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Abstract

We study a security property for processes in dynamic
contexts, i.e., contexts that can be reconfigured at run-
time. The security property that we propose in this pa-
per, named Persistent BNDC, is such that a process is “se-
cure” when every state reachable from it satisfies a basic
Non-Interference property. We define a suitable bisimula-
tion based equivalence relation among processes, that al-
lows us to express the new property as a single equivalence
check, thus avoiding the universal quantifications over all
the reachable states (required by Persistent BNDC) and
over all the possible hostile environments (implicit in the
basic Non-Interference property we adopt). We show that
the novel security property is compositional and we discuss
how it can be efficiently checked.

1. Introduction

In the recent years, systems are becoming more and more
complex, and the security community has to face this by
considering, e.g., issues like process mobility among dif-
ferent architectures and systems. A mobile process moving
on the network can be influenced by the environments it
crosses, possibly leading to new security breaches. As an
example, consider a mobile agent that collects confidential
data (e.g., marketing information) from different commer-
cial hosts. It could be the case that one of the commercial
hosts is malicious and tries to deduce some confidential in-
formation about the commercial hosts previously visited by
the process. We should thus guarantee that the process is
protected from the different visited hosts, that could be run-
ning different operating systems on different architectures.

In a complex setting like the one described above, we can
abstractly think that the (possibly) hostile environment in�
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which a system or an application is running can be dynami-
cally reconfigured at run-time, changing in unpredictable
ways. A program executing in a “secure way” inside one
environment could find itself in a different setting (with dif-
ferent malicious attackers) at runtime, e.g., if the process
decides to migrate during its execution like in the “colle-
cting agent” example above. This could lead to unexpected
dangerous situations as a program which is secure for a cer-
tain environment might find itself with no protection if the
environment itself suddenly changes during its execution.

A number of formal definitions of security properties
(see, for instance, [1, 3, 6, 9, 10, 18, 21, 22, 23]) has been
proposed in the literature.

In this paper we face the problem of defining a new
security property based on the idea of Non-Interference
[11, 14, 19, 20, 23] (formalized as BNDC [8]), which is
suitable to analyze processes in completely dynamic hos-
tile environments. The basic idea is to require that every
state which is reachable by the system still satisfies a ba-
sic Non-Interference property. If this holds, we are assured
that even if the environment changes during the execution
no malicious attacker will be able to compromise the sys-
tem, as every possible reachable state is guaranteed to be
secure. This extension of BNDC, called Persistent BNDC
(P BNDC, for short), leads also to some interesting results,
as we are able to prove that it may be equivalently defined
by considering the BNDC property with a different under-
lying equivalence notion between processes, i.e., adopting
a different discriminating power on processes. This result
places this new property in the already studied taxonomy
of Non-Interference properties [8] and provides us with a
quite efficient way of verifying P BNDC, as it allows us
to avoid both the universal quantification over all the pos-
sible attackers, which is present in the BNDC basic def-
inition, and the universal quantification over all possible
reachable states, required by the definition of P BNDC it-
self. Finally, as we show that P BNDC is equivalent to
an already proposed property called SBSNNI [8], this work
also contributes in giving new verification techniques for

1



such a property. Compositional properties of P BNDC with
respect to the parallel operator and prefix operator are also
proved.

The paper is organized as follows. In Section 2, we de-
fine the Security Process Algebra (SPA) language and recall
the notion of weak bisimulation over SPA terms. In Sec-
tion 3, we first give the definitions of BNDC and P BNDC
and we show that P BNDC is suitable to deal with pro-
cesses in dynamic contexts. Then we characterize P BNDC
through a new definition of weak bisimulation up to high
level actions and we prove some properties. In Section 4,
we report an example of a system which satisfies P BNDC
and, finally, in Section 5, we briefly discuss how P BNDC
can be efficiently verified and draw some conclusions.

2. The SPA language

The Language. The Security Process Algebra (SPA) [8]
is a slight extension of Milner’s CCS [15], where the set of
visible actions is partitioned into high level actions and low
level ones in order to specify multilevel systems. SPA syn-
tax is based on the same elements as CCS that is: a set � of
visible actions such that ��������� where �	��
��������������
is a set of input actions and ����
����� ����������� is a set of out-
put actions; a complementation function � ��� ��� � , such
that ��� �!� , for all �#"$� ; a special action % which mo-
dels internal computations, i.e., not visible outside the sys-
tem. &('�)*�+�,�-
.%/� is the set of all actions. Function � �
is extended to &0'1) by defining �%��2% . In order to obtain a
partition of the visible actions into two levels we consider
two sets, &('�)43 and &('�)45 , of high and low level actions
which are closed with respect to � � , i.e., &('�)436�6&('�)43 and&('�)457�8&0'�)45 ; moreover they are disjoint and form a co-
vering of � , i.e., &0'�)93;:�&0'1)95	�=< and &0'�)93>��&0'1)?5	� � .

The syntax of SPA agents (or processes) is defined as
follows:@

�A� �#BDCE�F�
@
C
@ G @ C

@
C
@
C
@IH J C

@LK M�N
CPO

where �Q"R&('�) , J�S � ,

M
� &('�)T� &0'1) is such that

MVU
�WVX �

MVU WVX and

MVU
% X �Y% , and O is a constant that must

be associated with a definition O[Z�\^]�
@

.
Intuitively, B is the empty process that does nothing; �F�

@
is a process that can perform an action � and then behaves
as

@
;

@
_ G
@
` represents the non deterministic choice be-

tween the two processes

@
_ and

@
` ;
@
_ C
@
` is the parallel

composition of

@
_ and

@
` , where the executions of the two

processes are interleaved, possibly synchronized on com-
plementary input/output actions, producing an internal ac-
tion % ;

@�H J is a process

@
prevented from performing

actions in J 1;

@LK M�N
is the process

@
whose actions are re-

named via the relabelling function

M
.

1Notice that in CCS the operator a requires that the actions of bcaed do
not belong to dVfhgd .

For the definition of security properties it is also useful
the hiding operator, i , of CSP which can be defined as a

relabelling as follows: for a given set JjS � ,

@
i J Z�\^]�@LK M

k
N

where

M
k
U lFX � l if l�m" J and

M
k
U lFX ��% if l " J .

In practice,

@
i J turns all actions in J into internal % ’s.

Operational Semantics. Let n be the set of SPA agents,
ranged over by

@
and o . Let �

Up@ X denote the sort of
@

, i.e., the set of the (possibly executable) actions occur-
ring syntactically in

@
. The sets of high level agents and

low level ones are defined as nq3rZ�\^]�s

@
"tntCe�

Uu@ XDS
&('�)43[��
�%/�P� and nv5DZ�\^]�w


@
"DnxC�

Uu@ X0S &0'1)45L��
.%/�P� ,
respectively. Note that nv3 �ynv5 z�n , i.e., there exist sys-
tems that execute both high and low level actions allowing
communications between the two levels.

The operational semantics of SPA agents is given in
terms of Labelled Transition Systems. A Labelled Transi-
tion System (LTS) is a triple

U|{
�?}h��� X where

{
is a set of

states, } is a set of labels (actions), � S
{ ~ } ~

{
is a set of

labelled transitions. The notation

Up{
_ ���F�
{
` X "�� (or equiv-

alently

{
_���
{
` ) means that the system can move from the

state

{
_ to the state

{
` through the action � . A LTS is finite

if it has a finite number of states and transitions. The op-
erational semantics of SPA is the LTS

U
n���&0'1)1��� X , where

the states are the terms of the algebra and the transition re-
lation � S n ~ &0'1) ~ n is defined by structural induction
as the least relation generated by the axioms and inference
rules reported in Figure 1. The operational semantics for an
agent

@
is the subpart of the SPA LTS reachable from the

initial state

@
.

Observational Equivalence. The concept of observation
equivalence between two processes is based on the idea that
two systems have the same semantics if and only if they
cannot be distinguished by an external observer. This is ob-
tained by defining an equivalence relation over states/terms
of the SPA LTS, equating two processes when they are in-
distinguishable. In this way the semantics of a term be-
comes an equivalence class of terms. In the literature there
are various equivalences of this kind. In this paper we
consider the weak bisimulation equivalence, an observation
equivalence which takes care of the nondeterministic struc-
ture of the LTSs and focus only on the observable actions.

The general notion of bisimulation [15] consists of a mu-
tual step-by-step simulation, i.e., given two processes

@
ando , when

@
executes a certain action moving to

@��
theno must be able to simulate this single step by executing

the same action and moving to an agent o
�

which is again
bisimilar to

@��
, and vice-versa. A weak bisimulation is a

bisimulation which does not care about internal % actions,
i.e., when o simulates an action of

@
, it can also execute

some % actions before or after that action.



Prefix ��F�
@
��
@

Sum

@
_���
@��
_@

_ G
@
` ��
@��
_

@
` ��
@h�
`@

_ G
@
` ��
@h�
`

Parallel

@
_���
@h�
_@

_ C
@
` ��
@h�
_ C
@
`

@
` ��
@��
`@

_ C
@
` ��

@
_ C
@��
`

@
_���
@h�
_
@
` ���
@��
`@

_ C
@
` ��
@��
_ C
@��
`

Restriction

@
��
@��

@IH J ��
@�� H J if � m" J

Relabelling

@
��
@��

@LK M�N ��� ����
@��|K M�N

Constant

@
��
@��

} ��
@h�

if } Z�\^]�
@

Figure 1. The operational rules for SPA

We use the following notations. If � �7� _ ����� �
	>" &0'1)�� ,
then we write

@ 
�
@h�

if

@
���� ����� ����

@��
. We say that

@ �
is reachable from

@
when there exists �;"2&('�) � such

that

@ 
�
@��

. If �+" &0'1) , then we write

@
����
@h�

for

@LU �� X � ��
U �� X �

@��
where

U �� X � denotes a (possibly
empty) sequence of % labelled transitions. We also write@ �
����
@��

for

@
����
@��

if � "t� , and for

@LU �� X �
@��

if�*�I% (note that
���� requires at least one % labelled transi-

tion while

�������
U �� X � means zero or more % labelled tran-

sitions).

The notion of weak bisimulation is defined as follows.

Definition 2.1 (Weak Bisimulation) A binary relation� S n ~ n over agents is a weak bisimulation if

Uu@
��o X " �

implies, for all � " &0'�) ,
� whenever

@
��
@h�

, then there exists o
�

such thato
�
���� o

�
and

Up@��
�?o
� X " � ;

� whenever o �� o
�
, then there exists

@h�
such that@ �

����
@ �

and

Uu@ �
��o
� X " � .

Two agents

@
�?oR"xn are observation equivalent, denoted

by

@
� o , if there exists a weak bisimulation

�
containing

the pair

Uu@
��o X .

In [15] it is proved that � is the largest weak bisimulation
and it is an equivalence relation.

3. Security Properties

In this section, we give some definitions that try to
capture every possible information flow from a classified
(high) level of confidentiality to an untrusted (low) one. A
strong requirement of these definitions is that no informa-
tion flow should be possible even in the presence of mali-
cious processes that run at the classified level. The main
motivation is to protect a system also from internal attacks,
which could be performed by the so called Trojan Horse
programs, i.e., programs that are apparently honest but hide
inside some malicious code. This programs might be for
example downloaded from the network or sent by e-mail,
and executed by a high level user at the classified level. In
the presence of mobility this becomes of course more and
more crucial, as a Trojan Horse program could just enter the
system through some transparent mechanism (like, e.g., the
download of an applet), and the high level user could never
be aware of being executing some downloaded (potentially
malicious) code.

The definitions we are going to present are all based on
the basic idea of Non-Interference [11]: “No information
flow is possible from high to low if what is done at the high
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Figure 2. The BNDC property

level cannot interfere in any way with the low level”.
We start by reporting from [8] the definition of

Bisimulation-based Non Deducibility on Compositions
(BNDC, for short). Then, we extend it in order to deal with
dynamic contexts, i.e., by considering the possibility for the
hostile environment to change in an unpredictable way. To
make the system secure in this setting, we require that every
single state of the system is secure by itself. Thus, changing
the environment in the middle of a computation will never
lead to security breaches.

3.1. Non Deducibility on Compositions

The security property called Bisimulation-based Non
Deducibility on Compositions (BNDC, for short) is based
on the idea of checking the system against all high level po-
tential interactions, representing every possible high level
malicious program. A system

@
is BNDC if for every high

level process � a low level user cannot distinguish

@
from

@
C � . In other words, a system

@
is BNDC if what a low

level user sees of the system is not modified by composing
any high level process � to

@
.

The formal definition of BNDC is as follows.

Definition 3.1 (BNDC) Let

@
";n .@

"�������� iff 	
��";nv3h�
@7H
&('�)93 �

Uu@
C � X
H
&('�)43h�

The idea of BNDC is depicted if Figure 2. Let us also
show how BNDC works through some simple examples.

Example 3.2 First, consider process

@
_ � � _ � � � �� ` � B ,

where � is the only high level action. It basically accepts
the low level input � _ and then gives �� ` as output only if � is

executed. Note that we have a direct causality between the
high level input � and the low level output �� ` , representing
a direct information flow. As expected, this system is not
BNDC. It is sufficient to consider �I� �� � B . In this case it is
straightforward to see that

Up@
_ C � X

H
&('�)43 � � _ � �� ` � B while

@
_
H
&('�)43 � � _ � B . Note that the latter can never execute �� ` ,

thus

@
_
H
&0'1)43 m�

Uu@
_ C � X

H
&0'�)43 .

The next example aims at showing that BNDC is power-
ful enough to detect information flows due to the possibility
for a high level malicious process to block or unblock a sys-
tem.

Example 3.3 Let us just extend system

@
_ as follows:

@
` �� _ ��� � �� ` � B G � _ � �� ` � B . We have basically added the

trace � _ � �� ` in order to break the direct causality between
� and �� ` . As a matter of fact, now �� ` may be executed
even without � has been previously performed. However,
consider the same process �!� �� � B as before. We again
have that

Uu@
` C � X

H
&('�)43 � � _ � �� ` � B , but now

@
`
H
&('�)43 �

� _ � B G � _ � �� ` � B m�
Up@
` C � X

H
&0'1)43 . Note that

@
`
H
&('�)43

may (nondeterministically) block after the � _ input while
Uu@
` C � X

H
&0'1)43 always executes �� ` . Thus, having many

instances of this process, a low level user could deduce if�� is executed by observing whether the system always per-
forms �� ` or not. More discussion about how this can be
exploited to actually implement a communication channel
from high to low may be found in [8]. Process

@
` may

be “repaired” and made BNDC, by including the possibi-
lity of choosing to execute �� ` or not inside the process,
thus completely masking high level activity. Indeed, pro-
cess

@
� ��� _ � � � �� ` � B G � _ �

U
%q� �� ` � B G %e� B X can be proved to be

BNDC.
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Figure 3. The process ���

The next example shows that BNDC is too weak to detect
information flows from dynamic (reconfigurable) high level
malicious processes to low level ones.

Example 3.4 Consider the process

@
� � � _ �

U
� � � ` � B G%e� � � � � � B X G � _ �

U
%e� � ` � B G %e� � � � B X G � _ �

U
%q� � ` � B G %e� � � � B G %e� B X G

� _ � B depicted in Figure 3, where � is the only high level ac-
tion. It is easy to prove that

@
� is BNDC. Consider also a

dynamic high level malicious process that initially behaves
as �� � B but can be dynamically reconfigured to B at any com-
putation step. Assume that

@
� is executed in parallel with

such a malicious process and that the reconfiguration above
happens exactly after two actions of

@
� have been executed.

For a low level user, such an execution behaves as the pro-
cess � _ �

U
%e� � ` � B G %e� B X G � _ �

U
%q� � ` � B G %q� � � � B X G � _ �

U
%e� � ` � B G%e� � � � B G %q� B X G � _ � B . Note that, after executing � _ , this

process may (nondeterministically) move to

U
%e� � ` � B G %q� B X

where it can either execute � ` or deadlock. The latter is due
to the fact that when

@
� is going to perform the second oc-

currence of � then the high level process is reconfigured toB blocking the whole execution of the system. In this case a
low level user could deduce whether the second occurrence
of � in

@
� is performed or not just observing if the system

always performs � � or not. Hence, in presence of dynamic
contexts,

@
� should not be considered “secure”.

3.2. Persistent BNDC

We define a security property which is stronger than
BNDC but which allows us to deal with possibly dynamic
attackers, i.e., high level processes which can be dynami-
cally reconfigured. The novel security property is named

Persistent BNDC (P BNDC, for short). The idea is that a
system

@
is P BNDC if for every high level process � and

for every state

@��
reachable from

@
a low level user cannot

distinguish

@h�
from

@h�
C � (see Figure 4). This is equiva-

lent to say that

@
is P BNDC if for every state

@h�
reachable

from

@
,

@h�
is BNDC.

Formally P BNDC is defined as follows.

Definition 3.5 (Persistent BNDC) Let

@
">n .@

"�� ������� iff
	

@��
reachable from

@
and 	 �$";ne3h�@�� H

&0'1) 3 �
Up@��
C � X
H
&('�) 3 � � i.e.,

@h�
" � � � ���

We show the idea of P BNDC through a simple example.

Example 3.6 Consider again the BNDC process

@
� of

Example 3.3,

@
� � � _ � � � �� ` � B G � _ �

U
%q� �� ` � B G %e� B X . Sup-

pose that it reaches the state � � �� ` � B (after executing the
first � _ ). Now it is clear that this state is not secure, as a
direct causality between � and �� ` is present. In particu-
lar � � �� ` � B is not BNDC and this gives evidence that

@
� is

not P BNDC. The process may be “repaired” as follows:
@
� � � _ �

U
� � �� ` � B G %e� �� ` � B G %e� B X G � _ �

U
%q� �� ` � B G %e� B X . It may

be proved that

@
� is P BNDC. Note that, from this example

it follows that P BNDC is strictly stronger that BNDC, i.e.,
P BNDC z BNDC.

3.3. P BNDC and dynamic contexts

In order to show that the notion of P BNDC is suitable
to deal with processes in dynamic contexts we introduce a



  

execution

Π

?

Low level

EE Π

?

Low level

E’ E’

User User 

Figure 4. The P BNDC property

novel bisimulation based equivalence relation, named ����� ,
and show that

@
" � ������� if and only if

@
and

@ H
&('�) 3

are not distinguishable with respect to ����� for all hostile
contexts, i.e., contexts of the form

U
C � X
H
&0'1) 3 where

��" n 3 . We show that this is equivalent to say that

@
run-

ning in any dynamic hostile context is not distinguishable,
for a low level user, from

@
itself.

Let us first formally introduce the notion of hostile con-
text.

Definition 3.7 (Hostile context) A hostile context
�
K N

de-
notes a term of the form

U
C � X
H
&0'�) 3 where � "#n 3 ,

which can be regarded as a mapping from n to n that as-
sociates with each process

@
"Rn the process

�
K @ N

�Uu@
C � X
H
&0'�) 3 .

Observe that for any hostile context
�
K N

and process

@
,

all the processes reachable from
�
K @ N

have the form
�
�^K @���N

with
�
�^K N

being a hostile context too.
We now introduce the concept of weak bisimulation on

hostile contexts: the idea is that, given two processes

@
and o , when a hostile context

�
K N

filled with

@
executes

a certain action moving

@
to

@ �
then the same context filled

with o is able to simulate this step moving o to o
�

so that
@��

and o
�

are again weakly bisimilar on hostile contexts,
and vice-versa. This must be true for every possible hostile
context

�
K N

. It is important to note that the quantification
over all possible hostile contexts is re-iterated for

@��
ando

�
. This makes this equivalence suitable for dynamic set-

tings in which the environment may change in the middle
of system execution.

We use these notations. If � "�&('�) � and
�
K N

is a hostile

context, then we write

@ 
���

@h�
if
�
K @ N 
� �

�^K @���N
; we

write

@ 
�����

@��
if
�
K @ N 
��� �

�^K @���N
. Thus,

@ �
������
@��

stands for
�
K @ N

���� �
�^K @���N

if �["7� , while it stands for�
K @�N^U �� X � �

�^K @���N
if ���7% .

The notion of weak bisimulation on hostile contexts is
defined as follows.

Definition 3.8 (Weak Bisimulation on hostile contexts)
A binary relation

� S n ~ n over agents is a weak bisi-
mulation on hostile contexts if

Up@
�?o X " � implies, for all

contexts
�
K N

and for all �L"D&('�) ,
� whenever

@
����
@h�

, then there exists o
�

such thato
�
���� � o

�
and

Uu@ �
��o
� X " �

;

� whenever o �� � o
�
, then there exists

@h�
such that@ �

������
@h�

and

Up@��
�?o
� X " �

.

We say that two processes

@
��o2";n are weakly bisimilar

on hostile contexts, written

@
����� o , if

Up@
�?o X " �

for
some weak bisimulation on hostile contexts

�
. This may be

equivalently expressed as follows:

� ��� � 	 
 � � �
is a weak bisimulation

on hostile contexts � �
It is easy to prove that

� � ��� is the largest weak bisimulation on hostile con-
texts

� �
��� is an equivalence relation.

The next Theorem gives a characterization of P BNDC
processes in terms of � ��� .



Theorem 3.9 Let

@
"	n .

Then,

@
" � ������� iff

@7H
&('�)43 � ���

@
�

PROOF. See Appendix. �

The next result allows us to state that the notion of
P BNDC is suitable to deal with processes in dynamic con-
texts.

Let us first give a definition of dynamic hostile context,
i.e., a hostile context where the high level component may
arbitrarily change at any computation step.

Definition 3.10 (Dynamic hostile context) A dynamic
hostile context

�������
K N

denotes a term

U
C � X �����

H
&0'�) 3

with ��"Tnv3 such that for all � " &('�) , whenever

Up@
C � X
H

&('�)43 ��
Up@ �
C �
� X H &0'1) 3 then

� �����
K @ N
�� �
� �
�����
K @ � N

where�
� �
�����
K N
�
U
C �
� � X ����� H &('�)43 for some �

� �
">nv3 .

Theorem 3.11 Let

@
">n .

If

@�H
&('�)43 � ���

@
then

� �����
K @ N

�
@QH
&0'�)43 , for all

dynamic hostile contexts
�������

K N
.

PROOF. See Appendix. �

Corollary 3.12 Let

@
";n .

If

@
" � � � � � then

�������
K @ N

�
@jH
&('�) 3 , for all

dynamic hostile contexts
� �����

K N
.

3.4. Avoiding the universal quantifications

We show now how it is possible to give a characterization
of P BNDC avoiding both the universal quantification over
all the possible high level processes, which is present in the
BNDC basic definition, and the universal quantification over
all the possible reachable states, required by the definition
of P BNDC itself.

In the previous subsection, we have shown how the idea
of “being secure in every state” can be directly moved in-
side the bisimulation equivalence notion. However, the no-
tion of weak bisimulation on hostile contexts implicitly con-
tains a quantification over all possible malicious contexts.
We show here that the same equivalence notion, i.e., � ��� ,
may be expressed in a rather simpler way by exploiting lo-
cal information only. This can be done by defining a novel
equivalence relation which focusses only on observable ac-
tions that do not belong to &0'�) 3 .

More in detail, we define an observation equivalence
where actions from &('�) 3 may be ignored, i.e., they may
be matched by zero or more % actions. To this aim, we use a
transition relation which does not take care of both internal
actions and actions from &0'1)?3 as follows.

Definition 3.13 For an action � " &('�) , we write

U
�� X�	�
�� _�

to denote a sequence of zero or one � actions. The expres-

sion

@ �
��������������

@��
is a shorthand for

@ �
����
@��

if � m"&('�)43 , and for

@LU �
� � X �

U
�� � X�	�
��

_� U �
� � X �

@��
if �L"D&0'1)43 .

Notice that the relation

�
�������������� is a generalization of

the relation

�
���� used in the definition of weak bisimula-

tion [15]. In fact, if &0'1)?3 � < then for all �+" &('�) ,@ �
��������������

@��
coincides with

@ �
����
@h�

.

We define the concept of weak bisimulation up to &0'1)�3 .

Definition 3.14 (Weak Bisimulation up to &0'�) 3 ) A bi-
nary relation

� S n ~ n over agents is a weak bisimulation
up to &0'�)43 if

Uu@
��o X " � implies, for all �L"D&0'1) ,

� whenever

@
��
@��

, then there exists o
�

such thato
�
������������ � o

�
and

Up@��
�?o
� X " � ;

� whenever o �� o
�
, then there exists

@h�
such that@ �

��������������
@��

and

Uu@h�
�?o
� X " � .

We say that two agents

@
�?o " n are weakly bisimilar

up to &0'1)93 , written

@
� ������� � o , if

Up@
�?o X " � for some

weak bisimulation
�

up to &0'1)�3 . This is equivalently ex-
pressed as follows:
� ��������� � 	L
 � � � is a weak bisimulation up to &('�)93h���

It is easy to prove that
� � ��������� is the largest weak bisimulation up to &0'1) 3
� � ������� � is an equivalence relation.

The next theorem shows that the relations � ��� and� ��������� are equivalent.

Theorem 3.15 Let

@
��o2";n .

Then,

@
� ��� o iff

@
� ��������� o �

PROOF. See Appendix. �

Theorem 3.15 allows us to identify a local property of
processes (with no quantification on the states and on the
hostile contexts) which is a necessary and sufficient condi-
tion for P BNDC. This is stated by the following corollary.

Corollary 3.16 Let

@
"	n .

@
"�� ������� iff

@7H
&('�)43 � ���������

@
�

In practice, we have proven that a process is P BNDC
if and only if it is equivalent – with respect to a particu-
lar bisimulation based equivalence relation – to the same
process prevented from performing high level actions. This
property is particularly appealing since it suggests the effec-
tive computability of P BNDC. In particular, as we discuss
in the concluding section, one may perform the P BNDC
check using already existing tools at a low time complexity.



3.5. Properties of P BNDC

In this subsection we show that property P BNDC
is equivalent to the already proposed security property
SBSNNI (Strong Bisimulation-based SNNI, where SNNI
stands for Strong Non-deterministic Non Interference,
see [7, 8]) and we prove that it is compositional with re-
spect to both parallel and prefix operators.

The security property SBSNNI was defined in [7, 8] as
follows.

Definition 3.17 (SBSNNI) Let

@
"	n .@

"�� ��� ����� iff
	

@��
reachable from

@
�
@h��H
&0'1) 3 �

@��
iP&0'1) 3 �

This property was introduced to automatically check
BNDC, i.e., to bypass the quantification over all the pos-
sible malicious high level processes. As it follows from the
next proposition, SBSNNI is strictly stronger than BNDC,
since, quite interestingly, it is equivalent to P BNDC.

Proposition 3.18 � �������7��� ��� � ��� .
PROOF. See Appendix. �

In [8] it is proved that SBSNNI is compositional, in the
sense that it is preserved by the parallel and restriction
operators (statements

U
� X and

U
� X of Proposition 3.19). It

is easy to prove that � ������� is also compositional with
respect to the prefix operator limited to low level actions
(statement

U
	 X of Proposition 3.19).

Proposition 3.19U
� X if

@
��o2" � � � � � then

Up@
C o X "�� ������� ,U

� X if

@
" � ������� and J S � then

@7H J " � � � � � ,U
	 X if

@
" � ������� and �["t&0'1)45 �-
�%/� then �F�

@
"

� � � � � .

4. An example

In this section we report from [7, 8] a non trivial exam-
ple of a system which is SBSNNI and thus P BNDC. Our
aim is to give evidence that the proposed property is not too
restrictive. Moreover, in [7, 8], SBSNNI was used to prove
that the system was BNDC (as a sufficient condition). Fol-
lowing the intuition of P BNDC we can now state that such
a system is secure even when its execution environment is
dynamic and changes at runtime. The system itself could
be seen as a very simple mobile “collecting agent” (as the
one described in the introduction) that may be accessed in
different hosts.

More precisely, the example reported here is an access
monitor which handles read and write requests on two bi-
nary variables enforcing the Multilevel Security Policy [2],
a particular access control policy which has the aim of en-
suring that no information flow is possible from high level
to low one. The policy is based on two access rules: no read
up, i.e., no subject can read from an object with a higher
level; no write down, i.e., no subject can write to an ob-
ject with a lower level. In particular, the access monitor
process handles read and write requests from high and low
level users on two binary objects: a high level variable and
a low level one. It achieves no read up and no write down
access control rules allowing a high level user to read from
both objects and write only on the high one; conversely, a
low level user is allowed to write on both objects and read
only from the low one.

The access monitor system 2 is reported in Figure 5
(see also Figure 6). In such a system we have that 
�"
��q� � � err � , 8�=
��E����� , � � 
 val, access r, access w �
and � �

U
� � l/X � � �

U
� � lFX � put

U
� ��� X "6&0'1)93 	 l "�
��q� � �

and 	�� "x
��q� � � err � , while the same actions with 0 as first
parameter belong to &('�) 5 .

Users interact with the monitor through the following ac-
cess actions:

� � �
U
�4� lFX , a read request from level � to object l ;

� � �
U
�9� l ��� X , a write request from level � to object l of

value � ;
� put

U
�9��� X , the response to level � for a previous read re-

quest; � is the returned (read) value.

where � is the user level ( � ��� low, �V� � high), l is the
object ( l ��� low, l � � high) and � is the binary value to
be written.

As an example, consider � �
U
�e� � X which represents a

low level user

U
����� X read request from the high level ob-

ject

U l � � X , and � �
U
� ���e��� X which represents a high level

user

U
� � � X write request of value �

U
� ��� X on the low

object

U l ��� X . Read results are returned to users through
the output actions put

U
�4��� X . This can be also an error in case

of a read-up request. Note that if a high level user tries to
write on the low object – through access w

U
� ���q��� X – such a

request is not executed and no error message is returned.
The Access Monitor is the parallel composition of the

actual monitor AM and an interface for each level which
temporarily stores the output value of the monitor (passing
it later to the users and thus making communication asyn-
chronous) and that guarantees mutual exclusion within the
same level. This interface is crucial to guarantee P BNDC

2Note that the system is specified using a value-passing extension of
SPA. We will briefly explain its translation to the “pure” calculus in the
following.



Access Monitor �
U
AM C Interf X

H
�

AM �
U
Monitor C Object

U
� ��� X C Object

U
�e��� X9X

H


Monitor � access r

U
�4� l/X �U

if l�� � then �

U l ��� X � val

U
�9��� X �Monitor

else val

U
�4� err X �Monitor XG

access w

U
�4� l ��� X �U

if l�� � then �

U l ��� X �Monitor

else Monitor X
Object

U l ��� X � �

U l ��� X �Object

U l ��� X G �
U l ��� X �Object

U l ��� X
Interf � Interf

U
� X C Interf

U
� X

Interf

U
� X � � �

U
�4� lFX � access r

U
�9� lFX � val

U
�4� 
 X � put

U
�9��
 X � Interf

U
� XG

� �
U
�4� l ��� X � access w

U
�9� l ��� X � Interf

U
� X

Figure 5. The Access Monitor System.

property as without it a high level user could block the
monitor process indefinitely, by never accepting the re-
sponse of a read request (output value) leading to an indirect
information flow.

In order to understand how the system works, let us con-
sider the following transitions sequence representing the
writing of value

�
in the low level object, performed by the

low level user:
�
AM � Interf

����� � Interf
�
	�������

� ������� ��� �������
AM � access w

��� �!�"�#	��%$
Interf

����� � Interf
�
	&���'(�

)������ *+��� �#	&�%$
Monitor � Object

�
	,�-��� � Object
��� �-�.���'0/ � Interf

�'(�
)������
Monitor � Object

�
	.����� � Object
���"�#	�����0/ � Interf

��(�

The trace corresponding to this sequence of transitions is

� �
U
�e���e� � X

and so we can write:

�
AM � Interf

����� � Interf
�
	&���'(�

� ������� ��� ���1�2���
Monitor � Object

�
	.�-�.� � Object
���"�#	�����0/ � Interf

��(�

Note that, after the execution of the trace, the low level
object contains value

�
.

Access Monitor is a value passing specification of an ac-
cess monitor. Its translation into pure SPA is reported and
described in detail in [7, 8]. The idea is to translate each
possible combination of the values into different SPA ac-
tions and different SPA processes. As an example, here we
provide the translation of ���-354�6��

U l ��� X into the pure calcu-
lus by means of the following four constant definitions:

Object 
�
 � � 
�
 �Object 
�
 G � 
�
 �Object 
�
 G � 
 _ �Object 
 _
Object 
 _ � � 
 _ �Object 
 _ G � 
�
 �Object 
�
 G � 
 _ �Object 
 _
Object _ 
 � � _ 
 �Object _ 
 G � _ 
 �Object _ 
 G � _?_ �Object _?_
Object _�_ � � _�_ �Object _�_ G � _ 
 �Object _ 
 G � _?_ �Object _?_

Note that we have, for every possible value of the pair
U l ��� X , one different process Object 7,8 and two different ac-
tions � 7.8 and � 7,8 .

5. Conclusion

In this paper we studied a security property, named
Persistent BNDC, which is based on the idea of Non-
Interference and it is suitable to deal with processes in dy-
namic environments. We characterized P BNDC through
a local property (with no quantification on the states and
on the hostile contexts) by using a new definition of weak
bisimulation up to high level actions, denoted by � ��������� .
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r(1,y)
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access_r(1,0)
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access_w(0,1,z)
access_r(0,0)
access_w(0,0,z)

val(0,y)

val(1,y)

Monitor

Figure 6. The P BNDC Access Monitor

This result is interesting since it allows us to reduce the
problem of verifying P BNDC to the problem of checking a
weak bisimulation up to high level actions between two pro-
cesses. In the case of finite state processes, this can be effi-
ciently done either adopting the model-checking technique
or using a strong bisimulation checker. The model-checking
technique can be used as follows: one can exploit the well-
known greatest fixpoint characterization of bisimulation-
like relations [16] to derive modal mu-calculus formulae
characterizing finite-state processes up to the equivalence
relation � ��������� . In this case model checkers can be em-
ployed as P BNDC checkers. Indeed, if ���������
	 � is a char-
acteristic formulae for a finite state process

@
up to � ��������� ,

then

@
" � ������� if and only if

@$H
&0'�) 3 C ��� � �����	 �

(see [24, 25]). P BNDC can be also proved by following
the method proposed in [24] where the verification of a
process equivalence is reduced to the problem of verifying
a strong bisimulation between two transformed processes.
Given this transformation, the strong bisimulation test can
be performed using efficient algorithms for strong bisimu-
lation ([17, 12, 4, 13, 5]).

Actually, the compositional security checker described
in [7] provides an automatic tool for verifying P BNDC
over finite state processes: this is done by checking SBSNNI
that requires to verify a bisimulation property over all the
possible reachable states. The results presented in this paper
show us how we may improve the P BNDC checker by ex-
tending our compositional checker in order to deal with the
novel bisimulation-like equivalence relation � ������� � . We
plan to work on this subject in the next future.

Property P BNDC is not compositional with respect to
the nondeterministic choice operator. We are exploring the
existence of a (possibly) large class of P BNDC processes
for which the P BNDC property is preserved also through
such operator.

Finally, we observe that P BNDC is a property suitable
for reasoning on security of processes in presence of mo-

bility. However the language upon which we study such a
property is not exactly a language for mobility. Thus the
next step will be to study P BNDC (or similar properties)
when more suitable languages for dealing with mobility are
considered.
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A. Proofs

In this Appendix we give the proofs of Theorems 3.9,
3.11 and 3.15 and Proposition 3.18.

In the proof of Theorem 3.9 we use the following lemma
which easily follows from the definitions of hostile context
and of weak bisimulation on hostile contexts.

Lemma A.1 Let

@
";n such that

@
� ���
@ H
&0'�)43 .

Then for all

@h�
reachable from

@
there exists

@c� �FH
&0'�)43

reachable from

@7H
&('�)93 such that

@��
� ���
@�� � H

&0'1)43 .

Proof of Theorem 3.9. We first show that
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@
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@
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is a weak bisimulation.
This is sufficient to say that

@
" � ������� . In fact, by

Lemma A.1, for every state

@h�
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@
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. Hence, by definition of

�
, we have that
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is a weak bisimulation, we have that for all �Y"Qn 3 ,
@�� � H
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C � X
H
&('�)93 and, in particular,
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&0'1) 3 . Since � is an equivalence relation, by symmetry
and transitivity, we have that for every

@c�
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@
and for all � "$nv3 ,
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Up@��
C � X
H
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The fact that

�
is a weak bisimulation follows from the

following four cases. Let
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&0'�)43 � ���

@
` , there exists

@h�
_ such

that

@
_
H
&('�)43

�
���� �

@h�
_
H
&0'�)43 and

@��
_
H
&0'1)43 � ���@��

` . Since
�
K @
_
H
&0'�)43

N
can only perform actions of@

_
H
&0'1)43 , we have that

@
_
H
&0'1)43

�
����
@��
_
H
&0'�)93 and

Uu@��
_
H
&0'�)43h�

Uu@��
` C � X

H
&0'1)43 X " � .

Case 3.

Uu@
` C � X

H
&('�)43 ��

Uu@
` C �
� X H &('�)43 with

�
�� �

�
. By definition of

�
, it follows trivially that

Uu@
_
H
&0'�) 3 �

Uu@
` C �
� X H &('�) 3 X " � .

Case 4.

Up@
` C � X

H
&0'�) 3 ��

Up@��
` C �
� X H &('�) 3 where@

` ��
@h�
` , � ��� �

�
and ��"r&0'�)93 . Let

�
K N

be the

context

U
C��� X
H
&0'1)93 . Hence

@
` �� �

@��
` . By the hypoth-

esis that

@
_
H
&('�)93 � ���

@
` , there exists

@h�
_ such that@

_
H
&0'�) 3

����� �
@��
_
H
&('�) 3 and

@��
_
H
&('�) 3 �
���

@��
` .

Since
�
K @
_
H
&('�) 3

N
can only perform actions of@

_
H
&0'�) 3 , we have that

@
_
H
&0'1) 3

�����
@��
_
H
&('�) 3 and

Uu@��
_
H
&('�) 3 �

Uu@��
` C � X

H
&0'1) 3 X " � .

We now show that if

@
"�� ������� then

@TH
&('�)43 � ���@

. To this end it is sufficient to prove that

� � 

Uu@
_
H
&('�)43h�

@
` X C
@
_
H
&0'1)43 �

@
`
H
&('�)43

and

@
` " � � � � �h�

is a weak bisimulation on hostile contexts. This follows
from the following three cases.

Let
�
K N

be an hostile context.
Case 1.

@
_
H
&0'1)43 �� �

@��
_
H
&0'�)43 . Then it also

holds

@
_
H
&('�)93 ��

@h�
_
H
&0'�)43 . From the fact that

@
_
H
&0'1) 3 �

@
`
H
&0'�) 3 , we have that there exists

@c�
` such

that

@
`
H
&0'�) 3

�
����
@��
`
H
&('�) 3 and

@��
_
H
&0'1) 3 �

@��
`
H
&('�) 3 .

Moreover, since

@
` " � � � � � also

@��
` " � � � � � .

From the fact that

@
`
H
&0'�) 3

�
����
@��
`
H
&0'�) 3 we have that@

`
�
����
@��
` and thus

@
`

�
���� �
@��
` and, by definition of

�
,

Uu@��
_
H
&('�) 3 �

@��
` X " � .

Case 2.

@
`R�� �

@��
` with

@
`
H
&0'1) 3 ��

@��
`
H
&('�) 3 .

Since

@
_
H
&0'�) 3 �

@
`
H
&0'�) 3 , there exists

@ �
_ such that@

_
H
&0'�)43

�
����
@��
_
H
&0'�)43 and

@��
_
H
&0'�)43 �

@��
`
H
&('�)43 .

Moreover, since

@
` " � � � � � also

@��
` " � � � � � .

Hence

@
_
H
&0'1)43

�
���� �
@��
_
H
&('�)43 and, by definition of

�
,

Uu@��
_
H
&('�)43h�

@��
` X " � .

Case 3.

@
` �� �

@h�
` with

@
`!��

@��
` and �t"�&0'�)43 .

Then,

@
` i�&('�)43 ��

@��
` iP&0'1)43 . From the fact that

@
_
H
&0'1)43 �

@
`
H
&('�)43 and

@
` " � ������� , we

have that

@
_
H
&('�)43 �

@
` iP&0'1)43 and thus there

exists

@��
_ such that

@
_
H
&('�)43

�����
@��
_
H
&0'1)43 and

@��
_
H
&0'1) 3 �

@h�
` iP&0'�) 3 . Moreover, since

@
` " � � � � �

also

@��
` " � � � � � and hence

@h�
_
H
&0'1) 3 �

@��
`
H
&('�) 3 .

Thus

@
_
H
&0'1) 3

����� �
@��
_
H
&0'1) 3 and, by definition of

�
,

Uu@��
_
H
&('�) 3 �

@��
` X " � . �

Proof of Theorem 3.11. We show that

@$H
&0'�) 3 �
���

@
implies

�������
K @ N

�
@IH
&0'1) 3 , for all dynamic hostile con-

texts
�������

K N
. In order to do it we prove that

� � 

Uu@
_
H
&0'�) 3 � � �����

K @
`
N X C
@
_
H
&0'1) 3 �
���

@
`

and
�������

K N
is a dynamic context �

is a weak bisimulation.
This is clearly sufficient to say that

� �����
K @ N

�
@#H
&('�)43 ,

for all dynamic hostile contexts
� �����

K N
.

The fact that
�

is a weak bisimulation follows from the
following four cases.



Let

Uu@
_
H
&('�)43h� � �����

K @
`
N X " � .

Case 1.

@
_
H
&0'�) 3 ��

@��
_
H
&0'�) 3 with � m"�&0'1) 3 .

Thus, for all hostile contexts
�
K N

, we have

@
_
H
&0'1)43 �� �@��

_
H
&0'�)43 . By the hypothesis that

@
_
H
&0'1)43 � ���@

` , for all hostile contexts
�
K N

there exists

@ �
` such that@

`
�
���� �

@h�
` and

@��
_
H
&0'�)43 � ���

@��
` . Hence there ex-

ists

@h�
` such that

� �����
K @
`
N �
���� �

�
�����
K @h�
`
N

for some dy-
namic hostile context

� �����
K N

, and then, by definition of
�

,
Uu@��
_
H
&0'�)43h� �

�
�����
K @��
`
N X " � .

Case 2.
�������

K @
`
N
�� �
�
�����
K @��
`
N

with

@
`
H
&('�) 3 ��@��

`
H
&('�) 3 and � m"D&('�) 3 . Let

�
K N

�
U
C B X
H
&0'1) 3 . Hence@

`��� �
@��
` . By the hypothesis that

@
_
H
&0'1) 3 �
���

@
` ,

there exists

@��
_ such that

@
_
H
&0'1) 3

�
���� �
@��
_
H
&0'1) 3 and

@��
_
H
&0'1) 3 �
���

@��
` . Since

�
K @
_
H
&('�) 3

N
can only perform

actions of

@
_
H
&('�) 3 , we have

@
_
H
&0'�) 3

�
����
@ �
_
H
&0'�) 3

and

Up@��
_
H
&0'�)93h� �

�
�����
K @h�
`
N X H &('�)43 X " � .

Case 3.
� �����

K @
`
N
�� �
�
�����
K @
`
N
. By definition of

�
, it

follows trivially that

Uu@
_
H
&0'1)?3h� �

�
�����
K @
`
N X " � .

Case 4.
� �����

K @
`
N
�� �

�
�����
K @��
`
N

where

@
` ��

@��
`

and � " &0'1) 3 . Let
�
K N

�
U
C��� X
H
&('�) 3 . Hence@

` �� �
@��
` . By the hypothesis that

@
_
H
&0'1) 3 �
���

@
` ,

there exists

@ �
_ such that

@
_
H
&0'1) 3

����� �
@ �
_
H
&0'1) 3 and

@��
_
H
&0'1) 3 �
���

@��
` . Since

�
K @
_
H
&('�) 3

N
can only perform

actions of

@
_
H
&('�) 3 , we have

@
_
H
&0'�) 3

�����
@��
_
H
&0'�) 3

and

Up@ �
_
H
&0'�) 3 � �

�
�����
K @ �
`
N X " � . �

Proof of Theorem 3.15. We first show that

@
� ��� o im-

plies

@
� ��������� o . To this end it is sufficient to prove that

� � 

Uu@
��o X C

@
�
��� o��

is a weak bisimulation up to &0'1) 3 .
This follows from the following two cases.

Case 1.

@
��
@��

with � m"8&0'1)93 . Let
�
K N

be the
hostile context

U
C B X
H
&0'1)93 . Then

@
�� �
@��

. From the
fact that

@
� ��� o it follows that there exists o

�
such thato

�
���� � o

�
and

@��
�
��� o

�
. By the choice of

�
, we also

have that o
�
����=o

�
and, since � m"y&('�)43 , o

�
������������ � o

�
.

Moreover, by definition of
�

,

Uu@c�
�?o
� X " � .

Case 2.

@
��
@��

with �Q"8&0'1) 3 . Let
�
K N

be the
hostile context �

U
C��� X
H
&('�) 3 . Then

@ �� �
@��

. From
the fact that

@
����� o it follows that there exists o

�
such

that o
�������#o

�
and

@h�
� ��� o

�
. By the choice of

�
, we

also have that o
�
�������������� o

�
and, by definition of

�
,

Uu@��
�?o
� X " � .

We now show that

@
� ���������#o implies

@
����� o . To

this end it is sufficient to prove that

� � 

Up@
�?o X C

@
� ������� � o��

is a weak bisimulation on hostile contexts.
This follows from the following two cases.

Let
�
K N

be a hostile context.
Case 1.

@
�� �
@��

with

@
��
@h�

and � m" &0'1) 3 . Since@
� ��������� o , there exists o

�
such that o

�
�������������� o

�
and@��

� ���������[o
�
. Since � m"-&0'1)93 , we also have o

�
���� o

�
.

Thus o
�
���� � o

�
and, by definition of

�
,

Up@h�
�?o
� X " � .

Case 2.

@ ����
@��

with

@
��
@h�

and �D" &0'1)43 . Since@
� ���������+o , there exists o

�
such that o

�
��������������+o

�
and

@��
� ������� � o

�
. Thus either o

����� o
�

or o
�
���� o

�
.

Since the hostile context
�
K N

may synchronize on � by
performing the complementary action �� , we have that

o
����� �To

�
and

Uu@��
��o
� X " � . �

Before proving Proposition 3.18 we recall from [8] the
next definition and result.

Definition A.2 [8] Let

@
">n .

Then

@
"���� � ��� iff

@IH
&0'�) 3 �

@
iP&0'�) 3 �

Proposition A.3 [8] ��������z���� � ��� .
Proof of Proposition 3.18 We first prove that � ������� S
� ��� � ��� . Let

@
"�� ������� . By definition of � � � � � ,

for all

@��
reachable from

@
,

@h�
" ������� and then, by

Proposition A.3,

@h�
" ��� ����� . Hence, by Definition A.2,

for all

@h�
reachable from

@
,

@h�qH
&0'1)43 �

@��
iP&0'1) 3 , i.e.,

@
"�� � � ��� .
The fact that � ��� ����� S � ������� is demonstrated in

the proof of Proposition 6 in [8]. �


