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Abstract

We present three case studies, investigating the use of probabilistic model
checking to automatically analyse properties of probabilistic contract sign-
ing protocols. We use the probabilistic model checker PRISM to analyse
three protocols: Rabin’s probabilistic protocol for fair commitment exchange;
the probabilistic contract signing protocol of Ben-Or, Goldreich, Micali, and
Rivest; and a randomised protocol for signing contracts of Even, Goldreich,
and Lempel. These case studies illustrate the general methodology for apply-
ing probabilistic model checking to formal verification of probabilistic security
protocols.

For the Ben-Or et al. protocol, we demonstrate the difficulty of combining
fairness with timeliness. If, as required by timeliness, the judge responds to
participants’ messages immediately upon receiving them, then there exists a
strategy for a misbehaving participant that brings the protocol to an unfair
state with arbitrarily high probability, unless unusually strong assumptions
are made about the quality of the communication channels between the judge
and honest participants. We quantify the tradeoffs involved in the attack
strategy, and discuss possible modifications of the protocol that ensure both
fairness and timeliness.

For the Even et al. protocol, we demonstrate that the responder enjoys a
distinct advantage. With probability 1, the protocol reaches a state in which
the responder possesses the initiator’s commitment, but the initiator does not
possess the responder’s commitment. We then analyse several variants of the
protocol, exploring the tradeoff between fairness and the number of messages
that must be exchanged between participants.

Keywords: Security Protocols, Contract Signing, Probabilistic Model Check-
ing.

1 Introduction

Consider several parties on a computer network who wish to exchange some items
of value but do not trust each other to behave honestly. Fair exchange is the
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problem of exchanging data in a way that guarantees that either all participants
obtain what they want, or none do. Contract signing is a particular form of fair
exchange, in which the parties exchange commitments to a contract (typically, a
text string spelling out the terms of the deal). Commitment is often identified with
the party’s digital signature on the contract. In commercial transactions conducted
in a distributed environment such as the Internet, it is sometimes difficult to as-
sess a counterparty’s trustworthiness. Contract signing protocols are, therefore, an
essential piece of the e-commerce infrastructure.

Contract signing protocols. The main property a contract signing protocol
should guarantee is fairness. Informally, a protocol between A and B is fair for
A if, in any situation where B has obtained A’s commitment, A can obtain B’s
commitment regardless of B’s actions. Ideally, fairness would be guaranteed by
the simultaneous execution of commitments by the parties. In a distributed en-
vironment, however, simultaneity cannot be assured unless a trusted third party
is involved in every communication. Protocols for contract signing are inherently
asymmetric, requiring one of the parties to make the first move and thus put itself
at a potential disadvantage in cases where the other party misbehaves.

Another important property of contract signing protocols is timeliness, or timely
termination [4]. Timeliness ensures, roughly, that the protocol does not leave any
participant “hanging” in an indeterminate state, not knowing whether the exchange
of commitments has been successful. In a timely protocol, each participant can
terminate the protocol timely and unilaterally, e.g., by contacting a trusted third
party and receiving a response that determines the status of the exchange.

Research on fair contract signing protocols dates to the early work by Even and
Yacobi [17] who proved that fairness is impossible in a deterministic two-party con-
tract signing protocol. Since then, there have been proposed randomised contract
signing protocols based on a computational definition of fairness [15, 16], protocols
based on gradual release of commitments [12, 8], as well as non-probabilistic con-
tract signing protocols that make optimistic use of the trusted third party (a.k.a.
judge). In an optimistic protocol, the trusted third party is invoked only if one of
the participants misbehaves [4, 18]. In this paper, we focus on probabilistic con-
tract signing, exemplified by the probabilistic contract signing protocol of Ben-Or,
Goldreich, Micali, and Rivest [6] (henceforth, the BGMR protocol). To illustrate our
general methodology for analysing probabilistic fair exchange protocols, we also con-
sider the contract signing protocol of Even, Goldreich, and Lempel [16] (henceforth,
the EGL protocol), and Rabin’s protocol for probabilistic fair exchange [30].

Related work. A variety of formal methods have been successfully applied to the
study of nondeterministic contract signing protocols, including finite-state model
checking [32], alternating transition systems [23, 24], and game-theoretic approaches
[9, 11, 10]. None of these techniques, however, are applicable to contract signing
in a probabilistic setting. Since fairness in protocols such as Rabin’s and BGMR
is a fundamentally probabilistic property, these protocols can only be modelled
with a probabilistic formalism such as Markov decision processes and verified only
with probabilistic verification tools. This is a novel line of research, and very few
results have been published. For non-repudiation (a restricted case of contract
signing), Aldini and Gorrieri [1] used a probabilistic process algebra to analyse the
fairness guarantees of the probabilistic non-repudiation protocol of Markowitch and
Roggeman [26]

Even for non-fairness properties such as secrecy, authentication, anonymity,
etc., formal techniques for the analysis of security protocols have focused almost
exclusively on nondeterministic attacker models. Attempts to incorporate prob-
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ability into formal models have been limited to probabilistic characterization of
non-interference [20, 33, 34], and process formalisms that aim to represent prob-
abilistic properties of cryptographic primitives [25]. This paper is an attempt to
demonstrate how fully automated probabilistic analysis techniques can be used to
give a quantitative characterization of probability-based security properties.

2 Technique and Main Results

Our main contribution is a demonstration of how probabilistic verification tech-
niques can be applied to the analysis of fairness properties of security protocols.
To model the actions of an arbitrarily misbehaving participant, we endow him with
nondeterministic attacker operations in addition to the probabilistic behaviour pre-
scribed by the protocol specification. The resulting model for the protocol combines
nondeterminism and probability, giving rise to a Markov decision process, which is
then analysed with PRISM [22, 29], a probabilistic model checker. A preliminary
version of this paper, consisting of sections 2-7 (analysis of the BGMR protocol), was
published in conference proceedings as [28].

Quantifying fairness. We construct Markov decision process models for BGMR,
Rabin’s, and EGL protocols, and then use PRISM to calculate the probability that
each protocol terminates in a fair state as a function of the number of message
rounds. For the EGL protocol, we also explore several variants based on different
message scheduling schemes. For each variant, we use PRISM to quantify the
computational disadvantage of the losing party in the unfair state, formalised as the
number of bits he needs to guess before he can compute the opponent’s commitment.
We also calculate the number of messages that must be exchanged before fairness is
restored, i.e., to reach a state in which both parties know each other’s commitment
from a state in which only one party knows the opponent’s commitment.

Fairness and timeliness in the BGMR protocol. The BGMR protocol as spec-
ified in [6] consists of two phases: the “negotiation” phase of pre-agreed duration,
in which participants exchange their partial commitments to the contract, and the
“resolution” phase, in which the judge issues decisions in case one or both of the par-
ticipants contacted him during the negotiation phase. The BGMR protocol does not
guarantee timeliness. On the one hand, the negotiation phase should be sufficiently
long to enable two honest participants to complete the exchange of commitments
without involving the judge. On the other hand, if something goes wrong (e.g.,
a dishonest party stops responding), the honest party may contact the judge, but
then has to wait until the entire period allotted for the negotiation phase is over
before he receives the judge’s verdict and learns whether the contract is binding on
him or not.

We study a variant of the BGMR protocol that attempts to combine fairness with
timeliness by having the judge respond immediately to participants’ messages, in
the manner similar to state-of-the-art non-probabilistic contract signing protocols
such as the optimistic protocols of Asokan et al. [4] and Garay et al. [18]. Our
analysis uncovers that, for this variant of the BGMR protocol, fairness is guaranteed
only if the judge can establish a communication channel with A, the initiator of
the protocol, and deliver his messages faster than A and B are communicating with
each other. If the channel from the judge to A provides no timing guarantees, or the
misbehaving B controls the network and (passively) delays the judge’s messages, or
it simply takes a while for the judge to locate A (the judge knows A’s identity, but
they may have never communicated before), then B can exploit the fact that the
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judge does not remember his previous verdicts and bring the protocol to an unfair
state with arbitrarily high probability.

We quantify the tradeoff between the magnitude of this probability and the
expected number of message exchanges between A and B before the protocol reaches
a state which is unfair to A. Informally, the longer B is able to delay the judge’s
messages (and thus continue communicating with A, who is unaware of the judge’s
attempts to contact him), the higher the probability that B will be able to cheat
A.

Fairness and computational disadvantage in the EGL protocol. In the
EGL protocol [16], each party starts by generating a sequence of pairs of secrets and
revealing the encryptions of the contract under each secret. A party is considered
committed if the opponent knows both secrets in at least one pair. In the first
phase, the parties use oblivious transfer to probabilistically reveal one secret from
each pair. In the second phase, they release all secrets bit by bit.

For this protocol as specified in [16], we demonstrate that, with probability
1, it reaches a state in which the responder (second mover) knows both secrets
from at least one of the initiator’s pairs, but the initiator does not know both
secrets from any of the responder’s pairs. We use PRISM to quantify the initiator’s
computational disadvantage by calculating the expected number of bits he needs
to guess to complete one of the responder’s pairs. For the case when the responder
does not stop communicating immediately after reaching a point of advantage, we
calculate the expected number of messages that must be exchanged before fairness
is restored, that is, the initiator learns both secrets in at least one of the responder’s
pairs.

We also consider alternative message scheduling schemes for the second phase of
the EGL protocol, and present fairness analysis for several variants. We are interested
in two questions. First, for a given party P (initiator or responder), what is the
probability of reaching a state where the other party knows both secrets from one
of P ’s pairs, but P does not know both secrets from one of the opponent’s pairs?
(Obviously, we would like this probability to be as close to 1

2 as possible). Second,
after an “unfair” state is reached, how long does it take before fairness is restored,
that is, how many bits does the “losing” party need to receive before he knows both
of the opponent’s secrets?

3 Probabilistic Model Checking

Probability is widely used in the design and analysis of software and hardware
systems: as a means to derive efficient algorithms (e.g., the use of electronic coin
flipping in decision making); as a model for unreliable or unpredictable behaviour
(e.g., fault-tolerant systems, computer networks); and as a tool to analyse system
performance (e.g., the use of steady-state probabilities in the calculation of through-
put and mean waiting time). Probabilistic model checking (see e.g., [31]) refers to a
range of techniques for calculating the likelihood of the occurrence of certain events
during the execution of such a system, and can be useful to establish performance
measures such as “shutdown occurs with probability at most 0.01” and “the video
frame will be delivered within 5ms with probability at least 0.97”. The system is
usually specified as state transition system, with probability measures on the rate
of transitions, and a probabilistic model checker applies algorithmic techniques to
analyse the state space and calculate performance measures.

In the distributed scenario, in which concurrently active processors handle a
great deal of unspecified nondeterministic behaviour exhibited by their environment,
the state transition systems must include both probabilistic and nondeterministic
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behaviour. Standard models of such systems are Markov decision processes (MDPs)
[13]. Properties of MDPs can be specified in the probabilistic branching-time tem-
poral logic PCTL [21, 7] which allows one to express properties such as “under any
scheduling of nondeterministic choices, the probability of φ holding until ψ is true
is at least 0.78/at most 0.04”.

3.1 PRISM model checker

We use PRISM [22, 29], a probabilistic model checker developed at the University of
Birmingham. The current implementation of PRISM supports the analysis of finite-
state probabilistic models of the following three types: discrete-time Markov chains,
continuous-time Markov chains and Markov decision processes. These models are
described in a high-level language, a variant of reactive modules [2] based on guarded
commands. The basic components of the language are modules and variables. A
system is constructed as a number of modules which can interact with each other.
A module contains a number of variables which express the state of the module,
and its behaviour is given by a set of guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system and the command describes
a transition which the module can make if the guard is true (using primed variables
to denote the next values of variables). If a transition is probabilistic, then the
command is specified as:

<prob> : <command> + · · ·+ <prob> : <command>

PRISM accepts specifications in either PCTL, or CSL logic depending on the model
type. This allows us to express various probabilistic properties such as “some event
happens with probability 1”, and “the probability of cost exceeding C is 95%”. The
model checker then analyses the model and checks if the property holds in each
state. In the case of MDPs, specifications are written in the logic PCTL, and for
the analysis PRISM implements the algorithms of [21, 7, 5].

4 Rabin’s, BGMR, and TBGMR Protocols

Rabin’s and BGMR protocols involve the trusted third party, while the EGL protocol
is a two-party protocol. Since the structure of Rabin’s and BGMR protocols is very
similar, we describe and analyse them together. We also consider a timely variant of
BGMR which we call the TBGMR protocol. The EGL protocol is described and analysed
in section 8.

4.1 Rabin’s protocol

Rabin’s protocol [30] enables two parties, A and B, to exchange their commitments
to a pre-defined contract C with the help of a trusted third party. The protocol
is not optimistic: an action of the third party is required in every instance of the
protocol. Every day, the third party must publicly broadcast a randomly chosen
integer between 1 and N .

Before beginning the exchange, the parties agree on some future cutoff date D.
A then sends to B message “sigA(I am committed to C, if integer i is chosen on
date D),” where i is initially 1. When B receives this message, he responds with
“sigB(I am committed to C, if integer i is chosen on date D),” to which A responds
with “sigA(I am committed to C, if integer i+ 1 is chosen on date D),” and so on.
The exchange must complete before date D.
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Intuitively, for any integer i between 1 and N , if the last message in the exchange
was from B, then A and B have equal probability of being committed after the third
party randomly chooses and broadcasts a number. If the number is less than or
equal to i, then both parties are committed. If the number is greater than i, then
neither party is committed.

Now suppose the last message in the exchange was from A. If the number broad-
cast by the third party is less than or equal to i, then both parties are committed.
If it is greater than i+ 1, then neither is committed. If the number is exactly equal
to i + 1, then A is committed, but B is not. Therefore, the probability that the
protocol terminates in a state in which only one party is committed is 1

N .

4.2 BGMR protocol

The goal of the probabilistic contract signing protocol of Ben-Or, Goldreich, Micali,
and Rivest [6] (the BGMR protocol) is the same as that of Rabin’s protocol: to enable
A and B to exchange their commitments to a pre-defined contract C. It is assumed
that there exists a third party, called the judge, who is trusted by both A and B.
Unlike Rabin’s protocol, the BGMR protocol is optimistic. An honest participant
following the protocol specification only has to invoke the judge if something goes
wrong, e.g., if the other party stops before the exchange of commitments is complete
(a similar property is called viability in [6]). Optimism is a popular feature of fair
exchange protocols [27, 3, 4]. In cases where both signers are honest, it enables
contract signing to proceed without participation of a third party, and thus avoids
communication bottlenecks inherent in protocols that involve a trusted authority
in every instance.

Privilege and fairness. In the BGMR protocol, it can never be the case that the
contract is binding on one party, but not the other. Whenever the judge declares
a contract binding, the verdict always applies to both parties. For brevity, we will
refer to the judge’s ruling on the contract as resolving the contract.

Privilege is a fundamental notion in the BGMR protocol. A party is privileged if it
has the power to cause the judge to rule that the contract is binding. The protocol
is unfair if it reaches a state where one party is privileged (i.e., it can cause the
judge to declare the contract binding), and the other is not.

Definition 1 (Probabilistic fairness) A contract signing protocol is (v, ε)−fair
for A if, for any contract C, if A follows the protocol, then at any step of the
protocol in which the probability that B is privileged is greater than v, the conditional
probability that A is not privileged given that B is privileged is at most ε.

The fairness condition for B is symmetric.
Probabilistic fairness means that at any step of the protocol where one of the

parties has acquired the evidence that will cause the judge to declare the contract
binding with probability v, the other party should possess the evidence that will
cause the judge to issue the same ruling with probability of no less than v − ε.
Informally, ε can be interpreted as the maximum fairness gap between A and B
permitted at any step of the protocol.

Main protocol. Prior to initiating the protocol, A chooses a probability v which
is sufficiently small so that A is willing to accept a chance of v that B is privileged
while A is not.

A also chooses a value α > 1 which quantifies the “fairness gap” as follows: at
each step of the protocol, the conditional probability that A is privileged given that
B is privileged should be at least 1

α , unless the probability that B is privileged is less
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than v. B also chooses a value β > 1 such that at any step where A is privileged,
the conditional probability that B is privileged should be at least 1

β . Both parties
maintain counters, λa and λb, initialised to 0.

A’s commitment to C has the form “sigA(With probability 1, the contract C shall
be valid)”. B’s commitment is symmetric. It is assumed that the protocol employs
an unforgeable digital signature scheme.

All messages sent by A in the main protocol have the form “sigA(With probability
p, the contract C shall be valid)”. Messages sent by B have the same form and are
signed by B. If both A and B behave correctly, at the end of the main protocol A
obtains B’s commitment to C, and vice versa. At the abstract level, the main flow
of the BGMR protocol is as follows:

A → B sigA(With probability pa
1, the contract C shall be valid) = ma

1

A ← B sigB(With probability pb
1, the contract C shall be valid) = mb

1
...

A → B sigA(With probability pa
i , the contract C shall be valid) = ma

i
...

A → B sigA(With probability 1, the contract C shall be valid) = ma
n

A ← B sigB(With probability 1, the contract C shall be valid) = mb
n

In its first message ma
1 , A sets pa

1 = v.
Consider the ith round of the protocol. After receiving message “sigA(With

probability pa
i , the contract C shall be valid)” from A, honest B checks whether

pa
i ≥ λb. If not, B considers A to have stopped early, and contacts the judge for

resolution of the contract as described below. If the condition holds, B computes
λb = min(1, pa

i · β), sets pb
i = λb and sends message “sigB(With probability pb

i , the
contract C shall be valid)” to A.

The specification for A is similar. Upon receiving B’s message with probability
pb

i in it, A checks whether pb
i ≥ λa. If not, A contacts the judge, otherwise he

updates λa = max(v,min(1, pb
i · α)), sets pa

i+1 = λa and sends message “sigA(With
probability pa

i+1, the contract C shall be valid),” initiating a new round of the pro-
tocol.

The main protocol is optimistic. If followed by both participants, it terminates
with both parties committed to the contract.

The judge. Specification of the BGMR protocol assumes that the contract C defines
a cutoff date D. When the judge is invoked, he does nothing until D has passed,
then examines the message of the form “sigX(With probability p, the contract C
shall be valid)” supplied by the party that invoked it and checks the validity of the
signature.

If the judge has not resolved contract C before, he flips a coin, i.e., chooses a
random value ρC from a uniform distribution over the interval [0, 1]. If the contract
has been resolved already, the judge retrieves the previously computed value of ρC .
In either case, the judge declares the contract binding if p ≥ ρC and cancelled if
p < ρC , and sends his verdict to the participants. To make the protocol more
efficient, ρC can be computed as fr(C), where r is the judge’s secret input, selected
once and for all, and fr is the corresponding member of a family of pseudo-random
functions [19]. This enables the judge to produce the same value of ρC each time
contract C is submitted without the need to remember his past flips. The judge’s
procedure can thus be implemented in constant memory.
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Observe that even though the judge produces the same value of ρC each time
C is submitted, the judge’s verdict depends also on the value of p in the message
submitted by the invoking party and, therefore, may be different each time. If
the judge is optimised using a pseudo-random function with a secret input to work
in constant memory as described above, it is impossible to guarantee that he will
produce the same verdict each time. To do so, the judge needs to remember the
first verdict for each contract ever submitted to him, and, unlike ρC , the value of
this verdict cannot be reconstructed from subsequent messages related to the same
contract.

4.3 Timely BGMR

Asokan et al. [4] define timeliness as “one player cannot force the other to wait
for any length of time—a fair and timely termination can be forced by contacting
the third party.” The BGMR protocol as specified in Section 4.2 does not guarantee
timeliness in this sense. To accommodate delays and communication failures on a
public network such as the Internet, the duration of the negotiation phase D should
be long. Otherwise, many exchanges between honest parties will not terminate in
time and will require involvement of the judge, making the judge a communication
bottleneck and providing no improvement over a protocol that simply channels all
communication through a trusted central server.

If D is long, then an honest participant in the BGMR protocol can be left “hang-
ing” for a long time. Suppose the other party in the protocol stops communicating.
The honest participant may contact the judge, of course, but since the judge in the
original BGMR protocol does not flip his coin until D has passed, this means that the
honest party must wait the entire period allotted for negotiation before he learns
whether the contract will be binding on him or not. This lack of timeliness is incon-
venient and potentially problematic if the contract requires resource commitment
from the participants or relies on time-sensitive data.

In this paper, we investigate a variant of BGMR that we call TBGMR (for “Timely
BGMR”). The only difference between BGMR and TBGMR is that, in TBGMR, the judge
makes his decision immediately when invoked by one of the protocol participants.
Once the verdict is announced and reaches an honest participant, the latter stops
communicating. The rest of the protocol is as specified in Section 4.2. TBGMR
protocol is timely. Any party can terminate it unilaterally and obtain a binding
verdict at any point in the protocol without having to wait for a long time.

5 Model for Rabin’s, BGMR, and TBGMR pro-
tocols

We formalise Rabin’s, BGMR and TBGMR protocols as Markov decision processes. Since
these models have infinite state-spaces, we discretise the probability space of each
model and then analyse chosen finite configurations with PRISM. We use PRISM to
calculate the probability of each protocol terminating in a fair state as a function of
the number of rounds, and to determine whether TBGMR is fair or not. For simplicity,
we will refer to the third party in all protocols as the judge.

5.1 Overview of the model

First, we model the normal behaviour of protocol participants and the judge accord-
ing to the protocol specification, except that in the model for TBGMR the judge makes
his coin flip and responds with a verdict immediately rather than waiting for the
cutoff date D. A dishonest participant might be willing to deviate from the protocol
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in an attempt to cheat the honest participant. We equip the dishonest participant
with an additional set of dishonest actions, any of which he can take nondetermin-
istically at any point in the protocol. To obtain a finite probabilistic model, we fix
the parameters chosen by the participants, and discretise the probability space of
the judge’s coin flips.

Modelling the dishonest participant. Conventional formal analysis of security
protocols is mainly concerned with security against the so called Dolev-Yao attacker,
following [14]. A Dolev-Yao attacker is a nondeterministic process that has complete
control over the communication network and can perform any combination of a given
set of attacker operations, such as intercepting any message, splitting messages into
parts, decrypting if he knows the correct decryption key, assembling fragments of
messages into new messages and replaying them out of context, etc.

We assume that the communication channels between protocol participants en-
sure authentication and integrity of all messages (in practice, this is usually achieved
by employing cryptographically secure digital signatures and message authentica-
tion codes). Therefore, it is impossible for the misbehaving participant to forge a
message from an honest participant, nor modify the content or origin of an existing
message. We will also assume that the channels between the participants and the
judge are resilient : it is possible for the attacker to delay messages and schedule
them out of order, but he must eventually deliver every message to its intended
recipient.

Due to our assumptions about the communication channels, our adversary model
is strictly weaker than the Dolev-Yao model. A misbehaving participant cannot
completely remove other participants’ messages from the network, nor introduce
forged messages from other participants, nor modify their existing messages. Dis-
honest actions available to a misbehaving participant are limited to (i) stopping
prematurely, and, in BGMR and TBGMR protocols, (ii) invoking the judge even though
the honest party has not stopped communicating in the main flow of the protocol,
and (iii) delaying and re-ordering messages between the judge and the honest party.
A misbehaving participant can nondeterministically attempt any of these actions
at any point in the protocol. When combined with the probabilistic behaviour of
the judge, the nondeterminism of the dishonest participant gives rise to a Markov
decision process.

Modelling fairness. To model fairness in BGMR and TBGMR protocols, we compute
the maximum probability of reaching a state where the dishonest participant is
privileged and the honest one is not. Note that this probability is not conditional on
the judge’s coin not having been flipped yet, because the dishonest participant may
choose to contact the judge even after the coin has been flipped, ρC computed and
verdict rendered. In contrast, the proof of fairness in [6] calculates this probability
under the assumption that the coin has not been flipped yet.

5.2 Model for Rabin’s protocol

To ensure a finite model, we fix the value of N ∈ N in advance, that is, fix N such
that when the judge chooses the random value each day, it takes the value i for
i = 1, . . . , N with probability 1/N . The resulting model for Rabin’s protocol is
given in Figure 1 for the case N = 100.

5.3 Model for BGMR and TBGMR protocols

Since PRISM is currently only applicable to finite configurations and the input
language allows only integer valued variables, we must discretise the judge’s coin
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// non-deterministic choice between arrival of date D and message sending
// models the fact that a party can stop sending messages at any time

module parties

mA : [0..100]; // number in the last message A sent to B
mB : [0..100]; // number in the last message B sent to A
turn : [0..1]; // which party last sent a message (0 – B did, 1 – A did)

// can only send messages while d = 0 (i.e., before cutoff date arrives)
[] turn=0 ∧mA<100 ∧ d=0 → (turn′=1) ∧ (mA′=mA+1); // A sends
[] turn=1 ∧mB<100 ∧ d=0 → (turn′=0) ∧ (mB ′=mA); // B sends

endmodule

module date

d : [0..1];

[] d=0 → (d′=1); // cutoff date arrives

endmodule

module third party

i : [0..100]; // randomly chosen integer

[] i=0 ∧ d=1 → 1/100 : (i′=1)
+1/100 : (i′=2)

.

.

.
+1/100 : (i′=100);

endmodule

Figure 1: PRISM code for Rabin’s protocol.

by fixing some N ∈ N and suppose that when the judge flips the coin, it takes the
value i/N for i = 1, . . . , N with probability 1/N . Furthermore, we must fix the
parameters of the parties, namely v, α and β.

Once the parameters are fixed, the possible messages that can be sent between
the parties and the ordering of the messages are predetermined. More precisely,
as shown in Figure 2, the probability values included in the messages between the
parties are known. Note that, for v, α, β > 0, these values converge to 1 and there
are only finitely many distinct values. Therefore, with a simple script, we can
calculate all the probability values included in the messages of the two parties.

To model the parties in PRISM, we encode the state of each party as the prob-
ability value included in the last message the party sent to the other party, i.e., the
states of A and B are identified by the current values of λa and λb respectively. For-
mally, the states of each party range from 0 up to k, for some k such that pa

i , p
b
i = 1

for all i ≥ k, where A is in state 0 when A has sent no messages to B, and in state
i ∈ {1, . . . , k} when the last message A sent to B included the probability value
min(1, v · αi−1 · βi−1). Similarly, B is in state 0 when B has not sent any messages
to A, and in state i ∈ {1, . . . , k} when the last message B sent to A included the
probability value min(1, v · αi−1 · βi).

Following this construction process, the specification of the BGMR protocol used
as input into PRISM in the case when N = 100 is given in Figure 3.

Note that there is a nondeterministic choice as to when the judge’s coin is
flipped, i.e., when a party first sends a message to the judge asking for a verdict.
Furthermore, once the coin is flipped, the parties cannot send any messages to each
other, that is, this model corresponds to the original protocol.

In the timely variant of the protocol (TBGMR), if the misbehaving participant is
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B

A

pb
1=v·β pb

2=v·β2·α pb
i=v·(β·α)i−1·β

pa
1=v pa

2=v·β·α pa
i =v·(β·α)i−1

Figure 2: Probability values included in the messages sent between the parties (BGMR
protocol).

// non-deterministic choice between flipping of coin and message sending
// models the fact that a party can stop sending messages (and contact the judge)

module parties

lambdaA : [0..k]; // probability value in the last message A sent to B
lambdaB : [0..k]; // probability value in the last message B sent to A
turn : [0..1]; // which party sends message next (0 – party A, 1 – party B)

// parties alternately send messages and stop when the coin has been flipped
[] turn=0 ∧ c=0 → (lambdaA′=min(k, lambdaA + 1)) ∧ (turn′=1);
[] turn=1 ∧ c=0 → (lambdaB ′=min(k, lambdaB + 1)) ∧ (turn′=0);

endmodule

module judge

c : [0..1]; // status of the coin (0 – not flipped and 1 – flipped)
rho : [0..100]; // value of the coin (rho=x and c=1 means its value is x/100)

// flip coin any time after a message has been sent
[] c=0 ∧ (lambdaA>0 ∨ lambdaB>0) → 1/100 : (c′=1) ∧ (rho′=1)

+1/100 : (c′=1) ∧ (rho′=2)

.

.

.
+1/100 : (c′=1) ∧ (rho′=100);

endmodule

Figure 3: PRISM code for BGMR protocol.

capable of delaying messages from the judge, then the parties may continue sending
messages to each other even after the coin has been flipped. To model this, the two
lines corresponding to the parties sending messages are replaced with:

// parties can continue sending messages after the coin has been flipped
[] turn=0 → (lambdaA′=min(k, lambdaA + 1)) ∧ (turn ′=1);
[] turn=1 → (lambdaB ′=min(k, lambdaB + 1)) ∧ (turn ′=0);

6 Analysis Results for Rabin’s, BGMR, and TBGMR
protocols

First, we analyse fairness as a function of the number of rounds for Rabin’s and
BGMR protocols. We then use PRISM to quantify the tradeoff between fairness and
timeliness in TBGMR, the timely version of the BGMR protocol.

6.1 Fairness in Rabin’s and BGMR protocols

A probabilistic contract signing protocol terminates in an unfair state if one party is
committed (in Rabin’s protocol) or privileged (in BGMR and TBGMR protocols), while

11
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Figure 4: Fairness and communication complexity of the protocols.

the other is not.

Fairness in Rabin’s protocol. In Rabin’s protocol, unfair states are defined by
the condition (i>0)∧ (mA≥i)∧ (mB<i), i.e., the number i randomly chosen by the
third party is such that B possesses A’s commitment, but A does not possess B’s
commitment.

We have computed the maximum probability of reaching such a state for a
number of different values of N (between 10 and 1000) and, as expected, in each case
the maximum probability equals 1

N . The probability of reaching a state in which
both parties are committed as a function of the number of message rounds is plotted
in Figure 4(a) for different values of N . This figure illustrates that probabilistic
fairness in Rabin’s protocol depends linearly on the number of rounds.

Fairness in BGMR protocol. We used PRISM to calculate the probability of
reaching a state in which both parties are privileged as a function of the number of
message rounds. The results for different parameters are in Figure 4(b).

6.2 Unfairness in TBGMR protocol

Recall that if the coin has been flipped and the last messages sent by parties A
and B include the probability values pa and pb respectively, then in the current
state of the protocol B is privileged and A is not if and only if the value of the
coin is in the interval (pb, pa]. Let’s call this set of states unfair. We used PRISM
to calculate the maximum probability of reaching a state in unfair from the initial
state (where no messages have been sent and the coin has not been flipped). Table 1
gives the summary of the results obtained using PRISM when considering a number
of different parameters for both the BGMR and TBGMR versions of the protocol.

The probability of reaching a state in unfair is maximised, over all nondeter-
ministic choices that can be made by a misbehaving B, by the following strategy.
As soon as B receives the first message from A, he invokes the judge, pretending
that A has stopped communicating and presenting A’s message to the judge. In
TBGMR, this will cause the judge to flip the coin and announce a verdict immediately.
B delays the judge’s announcement message to A, and keeps exchanging messages
with A in the main flow of the protocol. After each message from A, B invokes
the judge and presents A’s latest message, until one of them results in a positive
verdict. Depending on his choice of β, B can steer the protocol to a state unfair to
A with arbitrarily high probability.
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Table 1: Model checking results for the BMGR and TBMGR protocols.
number max probability of reaching

v α β N of a state where only B privileged
states BGMR TBGMR

10 408 0.1000 0.8000
0.1 1.1 1.05 100 3,738 0.1000 0.7000

1,000 37,038 0.1000 0.7080

10 518 0.1000 0.9000
0.1 1.1 1.01 100 4,748 0.1000 0.9000

1,000 47,048 0.1000 0.9180

10 6,832 0.1000 0.6000
0.01 1.01 1.005 100 62,722 0.0100 0.6600

1,000 621,622 0.0100 0.6580

10 9,296 0.1000 1.0000
0.01 1.01 1.001 100 85,346 0.0100 0.9400

1,000 845,846 0.0100 0.9070

10 101,410 0.1000 0.6000
0.001 1.001 1.0005 100 931,120 0.0100 0.7200

1,000 9,228,220 0.0010 0.6840

10 138,260 0.1000 0.9000
0.001 1.001 1.0001 100 1,269,470 0.0100 0.8700

1,000 12,581,570 0.0010 0.9010
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Figure 5: Probability and expected time of B’s win in TBGMR protocol.

Table 1 lists the maximum probabilities that can be achieved by this strategy
in the TBGMR protocol. Recall that the results obtained with PRISM are for a
simplified model, where the coin is discretised. Nevertheless, due to the simplicity
of this strategy, we were able to write a simple Matlab script which calculated
the probability of reaching a state which is unfair to A under this strategy for a
general coin, that is, a coin whose flips take a value uniformly chosen from the [0, 1]
interval.

Figure 5 (left chart) shows the probability, for various choices of parameters, of
reaching a state in which B is privileged and A is not. Note that B can bring this
probability arbitrarily close to 1 by choosing a small β. We assume that the value
of β is constant and chosen by B beforehand. In practice, B can decrease his β
adaptively. A may respond in kind, of course, but then the protocol will crawl to a
halt even if B is not cheating.

This attack on TBGMR is feasible because the judge remembers (or reconstructs,
using a pseudo-random function with a secret input—see Section 4.2) only the value
of his coin flip, ρC , and not his previous verdicts. Therefore, B induces the coin flip
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Figure 6: Expected time to B’s win vs. probability of B’s win.

as soon as possible, and then gets the judge to produce verdict after verdict until
the probability value contained in A’s message is high enough to result in a positive
verdict.

Accountability of the judge. Under the assumption that the channels are re-
silient (i.e., eventual delivery is guaranteed), at some point A will receive all of
the judge’s verdicts that have been delayed by B. Since these verdicts are contra-
dictory (some declare the contract binding, and some do not), A may be able to
argue that somebody—either B, or the judge, or both—misbehaved in the protocol.
Note, however, that the protocol specification does not require the judge to produce
consistent verdicts, only consistent values of ρC .

To repair this, the protocol may be augmented with “rules of evidence” speci-
fying what constitutes a violation (see also the discussion in Section 7). Such rules
are not mentioned in [6] and appear to be non-trivial. A discussion of what they
might look like is beyond the scope of this paper.

6.3 Attacker’s tradeoff

Although a Dolev-Yao attacker is assumed to be capable of delaying messages on
public communication channels, in practice this might be difficult, especially if long
delays are needed to achieve the attacker’s goal. Therefore, it is important to quan-
tify the relationship between B’s probability of winning (bringing the protocol into
a state that’s unfair to A), and how long B needs to delay the judge’s messages to
A. As a rough measure of time, we take the expected number of message exchanges
between A and B. The greater the number of messages A has to send before B
reaches a privileged state, the longer the delay.

We wrote a Matlab script to calculate the expected number of messages sent
before a party becomes privileged. The results are shown in Figure 5 (right chart)
for various values of v and α as β varies. As expected, the lower β, the greater the
number of messages that the parties have to exchange before B becomes privileged.
Recall, however, that lower values of β result in higher probability that B eventually
wins (left chart on Figure 5).

The misbehaving participant thus faces a tradeoff. The higher the probability of
winning, the longer the judge’s messages to the honest participant must be delayed.
This tradeoff is quantified by the chart in Figure 6. As the chart demonstrates,
there is a linear tradeoff for a misbehaving B between the expected time to win and
the probability of winning. If B is not confident in his ability to delay the judge’s
messages to A and/or exchange messages with A fast enough (before the judge’s
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verdict reaches A), B can choose a large value of β and settle for a shorter delay
and thus lower probability of steering the protocol into an unfair state.

7 Making BGMR Protocol Timely

As demonstrated in Section 6, the BGMR protocol cannot be made timely by simply
having the judge flip his coin immediately after he is invoked, because then fairness
is lost. In this section, we discuss modifications to the protocol that may enable it
to provide both timeliness and fairness.

Fast and secure communication channels. The attack described in Section 6
can be prevented if the protocol requires the communication channel between the
judge and the honest participant to be of very high quality. More precisely, both
fairness and timeliness will be guaranteed if B is prevented from delaying the judge’s
messages to A. Also, the judge’s channel to A must be faster than the channel
between A and B. This ensures that A will be notified of the judge’s verdict
immediately after the judge flips his coin and will stop communicating with B.

While a high-quality channel from A to the judge might be feasible, it is signif-
icantly more difficult to ensure that the channel from the judge to A is faster than
the channel between A and B. The judge is necessarily part of the infrastructure
in which the protocol operates, servicing multiple instances of the protocol at the
same time. Therefore, it is reasonable to presume that the judge is always available
and responsive. On the other hand, A is simply one of many participants using
the protocol, may not be easy to locate on a short notice, may not be expecting a
message from the judge before the cutoff date D, etc. On a public network, it is
usually much easier for a user to contact the authorities than for the authorities to
locate and contact the user.

Judge with unbounded memory. The attack also succeeds because the judge
does not remember his past verdicts, only the value of his coin flip ρC . If the
judge is made to remember his first verdict, and simply repeat it in response to all
subsequent invocations regarding the same contract, the attack will be prevented.
Note, however, that such a judge will require unbounded memory, because, unlike
ρC , the value of the first verdict cannot be reconstructed from subsequent evidence
using a pseudo-random function. Therefore, the judge will need to store the verdict
he made for every instance of the protocol he has ever been asked to resolve in case
he is invoked again regarding the same instance.

A possible optimization of this approach is to expunge all verdicts regarding a
particular contract from the judge’s memory once the cutoff date for that contract
has passed. This introduces additional complications, however, since participants
are permitted to ask the judge for a verdict even after the cutoff date. If the verdict
in this case is constructed from ρC and the newly presented evidence, it may be
inconsistent with the verdicts the judge previously announced regarding the same
contract. To avoid this, the old verdicts must be stored forever and the judge’s
memory must be infinite, regardless of the quality of the communication channels
between the parties and the judge.

Signed messages to the judge. If all invocations of the judge are signed by
the requesting party, and that signature is included in the judge’s verdict, then A
will be able to prove B’s misbehaviour (that B invoked the judge more than once)
when all of the judge’s verdicts finally reach him after having been delayed by B.
If invoking the judge more than once is construed as a violation, however, the pro-
tocol might be problematic for an honest B in case there is a genuine delay on the

15



channel between A and B. Such a delay may cause an honest B to time out, invoke
the judge, and then, after A’s message with a new probability value finally arrives,
invoke the judge again, which would be interpreted as an attempt to cheat.

Combining fairness with timeliness seems inherently difficult in the case of proba-
bilistic contract signing. The approaches outlined above demand either extremely
stringent requirements on the communication channels, which would limit appli-
cability of the protocol, or introduction of the additional “rules of evidence” that
define what is and what is not a violation. Such rules are not included in the pro-
tocol specification [6] and would have to be designed from scratch. Designing an
appropriate set of rules appears difficult, as they should accommodate legitimate
scenarios (a participant should be permitted to request a verdict from the judge
more than once, because the judge’s messages might have been lost or corrupted
in transmission), while preventing a malicious party from repeatedly contacting the
judge until the desired verdict is obtained.

8 EGL protocol

The probabilistic contract signing protocol of Even, Goldreich, and Lempel [16]
proceeds as follows. Initiator A generates 2n random secret a1, . . . , a2n and reveals
Fa1(c), . . . , Fa2n

(c), where c is the text of the contract and Fai
(c) can be thought

of, roughly, as encryption of c under secret ai. The assumption is that F is a uni-
formly secure cryptosystem (see below). Similarly, B generates 2n random secrets
b1, . . . , b2n, and reveals Fb1(c), . . . , Fb2n(c). Intuitively, both A’s and B’s sequences
of secrets can be thought of as sequences of pairs {(ai, an+i)} and {(bi, bn+i)}, re-
spectively.

A is considered committed to contract c if B can present both secrets from any
one of A’s pairs, that is, if B knows both ai and an+i for some i. B is considered
committed if A can present bj and bn+j for some j. The secrets can be verified by us-
ing them to decrypt the publicly announced values Fai(c), Fan+i(c), Fbj (c), Fbn+j (c)
(they should decrypt to c).

The protocol itself consists in partial secret exchange as presented in Figure 7
(the oblivious transfer primitive OT is explained below). At the end of the exchange,
if both parties behave correctly, B learns all of A’s secrets, and vice versa.

Assumptions. The EGL protocol assumes the existence of a uniformly secure
cryptosystem F . Informally, given c, Fk(c) and first i bits of k, the expected time
of computing k is independent of the i known bits. In particular, there exists an
algorithm A which, given a pair c, Fk(c), finds k in expected time tA(s) where s
is a bit string consistent with k (s represents partial knowledge of the key k), and
tA(s) depends only on the number of unknown bits in k, i.e., tA(s) = TA(|k|−i) for
each bit string s of length i consistent with k. Moreover, there is no algorithm that
achieves this in less than half the time. (A precise definition can be found in [16,
section 2].)

The EGL protocol also assumes the existence of a 1-out-of-2 oblivious transfer
protocol (OT1

2). The protocol OT1
2(S,R, x, y) can be defined axiomatically as a

protocol in which, if S follows the protocol, R receives x with probability 1
2 , or

else receives y. S does not learn whether R received x or y (i.e., the a-posteriori
probability for S remains equal to 1

2 ). If S tries to deviate from the protocol to
increase the a-posteriori probability, R can detect this with probability at least 1

2 .
We omit the discussion of how such a primitive can be implemented, and assume
for the purposes of our analysis that a correct implementation is available.
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EGL(A, B, {(ai, an+i)}n
i=1, {(bi, bn+i)}n

i=1)

(step 1)
for i = 1 to n

OT1
2(A, B, ai, an+i)

(A sends ai and an+i to B via OT1
2)

OT1
2(B, A, bi, bn+i)

(B sends bi and bn+i to A via OT1
2)

end

(step 2)
for i = 1 to L
(L is the length of each of the secrets)

for j = 1 to 2n
A transmits bit i of the secret j

end
for j = 1 to 2n

B transmits bit i of the secret j
end

end

Figure 7: Even, Goldreich and Lempel partial secret exchange protocol (EGL proto-
col).

9 Model for EGL protocol

In our model for the EGL protocol, the state of each party is represented by its
current knowledge of the secrets of the other party. More precisely, for party A
(B), it is the number of bits of each of the secrets b1, . . . , b2n (a1, . . . , a2n) that it
have been sent by B (A) in either step 1, or step 2 of the protocol. Therefore,
in our PRISM specification we encode the state of the party A with the variables
nb1 , . . . ,nb(2n) (each taking values in the range {0, . . . , L}) where nbi represents
the current number of bits of the secret bi that A possesses. These variables are
updated when A receives a message from B. The update depends on the type of
transmission B performs. For example:

• In step 1 of the protocol, when B sends the secrets bi and bn+i to A via OT1
2,

with probability 1
2 either the variable nbi or the variable nb(n+i) is updated

to L (i.e., after receiving the message, with probability 1
2 , A knows either all

the bits of the secret bi, or of bn+i).

• In step 2 of the protocol, if B sends a bit of the secret bi to A, then the variable
nbi is incremented by 1, unless A already knows all the bits of bi (nbi=L). In
the latter case, A does not gain any additional information, thus nbi remains
unchanged.

To specify this protocol in PRISM, we define a module for each party (which
updates the above variables) and an additional module that is used to keep track
of what messages have been sent and the order in which these transmissions take
place, that is, how far the parties have actually progressed through the protocol.
Following this approach, the specification of the EGL protocol used as the input to
PRISM in the case when n=4 and L=2 is given in Figure 8.
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const int n = 4; // number of pairs of secrets
const int L = 2; // number of bits of each secret

module protocol

b : [1..L]; // counter for current bit to send
n : [1..n]; // counter for which secret to send
party : [1..2]; // which party sends next (1 – A and 2 – B)
phase : [1..4]; // phase of the protocol
// 1 - sending secrets using OT1

2 (step 1 of the protocol)
// 2 - send bits of the secrets 1, . . . , n (step 2 of the protocol)
// 3 - send bits of the secrets n+1, . . . , 2n (step 2 of the protocol)

// STEP 1
[recB ] phase=1 ∧ party=1 → (party′=2); // A sends
[recA] phase=1 ∧ party=2 ∧ n<n → (party′=1) ∧ (n′=n+1); // B sends (move onto next secret)
[recA] phase=1 ∧ party=2 ∧ n=n → (party′=1) ∧ (phase′=2) ∧ (n′=1); // B sends (finished step)
// STEP 2
// when A sends
[recB ] phase=2..3 ∧ party=1 ∧ n<n → (n′=n+1); // next secret
[recB ] phase=2 ∧ party=1 ∧ n=n → (phase′=3) ∧ (n′=1); // move onto secrets n+1, . . . , 2n
[recB ] phase=3 ∧ party=1 ∧ n=n → (phase′=2) ∧ (party′=2) ∧ (n′=1); // move onto party B
// when B sends
[recA] phase=2..3 ∧ party=2 ∧ n<n → (n′=n+1); // next secret
[recA] phase=2 ∧ party=2 ∧ n=n → (phase′=3) ∧ (n′=1); // move onto secrets n+1, . . . , 2n
[recA] phase=3 ∧ party=2 ∧ n=n ∧ b<L → (phase′=2) ∧ (party′=1) ∧ (n′=1) ∧ (b′=b+1); // next bit
[recA] phase=3 ∧ party=2 ∧ n=n ∧ b=L → (phase′=4); // finished protocol
// FINISHED
[] phase=4 → (phase′=4); // loop

endmodule

module partyA

// nbj the number of bits of the secret bi that A possesses
nb1 : [0..L];
nb2 : [0..L];
nb3 : [0..L];
nb4 : [0..L];
nb5 : [0..L];
nb6 : [0..L];
nb7 : [0..L];
nb8 : [0..L];

// first step (get either secret i or n+i with equal probability)
[recA] phase=1 ∧ n=1 → 0.5 : (nb1 ′=L) + 0.5 : (nb5 ′=L);
[recA] phase=1 ∧ n=2 → 0.5 : (nb2 ′=L) + 0.5 : (nb6 ′=L);
[recA] phase=1 ∧ n=3 → 0.5 : (nb3 ′=L) + 0.5 : (nb7 ′=L);
[recA] phase=1 ∧ n=4 → 0.5 : (nb4 ′=L) + 0.5 : (nb8 ′=L);
// second step (secrets 1, . . . , n)
[recA] phase=2 ∧ n=1 → (nb1 ′=min(nb1+1, L));
[recA] phase=2 ∧ n=2 → (nb2 ′=min(nb2+1, L));
[recA] phase=2 ∧ n=3 → (nb3 ′=min(nb3+1, L));
[recA] phase=2 ∧ n=4 → (nb4 ′=min(nb4+1, L));
// second step (secrets n+1, . . . , 2n)
[recA] phase=3 ∧ n=1 → (nb5 ′=min(nb5+1, L));
[recA] phase=3 ∧ n=2 → (nb6 ′=min(nb6+1, L));
[recA] phase=3 ∧ n=3 → (nb7 ′=min(nb7+1, L));
[recA] phase=3 ∧ n=4 → (nb8 ′=min(nb8+1, L));

endmodule

// construct module for party B through renaming
module

partyB = partyA[b1=a1 , b2=a2 , b3=a3 , b4=a4 , b5=a5 , b6=a6 , b7=a7 , b8=a8 , recA=recB ]
endmodule

Figure 8: PRISM code for EGL protocol (n = 4 and L = 2).
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10 Fairness in EGL protocol

When investigating the EGL protocol, we discovered what might be considered to be
a weakness in the protocol when party B is allowed to act maliciously by quitting
the protocol early (note that this type of behaviour was not considered in [16]).
More precisely, our PRISM analysis shows that, with probability 1, the protocol
reaches a state where B possesses both secrets from at least one of A’s pairs, while
A does not have complete knowledge of any pair of B’s secrets. Intuitively, this
happens because in the last round of step 2 of the protocol, A sends the last bit for
all of his secrets before B sends the last bit for even a single secret.

This means that if B stops participating in the protocol (i.e., stops sending
messages to A) as soon as he has obtained at least one of A’s pairs, then B enjoys
a distinct advantage over A: he knows a pair of A’s secrets, while A does not know
both secrets in any of B’s pairs. This advantage is limited by the fact that in the
state where B obtains the last bit he needs to complete a pair of A’s secrets, A
possesses, for any pair of B’s secrets, one complete secret and L−1 bits of the other
secret. Since |k| = L, this means that A can compute the bit that he requires to
obtain full knowledge of a pair of B’s secrets in expected time TA(1) (see Section 8).
This computation will take some time, however. Supposing that A is behaving
honestly, A will first wait for B to send a message before realizing that B has quit
the protocol and trying to compute B’s secret on his own.

The precise definition of fairness in [16] says that, provided B does not deviate
from the protocol, in any state where B can compute one of A’s pairs in expected
time T , A can compute one of B’s pairs in expected time 16T . If B does deviate
in order to reach a situation in which B can compute one of A’s pairs in expected
time T , but A cannot compute at least one of B’s pairs in expected time 4T , then
A can detect this with probability of at least 1− 2−n. This property cannot hold if
T = 0, as demonstrated by our analysis (with asynchronous communication, some
party has to be the first to completely learn one of the other’s pairs). What is more
worrying is that the “losing” party is always the initiator A.

In Section 11, we investigate possible ways of making this protocol more “fair”
by changing the order of bit revelation messages exchanged in step 2 of the protocol
(see Figure 7), while relying on the properties of the OT1

2 protocol.
An alternative, more general formulation of (un)fairness could be based on the

number of bits that each party still has to compute before he, too, knows both secrets
in at least one of his opponent’s pairs (this is different from the definition in [16],
which uses expected time). We say that party A (B) has l-knowledge (0 ≤ l ≤ L) if
there exists a pair of secrets (bi, bn+i) ((ai, an+i)) such that A (B) fully knows one
of the secrets and at least l bits of the other secret.

Our analysis shows that, with probability 1, for any 1 ≤ l ≤ L the protocol
reaches a state where B has l-knowledge, while A does not. In particular, consider-
ing the case when l = L (i.e., both secrets are completely known), we obtain that,
with probability 1, the protocol reaches a state where B knows one of A’s pairs
while A does know any of B’s pairs. All of our subsequent analyses of EGL variants
can be generalized in the same way, by replacing “knowledge of a pair of secrets”
with “l-knowledge” for any 1 ≤ l ≤ L.

11 Making EGL Protocol Fair

Recall that the weakness we have discovered in the EGL protocol is due to the fact
that in step 2 (see Figure 7), A reveals the last bit for each of his secrets before B
reveals any of the last bits of B’s secrets. Therefore, B always gains full knowledge
of all of A’s secrets before A learns even a single pair of B’s secrets. In this section,
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EGL2

(step 1)
for i=1 to n

OT1
2(A, B, ai, an+1)

OT1
2(B, A, bi, bn+1)

end
(step 2)
for i=1 to L

for j = 1 to n
A transmits bit i of sj

end
for j = 1 to n

B transmits bit i of sj

end
for j = n+1 to 2n

A transmits bit i of sj

end
for j = n+1 to 2n

B transmits bit i of sj

end
end

EGL3

(step 1)
for i=1 to n

OT1
2(A, B, ai, an+1)

OT1
2(B, A, bi, bn+1)

end
(step 2)
for i=1 to L

for j = 1 to n
A transmits bit i of sj

B transmits bit i of sj

end
end
for i=1 to L

for j = n+1 to 2n
A transmits bit i of sj

B transmits bit i of sj

end
end

EGL4

(step 1)
for i=1 to n

OT1
2(A, B, ai, an+1)

OT1
2(B, A, bi, bn+1)

end

(step 2)
for i=1 to L

A transmits bit i of s1
for j = 1 to n

B transmits bit i of sj

end
for j = 2 to n

A transmits bit i of sj

end
end for i=1 to L

A transmits bit i of sn+1
for j = n+1 to 2n

B transmits bit i of sj

end
for j = n+2 to 2n

A transmits bit i of sj

end
end

Figure 9: Alternatives to EGL protocol for input (A,B, {(ai, an+i)}, {(bi, bn+i)})
which use different message scheduling schemes in step 2 (sj is used to denote j).

we will investigate whether the protocol can be made more fair by considering
alternative message scheduling schemes for step 2 of the protocol.

Several alternative protocols to EGL are shown in Figure 9. Note that step 1
of each protocol is identical to that of the original EGL protocol. The idea behind
these alternatives is that they attempt, in varying degrees, to overcome A’s “first-
mover” disadvantage by interleaving bit-sending by A and B without becoming
unfair towards B.

In the original EGL protocol, the message schedule in step 2 involves A sending
the jth bit for all of his secrets before B does the same, and then moving to the
next bit.

In the EGL2 protocol, B sends a bit for each of the secrets 1, . . . , n after A has
done this, and before either party has sent the bits for the secrets n+1, . . . , 2n.

The other two schemes we consider (i.e., EGL3 and EGL4) separate the sending
of the bits for the secrets 1, . . . , n from those for the secrets n+1, . . . , 2n. More
precisely, in these schemes both parties send all the bits for the secrets 1, . . . , n
before they start sending the bits for the secrets n+1, . . . , 2n.

In the EGL3 protocol, A and B interleave the exchange of secrets in both phases
bit by bit. In the EGL4 protocol, in the second step, A sends a bit for his first secret
and then waits for B to send a bit for each of his secrets 1, . . . , n, before moving to
A’s secrets 2, . . . , n.

We have evaluated the fairness these protocols by calculating with PRISM the
following fairness measures as the number of secrets n varies. Note that, under
the assumption that all the secrets have the same number of bits, these results are
independent of the number of bits L in each secret.

• The probability of reaching a state where A (B) does not know a pair while B
(A) does know a pair (Figure 10(a)). This measure can be interpreted as the
“chance” that the protocol is unfair towards either party.

• The expected number of bits that A needs to know a pair once B (A) knows
a pair (Figure 10(b)). This property is a quantification of how unfair the
protocol is with respect to either party.
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Figure 10: Performance results for the protocols EGL, EGL2, EGL3 and EGL4 (results
for party A solid line and results for party B dashed line).

• The expected number of messages from B (A) that A (B) needs to knows a
pair once B (A) knows a pair (Figure 10(c)). This measure can be interpreted
as an indication of how much influence a corrupted party has on the fairness
of the protocol, since a corrupted party can try and delay these messages in
order to gain an advantage.

• The expected number of messages that need to be sent (by either party) before
A (B) knows a pair once B (A) knows a pair (Figure 10(d)). This measure
can be interpreted as representing the “duration” of unfairness, i.e., the time
that one of the parties has an advantage.

We first consider the results in Figure 10(a), that is, the probability of reaching
a state where one party does not know a pair of the opponent’s secrets while the
opponent does. As described in Section 10, this probability is 1 for party A in the
original protocol EGL. In EGL2, as n increases, the probability of the protocol being
unfair towards A converges towards 1, which is due to the following two properties
of the protocol:

1. In EGL2, A sends a bit for each of the secrets 1, . . . , n before B does;

2. As n increases, at the end of step 1 (which is the same for all the variants
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we consider), the probability of a party receiving at least one of the secrets
n+1, . . . , 2n converges to 1.

On the other hand, for EGL3 and EGL4, increasing n does not increase the probability
of the protocol being unfair towards A. For EGL3 this is due to the fact that bit-
by-bit revelation of the secrets is interleaved between A and B. However, because
A always goes first in this protocol, the probability of EGL3 being unfair towards
A is always larger than for B. As n increases, these probabilities converge to 2

3
and 1

3 , respectively. In the case of the protocol EGL4, it follows from point 2 above
that, if B does not obtain the secret n+1 in the first step of the protocol, then
the probability that A will know a pair of B’s secrets before B knows a pair of
A’s secrets converges to 1 as n increases. Since B learns the secret n+1 in step 1
with probability 1

2 , as n increases, the probability that either party knows a pair
of secrets before the opponent converges to 1

2 . This is the best that can be hoped
for in an asynchronous protocol, since one party will always know a pair of secrets
before the other. All we can do is to make the selection of the “winner” as random
as possible.

One can understand the results in Figures 10(b) and 10(c) using the same rea-
soning as that presented for Figure 10(a) and these again show:

• both EGL and EGL2 lead to a very “unfair” protocol;

• EGL2 becomes more “unfair” towards A as n increases;

• EGL4 is the “fairest” protocol.

Finally, consider Figure 10(d), that is, the expected number of messages that need
to be sent (by either party) before a party knows a pair given the opponent al-
ready knows a pair. In contrast to other fairness measures we considered, EGL4
is no longer “fair” to both parties under this measure. Once A knows a pair, the
expected number of messages that need to be sent (by either party) before B knows
a pair increases as n increases, while, once B knows a pair, the expected number
of messages that need to be sent (by either party) before A knows a pair actually
decreases as n increases.

This result is due to the fact that when B does not get the secret n+1 in step 1
of the protocol (which happens with probability 1

2 ), then he must send the last bit
for all of his secrets 1, . . . , n to A before he fully learns any of A’s pairs. Therefore,
increasing n increases the expected number of messages. On the other hand, as
n increases, the probability of A knowing a pair before B is done sending these
messages converges to 1. Using the message schedule from the EGL3 variant solves
this non-uniformity by symmetrically interleaving the sending of bits. However,
we demonstrated above that EGL3 is not as fair as EGL4 with respect to the other
fairness measures considered.

Considering the results in Figure 10(d) for EGL and EGL2, we see that the ex-
pected number of messages A must receive is greater than 2n and n, respectively.
The reason is that in the message schedule used in step 2 of EGL (EGL2), A must
send the last bits of the secrets 1, . . . , 2n (1, . . . , n) before B sends the last bits of
any of his secrets.

Improving EGL4 under “duration of unfairness” measure. Summarizing
the results presented in Figure 10, we observe that the protocol EGL4 appears to
be the “fairest” protocol, except for the following: if the protocol ends up being
unfair to B during a particular execution, this unfairness has the longest expected
duration. Having said this, most of this is the time spent by B sending messages
(compare the results for Figure 10(c) and Figure 10(d)). Therefore, B can reduce
this bias by sending his messages quickly.
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Figure 11: Performance results for the protocols EGL, EGL2, EGL3 and EGL4 after
combining sequential transmissions (results for party A solid line and results for
party B dashed line).

An easy way to rectify this problem is to require that, whenever a party has to
send a sequence of bits in a row (without the other party sending bits in between),
these bits must be sent in a single message. For example, for EGL2 this would mean
that A has to transmit the first bits of all the secrets 1, . . . , n to B in a single
message at the start of step 2.

Figure 11 presents the effect this change would have on the performance of each
of the variants we have considered. We only show the measures related to the
expected number of messages as the other measures are not affected by this change.
Note that this has no effect on the protocol EGL2 because it is fully interleaved: after
a party has sent a single bit, the next transmission is from the other party. As the
results indicate, this does indeed solve the fairness issues we found with the protocol
EGL4. The limitation of this approach is that the size of messages increases as the
number of secrets increases. Party B (A) is required to send a message containing
n (n−1) bits.

12 Conclusions

We presented several case studies, demonstrating how formal analysis techniques
can be used to verify properties of probabilistic security protocols. For a timely
variant of the probabilistic contract signing protocol of Ben-Or, Goldreich, Micali,
and Rivest we used PRISM, a probabilistic model checker, to show that there exists
an attack strategy for a misbehaving participant that brings the protocol into an
unfair state with arbitrarily high probability. We also quantified the attacker’s
tradeoff between the probability of winning and the need to delay messages from
the judge to the honest participant.

For the probabilistic contract signing protocol of Even, Goldreich, and Lempel,
we demonstrated that an “unfair” state in which the responder knows the initia-
tor’s commitment, but the initiator does not know the responder’s commitment
is reached with probability 1. We then used PRISM to demonstrate better fair-
ness guarantees provided by alternative message scheduling schemes. Designing a
probabilistic contract signing protocols with desirable properties such as fairness,
timeliness, and minimal computational disadvantage for both parties is a challeng-
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ing task. Our case studies, in addition to demonstrating feasibility of probabilistic
model checking as an analysis technique for security protocols, are a step in this
direction.

While probabilistic model checking is a useful tool for analyzing protocols in-
volving discrete probabilities (such as those studied in this paper), applying it to
conventional cryptographic protocols requires the ability to reason about asymp-
totically negligible probabilities. Investigating applications of probabilistic model
checking to reduction-based proofs used in modern cryptography is an interesting
direction of future research.
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