.3, we extend
the strand formalism with a series of new concepts intended to ease the comparison
with protocol theories. These extensions are of independent interest and therefore we
discuss some of their properties.

3.1 Preliminary Definitions

A directed graphG is a pair(S;�!) whereS is the set ofnodesofG and�! � S�S
is the set ofedgesof G. We will generally write�1 �! �2 for (�1; �2) 2 �!. A
directed labeled graphGL is a structure(S;�!; L; �) where(S;�!) is a directed
graph,L is a set oflabels, and� : S ! L is a labeling functionthat associates a label
to every node. In the sequel, all our graphs will be directed and labeled, but we will
generally keep� implicit for simplicity. In particular, for� 2 S and l 2 L, we will
write “� = l” as an abbreviation of�(�) = l. However, for�1; �2 2 S, expressions of
the form “�1 = �2” shall always refer to the nodes themselves, and not to their labels.

A graphG = (S;�!) is achainif there is a total ordering�0; �1; : : : of the elements
of S such that�i �! �j iff j = i + 1. A graphG = (S;�!) is a disjoint union of
chainsif S =

S
i2I Si and�! =

S
i2I �!i (for some setI) and (Si;�!i) are

chains for eachi 2 I .
A bipartite graphis a structureG = (S1; S2;�!) such thatS1 andS2 are disjoint,

(S1 [S2;�!) is a graph, and if�1 �! �2 then�1 2 S1 and�2 2 S2. Observe that all
edges go fromS1 to S2 (i.e.�! � S1 � S2). We say thatG = (S1; S2;�!) is

– functionalif �! is a partial function (i.e. if � �! �01 and� �! �02 imply �01 = �02).
– injectiveif �! is injective (i.e. if �1 �! �0 and�2 �! �0 imply �1 = �2).
– surjectiveif �! is surjective ontoS2 (i.e. for each�0 2 S2 there is� 2 S1 such

that� �! �0).

A bi-graphG is a structure(S;=);�!) where both(S;=)) and(S;�!) are graphs.
In the sequel, we will often rely on the natural adaptation of standard graph-theoretic

notions (e.g.isomorphism) to labeled graphs and bi-graphs.

Alice(A;B;NA; NB)

NA fresh,�A(A;B)

fNA; AgKB �!www�
�! fNA; NBgKAwww�

fNBgKB �!

Bob(A;B;NA; NB)

NB fresh,�B(A;B)

�! fNA; AgKBwww�
fNA; NBgKA �!www�

�! fNBgKB

where �A(A;B) = Pr(A); PrvK (A;K�1
A); Pr(B); PubK(B;KB)

�B(A;B) = Pr(B); PrvK (B;K�1
B); Pr(A); PubK (A;KA)

Fig. 4. Parametric Strand Specification of the Needham-Schroeder Protocol

3.2 Strands and Bundles

An eventis a pair consisting of a messagem and an indication of whether it has been
sent (+m) or received (�m) [FHG98]. The set of all events will be denoted�M.

A strand is a finite sequence of events,i.e. an element of(�M)�. We indicate
strands with the letters, the length of a strand asjsj, and itsi-th event assi (for i =
1 : : : jsj). Observe that a strands can be thought of as a chain graph(S;=)) with labels
over�M, whereS = fsi : i = 1 : : : jsjg andsi =) sj iff j = i+ 1.

Slightly simplifying from [FHG98], astrand spaceis a set of strands with an ad-
ditional relation (�!) on the nodes. The only condition is that if�1 �! �2, then
�1 = +m and�2 = �m (for the same messagem). Therefore,�! represents the
transmission of the messagem from the sender�1 to the receiver�2. Alternatively,
a strand space can be viewed as a labeled bi-graph� = (S;=);�!) with labels
over�M, =) � S � S, and�! � S+ � S� whereS+ andS� indicate the set
of positively- and negatively-labeled nodes inS respectively, and the constraints dis-
cussed above:(S;=)) is a disjoint union of chains, and if�1 �! �2, then�1 = +m
and�2 = �m for some messagem.

A bundleis a strand space� = (S;=);�!) such that the bipartite graph(S+; S�;
�!) is functional, injective, and surjective, and(=) [�!) is acyclic. In terms of pro-
tocols, the first three constraints imply that a message is sent to at most one recipient at
a time, no message is received from more than one sender, and every received message
has been sent, respectively. Dangling positive nodes correspond to messages in transit.
We should point out that functionality is not required in [FHG98,Son99].

If we think in terms of protocols, a bundle represents a snapshot of the execution of a
protocol (therefore a dynamic concept). As we will see, this comprises a current global
state (what each principal and the intruder are up to, and the messages in transit), as
well as a precise account of how this situation has been reached. Each role is expressed

as a strand in the current bundle. The intruder capabilities are themselves modeled as
a fixed set ofpenetrator strands, which can be woven in a bundle. We skip the exact
definitions [FHG98,Son99] as the construction we propose in the next sections will
generalize them.

3.3 Extensions

We now introduce a few new concepts on top of these definitions. Besides contributing
to the understanding of this formalism, they will ease the comparison with multiset
rewriting specifications.

The notion of role is kept implicit in [FHG98] and rapidly introduced as the con-
cept oftrace-typein [Son99]. Arole is nothing but a parametric strand: a strand where
the messages may contain variables. An actual strand is obtained by instantiating all
the variables in a parametric strand (or an initial segment of one) with persistent in-
formation and actual message pieces. For simplicity, we will not define nor consider
constructions corresponding to arbitrary well-founded protocol theories (see Section 2
and [CDL+99,DLMS99]).

�(x;n) :

n fresh,�(x)

�m1(x;n)www�
�m2(x;n)

...
�mj�j�1(x;n)www�
�mj�j(x;n)

Fig. 5.A Parametric Strand

A parametric strandfor the role�may look as
in Figure 5. The freshness ofn, i.e. the fact that
the variablesn should be instantiated with “new”
constants that have not been used before, is ex-
pressed as a side condition. Using the terminol-
ogy in [FHG98,Son99], the valuesn areuniquely
originated. This is a slightly more verbose way of
specifying freshness than our use of9 in the previ-
ous section, but it achieves the same effect. What
we see as the main difference however is that
freshness is presented as a meta-level comment
in [FHG98,Son99], while we have it as an opera-
tor in our specification calculus. The relationship
between variables are expressed in [Son99] using
intuitive notation,e.g.k�1 for the inverse key ofk, or kA for the key ofA. We for-
malize these relations by equipping� with the constraints�(x), that, without loss of
generality, will be a set of persistent atomic formulas from Section 2, parameterized
overx.

As in the case of transition systems, aprotocolis given as a set of roles. The model
of the intruder in the style of Dolev and Yao [DY83,NS78] is also specified as a set of
parametric strandsP(P0) calledpenetrator strands, whereP0 is the intruder’s initial
knowledge (see Section 3.4 or [Son99] for a definition). As an example, Figure 4 shows
how the Needham-Schroeder public key protocol is modeled using parametric strands,
where we have used incoming and outgoing arrows instead of the tags+ and� for
readability.

As usual, asubstitutionis a finite tuple� = (t1=x1; : : : ; tn=xn) of term-variable
pairsti=xi. The domain of� is dom(�) = (x1; : : : ; xn), with eachxi distinct. All our
substitution will beground, by which we mean that none of theti’s will contain any
variable. We will rely on two types of substitutions: substitutions that replace variables

with distinct fresh constants that have not been previously encountered, and substitu-
tions that map variables to previously used ground terms (not necessarily constants).
We will use the letters� and�, possibly subscripted, to denote them respectively. Given
a parametric messagem with variables indom(�), we denote the application of� tom
asm[�]. Given substitutions�1; : : : ; �n, we writem[�1 � � � �n] for (: : : (m[�1]) : : :)[�n].
We extend this notation to nodes, writing�[�] and to (possibly partially instantiated)
parametric strands, with the notation�[�].

These definitions allow us to specialize the bundles we will be looking at: given a
set of parametric strandsS, every strand in a bundle� should be a fully instantiated
initial prefix of a protocol (or penetrator) strand. We are interested in initial prefixes
since a bundle is a snapshot of the execution of a protocol, and a particular role instance
may be halfway through its execution. We then say that� is abundle overS. We need
to generalize strands constructions to admit strand spaces containing partially instanti-
ated parametric strands. We call themparametric strand spaces. The bundles we will
consider will however always be ground.

We will now give a few definitions needed to emulate the execution of a protocol
with parametric strands. No such definitions can be found in the original description of
strand constructions [FHG98,Son99], which focuses on analyzing protocol traces, not
on specifying how to generate them.

First, observe that the network traffic in a bundle is expressed in terms of events
and of the�! relation. The edges of�! represent past traffic: messages that have
been sent and successfully received. The dangling positive nodes correspond to current
traffic: messages in transit that have been sent, but not yet received. We will call these
nodes thefringe of the bundle (or strand space). More formally, given a strand space
� = (S;=);�!), its fringe is the set

Fr(�) = f� : � 2 S; � = +m; and 69�0: � �! �0g

Another component of the execution state of a protocol is a description of the actions
that can legally take places in order to continue the execution. First, some technicalities.
Let � be a bundle over a set of parametric strandsS, a completionof � is any strand
space~� that embeds� as a subgraph, and that extends each incomplete strand in it with
the omitted nodes and the relative=)-edges. A completion of� may contain additional
strands, possibly only partially instantiated. Ifs is a strand in� and~s is its extension
in ~�, the sequence obtained by removing every event ins from ~s is itself a (possibly
empty) strand. We call it aresidual strandand indicate it as~s n s. We then write~� n �
for the set of all residual strands of~� with respect to�, plus any strands that~� may
contain in addition to those in�.

Given these preliminary definitions, aconfigurationoverS is a pair of strand spaces
(�; �]) where� is a bundle overS, and�] is an extension of� whose only additional
�!-edges originate inFr(�), cover all ofFr(�), and point to�] n �. Clearly, if � =
(S;=);�!) and�] = (S];=)];�!]), we have thatS � S], and=) � =)], and
finally �! � �!].

A one-step transition is what it takes to go from one bundle to the “next”. There are
two ways to make progress in the bundle world: extend a strand, or add a new one. Let
us analyze them:

– Extending a strand: If the configuration at hand embeds a strand that is not fully
contained in its bundle part, then we add the first missing node of the latter and the
incoming=)-edge. If this node is positive, we add an�!-arrow to a matching
negative node. If it is negative, we must make sure that it has an incoming�!-
edge.

– Creating a strand: Alternatively, we can select a parametric strand and instantiate
first its “fresh” data and then its other parameters. Were we to perform both instan-
tiations at once, there would be no way to run protocols which exchange nonces,
such as our example in Figure 4.

We will now formalize this notion. Let(�1; �
]
1) and(�2; �

]
2) be configurations over a

set of parametric strandsS, with �i = (Si;=)i;�!i) and�]i = (S]
i ;=)

]
i ;�!

]
i),

for i = 1; 2. We say that(�2; �
]
2) immediately follows(�1; �

]
1) by means of move

o, written (�1; �
]
1)

o7�!S(�2; �
]
2), if any of the following situations apply. An intuitive

sense of what each case formalizes can be gained by looking at the pictorial abstraction
to the right of each possibility. Here,�, �0 and�00 stand for nodes on fully instantiated
strands, while�0 will generally be only partially instantiated.

S0: There are nodes�; �00 2 S]
1nS1 such that� = +m, �00 = �m, no�!-edge enters

�00, and no=)-arrow enters�. Then,

– S2 = S1 [f�g,
=)2 = =)1,
�!2 = �!1;

– S]
2 = S]

1,
=)]

2 = =)]
1,

�!]
2 = �!]

1 [f(�; �
00)g.

�

(+m)

�00

(�m)

S S]nS

(�;�;�00)

�!S

�

(+m)

�00

(�m)
����!

S S]nS

S: There are nodes�; �00 2 S]
1 n S1 and�0 2 S1 such that� = +m, �00 = �m, no

�!-edge enters�00, and�0 =)]
1 �. Then,

– S2 = S1 [f�g,
=)2 = =)1 [f(�

0; �)g,
�!2 = �!1;

– S]
2 = S]

1,
=)]

2 = =)]
1,

�!]
2 = �!]

1 [f(�; �
00)g.

�

(+m)

�00

(�m)

ww�
�0S S]nS

(�;�0;�00)

�!S

�

(+m)

�00

(�m)

ww�
�0

����!

S S]nS

R0: There are nodes� 2 S]
1 n S1 and �00 2 S1 such that� = �m, �00 = +m,

�00 �!]
1 �, and no=) enters�. Then,

– S2 = S1 [f�g,
=)2 = =)1,
�!2 = �!1 [f(�

00; �)g;
– �]2 = �]1.

�

(�m)

�00

(+m)
����!

S S]nS

(�;�;�)

�!S

�

(�m)

�00

(+m)
����!

S S]nS

R: There are nodes� 2 S]
1 n S1 and�0; �00 2 S1 such that� = �m, �00 = +m,

�00 �!]
1 �, and�0 =)]

1 �. Then,
– S2 = S1 [f�g,
=)2 = =)1 [f(�

0; �)g,
�!2 = �!1 [f(�

00; �)g;
– �]2 = �]1.

�

(�m)

�00

(+m)
����!

ww�
�0S S]nS

(�;�0;�)

�!S

�

(�m)

�00

(+m)
����!

ww�
�0S S]nS

Cf : � is a parametric strand inS and� is a substitution for all its variables marked
“fresh” with constants that appear nowhere in(�1; �

]
1).

– �2 = �1; – �]2 = �]1 [�[�].

where,� [s is obtained by taking the union of the nodes and=)-edges of� and
s,

S S]nS

(�;�)

�!S

+
...
+

S S]nS

�[�]

Ci: �[�] is a partially instantiated parametric strand in�]1 and� is a ground substitution
for the remaining variables. In particular, if�[�] mentions constraints�, then their
instantiation should be compatible with the know persistent data,i.e.�[�] � � .
Then,

– �2 = �1; – �]2 = �]1 � �[�] [�[�; �].

where,� � s is the subgraph of� obtained by removing all nodes ofs and their
incident edges.

+
...
+

�0S S]nS

�[�]

(�0;�)

�!S

+
...
+

�0S S]nS

�[�;�]

Themoveo that labels the transition arrow7�!S records the necessary information
to reconstruct the transition uniquely. Given a configuration(�; �]), a movefor tran-
sitions of typeS0, S, R0, andR is a tripleo = (�; ��p; ��s) where� is a node,��p is

the parent node�p of � according to the=) relation (or “�” if � is the first node of a
chain — casesS0 andR0), and��s is the recipient�s of the message that labels� along
the�! relation (if� is positive, or “�” otherwise). For transitions of typeCf andCi,
moves have the form(�; �) and(�0; �) respectively, where� is the name of the chosen
parametric strand,�0 is the first node of the partially instantiated strand�[�], and� and
� are the instantiating substitutions.

A multistep transitionamounts to chaining zero or more one-step transitions. This
relation is obtained by taking the reflexive and transitive closureo7�!�

S of o7�!S , whereo
is the sequence of the component moves (“�” if empty). o is a trace of the computation.

Observe that our definition of transition preserves configurations,i.e. if (�1; �
]
1) is

a configuration and(�1; �
]
1)

o7�!S(�2; �
]
2), then(�2; �

]
2) is also a configuration. This

property clearly extends to multistep transitions.

Property 2. Let (�1; �
]
1) be a configuration. If(�1; �

]
1)

o7�!�
S(�2; �

]
2), then(�2; �

]
2) is

a configuration.

Proof: By induction on the length ofo. 2

3.4 Penetrator Strands

We now formalize the intruder model of [FHG98,Son99], which consists of patterns
calledpenetrator strands, and of a set of messagesP0 expressing the intruder’s ini-
tial knowledge. The corresponding parametric strands are shown in Figure 6, which
includes a case to handle intruder-generated nonces. This possibility is missing from
[FHG98,Son99], but the completion is straightforward. We also distinguished cases
M(m) andM 0(m), which are identified in [FHG98,Son99]. We refer to the collection
of (parametric) penetrator strands in Figure 6 asP(P0).

Several observations need to be made. First, the intruder specification underlying
penetrator strands follows the Dolev-Yao model [DY83,NS78]. The parametric strands
in Figure 6 are indeed closely related to the multiset rewriting intruder modelI 0 above.
A translation can be found in Sections 4.2 and 5.2 below, while a proof-sketch is em-
bedded in the main results in Sections 4.2 and 5.2.

As a final remark, notice that the transition system specification distinguishes be-
tween messages transmitted on the network (identified by the predicate symbolN) and
messages intercepted and manipulated by the intruder. Indeed, the predicateI imple-
ments a private database, a workshop for the fabrication of unauthorized messages,
hidden from the honest principals of the system. No such distinction exists in the strand
world. Therefore, it may seem that the intruder dismantles and puts together messages
in the open, under the eyes of the other principals in the system. This is not the case:
the privacy of the intruder is guaranteed by the fact that the�! relation is functional
(see 3.2). Only the intruder can make use of intermediate results of penetrator manipula-
tions since any other principal observing such messages would make them unavailable
to the intruder (and it would not be an intermediate, but a final product of message
forgery): since only one�!-edge can leave a negative node and such an arrow is the
only way to communicate (or observe somebody else’s) data, the intruder could not
access the message in this node for further processing.

Persistent

M(m)

(m persistent):

m �!

Initial

M 0(m)

(m 2 P0):

m �!

Nonces

N(n) :

n fresh

n �!

Intercept

F (m) :

�! m

Compose

C(m1;m2) :

�! m1www�
�! m2www�
(m1;m2) �!

Decompose

S(m1;m2) :

�! (m1;m2)www�
m1 �!www�
m2 �!

Encrypt

E(m;k) :

�! mwww�
�! kwww�
fmgk �!

Decrypt

D(m; k; k0) :

KeyP(k; k0)

�! fmgkwww�
�! k0www�

m �!

Duplicate

T (m) :

�! mwww�
m �!www�
m �!

Fig. 6. The Penetrator StrandsP

The concepts and extensions we have just introduced set the basis for the trans-
lations between the multiset rewriting approach to security protocol specification and
strand constructions. We describe the two directions of this translations in Sections 4
and 5, respectively.

4 From Multisets to Strands

The basic idea behind our translation will be to map a set of multiset rewrite rules
specifying a role to a parametric strand. In particular, rules will correspond to nodes,
and the role state predicates will be replaced by the backbone (=)) of the strand. In
Section 4.1, we transform a regular protocol theory into an equivalent normal form. This
transformation is novel and applies to a more general setting than the multiset rewriting
specification of cryptoprotocols. In Section 4.2, we describe the translation proper and
prove its correctness.

4.1 Normal Protocol Theories

We present two transformations which demonstrate that, without loss of generality, we
can subsequently consider only normalized protocol theories. Their purpose is to re-

strict protocol theories so that they are closer to the strand model. Note that these trans-
formations are used for mathematical convenience: non-normal, and even non-regular,
protocol theories are often more perspicuous than their normalized counterparts.

Role generation rule: We subsume the role generation rule of every role�, i.e. the
rule r�0 : �(x) �! A�0(x);�(x), into the first rule of�. For each of its two
schematic forms:

r�1 : A�0(x) �! 9n:A�1(x;n);N(m(x;n))

r�1 : A�0(x);N(m(x;y)) �! A�1(x;y)

we obtain the following rules:

�r�1 : �(x) �! 9n:A�1(x;n);N(m(x;n));�(x)

�r�1 : �(x);N(m(x;y)) �! A�1(x;y);�(x)

respectively. Observe that, by definition of role state predicate, the parametersx

include the arguments of the elidedA�0 (as usual,m(x) does not need to mention
each variable inx). This amounts to setting initial values in the first step of a role,
rather than prior to any message exchange.
If R is a regular protocol theory, we will denote the effect of this transformation as
�R. If S is a state, the transformed state�S is obtained by dropping every mention of
an initial role stateA�0 fromS. Clearly,�S0 = S0 for any initial stateS0. Similarly,
a transition sequencer is mapped to a sequence�r from which all the instances of
rules for the formr�0 have been dropped, and the uses ofr�1 have been replaced
with �r�1.
The above transformation is sound and complete as witnessed by the following
result:

Lemma 1.
LetR be a regular protocol theory with initial stateS0 andS a state. Then,

1. If S0
r�!�

RS, thenS0
�r�!�

�R
�S.

2. If S0
�r�!�

�R
�S, thenS0

r�!�
RS.

Proof: In both cases, the proof proceeds by induction on the length of the given
transition sequences. 2

Observe that applying this transformation and then “undoing” it as specified in the
above lemma is not equivalent to the identical transformation: going in the reverse
direction, we group occurrences ofr�0 andr�1 together, and moreover we eliminate
every isolated instance ofr�0.

The original version of this paper [CDL+00] stated this lemma (or more precisely
a result akin to the compounded Corollary 1 below) relative to general rather than
regular protocol theories. This is incorrect: assume thatS0

r�!�
RS1 thanks to the

initialization ruler�0 of some role�. Assume also that the first message exchange
rule r�1 of this role contains a persistent predicate which does not have any instan-
tiation in� . The normal form ofr�0 would then contain this constraint, making

it inapplicable to any stateS1 would be mapped to. This scenario can clearly not
occur when starting from aregular protocol theory since, by definition, all the ac-
cesses to persistent predicate are confined in the role instantiation rule.
An alternative way to correct the above error is to statically bind persistent informa-
tion to any point in a protocol description where it is used. A realization of this idea
by means of a strong typing infrastructure is at the basis ofMSR[Cer01], a thor-
ough redesign of the multiset rewriting formalism discussed in this paper. Besides
being immune to that kind of errors,MSRis altogether a much better specification
language as evidenced in [BCJS02].

Nonces: We further transform protocol theories so that all nonces generated by a role
are preemptively chosen in the first rule of that role. We accomplish this by adding
extra arguments to role state predicates, and pass the nonces generated in the first
rule to subsequent uses through fresh variables in these predicates. Since roles are
bounded, there are only a small finite number of nonces that need to be generated
in an entire role. This transformation intuitively means that a participant should roll
all her dice immediately, and look at them as needed later.
More formally, let� be the multiset rewriting specification of a role as from the
previous transformation, and lete�i be the number of existentially quantified vari-
ables in ruler�i, for i = 1::j�j. We map each role state predicateA�i(x) in � to a
predicate of the form

�A�i(x;ni+1; : : : ;nj�j)

where, forj = i + 1::j�j, there are exactlye�j elements innj , and each of the
added arguments is a distinct new variable.
We transform rules by replacing each state predicateA�i with �A�i, and moving
existential quantifiers to the first rule of the role. As a result, we are left with the
following normalized rules:

Role generation rules:
� �r�1 : �(x) �! 9n: �A�1(x;n); N(m(x;n));�(x)
� �r�1 : �(x);N(m(x;y)) �! 9n: �A�1(x;y;n); �(x)

Other rules:
� �r�i+1 : �A�i(x) �! �A�i+1(x); N(m(x))
� �r�i+1 : �A�i(x);N(m(x;y)) �! �A�i+1(x;y)

where all the newly introduced variables in rule�r�1 are existentially quantified.
Given a role�, we denote the normalized specification as��. We writeR for the
application of this transformation to a protocol theoryR.
In order to formally relate a regular protocol theory with its normalized form, we
need to assess the effect of normalization on states. Given a ground predicateP in a
stateS, we construct the open termP corresponding to the possible normalizations
of P as follows:(

A�i(t) = �A�i(t;ni; : : : ;nj�j) whereni; : : : ;nj�j consist of distinct variables

P = P if P is not a role state predicate

It is easy to extend this definition toopen states: if S is a state, we construct the
open multisetS representing all normalized states it is mapped to.S is defined as

follows:
S = HP : P � SI

whereH: : :I is the multiset equivalent of the usual set notationf: : :g, andx �
M denotes multiplicity-conscious multiset membership. We shall choose different
variables for eachP in S. Observe that since the initial stateS0 does not contain
role state predicates, we have thatS0 = S0.
The mapping between an open stateS and states that can be processed by transi-
tions is done by means of substitutions� that map each variable inS to a distinct
constant that does not appear inS. Observe thatS[�] is a (ground) state.
The definition of transition does not change, but we will denote a transition se-
quence that uses normalized rules as�r with the usual subscripts. We will shortly
see how to normalize a transition sequencer.
Given these various definitions, we are now in a position to prove that normalization
preserves transitions. We have the following result.

Lemma 2.
Let �R be a regular protocol theory that has been subjected to the role generation
transformation in the first part of this section,S0 the initial state, andS a state. Let
moreover� be an arbitrary substitution from the variables inS to distinct unused
constants. Then,

1. If S0
r�!�

�R
S, thenS0

�r�!�
�R
S[�].

2. If S0
�r�!�

�R
S[�], thenS0

r�!�
�R
S.

Proof: In both cases, the proof proceeds by induction on the length of the given
transition sequences. We will examine them in turn. 2

In the following we will start from a regular protocol theoryR and apply these two
transformations in sequence. For clarity reasons, we will generally write�R when ��R
would be appropriate. We extend this convention to roles and states.

The following corollary chains the above results together. It also considers protocols
augmented with the standard intruder theoryI. It must be observed that the above
transformations do not have any effect onI.

Corollary 1.
LetR be a regular protocol theory,S0 the initial state, andS a state. Let moreover

� be an arbitrary substitution from the variables inS to distinct unused constants. Then,

1. If S0
r�!�

R;IS, thenS0
�r�!�

�R;I
S[�].

2. If S0
�r�!�

�R;I
S[�], thenS0

r�!�
R;IS.

Proof: This is a direct consequence of Lemmas 1 and 2 once we observe that the in-
truder rules never access the role state predicates of a principal. Therefore, the elision
of the state predicateA0 is invisible to the intruder. Similarly, the intruder cannot see
nor take advantage of the fact that all existentials in a normal role have been instantiated
up-front since they are safely stored inA�i(x;ni; : : : ;nj�j) until they are made visible
in a message. 2

4.2 Translation

We are now in a position to translate protocol representations expressed in the multiset
rewriting formalisms into strands. We first show how to map a general protocol theory
into a set of parametric strands in Section 4.2, and then relate the intruder theory directly
to the penetrators strands in Section 4.2. In Section 4.2, we prove that this translation
preserve transitions after discussing how states are handled in Section 4.2.

From Protocol Theories to Parametric Strands To each normalized role specifica-
tion ��, we associate a parametric strandp��q of the following form

�(x;y;n) n fresh,�(x)

wheren are the existential variables mentioned in the first rule�r�1 of this role,�(x) are
the persistent predicates accessed in this rule, andy are the other variables appearing in
the role (x;y;n appear therefore in its last role state predicate).

Next, we associate a parametric node��r�i with each rule�r�i. The embedded mes-
sage is the message appearing in the antecedent or the consequent of the rule, the dis-
tinction being accounted for by the associated action. More precisely, we have the fol-
lowing translation (where we have omitted the argument of the state predicates, the
indication of the variables occurring in the message, persistent information, and the
existential quantifiers appearing in the role generation rule):

p
�A�i �! �A�i+1;N(m)q = +m

p
�A�i;N(m) �! �A�i+1q = �m

wherep q is our translation function.
Finally, we set the backbone of this parametric strand according to the order of the

indices of the nodes (and rules):

��r�i =) ��r�j iff j = i+ 1:

In this way, we are identifying the role state predicates of the transition system speci-
fication with the=)-edges constituting the backbone of the corresponding parametric
strand. Notice that the well-founded ordering over role state predicates is mapped onto
the acyclicity of the=)-arrows of the strand constructions.

This completes our translation as far as roles, and therefore protocols, are con-
cerned. Applying it to the Needham-Schroeder protocol yields exactly the parametric
strand specification of Figure 4 presented in Section 3. Given a set of rolesR in the
transition system notation, we indicate the corresponding set of parametric strands as
pRq. We will give correctness results at the end of this section after showing how to
translate global states.

From Intruder Theory to Penetrator Strands The introduction of the alternate in-
truder theoryI 0 in Section 2.3 enables a trivial mapping to penetrator strands: we sim-
ply map every intruder rule to the corresponding penetrator strand, with the exception
of rec0 andsnd0, which do not have any correspondent. In symbols:

prec0(m)q = none
pdcmp0(m1;m2)q = S(m1;m2)

pdecr0(m; k)q = D(m; k)

pnnc0(n)q = N(n)

pdup(m)q = T (m)

psnd0(m)q = none
pcmp0(m1;m2)q = C(m1;m2)

pencr0(m; k)q = E(m; k)

ppers0(m)q = M(m)

pdel(m)q = F (m)

where we have equipped the intruder rules with arguments in the obvious way. We also
need to map the initial intruder knowledgeI0 to a setP0 of messages initially known
to the intruder, to be processed by the penetrator strandM 0: pI0q = fm : I(m) 2
I0g. Every access to a messageI(m) in I0 will be translated to an application of the
penetrator strandM 0(m).

Relating States and Configurations In order to show that a transition system speci-
fication and its strand translation behave in the same way, we need to relate states and
configurations. We do not need to give an exact mapping, since a configuration embeds
a bundle expressing the execution up to the current point in fine detail. A state is instead
a much simpler construction that does not contain any information about how it has
been reached. Therefore, we will consider some properties that a configuration should
have to be related to a state.

We say that a stateS = �;A;N(m); I(m0) is compatiblewith a strand config-
uration(�; �]), writtenS �R (�; �]) relative to a protocol theoryR, if the following
conditions hold:

– Fr(�) =m;m0.
– Let �A�i(t�; c�) in A be the instantiation of thei-th role state predicate of a role��

in R with termst� and fresh noncesc�. Then,
� �] contains a strands�(c�; t�), obtained by instantiating the strands� = p��q

with termst� and new constantsc�.
� � contains an initial prefix ofs�(t) whose last node has indexi.

Moreover every non-penetrator strand in(�; �]) is obtained in this way.
– Every instance of a penetrator strand in(�; �]) is completely contained in�.

Intuitively, we want the state and the configuration to mention the same nonces, to have
the same messages in transit (including the data currently processed by the intruder), to
be executing corresponding role instances and have them be stopped at the same point.

Transition to Move SequencesGiven these definitions, we can state the correctness
result for our translation of transition systems into strand constructions. We shall start
by limiting our attention to normal protocol theories together with the modified intruder
theory introduced in Section 2.3.

Lemma 3.
LetR be a normal protocol theory,I0 some initial intruder knowledge, andpI0q

its strand translation. If�; I0
r�!�

I0;RS is a normal multiset rewriting transition se-

quence overI 0;R from the empty state to stateS, then there is a configuration(�; �])
and a sequence of moveso such that

(�; �) o7�!�
P(pI0q);pRq

(�; �])

is a strand transition sequence from the empty configuration(�; �) to (�; �]), andS �R

(�; �]), i.e.S is compatible with(�; �]).

Proof: The proof proceeds by induction onr. The base case is trivial. The inductive
step does a case analysis on the last rule applied inr. Intruder rules fromI 0 are directly
emulated by the corresponding penetrator strands, as defined in Section 4.2. The use of
protocol ruler�i is emulated by a move involving the corresponding node inp��q. For
each of these possibilities, we show that the corresponding move in the strand world is
possible, and that it preserves the compatibility relation.

We omit formalizing this proof as it relies on exactly the same techniques as the
proofs of previous results. 2

We can now extend this result to any regular (not necessarily normal) theory to-
gether with the standard intruder model. We have the following theorem:

Theorem 1.
LetR a regular protocol theory andI0 be some initial intruder knowledge. For

every regular multiset rewriting transition sequence�; I0
r�!�

I;RS there is a configu-
ration (�; �]) and a sequence of moveso such that

(�; �) o7�!�
P(pI0q);pRq

(�; �])

is a strand transition sequence from the empty configuration(�; �) to (�; �]), andS �R

(�; �]).

Proof: This is a simple corollary of the above lemma mediated by an application of
Lemma 1 to move between regular and normal protocol theories, and Property 1 recon-
cile using the standard vs. the modified intruder theory. 2

Observe that we cannot further relax the statement of this theorem to consider ar-
bitrary (i.e.non-regular) protocol theories as regularization does not preserve transition
sequences.

5 From Strands to Multisets

We will now show how to translate a set of parametric strands into a set of transition
rules that preserve multistep transitions. Again, there is a slight mismatch between the
two formalisms which is addressed in Section 5.1. This technical adjustment of our
definition of strands will produce precisely the regular role transition rules we originally
defined in Section 2. We describe the translation itself and prove it correct in Section 5.2.

5.1 Decorated Strands

In the previous section, we have observed and taken advantage of the fact that there
is a close affinity between the rules in the transition system specification of a role and
the nodes in a parametric strand. More precisely, a node together with the outgoing or
incoming�!-edge and an indication of what to do next corresponds to a transition. In
transition systems, “what to do next” is specified through the role state predicatesA�i;
in strand constructions, by means of the=)-edges. Therefore, using the same intuition
as in Section 4, we will translate=)-edges to state predicates. We need to equip these
predicates with the appropriate arguments (while we were able to simply drop them in
the inverse translation).

Before describing how to do so, we will address two other minor syntactic dis-
crepancies: the absence of an (explicit) strand equivalent of the role generation rule
�(x) �! A�0(x);�(x), and the fact that, in the transition system specification of a
role, there is a final state predicate that lingers in the global state no matter what other
transitions take place.

Role Generation transition: We add a dummy initial node, say>, to every strand,
with no incoming or outgoing�!-edges, and one outgoing=)-edge to the origi-
nal first node of the strand.

Final state: Dually, we alter the definition of strands to contain a final node, say?,
again without any incoming or outgoing�!-edge, and with one incoming=)-
arrow from the original last node of the strand.

This corresponds to redefining strands as strings drawn from the language>(�M)�?,
rather than just(�M)�. Notice that now every (proper) event has both a predecessor
and a successor=)-edge.

With the addition of these auxiliary nodes, we can label each=)-arrow in a strands
with parametersxs;ns (ns markedfresh) and a predicate constantAsi with progressive
indicesi. In the case of parametric strands, we equip these labels with arguments drawn
from its set of parameters as follows:

Initial arrow: > =) �

This is the predicateAs0 labeling the=)-edge that links the added initial node>
to the first node of the original strand. The arguments ofAs0 will be xs.

Successor arrow to a positive node:

: : :
Asi(x)
=) +m(x;n) =) : : :

LetAsi(x) be the label of the incoming=)-edge of a positive node� = +m(x;n),
wherem mentions known variables amongx and unused noncesn amongns.
Then the outgoing=)-arrow of� will have labelAsi+1(x;n).

Successor arrow to a negative node:

: : :
Asi(x)
=) �m(x;y) =) : : :

LetAsi(x) be the label of the incoming=)-edge of a positive node� = �m(x;y),
wherem mentions known variables amongx, and unseen datay. Then, the outgo-
ing=)-arrow ofn will have labelAsi+1(x;y).

Alice(A;B;NA; NB)

NA fresh,�A(A;B)

>wwwww�
A0(A;B)

fNA; AgKB �!wwwww�
A1(A;B;NA)

�! fNA; NBgKAwwwww�
A2(A;B;NA; NB)

fNBgKB �!wwwww�
A3(A;B;NA; NB)

?

Bob(A;B;NA; NB)

NB fresh,�B(A;B)

>wwwww�
B0(A;B)

�! fNA; AgKBwwwww�
B1(A;B;NA)

fNA; NBgKA �!wwwww�
B2(A;B;NA; NB)

�! fNBgKBwwwww�
B3(A;B;NA; NB)

?

where �A(A;B) = Pr(A); PrvK (A;K�1
A); Pr(B); PubK (B;KB)

�B(A;B) = Pr(B); PrvK (B;K�1
B); Pr(A); PubK (A;KA)

Fig. 7. Extended Strand Specification of the Needham-Schroeder Protocol

Given a parametric strands, we denote the result of applying these transformations
as�s. If S is a set of parametric strands specifying a protocol, we writeS for the trans-
formed set. Applying this transformation to the Needham-Schroeder protocol yields the
enhanced strand specification in Figure 7, where the additions have been grayed out.

Since we have changed the syntax of a parametric strand, we need to upgrade its
dynamics, originally presented in Section 2. First, an obvious alteration to the instanti-
ation of a parametric strand: we apply the substitution to the labels of the=)-edges as
well as to the messages embedded in the nodes. We carry on this change to the resulting
bundles and configurations: every=)-edge between two nodes�1 and�2 now carries
a labelAsi(t). We indicate this as�1

Asi(t)=)�2 (or with its vertical equivalent). Notice that
we erased this information in the reverse translation. Given a bundle� and a configu-
ration (�; �]) relative to a set of parametric strandsS, we write �� and(��; ��]) for the
corresponding entities relative toS .

The definition of one-step transition, in symbols(��1; ��
]
1)

o7�!S(��2; ��
]
2), changes as

follows:

Extension of an existing strand: We proceed exactly as in Section 2, except for the
fact that situationsS0 andR0 in Section 3.3 do not apply.

Installation of a new strand:
We select a parametric strand� from S, instantiate it with a substitution� for its
fresh variables and add the resulting strand�[�] to ��]2. This corresponds to upgrad-
ing caseCf in Section 3.3 as outlined in the following figure. We do not formalize
this transformation (call itCf

0) it in full detail since it should be obvious how to
obtain it.

�S �S]n �S

(�;�)

�!S

>ww�
... �[�]

�S �S]n �S

TransitionCi is consequently upgraded toCi
0 described in the following figure.

Notice that we add the first node,>, of �[�; �] to ��2

>ww�
...

�0

�[�]

�S �S]n �S

(�0;�)

�!S

>ww�
...

�0

�[�;�]

�S �S]n �S

As in the original case, multistep transitions are obtained by taking the reflexive and
transitive closure of the above judgment.

This transformation is sound and complete with respect to our original system.

Lemma 4. LetS be a set of parametric strands, and(�1; �
]
1) and(�2; �

]
2) two config-

urations on it. Then,

(�1; �
]
1)

o7�!�
S(�2; �

]
2) iff (��1; ��

]
1)

�o7�!�
S
(��2; ��

]
2)

where�o is obtained fromo by extending the given transformation to traces.

Proof: In the forward direction, we add the labels as from the definition (they do not
constrain the construction in any way); every use of transitionCf that introduces a new
strand is mapped toCf

0, which also installs the node>. In the reverse direction, we
simply forget about labels and extra nodes. Formally, both directions require a simple
structural induction. 2

5.2 Translation

Given the above definitions, we are in a position to propose an transition-preserving
translation that maps strand representations of security protocols to the multiset rewrit-
ing formalism. We will proceed in stages: in Section 5.2 we concentrate on parametric
strands, in Section 5.2 we relate the intruder models, in Section 5.2 we extract a notion
of state from a configuration, and finally in Section 5.2 we prove the correctness of our
translation.

From Parametric Strands to RolesWe now present a translation of parametric strands
to the coordinated sets of transition rules representing a role. Each node is mapped to
a rule, the label of its incoming and outgoing=)-edge will be the state predicates

>wwww�As0(x)

9>=
>;

; �(x) �! As0(x); �(x)

wwww�Asi(x)

m(x;n) �!

9>>>>>>>=
>>>>>>>;

; Asi(x) �! 9n:Asi+1(x;n);N(m(x;n))wwww�Asi+1(x;n)

wwww�Asi(x)

�! m(x;y)

9>>>>>>>=
>>>>>>>;

; Asi(x);N(m(x;y)) �! Asi+1(x;y)wwww�Asi+1(x;y)

wwww�Asjsj(x)
9>=
>;

; (No corresponding rule)

?

Fig. 8. Transforming Extended Strands to Multiset Rewriting Rules

in the antecedent and consequent, respectively, and the network message will be the
message embedded in the node, its polarity dictating on which side of the arrow it
should be appear. More formally, we have the translation displayed in Figure 8, where
the parameters of the added state predicates are classified as in the above definition.

Given a set of (decorated) parametric strandsS , we writepSq for the set of protocol
rules resulting from this transformation. Observe that it yields regular rules. Applying
this translation to the enhanced parametric strands representing the Needham-Schroeder
protocol in Figure 7 produces exactly the original transition system specification given
in Figure 1.

From Penetrator Strands to Intruder Theory The translation of the penetrator strands
P(P0) in Figure 6 is essentially the inverse of the mapping discussed in Section 4.2. Our
target intruder model, in the multiset rewriting world, isI 0.

pS(m1;m2)q = dcmp0(m1;m2)

pD(m; k)q = decr0(m; k)

pN(n)q = nnc0(n)

pT (m)q = dup(m)

pM 0(m)q = (see below)

pC(m1;m2)q = cmp0(m1;m2)

pE(m; k)q = encr0(m; k)

pM(m)q = pers0(m)

pF (m)q = del(m)

where we have again equipped the intruder transition rules with the obvious arguments.
Notice that no penetrator strand is made to correspond to rulesrec0 or snd0. When

translating transition sequences from the strand world to the transition system setting,
we will insert these rules whenever a message sent by a principal’s strand is received
by a penetrator strand, and vice-versa, respectively. We mapP0 to a multisetI0 of
messages initially known to the intruder in the multiset rewriting framework:pP0q =
HI(m) : m 2 P0I. Uses ofM 0(m) with m 2 P0 are translated to accesses toI(m) 2
pP0q, possibly preceded by an application of ruledup if M 0(m) is accessed more than
once.

From Configurations to States Before we can show that the translation we just out-
lined preserves transition sequences, we need to extract a state from a configuration and
show that steps between configurations are mapped to steps between the corresponding
states.

Let S be a set of parametric strands,pSq its translation as a set of transition rules,
and(�; �]) a configuration overS;P(P0) where all penetrator strands have been com-
pleted. We define thestate associated with(��; ��]), written SS(��; ��

]), as the state
�;A;N ; I obtained as follows, where we writeH: : :I for the multiset equivalent of
the usual set notationf: : :g:

� N = HN(m) : � 2 Fr(��); � is not on a penetratorstrand, and� has label+mI.
� I = HI(m) : � 2 Fr(��); � is on a penetrator strand,and� has label+mI.
� A = HAsi(t) : si�1

Asi(t)
=) si 2 ��] n �� andsi�1 2 Fr(�)I.

Intuitively, we collect the messages in transit coming from honest principal’s strands in
N , the current knowledge of the intruder inI , and the labels of the=)-edges at the
boundary between��] and�� as the multiset of role state predicatesA.

From Move to Transition SequencesThen, sequences of moves in the strand world
and their translation as transition system steps are related as follows:

Theorem 2. LetP0 be some initial penetrator knowledge, andpP0q its multiset trans-
lation as defined in Section 5.2. Let(�1; �

]
1) and(�2; �

]
2) be two configurations on the

penetrator strandsP(P0) and a set of parametric strandsS such that all penetrator
strands have been completed. For every multistep strand transition

(�1; �
]
1)

o7�!�
P(P0);S

(�2; �
]
2);

and everyI 00 � pP0q, there exists a regular multiset transition sequencer such that

pP0q; SS(��1; ��
]
1)

r�!�
I0;pSq

SS(��2; ��
]
2); I

0
0:

Proof: The proof of this result proceeds by induction on the structure ofo. The only
non-obvious aspect is that, as observed in Section 5.2, we need to insert applications
of the rulerec0 when processing a message that flows from an honest principal’s to a
penetrator strands. We add uses ofsnd0 in the dual case. 2

Notice that we do not need to start from the empty configuration.

The mapping from strands to multiset rewriting we have just finished outlining, and
the translation from multiset rewriting to strand constructions described in Section 4 are
inverse of each other. We leave the proof of this fact to the interested reader.

6 Conclusions and Future Work

We have developed a formal connection between multiset rewriting [CDL+99,DLMS99]
and strand constructions [FHG98,Son99]. The formalization of this unsurprising result
required a number of unexpected adjustments to both frameworks. In particular, we
equipped strands with a dynamic dimension by introducing a notion of transition that
allows growing bundles from a set of parametric strands. This enabled us to relate the
distinct notions of traces inherent to these formalisms: bundles and multiset rewrite se-
quences. On the other hand, we omitted the initialization phase of our multiset theories,
since this phase has no counterpart in strand spaces.

This work can be applied to strengthen both formalisms. Our results imply that
many multiset rewriting concepts and techniques devised over the years are likely to
be relevant to the research on strands. The linear logic and rewriting logic foundations
of multiset rewriting can thus be brought to bear on strand spaces as well. In addition,
clean and intuitively appealing notions from strand spaces can be brought to multiset
rewriting. For example, strand space bundles appear to be a better notion of computa-
tion trace than rewrite sequences, and therefore analogs could be fruitfully adopted in
multiset rewrite systems. This has influenced the redesign of formalism presented here
as theMSRsecurity protocols specification language [Cer01] and fuels current research
in the area. Finally, our work suggests extending strand spaces by embedding an ex-
plicit form of initialization, and refining the notion of initialization theories of multiset
rewriting.

This paper can also be viewed as another step in a larger program of demonstrat-
ing connections between formalisms: the interoperation of logical systems can lead to
improvements in the newly connected systems, but also lead to a deeper understand-
ing of the entire problem domain. In this case, we have gained insight into the Dolev-
Yao model of cryptoprotocols. Further connections to other formalisms including state-
transition systems and linear logic [CDKS00] can improve the situation further. In fact,
we are currently investigating properties of the representation of both strand and multi-
set rewriting constructions as process specification languages such as colored Petri nets
and process algebras.

Acknowledgments

We would like to thank Joshua Guttman, Javier Thayer F´abrega, Jonathan Herzog, and
Al Maneki for the stimulating discussions about strands. We are also indebted to Sylvan
Pinsky for his encouragements to write down our ideas about the relationship between
strand construction and our protocol theories. Finally, this work profitted from fruitful
discussions with Jon Millen, Cathy Meadows, and Paul Syverson.

References

[BCJS02] Frederic Butler, Iliano Cervesato, Aaron D. Jaggard, and Andre Scedrov. A Formal
Analysis of Some Properties of Kerberos 5 Using MSR. InFifteenth Computer Secu-
rity Foundations Workshop — CSFW-15, pages 175–190, Cape Breton, NS, Canada,
June 2002. IEEE Computer Society Press.

[CDKS00] Iliano Cervesato, Nancy Durgin, Max I. Kanovich, and Andre Scedrov. Interpreting
Strands in Linear Logic. In H. Veith, N. Heintze, and E. Clark, editors,2000 Workshop
on Formal Methods and Computer Security — FMCS’00, Chicago, IL, July 2000.

[CDL+99] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre
Scedrov. A meta-notation for protocol analysis. In P. Syverson, editor,Proceedings of
the 12th IEEE Computer Security Foundations Workshop — CSFW’99, pages 55–69,
Mordano, Italy, June 1999. IEEE Computer Society Press.

[CDL+00] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and An-
dre Scedrov. Relating strands and multiset rewriting for security protocol analy-
sis. In P. Syverson, editor,13th IEEE Computer Security Foundations Workshop
— CSFW’00, pages 35–51, Cambrige, UK, 3–5 July 2000. IEEE Computer Society
Press.

[Cer01] Iliano Cervesato. Typed MSR: Syntax and Examples. In V.I. Gorodetski, V.A. Sko-
rmin, and L.J. Popyack, editors,First International Workshop on Mathematical Meth-
ods, Models and Architectures for Computer Networks Security — MMM’01, pages
159–177, St. Petersburg, Russia, May 2001. Springer-Verlag LNCS 2052.

[DLMS99] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Un-
decidability of bounded security protocols. In N. Heintze and E. Clarke,
editors, Proceedings of the Workshop on Formal Methods and Secu-
rity Protocols — FMSP, Trento, Italy, July 1999. Extended version at
ftp://ftp.cis.upenn.edu/pub/papers/scedrov/msr-long.ps .

[DM99] Grit Denker and Jonathan K. Millen. CAPSL Intermediate Language. In N. Heintze
and E. Clarke, editors,Proceedings of the Workshop on Formal Methods and Security
Protocols — FMSP, Trento, Italy, July 1999.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public-key protocols.IEEE
Transactions on Information Theory, 2(29):198–208, 1983.

[FHG98] F. Javier Thayer F´abrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Why is a security protocol correct? InProceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 160–171, Oakland, CA, May 1998. IEEE Computer
Society Press.

[FHG99] F. Javier Thayer F´abrega, Jonathan C. Herzog, and Joshua D. Guttman. Mixed strand
spaces. In P. Syverson, editor,Proceedings of the 12th IEEE Computer Security Foun-
dations Workshop — CSFW’99, pages 72–82, Mordano, Italy, June 1999. IEEE Com-
puter Society Press.

[Man99] A. Maneki. Honest functions and their application to the analysis of cryptographic
protocols. In P. Syverson, editor,Proceedings of the 12th IEEE Computer Security
Foundations Workshop — CSFW’99, pages 83–89, Mordano, Italy, June 1999. IEEE
Computer Society Press.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers.Communications of the ACM, 21(12):993–999, 1978.

[Son99] Dawn Song. Athena: a new efficient automatic checker for security protocol analysis.
In Proceedings of the Twelth IEEE Computer Security Foundations Workshop, pages
192–202, Mordano, Italy, June 1999. IEEE Computer Society Press.

