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Abstract—In recent years, the threats and damages
caused by active worms have become more and more
serious. In order to reduce the loss caused by fast-
spreading active worms, an effective detection mechanism
to quickly detect worms is desired. In this paper, we first
explore various scan strategies used by worms on finding
vulnerable hosts. We show that targeted worms spread
much faster than random scan worms. We then present a
generic worm detection architecture to monitor malicious
worm activities. We propose and evaluate our detection
mechanism called Victim Number Based Algorithm. We
show that our detection algorithm is effective and able
to detect worm events before 2% of vulnerable hosts
are infected for most scenarios. Furthermore, in order to
reduce false alarms, we propose an integrated approach
using multiple parameters as indicators to detect worm
events. The results suggest that our integrated approach
can differentiate worm attacks from DDoS attacks and
benign scans.

I. INTRODUCTION

Computer worms are self-propagating malicious codes
that spread across networks by exploiting security flaws
without human intervention. The threats of these worms
have kept increasing, leading to increasing management
and maintenance costs. Recent studies ([5], [28], [22]
have shown that active worms could infect almost all
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vulnerable machines in the Internet within several hours
or even a few minutes. The Slammer worm [16] is an
example of such worms that spread to all potential targets
in less than 10 minutes. In order to find vulnerable
hosts, a worm can scan the entire IPv4 address space
randomly. Such a mechanism of finding vulnerable hosts
is called random scan. In this paper, we analyze various
scan techniques that help worms spread faster than a
random scan worm does. In particular, a worm that scans
IP address space selectively, for example, the only IP
addresses used in the Internet, can spread faster than
a worm that randomly scans the entire IPv4 address
space. Slapper ([4], [8]) is an example of such worms
that have already caused considerable damage to the
Internet. These methods reduce the time wasted on
scanning unallocated IP addresses and can dramatically
increase the spreading speed of worms. They are easy
to implement and pose the most imminent threats to the
Internet.

In this paper, we first present and analyze the spread of
worms that use various scan techniques. We then propose
and evaluate our worm detection algorithm, Victim Num-
ber Based Algorithm. We show that our algorithm can
detect various worm scans before 2% of the vulnerable
hosts are infected for most scenarios. Since events such
as DDoS attacks or port scans may cause false alarms,
we propose an integrated algorithm to reduce false
alarms using multiple parameters to differentiate worm
scans from DDoS attacks. These parameters include the
number of destination addresses scanned and the traffic
volume observed in the detection networks.

This paper is organized as follows. Section II intro-
duces related work on worm modeling and detection.



Section III describes various possible scan techniques
and the impact of these techniques on worm spreading
speed. In particular, we discuss the class of random scan-
ning worms including selective random scan and routable
scan. We also introduce a new worm scan method
called divide-conquer scan, and analyze its spreading
speed. Section IV presents a generic worm detection
architecture. Section V describes our Victim Number
Based Algorithm for worm detection. Section VI eval-
uates the performance of our algorithm using traffic
traces. To reduce false alarms, we propose an integrated
algorithm for worm detection using multiple parameters
as indicators in Section VII. We summarize the paper in
Section VIII.

II. BACKGROUND AND RELATED WORK

There are a number of studies on analyzing worms and
their propagation. Weaver [23] proposed a fast spreading
worm, called the Warhol worm, that uses various scan
methods to find vulnerable hosts. Staniford et al. [22]
systematically introduced the threats of worms and ana-
lyzed some well-known worms. In addition, smarter scan
methods such as localized subnet, hitlist and permutation
scans were discussed. These methods focus on improving
the efficiency of the worm scan process.

Several models were used to analyze the spreading
of worms. Kephart and White [14] introduced an epi-
demiological model to measure the dynamics of virus
population. Zou et al. [28] proposed a two-factor worm
model considering the factors on human countermea-
sures and congestion caused by worm scan traffic. Chen
et al. [5] proposed a discrete time model which adopts
parameters such as scan rate, patching rate and death
rate. By analyzing the factors that influence the spread of
worms, these models give insight into containing worm
propagation effectively.

Accurate detection and quick defense are always diffi-
cult problems for unprecedented worm attacks. There are
a number of detection methods using Internet traffic mea-
surements to detect worms. Based on the locations where
decisions are made on worm attacks, these methods can
be classified into three categories, i.e., detect worms at
end hosts, detect worms on enterprise networks, and
detect worms in the global Internet.

As an end host, a single computer can apply various
strategies to detect and respond to worm attacks. So-
mayaji et al. [19] proposed a method on worm detection
and defense that uses a system call sequence database
to compare with new sequences. If a mismatch is found,
then the sequence is delayed. Williamson [25] proposed
a method, called Virus Throttle, that checks whether a

computer sends a SYN packet to new addresses. If so,
the packet will be delayed for a short period of time.
These two methods can reduce the impact of false alarms
because they adopt the strategy of delaying connections
instead of dropping packets. Another example of delay-
ing worm spread is the LaBrea tool [15] designed by
Liston. This technique reduces the worm spreading speed
by holding TCP sessions with worm victims for a period
of time. Spitzner [20] introduced the idea of Honeypots,
which are hosts that pretend to own a number of IP
addresses and passively monitor packets sent to them. By
analyzing the scan packets, Honeypots can detect worm
attacks and generate the signatures to fight back worm
attacks.

To detect worm attacks on enterprise networks, Che-
ung [6] proposed an activity-graph based detection al-
gorithm that uses the scan activity-graph inferred from
the traffic, in which the senders and receivers of packets
are the vertices and the relations among them are the
edges. This method assumes that the activity graph can
be large for a very short period of time during worm
attacks. Recent proposals for scan detection on enterprise
networks include the works by Jung et al. ([12], [13])
and Staniford et al. ([24], [21]). Jung et al. [13] presented
an algorithm for portscan detection on enterprise net-
works using reverse sequential hypothesis testing. In this
algorithm, a random walk based mechanism observes
the number of unsuccessful scans being sent out of the
enterprise network by a particular host. Hosts that do
not receive acknowledgements for a large number of
connection attempts are contained by using a rate based
blocking technique. This method is further augmented
and implemented by a hardware system in [24]. Staniford
et al. [24] showed that their system is able to contain
malicious activity before a fixed number of scans are sent
out of the enterprise network. Gu et al. [10] discussed
worm containment in local network using a small address
space. Dagon et al. [7] discuss a multi-parameter based
worm detection mechanism using honeypots.

In terms of worm detection in the global Internet,
Zou et al. [27] explored the possibility of monitoring
Internet traffic with a small address space to predict
the worm propagation in the Internet. They use Kalman
filter based technique to detect the existence of worm
scans. However, Kalman filter based approach is found
to be sensitive to the selection of parameters such as
monitoring time intervals [10].

Since the number of infected machines increases dra-
matically and exhibits the trend of exponential growth,
we are able to monitor the change on the number of
infected machines to detect worms. We call the infected
machines observed in our monitoring networks victims.
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Fig. 1.  Comparison between AAWP model and Weaver’s sim-
ulator for a worm with scan rate=100/sec, number of vulnerable
machines=500,000 and hitlist size=10,000. Note that the curves of
these two models overlap.

The number of victims is directly related to the number
of infected machines in the Internet and the size of
monitoring networks, which enables us to capture worm
events when the number of victims increases steadily.
In this paper, we propose an algorithm, Victim Number
Based Algorithm, to detect worm events in the Internet.

III. WORM SCAN TECHNIQUES

In order to propagate itself in the Internet, a worm
needs to find vulnerable machines and then infect them.
To find vulnerable machines, a worm can either simply
scan the entire IPv4 address space randomly, or may
perform various strategies to scan the entire or partial
IPv4 address space to find targeted hosts. In this section,
we discuss various scan strategies and analyze their
spreading speed.

A. Random Scan

A worm randomly searches the entire IPv4 address
space, which contains 232 possible IP addresses, to find
vulnerable machines. We call such scan method random
scan. There are two existing models to simulate the ran-
dom scan worm propagation. One is the epidemiological
model proposed by Kephart et al. [14], and the other is
AAWP model proposed by Chen et al. [5]. Due to the
equivalence of these two models as shown in Fig. 1,
we adopt the AAWP model in this paper. Based on the
AAWP model, the spread of worm is characterized as
follows:

1 sny;
— (1= )]

nip1 =n; + [N —ng)[1 (D

where N is the total number of vulnerable machines in
the Internet; 2 is number of the addresses that a worm
performs random scan; s is the scan rate (the number
of scan packets sent out by an infected machine per
time tick) and n; is the number of infected machines
up to time tick <. These notations are used consistently
throughout this paper. In Equation (1), the first term
on the right hand side denotes the number of infected
machines alive at the end of time tick ¢. The term, N —n;,
denotes the number of vulnerable machines not infected
by time tick 4. The remaining term, 1 — (1 — %)*™, is the
probability that an uninfected machine will be infected
at the end of time tick ¢ + 1. We do not consider the
death rate due to computer crash and patching rate due
to maintenance here. Code Red [17] is a typical example
of random scan worms.

B. Selective Random Scan

Instead of scanning the entire IPv4 address space
blindly, a worm can scan the partial IPv4 address space
that is more likely to be used in the Internet. This will
help the worm spread faster by reducing the waste of
time on scanning unallocated addresses. The selected
address list can be obtained from other resources such
as IANA’s IPv4 address allocation map [11]. Such scan
technique with target selection is called selective random
scan. The Slapper worm [4] has used this scan technique
to spread rapidly. However, worms using the selective
random scan need to carry information about the selected
target addresses. Carrying such information enlarges the
worm’s code size and slows down the spreading and
infection processes. This information can be hundreds
of bytes long and therefore, may not provide much
advantage over the random scan.

To compare the spreading speed between random scan
worms and selective random scan worms, we do not
consider such additional payload information on selected
target addresses. Fig. 2(a) compares the spreading speed
of worms that use random scan and selective random
scan techniques. The parameters are chosen as the same
for both the random scan and the selective random scan.
The total number of vulnerable machines N is 500,000;
the scan rate s is 2 scans/second. The random scan
worms use the entire IPv4 address space which has about
232 x~ 4.3 x 10° addresses. The selective random scan
worms use only 162 /8 address blocks which contain
about 2.7 x 10° addresses. Fig. 2(a) demonstrates that
worm can spread much faster using a selective address
pool than using the entire IPv4 address space.
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(b) Random Scan vs. Routable Scan.

Fig. 2. Spreading speed of random scan, selective random scan and routable scan.

C. Routable Scan

In order to further reduce scanning address space,
a worm may avoid scanning the address space that
could not be routed in the Internet. It means that a
worm can obtain all routable addresses as scan targets
in order to spread fast and effectively. We call this
technique routable scan. However, this worm has to

segment from 3.0.0.0 to 4.255.255.255. After merg-
ing continuous address segments, we reduce the
total number of address segments to 17,918, which
covers about 1.17 x 10° IP addresses. Comparing
this with the total number of IPv4 addresses, we
find that around 27.3% of the IPv4 addresses are

routable.
Step 3. We combine address segments using a

carry a database of routable IP addresses in its code.
The size of this database will affect the propagation
speed. A database of larger size will lead to a longer
infection time, resulting in slower worm propagation. In
this subsection, we will discuss how the size of database
can be reduced and analyze the spread speed of routable
scan worms.

1) Design of Routable Scan Worm: BGP [18] is
an interdomain routing protocol that glues independent
networks together. Routable prefixes can be obtained
from BGP routing tables. This information enables worm
designers to reduce the scanning address space by re-
moving those addresses that cannot be routed. However,
carrying a large size of routable prefixes in a portable
code of worm might not be efficient and feasible. To
ensure that a worm carries a small size of routable
prefixes while those prefixes cover as many IP addresses,
we present an approach to reducing the size of payload
while keeping as much information as possible. The
approach consists of the following three steps:

e Step 1. We collect routable prefixes in the BGP
tables from RouteViews servers [1]. There are about
112K prefixes. We remove the prefixes that are more
specific if their supernets exist. After removing such
prefixes, only 49K prefixes are left.

o Step 2. We merge contiguous address segments into
a larger address segment. For example, the prefixes
3.0.0.0/8 and 4.0.0.0/8 can be merged into a new

distance threshold. That is, if two address segments
are close to each other in terms that their distance
is less than the predefined threshold, 65536, we
combine them into a new segment. After combining
address segments, the number of address segments
is reduced to 1926, which covers about 1.31 x 10°

IP addresses.

To store the address segments, a database of about
154K bytes (each entry needs 8 bytes) is required.
Furthermore, by analyzing the size distribution of the
address segments, we find that the largest 20% segments
contribute to over 90% of the covered IP addresses.
Therefore, a database of the largest segments within
3K bytes can still cover about 90% of the routable IP
addresses.

2) Spreading Speed of Routable Scan Worm: From
the analysis above, we know that the worm that employs
routable scan needs to scan only 10° IP addresses
instead of 232 addresses, which is four-fold smaller.
Hence, routable scan worm has a scanning space of
size Q ~ 10°. For other parameters, we use the same
settings as random scan. Fig. 2(b) shows the spreading
speed of routable scan and random scan. We find that

if random scan worm needs to spend about 24 hours to
infect almost whole vulnerable machines, the routable
scan worm only needs to spend about 7 hours to do
it. Clearly, routable scan strategy greatly increases the
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Fig. 3. Spreading speed of divide-conquer scan.

worm spreading speed.

D. Divide-Conquer Scan

Instead of scanning the complete address space in the
routable database from each infected host, an infected
host can divide its scanning address space among its
targets. We call it divide-conquer scan. For example,
after machine A infects machine B, machine A will
divide its routable addresses into halves and transmit one
half to machine B. Then machine A scans one half of
scanning address space and machine B scans the other
half. Using divide-conquer scan, the code size of the
worm can be further reduced, because each new infected
machine scans a different and smaller address space.

One drawback of divide-conquer scan is single point
of failure. During worm propagation, if one infected
machine is turned off or gets crashed, then the database
passed on to it will be lost. The earlier this happens, the
larger the impact will be. There are several measures to
address this problem.

One possible method is the generation of a hitlist,
where a worm infects a large number of hosts before
splitting the database. Another possible method is the use
of a generation counter. Each time the worm program is
transferred to a new victim, a counter is incremented.
The worm program decides to split the database based
on the value of the counter. A third possible method is to
randomly decide whether or not to divide the database.

To understand the spreading speed of divide-conquer
scan worm, we use AAWP model to characterize its
spread. As we know, when an infected host finds a
vulnerable host, it will divide its routable addresses into
halves and transmit one half to the vulnerable host.
It means that, at any time, each infected host uses a
different scanning space. For simplicity, we assume that
the entire space of routable addresses is equally divided

on all infected hosts at any time tick. Thus, we have
the following equation to model the spreading of divide-
conquer scan worms.

]' S
“ /)

where ¢ > (0. From Equation (2), we see that the
spreading speed of divide-conquer scan may be slightly
faster than that of routable scan. When % < 1, the
spreading speed of divide-conquer scan is quite close to
the spreading speed of routable scan.

However, one of the advantages of using divide-
conquer scan is that this worm can be designed to scan
any network address no more than once. For example,
when an infected host A scans a network address d, no
matter the infection is successful or failed, the infected
host A will remove the address d from its scanning
space to avoid further scanning. Using this strategy,
any routable address is scanned at most once. Such a
strategy will make the spreading of divide-conquer scan
worms more efficient. In this study, we consider divide-
conquer scan worms using this strategy to speed up the
propagation. To understand the spreading speed of such
divide-conquer scan worms, we now have the following
spreading model for the divide-conquer scan:

1 S
; /ni) ]
where (); denotes the number of routable addresses that

have not been scanned up to time tick ¢, which can be
expressed as follows,

—1 . i—1
Q; = { Q-3 gnys, if Q=" nis>n;

otherwise
We choose the same setting of parameters with
routable scan worms, and compare the spreading speed
of divide-conquer scan worms with routable scan worms.
Fig. 3 shows that the divide-conquer scan is much faster
than the routable scan, although the spreading process is
more complicated.

ni+1 = n; + (N — nz)[l — (1 (2)

niy1 =i + (N —ng)[1 — (1 - 3)

ng,

E. Comparison of Various Scan Techniques

The basic difference among various scan methods lies
in the selection of the address database. The larger size of
selected address database for scanning, the slower worms
can spread. For example, selective random scan worm
has a smaller scanning address space than random scan
worm, which makes it spread faster. Routable scan worm
reduces the scanning address space further than selective
random scan worm, and it improves spreading speed
again. For divide-conquer scan worm, it removes the
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Fig. 4. Comparison of various scan methods.

network addresses that have already been scanned, splits
the scanning address space every time when it affects
new vulnerable machines. Therefore, it has the fastest
spreading speed among these worms. Fig. 4 compares the
spreading speed of worms with random scan, selective
random scan, routable scan and divide-conquer scan.
It clearly shows that the divider-conquer scan worm
spreads the fastest among these scan methods.

and how the information obtained by monitoring should
be aggregated, have to be considered in designing the
detection architecture.

We propose a generic traffic monitoring and worm de-
tection architecture as shown in Fig. 5. The architecture
is composed of a detection control center and a number
of monitoring components. The monitoring components
IV. ARCHITECTURE FOR WORM DETECTION pre-analyze the traffic and send preliminary results or

. alarms to the detection control center. The detection

In order to detect scanning worms, we need to observe o

i i . control center collects these reports from the monitoring
various anomalies that are most likely caused by worms. ..

) . components and makes the final decision on whether
These anomalies can be observed either at end hosts, on . . . . C
) there is anything serious happening. To avoid single
local networks, or in the global Internet. The advantage . )
. . ) point of failure and to reduce the overload of control
of observing anomalies from the global Internet is that . .
- . center, we may have multiple detection control centers
we can detect worm faster and differentiate the worm . .
. . to share the load of computation and communication. In
scans from local events. In this section, we present a . )
. . . . this paper, we focus on evaluating the performance of our
generic architecture for worm detection in the global . . .
system for worm detection, and will not discuss about
the detailed design and implementation of the detection
control center and monitoring components.

Internet.

A. A Generic Worm Detection Architecture

Monitoring traffic towards a single network is often
not enough to detect a worm attack. This is because
worms may have already spread widely in the Internet
but have not infected the monitored network yet, or
worms may never infect the monitored network at all.
Therefore, we need to deploy multiple monitoring points
on various networks and aggregate the information thus
obtained. To achieve this, we propose a distributed
worm detection architecture. The architecture monitors
the network behavior at different places. By gathering
information from different networks, a detection control
center can determine the presence of a large scale worm
attack. Problems such as where the monitors should be
deployed, what needs to be monitored in the network

B. Deployment of Monitoring Components

The detection networks consist of a set of addresses
monitored by monitoring components. The monitoring
components can be deployed on virtual machines or on
gateways of local networks. They can also be traffic
analyzers beside routers, observing the traffic to a set
of addresses.

Worms may not choose to scan the entire IPv4 address
space. In addition, different worms might use different
target spaces. To make packet collection efficient and
effective, the monitoring components should be deployed
such that detection networks cover the address space as
much as possible, so that the probability of observing
the worm event can be high.



To identify worm scan traffic from normal traffic, we
consider any packet destined to an inactive address as
malicious scan packet which may be caused by worms.
Inactive addresses refer to the addresses that have been
allocated but have not been assigned to any physical
devices or computers. Inactive addresses can be collected
and monitored on the individual networks. We should
note that, besides the traffic towards to inactive ad-
dresses, we can also collect the traffic to active addresses
that do not provide requested services. For example,
most dial-up users do not provide HTTP server services.
Any traffic that tries to access these addresses with
HTTP services can be considered as malicious scans.
Therefore, our architecture does not need to rely on the
large number of inactive addresses only. Considering the
traffic to active addresses but requesting inactive services
will offer our system better chances to collect malicious
traffic for worm detection.

V. VICTIM NUMBER BASED ALGORITHM FOR WORM
DETECTION

Since worm signature is not known beforehand, we
need to detect anomalies that are most likely caused
by worms. Using our detection architecture, we need
to design algorithms to detect such anomalies. Serious
worm incidents usually involve a large number of hosts
scanning specific ports on a set of addresses. Because
it is hard for worms to obtain the list of all vulnerable
machines in the Internet beforehand, worms normally
need to randomly search for targets to infect. Such
random scanning techniques will induce a large number
of packets to inactive addresses or inactive services. If
we detect a large number of distinct addresses sending
scan packets to inactive addresses or inactive services
within a short period of time, then it is highly possible
that there is a worm attack.

We define the source addresses that attempt to connect
to inactive address as victims. Our detection system
will track the victims observed from all monitoring
components. The control center will determine whether
there is a worm attack based on the change of victim
number. Worm detection based on the change of victim
number can be considered as a change-point detection
problem. Similar to the typical sequential change-point
detection algorithms such as parametric or nonparametric
Cumulative Sum (CUSUM), our Victim Number Based
Algorithm calculates the change on the number of vic-
tims and compares it with an adaptive threshold to detect
worm events.

A. Victim Decision Rules

To detect the change on the number of victims, we
need to identify which source addresses are victims. One
of the simplest rules is that, if a source address sends at
least one scan packet to an inactive address, we consider
this source address a victim. We call this rule One Scan
Decision Rule (OSDR).

Though very simple, OSDR is susceptible to daily
scan noises. For example, when a legitimate user
mistypes a destination address, the source address might
be marked as a victim if the mistyped destination address
is inactive. To avoid such scan noises, we adopt Two
Scan Decision Rule (TSDR), that is, if a source address
sends at least two scan packets to inactive addresses, we
will consider this source address a victim. TSDR works
well with noise and reflects the incessant feature of worm
scans, but it needs to keep track of the number of scans to
inactive addresses for each source address, which leads
to a more complicated and expensive implementation
than OSDR. However, other techniques such as Bloom
Filter can be used to alleviate the complexity on the
implementation of TSDR.

B. Adaptive Threshold

In our Victim Number Based Algorithm, we use an
adaptive threshold to detect anomaly. When the number
of new victims is greater than the adaptive threshold 7;
in Equation (6), we consider there is an anomaly.

AVip1 — E[AV)] > T, 4
i—1
1
E[AV] =+ Z AVj )
Jj=i—k

1 i—1
Ti=nv*,|7 Zk (AV; — E[AV])? (6)

j=i—

where V; is the number of victims detected by the system
up to time tick i. AV; 11 = V;41 — V;, which denotes the
number of new victims detected from time tick ¢ to time
tick i 4+ 1. E[AV;] is the average number of new victims
over last k time ticks at time tick ¢, and k is the learning
time of the system. v is a constant value called threshold
ratio. 7; is the adaptive threshold at time tick %.

To reduce the false positive rate, in practice, we also
need to observe a number of such anomalies to determine
worm activity. The number of consecutive times of
anomaly needed to detect worm activity is denoted as
r. A tradeoff exists in the selection of the value of r. A
larger value of 7 gives a lower false positive rate but takes
longer time to detect worms whereas a smaller value of



Victim Number Based Algorithm:

Gather scan packets using detection architecture.
Identify victims using TSDR.
3. Set number of consecutive times that anomalies are
observed r, learning time k and threshold ratio ~.
4.  Set adaptive threshold 7; for the current time tick <.
5. do
if AV, 11 — E[AV;] > T, then
count = count — 1;
else
count = r;
end if
Update threshold 7; for the current time tick <.
6.  while (count > 0)
7. Alert a worm attack.

N =

Fig. 6. Victim Number Based Algorithm for Worm Detection

r may result in a larger false positive rate but takes less
time to detect worms.

In order to smooth the initial learning process, we
need to deploy some schemes to expire the entries in
the database. A simple method is to use new database
everyday. For example, the learning process will start
from what the database learned from the previous day.
Another method is to assign a decreasing life time L
to each new victim detected. If L decreases to zero then
the victim is considered as expired and removed from the
victim list. If a scan packet is received from the victim
before L expires, its lifetime is then reset to L. Using
this method, the size of the database can be kept stable.
However, keeping track of the timers for each address is
expensive. We use the method with daily reset for our
solution.

The Victim Number Based Algorithm is as shown in
Fig. 6. The monitoring components gather scan packets
to the detection networks, and use TSDR to identify the
victims. The detection control center collects the victims
from all monitoring components and performs Victim
Number Based Algorithm to detect whether or not there
is a worm.

VI. PERFORMANCE OF VICTIM NUMBER BASED
ALGORITHM

Before we evaluate our detection algorithm, first we
need to understand how the number of victims increases
during worm events given a detection network size,
which will guide us to choose the desired size of
detection network. Then we need to set the parameters
including the learning time, the threshold ratio constant
and the number of consecutive times that anomalies
are observed. We choose these parameters based on the

properties of the background traffic. In this section, we
use traffic traces to decide the parameters and evaluate
our detection algorithm.

A. Modeling the Number of Victims

Predicting the number of victims during worm events
is important for us to detect the abrupt changes. For
worms with random scan, selective random scan and
routable scan, we use AAWP model to model the number
of victims as follows when OSDR is applied.

i D
Vi = ;(m —ni—)[1 - (1- 5)“‘””]

(N

where V} is the number of victims detected by the system
up to time tick k, n; is the number of infected hosts up
to time tick ¢, D is the detection network size, i.e., the
total number of the inactive addresses being monitored,
Q) is the number of addresses that worms perform scan,
and s is the scan rate.

Similarly, when we use TSDR to determine victims,
the number of victims can be modeled as the following
equation,

k

Vie= 3 (mimmi ) [1-pt ot (1) i)
=0

®)

where p = (1 — %) The total number of victims

detected at the end of time tick k should be the sum
of new victims detected at every time tick ¢ before k.
On the right hand side of the equation, (n; — n;_1),
is the number of newly infected machines during time
tick i. p(*~95 denotes the fraction of infected machines
during time tick ¢ that have never scanned the addresses
in the detection network up to time tick k. The term
pE=Ds=1(1 — p)(k — i)s denotes the fraction of infected
machines during time tick ¢ that have scanned the
addresses in the detection network only once up to time
tick k. Equations (7) and (8) assume that each newly
infected host uses the same address space to do further
scan.

However, for worms with divide-conquer scan method,
each infected host has a different scanning address space.
The worms will not scan any network address more than
once. Hence, after a certain period of time, all addresses
in the detection network will be scanned by worms,
and no more victims can be monitored by the detection
network. To simplify the analysis, we assume that, at any
time before all detection network addresses have been
scanned, the number of detection network addresses that
have not been scanned is proportional to the number of
routable addresses that have not been scanned. Similar to



Equation (8), using TSDR to detect divide-conquer scan
worms, the number of victims detected by the system
up to time tick £ can be expressed by the following
equation:

Vi = Sio(ni = nie)[1 = aki — Bral, if %P >1
Vi1, otherwise

where ag,; = (1 — %)(k_i)s, which denotes the fraction
of infected machines during time tick ¢ that have never
scanned the addresses in the detection network up to time
tick k. By = (1—8)(+=s=1(D)(k—i)s, which denotes
the fraction of infected machines during time tick ¢ that
have scanned the addresses in the detection network only
once up to time tick k. €2 denotes the total number of
routable addresses. {2, = ) — Z;:é n;s, which denotes
the number of routable addresses that have not been
scanned up to time tick k. D is the detection network
size.

B. Requirements for Detection Network Size

Our detection system monitors the traffic to a set of
inactive addresses and determines the number of victims
in the Internet. The more inactive addresses we monitor,
the closer the number of victims is to the real number
of infected hosts in the Internet. Thus, the detection
network size, i.e., the total number of monitored inactive
addresses, is important for tuning the performance of our
algorithm.

To understand the impact of the detection network
size, we analyze the difference on the number of victims
we observed from the detection network and the number
of infected hosts in the Internet. Without considering the
noises on the background traffic, we use AAWP model to
analyze the number of infected hosts in the Internet and
the number of victims monitored in detection networks
using TSDR rule for various worm scan methods.

Fig. 7 shows the results on different detection network
sizes for various scan methods. Fig. 7(a) shows the
difference on the number of observed victims and the
number of infected hosts in the Internet for random scan
worms. We see that the number of victims detected ap-
proaches the number of infected hosts when the detection
network size is over 220 (a /12 network). For routable
scan in Fig. 7(b), we have the similar result as random
scan except that the spreading speed is faster than that
of random scan.

For divide-conquer scan in Fig. 7(c), we can see that
when a /8 detection network is used for divide-conquer
scan, the number of victims detected approaches the
number of infected hosts closely before all addresses
in detection network have been scanned. When a /12

detection network is used, the number of victims de-
tected lags a little behind the infection curve. However,
when a /16 detection network is used, all addresses in
the detection network will be scanned soon, and the
number of victims lags far behind the infection curve.
This suggests that, comparing with random scan and
routable scan, it is difficult to detect infected hosts of
divide-conquer scan worms as victims using TSDR when
the detection network size is not large enough.

Although the infection dynamics of random and
routable scan methods can be captured with comparable
performance, divide-conquer scan is very hard to detect.
Fortunately, divide-conquer scan has its limitations and
attackers often combine it with random scan to enhance
worm spreading speed, which makes our solution possi-
ble to detect worms in that particular case.

C. Traffic Collection

We evaluate our algorithm on real traffic traces from
worm incidents. Howeyver, it is very difficult to find such
Internet traffic traces that are publicly available. In this
study, we use traffic traces from the WAND research
group [9]. These traffic traces are gathered from the
gateways on the campus network at the University of
Auckland, New Zealand, who owns a /16 prefix. We
use an incoming traffic trace recorded on June 12, 2001,
because the date is close to the day when Code-Red
I V2 broke out (July 19, 2001). The packets we are
interested in are the SYN packets sent towards TCP
port 80 (HTTP). Using worm infection dynamics from
Equation (8), we add the simulated number of worm
victims detected by a /14 network over time into this real
traffic traces. Combining the victim number dynamics
from the real incoming traffic with the simulated worm
traffic, we get the simulated victim number dynamics
on the network under different worm attacks. In the
simulation, we assume that the worm starts at 3:00am
in the morning. We use these traces to evaluate our
detection algorithm.

D. Parameter Selection

Selecting appropriate parameters for the detection sys-
tem is important. We try to select parameters to achieve
small false alarm rates. We perform an exhaustive search
in the domains of the learning time k, the threshold ratio
~ and the number of consecutive times that anomalies are
observed r. Intuitively, the learning time, k, cannot be
too long as it can lead to a longer detection time. Small
value of k£ may lead to false alarms due to background
noises. We also find that a larger value of r can reduce
false alarms, but it will take longer time to detect worm
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E. Evaluation of Victim Number Based Algorithm

To evaluate our algorithm on real traces, we combine

the real trace traffic with simulated worm traffic based
on various random scan methods. Fig. 8(a) shows the
detection time for random scan worm. The worm starts
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at 3:00am in the morning with scan rate of 2 per second
and is detected at 13:27pm when less than 1.25% of
vulnerable machines are infected. It shows that with the
/14 network, there is a rapid increase in the number
of victims during random scan worm attacks. Fig. 8(b)
shows the case when worms perform routable scan. We
can see that when worms perform routable scan, we
detect worm events at 5:43am. At this time, less than
0.83% of vulnerable machines are infected. For divide-
conquer scan, as shown in Fig.8(c), we have similar
results as routable scan because the changes on the
number of victims for both scan methods are similar
during the early stage of worm spreading. However,
the spreading speed of divide-conquer scan is faster
than routable scan. When we detect divide-conquer scan
worm at 5:43am, less than 0.84% of vulnerable machines
are infected.

Besides the various types of scan methods, we want to
know to what extent the victim number based detection
algorithm works for worms with different scan rates.
Fig. 9(a) gives the results on the fraction of vulnerable
machines that have been infected when our algorithm
detects worm events by varying scan rates using a /14
detection network. The Y-axis shows the number of new
victims detected in each time interval. We can see that
our algorithm can detect worms with higher scan rates
earlier than worms with lower scan rates. Fig. 9(b) and
Fig. 9(c) show similar plots for routable scan and divide-
conquer scan worms respectively.

To understand how 2 (the number of addresses that a
worm performs random scan) and N (the number of vul-
nerable machines in the Internet) affect the performance
of our algorithm, we look at various cases varying these
numbers and check the fraction of vulnerable machines
that have been infected when we detect worm events.
In Fig. 10(a), we vary € from 1.3 x 10° to 232 when

N = 500,000. The worm can be detected before 1.4%
of vulnerable machines are infected in most cases. In
Fig. 10(b), we vary N from 0.1 x 10% to 2.0 x 10% when
Q = 232 Tt shows that worms can be detected before
2% of vulnerable machines are infected.

VII. INTEGRATED ALGORITHM FOR REDUCING
FALSE ALARMS

As shown from the previous section, the victim num-
ber based algorithm is able to detect worm events
involving random and routable scans when the number
of victims increases. However, our detection system may
also observe that the number of victims increases during
DDoS attacks, which can lead to false alarms. In this
section, we analyze the performance of victim number
based algorithm for scenarios where it is prone to yield
false alarms. We alleviate the problem of false alarms
by analyzing other indicators during a worm attack, and
propose an integrated algorithm for worm detection.

A. Scenarios Causing False Alarms

Here we look at the following two scenarios where
our system might yield false alarms:

« DDoS Attacks: In the case of a DDoS attack,
we could observe a large number of victims. For
example, in Fig. 11(a), an attacker could randomly
spoof a large number of source IP addresses to
attack a target in the detection network. In this
case, our monitor will detect the number of victims
increasing and trigger an alarm of worm attack.
However, it is not a worm attack. As another
example in Fig. 11(b), an attacker can also use
reflection DDoS attack to make our system trigger
false alarms. In this case, the attacker puts a spoofed
source address in the packets and sends them to a
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large number of hosts. The spoofed source address
is one of the addresses in our detection network.
Therefore, our monitor will observe a large number
of replies to the detection network from those hosts.
It will result in significant increases in the number
of victims and lead to a false alarm. However, in
these cases, we find that the destination addresses in
the detection network visited by those DDoS traffic
are quite limited. During worm attacks, the number
of destination addresses visited by worm scans is
much larger than that during DDoS attacks. So we
can use this indicator to differentiate worm attacks
from DDoS attacks.

o Benign Scans: Some traffic, such as the traffic
from web-crawlers, might be benign scans that
are shown in [12]. However, if there are a large
number of such scanners operating at the same time,
our detection system might see a large number of
victims if these scanners attempt to connect to the
addresses in the detection network. In that case, our
system might have false alarms. However, the traffic
volume caused by web-crawlers or benign scanners
should be much less than the traffic volume caused
by worms. If we consider the volume of scan traffic
as an indicator, we can differentiate worm scans
from benign scans.

B. Analysis of DDoS Scans and Benign Scans

In order to reduce the false alarms caused by the above
scenarios, we need to understand the differences between
worm attacks and DDoS attacks or benign scans. Below
is the analysis on those differences that differentiate the
worm attacks from DDoS attacks or benign scans.

1) Destination Addresses Visited in Detection Net-
works: During the period of worm attack and DDoS
attack, the number of new destination addresses in the
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(b) Reflection DDoS attacks.

Scenarios causing false alarms, where the number of victims is large but the number of destinations is small.

detection network visited by worm scanners may be
different from that by DDoS scanners. This number and
its variation yield valuable information to differentiate
a worm attack from a DDoS attack. The reason is that
the number of new destination addresses in the detection
network visited by infected machines increases rapidly
to a large extent during a worm attack, while this number
increases more slowly or even remains unchanged during
a DDoS attack.

The number of destination addresses visited in the
detection network by infected machines during a worm
attack can be derived using the following equation:

1 sn;
1=(1=-5™) ©
where A;.1 is the number of destination addresses
visited in the detection network by infected hosts up to
time tick 7+ 1, D is the detection network size, € is the
size of the address space being scanned by the worm, s
is the scan rate and n; is the number of infected nodes
at time tick 7.

2) Scan Traffic Volume: The differentiation of worm
attacks and benign scans can be done by looking at
the scan traffic volume coming towards the detection
network. Scan traffic volume is defined as the number
of scan packets that destine to detection network per
unit time. In the case of a benign scan, the volume of
scan traffic increases more slowly when compared to the
volume of scan traffic received by either worm attacks
or DDoS attacks. The scan traffic volume generated by
worm infected hosts can be derived from the following
equation, which will increase linearly with the number
of infected hosts.

Ait :Ai-l-(D—Ai) *

Bit1 = Ssny (10)

Q
where B;1 is the volume of scan traffic that destine to
detection network up to time tick ¢ + 1.



C. An Integrated Approach to Worm Detection

Based on the above analysis, we introduce two more
parameters to indicate worm attacks. One is the number
of new destination addresses visited in the detection
network by victims. The other one is the volume of scan
traffic that destine to detection network. The number
of new destination addresses visited in the detection
network can be collected as explained below. Each time
when a scan packet from victims is received by the
detection system, the monitor component checks whether
or not the destination address has already been visited. If
it is not, then it is added to a list of destination addresses
that have been visited. The detection control center gets
this information and uses the same aggregation technique
as that with the victim number, that is, a threshold based
detection to detect anomaly. The number of the new
destination addresses visited in the detection network
should be significantly large in the case of a worm
attack. During DDoS attacks or normal user behavior,
this number is expected to be small, which leads to a
distinction between a worm attack and a DDoS attack.
We can use a similar approach to detect the anomaly on
volume of scan traffic.

The complete integrated approach of worm detection
is described in Fig. 12. That is, first, we check whether
the victim number is found to be higher than its adaptive
threshold 7;. Second, we check whether the number of
new destination addresses visited in detection networks
by victims is higher than its adaptive threshold 7. Third,
we check whether the change of traffic volume towards
the detection network is higher than its adaptive thresh-
old Tib. If all these anomalies happen multiple times
that exceed their corresponding limits on the consecutive
times, the control center will report a worm attack.

D. Evaluation of the Integrated Algorithm

In the integrated algorithm, we use a threshold based
detection technique to observe the changes on traffic
volume and number of the destination addresses visited
in the detection network. The parameters k£ and v are
chosen to be 240 and 3 respectively, which are the same
as before. However, r, and r, are chosen to be 5 for
the change detections on traffic volume and the new
destination addresses visited in the detection network.

To evaluate the integrated algorithm, we use the traffic
that contains both worm events and DDoS attacks, and
compare the results with that of the original Victim Num-
ber Based Algorithm. The DDoS traffic trace is obtained
from the backscatter data collected by CAIDA [2]. We
add the DDoS traffic and the simulated worm traffic into

Integrated Algorithm:

1. Gather scan packets using detection architecture
2. Identify victims using TSDR
3. Initialize variables:
count = r, count, = r,, county, =13
4. do
if AV, ; — E[AV;] > T; then
count = count — 1
else
count = r;
end if
if AAZ'+1 — E[AAZ] > T? then
count, = count, — 1
else
count, = 1r4;
end if
if ABH—I — E[ABz] > Tib then
county, = county, — 1
else
county = rp;
end if
Update threshold 7}, T and T} for time tick i.
while ( count # 0 || count, # 0 || county # 0)
5. Alert a worm attack

Fig. 12. Integrated Algorithm for Worm Detection

the real traffic. We assume that both worm event and
DDoS attack take place at the same time, 3:00am.

Fig. 13 shows the traffic volume of normal traffic,
DDoS traffic and worm traffic with random scan method.
We see that at 3:00am, the traffic volume increases a lot
due to DDoS attack, but the traffic caused by worms does
not increase much. After 18:00pm, the traffic volume
caused by worms becomes larger than normal traffic.

To detect worm events from the above traffic, we need
to calculate the number of victims. Since this data trace
is collected by the network telescope [3] of CAIDA
(a group of inactive addresses), every source address
in the packet received by this network is considered
as a victim. Using the original Victim Number Based
Algorithm, we can detect worm at 4:00am, one hour
after the onset of DDoS attack. Actually the number of
victims caused by worms is very small at 4:00am, but
the number of victims caused by DDoS attacks is large at
that time. The original Victim Number Based Algorithm
will give an alert because it detects the abrupt change on
the number of victims, which is not caused by worms.
Hence the original Victim Number Based Algorithm has
a false alarm. However, using the integrated algorithm,
we will not detect worm at 4:00am. Fig. 14 shows that
the number of new destination addresses visited in the
detection network during a DDoS attack is small (at most



W
o)
DDosS traffic : :
1
4 1
l - 1 4
0 3 t LT} : !
J W ii I'l"’ il Worm traffic
[t 1
g H [ A 1 / ]
> 1
g ;
Q
i |
'_
Worm and DDoS attacks start at 3:00am
1
10 ¢ E
— Normal traffic
o - - - Normal traffic + Worm traffic + DDoS traffic
10 . X . .
0 5 10 15 20 25
Time
Fig. 13.  Volume of normal traffic, DDoS traffic and worm traffic

w

10
—— DDosS Traffic
Worm Traffic
0%} Detected by VNB|Algorithm . N E

due to DDoS attafk (False alarm)

Worm|and DDoS

=
o
N

Detected by|Integrated Algorithm-

Number of new destination addresses

Fig. 14. Number of new destination addresses visited in detection
networks during worm attacks and DDoS attacks

1 or 2 new addresses per second). For worm attacks, this
number is much large and increases exponentially. The
integrated algorithm detects worm scanning at 9:48am,
almost 7 hours after the infection starts.

Thus, the integrated algorithm for worm detection
improves the performance of the original Victim Number
Based Algorithm by reducing false alarms.

VIII. SUMMARY AND FUTURE WORK

In this paper, we discuss different types of worm scan
methods and their effects on future worm propagation,
and introduce two new scan techniques, routable scan
and divide-conquer scan. These new techniques of worm
scans pose a big menace to the network security.

To detect and defend the worm attacks, we propose an
algorithm for worm detection on various scan methods,

Victim Number Based Algorithm, to detect worms. This
algorithm is one of solutions towards the global worm
detection system. Its simplicity and effectiveness as
shown in this work make it highly practical to imple-
ment. Using multiple parameters as indicators of worm
attacks, the integrated approach can reduce false alarms
by differentiating worm attacks from some DDoS attacks
and benign scans.

Although we have investigated the performance and
feasibility of Victim Number Based Algorithm in this
paper, there are still some issues for future study. For
example, we have not analyzed the cost of the imple-
mentation of our algorithm in hardware design, and the
difficulties on the deployment of monitoring components
distributed in the Internet. Our future work includes the
estimation of the resources necessary to implement the
integrated solution and the study on a viable implemen-
tation.
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