
Secrecy for Bounded Security Protocols With Freshness

Check is NEXPTIME-complete ∗

Ferucio L. Ţiplea a), b), Cătălin V. Bîrjoveanu a),

Constantin Enea a), and Ioana Boureanu a)

a)Department of Computer Science, “Al.I.Cuza” University of Iaşi

Iaşi, Romania, E-mail: {cbirjoveanu,cenea,iboureanu}@infoiasi.ro

b) School of Computer Science, University of Central Florida

Orlando, FL 32816, USA, E-mail: fltiplea@mail.dntis.ro

Abstract

The secrecy problem for security protocols is the problem to decide whether
or not a given security protocol has leaky runs. In this paper, the (initial)
secrecy problem for bounded protocols with freshness check is shown to be
NEXPTIME-complete. Relating the formalism in this paper to the multi-
set rewriting (MSR) formalism we obtain that the initial secrecy problem for
protocols in restricted form, with bounded length messages, bounded existen-
tials, with or without disequality tests, and an intruder with no existentials,
is NEXPTIME-complete. If existentials for the intruder are allowed but dise-
quality tests are not allowed, the initial secrecy problem still is NEXPTIME-
complete. However, if both existentials for the intruder and disequality tests are
allowed and the protocols are not well-founded (and, therefore, not in restricted
form), then the problem is undecidable. These results also correct some wrong
statements in [Durgin et al., JCS 2004].

Key words: security protocol, secrecy problem, complexity

∗The research reported in this paper was partially supported by the National University Research
Council of Romania under the grant CNCSIS 632/2004-2005.

1

Journal of Computer Security vol 16, no 6, 689-712, 2008.

1 Introduction and Preliminaries

A security protocol specifies a set of rules under which a sequence of messages is
exchanged between two or more parties in order to achieve security goals such as
authentication or establishing new shared secrets. Examples of security protocols
include the Kerberos authentication scheme used to manage encrypted passwords on
clusters of interconnected computers, Secure Sockets Layer used by Internet browsers
and servers to carry out secure Internet transactions etc.

One of the main questions one may ask when dealing with security protocols
is the following: How difficult to prove is that a security protocol assures secrecy?
Secrecy is undecidable in general but, if security protocols are restricted by bounding
the number of nonces, the message lengths, the number of sessions etc., decidability
of secrecy can be gained (see [4] for more details).

Secrets in a security protocol can be provided from the beginning or in the course
of runs. When they are provided from the beginning, the secrecy problem is called
the initial secrecy problem. Using a multiset rewriting (MSR) formalism, it has been
claimed in [4] (Table 9, page 282) that the following problems are DEXPTIME-
complete:

• the initial secrecy problem for security protocols in restricted form, with bounded
length messages, bounded existentials, without disequality tests, and an in-
truder with no existentials;

• the initial secrecy problem for security protocols in restricted form, with bounded
length messages, bounded existentials, disequality tests, and an intruder with
no existentials;

• the initial secrecy problem for security protocols in restricted form, with bounded
length messages, bounded existentials, without disequality tests, and an in-
truder with existentials.

Unfortunately, all these statements are wrong. The DEXPTIME-completeness result
holds true only for the case with “no existentials” and “an intruder with no existen-
tials” as it was correctly stated in [3] (Section 2.1 provides full details about this
case).

Using a formalism and a terminology slightly different than the one in [4], we show
that the (initial) secrecy problem for bounded security protocols with freshness check
is NEXPTIME-complete (Section 2.2). Relating the formalism in this paper to the
MSR formalism we obtain that the three problems mentioned above are NEXPTIME-
complete (Section 2.3). Moreover, the initial secrecy problem for security protocols
in restricted form, with bounded length messages, bounded existentials, disequality

2

tests, and an intruder with bounded existentials, is NEXPTIME-complete too. If “an
intruder with bounded existentials” is replaced by “an intruder with existentials” and
security protocols are not well-founded (and, therefore, not in restricted form), this
last problem becomes undecidable. Therefore, the problem marked “???” in Table 9
of [4] still remains open.

In what follows we will adopt the formalism proposed in [5] with slight modifica-
tions, and we will use it in order to develop the main result of the paper.

Protocol signatures and terms. A security protocol signature is a 3-tuple S =
(A,K,N) consisting of a finite set A of agent names (or shortly, agents) and two at
most countable sets K and N of keys and nonces, respectively. It is assumed that:

• A contains a special element denoted by I and called the intruder. All the
other elements are called honest agents and Ho denotes their set;

• K = K0 ∪ K1, where K0 is the set of short-term keys and K1 is a finite set of
long-term keys. The elements of K1 are of the form Ke

A (A’s public key), or
Kd

A (A’s private key), or KAB (shared key by A and B), where A and B are
distinct agents. KA denotes the set of long-term keys known by A ∈ A;

• some honest agents are provided from the beginning with some secret infor-

mation, not known to the intruder. Denote by SecretA ⊆ K0 ∪ N the set of
secret information the honest agent A is provided from the beginning. SecretA
does not contain long-term keys because they will never be communicated by
agents during the runs;

• the intruder is provided from the beginning with a set of nonces NI ⊆ N and a
set of short-term keys K0,I ⊆ K0. It is assumed that no elements in NI ∪ K0,I

can be generated by honest agents.

The set of basic terms is T0 = A∪K∪N . The set T of terms is defined inductively
by: every basic term is a term; if t1 and t2 are terms, then (t1, t2) is a term; if t

is a term and K is a key, then {t}K is a term. We extend the construct (t1, t2)
to (t1, . . . , tn) as usual by letting (t1, . . . , tn) = ((t1, . . . , tn−1), tn), for all n ≥ 3.
Sometimes, parenthesis will be omitted. Given a term t, Sub(t) is the set of all
subterms of t (defined as usual). This notation is extended to sets of terms by union.

The length of a term is defined as usual, by taking into consideration that pairing
and encryption are operations. Thus, |t| = 1 for any t ∈ T0, |(t1, t2)| = |t1|+ |t2|+1,
for any terms t1 and t2, and |{t}K | = |t|+ 2, for any term t and key K.

The perfect encryption assumption we adopt [2] states that a message encrypted
with a key K can be decrypted only by an agent who knows the corresponding inverse
of K (denoted K−1), and the only way to compute {t}K is by encrypting t with K.

3

Actions. There are two types of actions, send and receive. A send action is of
the form A!B : (M)t, while a receive action is of the form A?B : t. In both cases,
A is assumed an honest agent, A 6= B, t ∈ T is the term of the action, and M ⊆
Sub(t) ∩ (N ∪K0) is the set of new terms of the action.

M(a) denotes the set M , if a = A!B : (M)t, and the empty set, if a = A?B : t;
t(a) stands for the term of a. When M = ∅ we will simply write A!B : t. The set
of all actions performed by A is Act(A) = {A!B : (M)t|B ∈ A} ∪ {A?B : t|B ∈ A}.
For a sequence of actions w = a1 · · · al and an agent A, we define the restriction

of w to A as being the sequence obtained from w by removing all actions not in
Act(A). Denote this sequence by w|A. The notations M(a) and t(a) are extended
to sequences of actions by union.

Protocols. A security protocol (or simply, protocol) is a triple P = (S, C, w), where
S is a security protocol signature, C is a subset of T0, called the set of constants of
P, and w is a non-empty sequence of actions, called the body of the protocol, such
that no action in w contains the intruder. Constants are publicly known elements
in the protocol that cannot be re-instantiated (as it will be explained below). As
usual, C does not include private keys, elements in SecretA for any honest agent A,
or elements in NI , K0,I and M(w).

Any non-empty sequence w|A, where A is an agent, is called a role of the protocol.
A role specifies the actions a participant should perform in a protocol, and the order
of these actions.

Substitutions and events. Instantiations of a protocol are given by substitutions,
which are functions σ that map agents to agents, nonces to arbitrary terms, short-
term keys to short-term keys, and long-term keys to long-term keys. Moreover, for
long-term keys, σ should satisfy σ(Ke

A) = Ke
σ(A), σ(Kd

A) = Kd
σ(A), and σ(KAB) =

Kσ(A)σ(B), for any distinct agents A and B.
Substitutions are homomorphically extended to terms, actions, and sequences of

actions. A substitution σ is called suitable for an action a = AxB : y if σ(A) is
an honest agent, σ(A) 6= σ(B), and σ maps distinct nonces from M(a) into distinct
nonces, distinct keys into distinct keys, and it has disjoint ranges for M(a) and
Sub(t(a)) −M(a). σ is called suitable for a sequence of actions if it is suitable for
each action in the sequence, and σ is called suitable for a subset C ⊆ T0 if it is the
identity on C.

An event of a protocol P = (S, C, w) is any triple ei = (u, σ, i), where u = a1 · · · al

is a role of P, σ is a substitution suitable for u and C, and 1 ≤ i ≤ l. σ(ai) is the
action of the event ei. As usual, act(ei) (t(ei), M(ei)) stands for the the action of ei

(term of ei, set of new terms of ei). The local precedence relation on events is defined

4

by (u, σ, i) → (u′, σ′, i′) if and only if u′ = u, σ′ = σ, and i′ = i + 1, provided that

i < |u|.
+
→ is the transitive closure of →. Given an event e, •e stands for the set of

all local predecessors of e, i.e., •e = {e′|e′
+
→ e}.

Message generation rules. Given a set X of terms we denote by analz(X) the
least set of terms which includes X, contains t1 and t2 whenever it contains (t1, t2),
and contains t whenever it contains {{t}K}K−1 or {t}K and K−1. By synth(X) we
denote the least set of terms which includes X, contains (t1, t2), for any terms t1, t2 ∈
synth(X), and contains {t}K , for any term t and key K in synth(X). Moreover, X

stands for synth(analz(X)).

States and runs. A state of a protocol P is an indexed set s = (sA|A ∈ A),
where sA ⊆ T , for any agent A. The initial state is s0 = (s0A|A ∈ A), where
s0A = A∪C∪KA∪SecretA, for any honest agent A, and s0I = A∪C∪KI∪NI∪K0,I .

Given two states s and s′ and an action a, we write s[a〉s′ if and only if:

1. if a is of the form A!B : (M)t, then:

(a) (enabling condition) t ∈ sA ∪M and M ∩ Sub(s) = ∅;

(b) s′A = sA ∪M ∪ {t}, s′I = sI ∪ {t}, and s′C = sC for any C ∈ A− {A, I};

2. if a is of the form A?B : t, then:

(a) (enabling condition) t ∈ sI ;

(b) s′A = sA ∪ {t} and s′C = sC , for all C ∈ A− {A}.

We extend the notation “ [·〉” to events by letting s[e〉s′ whenever s[act(e)〉s′, and
we call s[e〉s′ a computation step. The constraint “M ∩ Sub(s) = ∅” is called the
freshness check condition. It requires that the nonces and short-term keys generated
by A in order to compose t (i.e., those in the set M) be fresh.

There is another natural way to define computation steps in a security protocol,
namely by removing the freshness check condition. More precisely, the enabling
condition embraces the form “t ∈ sA ∪M ”, all the other elements of the definition of
a computation step remaining unchanged.

To distinguish between the two cases when discussing about security protocols
and their computation steps we will use the terminology “security protocol with fresh-

ness check ”, for the first case, and “security protocol without freshness check ”, for the
second one. When no distinction is necessary we will simply say “security protocol ”.

A computation or run of a security protocol is any sequence of computation steps

s0[e1〉s1[· · · [ek〉sk,

5

also written as s0[e1 · · · ek〉s or even e1 · · · ek, such that si−1[ei〉si for any 1 ≤ i ≤ k,
and •ei ⊆ {e1, . . . , ei−1} for any 1 ≤ i ≤ k (for i = 1, •ei should be empty).

The secrecy problem. We say that a term t ∈ T0 is secret at a state s if t ∈
analz(sA) − analz(sI), for some honest agent A. t is secret along a run ξ if it is
secret at s, where s0[ξ〉s. A run ξ is called leaky if there exists t ∈ T0 and a proper
prefix ξ′ of ξ such that t is secret along ξ′ but not along ξ. The secrecy problem

for security protocols is the problem to decide whether a security protocol has leaky
runs.

If we replace the set T0 by
⋃

A∈Ho SecretA in all the definitions above, we obtain
a particular case of the secrecy problem, called the initial secrecy problem. That is,
the initial secrecy problem is the problem to decide whether a given security protocol
has runs ξ such that t ∈ analz(sI) for some initial secret t, where s0[ξ〉s.

2 Complexity of Secrecy for Bounded Protocols

Let P be a protocol, T ⊆ T0 a finite set, and k ≥ 1. A run of P is called a (T, k)-run
if all terms in the run are built up upon T and all messages communicated in the
course of the run have length at most k. When for P only (T, k)-runs are considered
we will say that it is a protocol under (T, k)-runs or a (T, k)-bounded protocol, and
denote this by (P, T, k). A bounded protocol is a (T, k)-bounded protocol, for some
finite set T ⊆ T0 and k ≥ 1.

The (initial) secrecy problem for (T, k)-bounded protocols is formulated with
respect to (T, k)-runs only, by taking into consideration the set T instead of T0.

Let P = (S, C, w) be a (T, k)-bounded protocol. Then:

1. the number of messages communicated in the course of any (T, k)-run of P is
bounded by

k3|T |
k+1
2 = 23 log k+ k+1

2
log |T |;

2. the number of instantiations (substitutions) of a given role u of P with messages
of length at most k over T is bounded by

(23 log k+ k+1
2

log |T |)|u|(
k+1
2

+2)

(u has exactly |u| actions, and each action has at most k+1
2 + 2 elements that

can be substituted);

6

3. the number of (T, k)-events of P (i.e., events that can occur in all (T, k)-runs
of P) is bounded by

number of (T, k)-events ≤
∑

u∈role(P) |u| · 2
(3 log k+ k+1

2
log |T |)|u|(k+1

2
+2)

≤
∑

u∈role(P) |u| · 2
(3 log k+ k+1

2
log |T |)|w|(k+1

2
+2)

= |w| · 2(3 log k+ k+1
2

log |T |)|w|(k+1
2

+2)

= 2log |w|+(3 log k+ k+1
2

log |T |)|w|(k+1
2

+2)

where role(P) is the set of all roles of P.

Define the size of a (T, k)-bounded protocol P = (S, C, w) as being

size(P) = |w|+ k log |T |.

This is a realistic measure. It takes into consideration the number of actions and
the maximum number of bits necessary to represent messages of length at most k

(we remark that the size of the representation of P is polynomial in size(P)). As we
can see, the number of events that can occur in all (T, k)-runs of a (T, k)-bounded
protocol is exponential in poly(size(P)), for some polynomial poly.

In [4], several DEXPTIME-completeness results for the initial secrecy problem
for bounded protocols in the restricted form and with bounded existentials have been
proposed (the concept of “existential” in [4] corresponds to the concept of “freshness
check” in our paper. In Section 2.3 we will provide the reader with full details
about the relationship between the formalism in [4] and the one used in this paper).
Unfortunately, all these results are wrong just because they are based on an algorithm
which does not work for the case of protocols with existentials (see Section 2.3). In
fact, it turns out that the presence of existentials requires much more effort than their
absence, making the secrecy problem complete for NEXPTIME. We will prove this
result as follows. First, by means of a slight variation of an algorithm in [4] adapted
to the formalism used in this paper we show that the (initial) secrecy problem for
bounded security protocols without freshness check is DEXPTIME-complete (Section
2.1). Then, we point out why this algorithm does not work for the case of freshness
check and we show that in this case the (initial) secrecy problem is NEXPTIME-
complete (Section 2.2). The last section recalls the MSR formalism [4], points out
why the DEXPTIME-completeness results in [4] are wrong, and then corrects them.
We also provide an undecidability result related to a problem left open in [4] (Table
9, page 282).

7

2.1 The Initial Secrecy Problem for Bounded Protocols without
Freshness Check

Recall that the protocols without freshness check are obtained by removing the re-
quirement “M ∩ Sub(s) = ∅” from the enabling condition (see Section 1). The
algorithm A1 below, which is a slight variation of the algorithm in [4] adapted to the
formalism used in this paper, decides whether or not a bounded protocol without
freshness check has leaky runs with respect to initial secrets.

Algorithm A1

input: bounded protocol (P, T, k) without freshness check;
output: “leaky protocol” if P has some leaky (T, k)-run w.r.t. initial secrets,

and “non-leaky protocol”, otherwise;
begin

1. let E′ be the set of all (T, k)-events of P;
2. ξ := λ; s := s0; % λ denotes the empty sequence
3. repeat

4. E := E′;
5. E′ := ∅;
6. bool := 0;
7. while E 6= ∅ do
8. begin

9. choose e ∈ E;
10. E := E − {e};
11. if s0[ξ〉s[e〉s′ then
12. begin

13. s := s′; ξ := ξe; bool := 1;
14. end

15. else E′ := E′ ∪ {e};
16. end

17. until bool = 0;
18. if (

⋃

A∈Ho SecretA) ∩ analz(sI) 6= ∅
19. then “leaky protocol” else “non-leaky protocol”

end.

In the algorithm A1, E′ is the set of all events that could not be applied in the
previous cycle. Initially, E′ is the set of all events of the protocol. The boolean
variable bool takes the value 0 when no event in E can be applied.

The algorithm generates a run in which each event is applied at most once. The
run is also maximal in the sense that it cannot be extended further by any new event
(not already appearing in the run). Then, the algorithm checks whether this run is

8

leaky with respect to initial secrets. If the run is leaky, then clearly the protocol is
leaky. Vice-versa, if the protocol is leaky with respect to initial secrets, then any
leaky run can be extended to a maximal leaky run (in the sense discussed above).
Moreover, this leaky run leads to exactly the same final state as the maximal run
generated by the algorithm. This is due to the fact that in the absence of freshness
check the following persistence property holds true: if an event is enabled at a state
s, then it will be enabled at any state reachable from s (events are persistent once
they become enabled). Therefore, the maximal run generated by the algorithm is
leaky.

According to the discussion above, the order in which events are chosen to gen-
erate a maximal run (for bounded protocols without freshness check) is irrelevant.
This is why in line 9 of the algorithm A1 we have used a generic statement “choose
e ∈ E” without specifying any criterion for selecting events from E.

The algorithm terminates in exponential time with respect to the size of the
protocol. To see that, let us count first the number of while cycles (in all repeat
cycles). If no event in E can extend the current run ξ, then the algorithm terminates.
Otherwise, all events in E that can extend the current run, taken in an arbitrary but
fixed order, are applied in one repeat cycle. The next cycle will process, in the same
way, the elements of E that could not be applied in the previous cycle. Therefore,
the number of repeat cycles is bounded by |E| (each cycle applies at least one event,
except for the last one). The number of while cycles in the first repeat cycle is |E|,
in the second repeat cycle is at most |E| − 1, and so on. Therefore, the number of
while cycles in all repeat cycles is bounded by |E|+ (|E| − 1) + · · ·+ 1 = O(|E|2).

Given s and ξ such that s0[ξ〉s, the test “s[e〉s′” in line 11 of the algorithm can
be performed in polynomial time with respect to the number of events, and this is
true for the test in line 18 as well.

Therefore, the complexity of the algorithm is exponential in poly(size(P)), for
some polynomial poly, showing that the initial secrecy problem for bounded protocols
without freshness check is in DEXPTIME.

It can be shown that the initial secrecy problem for bounded protocols without
freshness check is DEXPTIME-hard by reducing the membership problem for unary
logic programs [1] to this problem. Recall first the concept of a unary logic program.
Let Σ be a set consisting of one constant symbol ⊥ and finitely many unary function
symbols, let Pred be a finite set of unary predicate symbols, and x be a variable. A
unary logic program over Σ, Pred, and x is a finite set of clauses of the form

p0(t0)← p1(t1), . . . , pn(tn)

or
p0(t0)← true,

9

where p0, . . . , pn ∈ Pred, and t0, . . . , tn are terms over Σ ∪ {x} with t0 being flat,
that is, t0 ∈ {⊥, x, f(x)|f ∈ Σ− {⊥}}. Moreover, all clauses with p0(⊥) in the head
have only true in the body.

An atom is a construct of the form p(t), where p ∈ Pred and t is a term. If t is
a ground term, that is, it does not contain x, then p(t) is called a ground atom. A
proof tree for a ground atom p(t) under a unary logic program LP is any tree that
satisfies:

• its nodes are labeled by ground atoms;

• the root is labeled by p(t);

• each intermediate node which is labeled by some B has children labeled by
B1, . . . , Bn, where B ← B1, . . . , Bn is a ground instance of a clause in LP (i.e.,
the variable x is substituted by ground terms over Σ);

• all the leaves are labeled by true.

The membership problem for unary logic programs is the problem to decide, given
a logic program LP and a ground atom p(t), whether there exists a proof tree for
p(t) under LP . In [1] it has been proved that this problem is DEXPTIME-complete
(being equivalent to the type-checking problem for path-based approximation for
unary logic programs).

Theorem 2.1 The initial secrecy problem for bounded protocols without freshness
check is DEXPTIME-hard.

Proof Let LP be a unary logic program over some Σ, Pred, and x, and let p(t)
be a ground atom over Σ and Pred. Define a security protocol P as follows:

• to each element e ∈ Σ ∪ Pred ∪ {x} associate a nonce ue. Except for ux, all
these nonces are constants of the protocol;

• encode terms and atoms as follows:

– 〈e〉 = ue, for all e ∈ {⊥, x};

– 〈f(t)〉 = (uf , 〈t〉), for any unary function symbol f and term t;

– 〈p(t)〉 = (up, 〈t〉), for any predicate symbol p and term t.

• consider the agents AC , BC , E and F , for any clause C. It is assumed that
they are pairwise distinct;

• consider a key K known only by the honest agents;

10

• SecretF = {y}, where y is a distinct nonce, and SecretX = ∅, for all X 6= F ;

• to each clause C : p0(t0)← p1(t1), . . . , pn(tn) we associate the role

AC?BC : {〈p1(t1)〉}K , . . . , {〈pn(tn)〉}K
AC !BC : {〈p0(t0)〉}K

• to each clause C : p0(t0)← true we associate the role

AC !BC : {〈p0(t0)〉}K

• the following role reveals a secret if p(t) has a tree proof under LP :

F?E : {〈p(t)〉}K
F !E : y

We consider the protocol P under (T, k)-runs, where T is the set of all elements
mentioned above (nonces, agents, the key K, and the nonce y) and k is a suitable
chosen constant (the maximum length of some clause under some instantiation used
to decide the membership of p(t)). Then, it is easily seen that p(t) has a tree proof
in LP if and only if the protocol P under (T, k)-runs reveals the secret. 2

Corollary 2.1 The initial secrecy problem for bounded protocols without freshness
check is DEXPTIME-complete.

2.2 The (Initial) Secrecy Problem for Bounded Protocols with Fresh-
ness Check

The algorithm A1 given in the previous section cannot be applied to the (initial)
secrecy problem for bounded protocols with freshness check. We will illustrate this
by considering two examples, one for the initial secrecy problem and one for the
secrecy problem.

Example 2.1 Let P1 be the protocol given below:

A!B : ({K})x0, K

B?A : x0, K

C!D : ({K ′})K ′

In this protocol, A, B, C, and D are constants, x0 is an initial secret of A, and K

and K ′ are keys in a finite non-empty set of short-term keys.
Clearly, the protocol is leaky. However, if the algorithm A1 applies first all

the events based on the third action, then no event based on the first action will be
enabled. Therefore, the algorithm generates a non-leaky maximal run, and concludes
that the protocol is not leaky.

11

It should be clear that the algorithm A1 does not work for the secrecy problem
either. To be more convincing we will provide an example.

Example 2.2 Let P2 be the protocol given below:

A!B : ({x}){x}K
B?A : {x}K
A!B : K

C!D : ({y})y

where A, B, C, and D are constants in the protocol, x and y are nonces, and K is
a key.

The protocol is leaky. However, if all events based on the fourth action are applied
first, then the algorithm A1 generates a non-leaky maximal run and concludes that
the protocol is not leaky.

All these examples show that the order in which events are applied when freshness
check is required, is crucial. This makes the secrecy problem for the case “with
freshness check” considerable harder than the case “without freshness check”.

Theorem 2.2 The (initial) secrecy problem for bounded protocols with freshness
check is NEXPTIME-complete.

Proof The following non-deterministic algorithm decides the secrecy problem for
bounded protocols with freshness check.

Algorithm A2

input: bounded protocol (P, T, k) with freshness check;
output: “leaky protocol” if P has leaky (T, k)-runs;
begin

let E be the set of all (T, k)-events of P;
guess a sequence ξ := e1 · · · em of pairwise

distinct events from E;
if ξ is a run then

begin

let s0[e1〉s1[· · · [em〉sm;
Secret :=

⋃

A∈Ho SecretA;
for i := 1 to m− 1 do

Secret := Secret ∪ ((
⋃

A∈Ho analz(siA))− analz(siI));
if Secret ∩ analz(smI) 6= ∅ then “leaky protocol”;

end

end.

12

If the “for” statement is dropped in Algorithm A2, the new algorithm will decide
the initial secrecy problem for bounded protocols with freshness check.

It is easy to see that the algorithm is correct and terminates in non-determi-
nistic exponential time with respect to poly(size(P)), for some polynomial poly.
Therefore, the (initial) secrecy problem for bounded protocols with freshness check
is in NEXPTIME.

To prove completeness, we shall reduce any language in NEXPTIME to the initial
secrecy problem for bounded protocols with freshness check (this is also sufficient for
the secrecy problem). So, suppose that L is a language decided by a non-deterministic
Turing machine TM = (Q,Σ, Γ, δ, q0, 2, F) in time 2n, where Q is the set of states,
Σ is the input alphabet, Γ is the tape alphabet, q0 is the initial state, 2 is the blank
symbol, F is the set of final states, and δ ⊆ Q×Γ×Q×Γ×{−1, 1} is the transition
relation (−1 specifies a move to the left, while 1 specifies a move to the right). A
configuration of TM will be written in the form (q, α, a, β), where q is the current
state, a is the symbol scanned by the tape head, α is the string to the left of the
tape head, and β is the string to the right of the tape head.

For each input w of TM we construct a bounded protocol (PTM,w, T, k) with
freshness check whose size is polynomial in n = |w| and such that w is accepted by
TM in time 2n if and only if PTM,w under (T, k)-runs is leaky. First, we may assume
that all the elements of Q∪ Γ are nonces. We also consider a distinguished nonce $.
All these nonces are constants of the protocol. A set of 2n + ||w|| distinct nonces,
which are not constants of the protocol, is also considered (||w|| = |w|+ 1, if w 6= λ,
and ||w|| = 2, otherwise). The agents are A, B, At,b, Bt,b, At$,b, Bt$,b, Ab,t, Bb,t,
Ab,t$, Bb,t$, Aλ,t, Bλ,t, Aq,b, Bq,b, Aq,b$, and Bq,b$, for any transition t of TM , b ∈ Γ,
and final state q. All these honest agents will share a long-term key K. It is assumed
that SecretAq,b

= SecretBq,b
= SecretAq,b$

= SecretBq,b$
= {x0} for any final state

q and b ∈ Γ, where x0 is a distinguished nonce, and SecretX = ∅ for all the other
agents X.

A configuration (q, a1 · · · an, a, b1 · · · bm) of TM is represented in the protocol
PTM,w by a sequence of the form

{u1, a1, u2}K , . . . , {un, an, un+1}K , {un+1, (q, a), un+2}K ,

{un+2, b1, un+3}K , . . . , {un+m+1, (bm, $), un+m+2}K ,

where u1, . . . , un+m+2 are distinct nonces.
The protocol actions are:

• A initiates the protocol and sends w = a1 · · · an to B:














A!B : ({u1, u2}){u1, (q0, (2, $)), u2}K , if n = 0
A!B : ({u1, u2}){u1, (q0, (a1, $)), u2}K , if n = 1
A!B : ({u1, . . . , un+1}){u1, (q0, a1), u2}K , {u2, a2, u3}K , . . . ,

{un−1, an−1, un}K , {un, (an, $), un+1}K , if n > 1;

13

• a transition t = (q, a, q′, a′,−1) is simulated by:

At,b?Bt,b : {u, b, v}K , {v, (q, a), z}K
At,b!Bt,b : ({v′}){u, (q′, b), v′}K , {v′, a′, z}K

or

At$,b?Bt$,b : {u, b, v}K , {v, (q, (a, $)), z}K
At$,b!Bt$,b : ({v′}){u, (q′, b), v′}K , {v′, (a′, $), z}K

for any b ∈ Γ;

• a transition t = (q, a, q′, a′, 1) is simulated by

Ab,t?Bb,t : {u, (q, a), v}K , {v, b, z}K
Ab,t!Bb,t : ({v′}){u, a′, v′}K , {v′, (q′, b), z}K

or

Ab,t$?Bb,t$: {u, (q, a), v}K , {v, (b, $), z}K
Ab,t$!Bb,t$: ({v′}){u, a′, v′}K , {v′, (q′, (b, $)), z}K

or

Aλ,t?Bλ,t : {u, (q, (a, $)), v}K
Aλ,t!Bλ,t : ({v′}){u, a′, v′}K , {v′, (q′, (2, $)), v}K

for any b ∈ Γ;

• when a final configuration is reached, the secret is revealed:

Aq,b?Bq,b : {u, (q, b), v}K
Aq,b!Bq,b : x0

or

Aq,b$?Bq,b$: {u, (q, (b, $)), v}K
Aq,b$!Bq,b$: x0

for any q ∈ F and b ∈ Γ.

The size of the protocol PTM,w is polynomial in n. The protocol depends by TM ,
but TM is constant for any instance w of L. The set of nonces can be considered as
an initial fragment of the set of natural numbers and, therefore, it can be specified
by giving just a natural number (the cardinality of this set). As a conclusion, the
protocol can be constructed in polynomial time with respect to n = |w|.

14

Let T be the set of all basic terms of the protocol. It is clear that there exists
k ∈ O(n) such that any computation of TM with at most 2n steps can be simulated
by a (T, k)-run of PTM,w. Moreover, if TM accepts w, then PTM,w reveals the secret.
Conversely, if a (T, k)-run ξ of the protocol reveals the secret, then there exists a
computation of TM which accepts w. ξ cannot have more than 2n + 1 send events
which generate new nonces because each send event generates at least one new nonce
and the set of all non-constant nonces has cardinality 2n + ||w|| (||w|| distinct nonces
are used to represent w). Therefore, the corresponding computation of TM cannot
have more than 2n steps.

This shows that L is reducible to the initial secrecy problem for bounded protocols
with freshness check. 2

Remark 2.1 In the proof of Theorem 2.2, all the roles associated to transitions
change the linking nonce v into a fresh one v′. This is crucial for a correct simulation
of the Turing machine; otherwise, it might happen that the intruder sends two linked
terms {u, (q, a), v}K , {v, b, z}K , where {u, (q, a), v}K represents the content of a tape
cell at a given step, while {v, b, z}K represents the content of an adjacent cell at a
different step. In this way, different runs can be mixed leading to a leaky run with
no corresponding computation in the Turing machine.

2.3 Relationship with the MSR Formalism

The algorithm A1 in Section 2.1, proposed initialy in [4] under the multiset rewriting

(MSR) formalism for modeling security protocols, was used to develop several com-
plexity results for the secrecy problem for bounded protocols “with existentials” [4].
Unfortunately, all the results based on this algorithm are wrong. In order to show
that we recall first the MSR formalism. This formalism is based on:

• a signature, which specifies a set of sorts (for keys, messages, nonces etc.)
together with function and predicate symbols (each symbol having associated
a specific type). Function symbols with no arguments are also called constant

symbols;

• a set of variables, each of which having associated a sort;

• terms, which are defined as usual;

• atomic formulas, which are constructs of the form P (t1, . . . , tn), where P is a
predicate symbol of type s1 · · · sn and ti is a term of sort si, for any i;

• facts, which are atomic formulas P (t1, . . . , tn), where all terms ti are ground

terms (i.e., variable-free terms);

15

• rules, which are constructs of the form

F1, . . . , Fk → ∃x1, . . . ,∃xl.G1, . . . , Gp,

where the F ’s and G’s are atomic formulas and the x’s are variables;

• states, which are multisets of facts.

If S is a state,

r : F1, . . . , Fk → ∃x1, . . . ,∃xl.G1, . . . , Gp

is a rule, and σ is a ground substitution such that σ(xi) is a new constant symbol
(that is, not previously generated) and σ(Fj) ∈ S, for all i and j, then the rule r can
be applied to S yielding a new state S′. This state is obtained from S by

S′ = (S − 〈σ(Fj)|1 ≤ j ≤ k〉) ∪ 〈σ(Gj)|1 ≤ j ≤ p〉,

where “〈· · ·〉” denotes multisets and the difference and union with multisets are de-

fined as usual. We denote this by S
r,σ
=⇒ S′.

Existential quantifiers in the right hand side of rules, simply called existentials,
capture the idea of “generation of new elements” (keys, nonces etc.). For example,

the new elements generated in the computation step S
r,σ
=⇒ S′ are σ(x1), . . . , σ(xl).

A MSR theory consists of a signature and a set of rules over this signature.
In order to suitably model security protocols and to gain strong decidability and
complexity results on the security protocols, MSR theories were subjected to two
main constraints in [4]: well-foundedness and restrictedness. To explain these we
need a few concepts.

Let T be a MSR theory and P be a predicate of arity n. A rule l→ r in T creates

P facts if some P (t1, . . . , tn) occurs more times in r than in l. l → r consumes P

facts if some P (t1, . . . , tn) occurs more times in l than in r. l → r preserves P facts

if every P (t1, . . . , tn) occurs the same number of times in r as in l. The predicate P

is persistent in T if every rule in T which contains P either creates or preserves P

facts.
A MSR theory T is called a well-founded protocol theory if T is a disjoint union

of MSR theories T = I ⊎ R ⊎A1 ⊎ · · · ⊎ An, where:

• for any 1 ≤ i ≤ n, there exists a finite list of predicates Ai
0, . . . , A

i
ki

, called role

states, such that:

– for any rule l → r ∈ Ai there exists exactly one Ai
p in l and exactly one

Ai
q in r, and p < q;

16

– no role state predicate that occurs in rules in Ai can occur in rules in Aj ,
for any i 6= j.

Ai is usually called a bounded role theory and Ai
0 is the initial role state of this

theory;

• I, called the initialization theory, is a set of rules such that all formulas in the
right hand side of rules in I either contains existentials or are persistent in T .
Moreover, rules in I do not contain role state predicates;

• R, called the role generation theory, is a set of rules of the form

P (s1, . . . , sl), Q(t1, . . . , tm), . . .→

A0(r1, . . . , rp), P (s1, . . . , sl), Q(t1, . . . , tm), . . .

where P (s1, . . . , sl), Q(t1, . . . , tm), . . . is a finite list of persistent facts created
by I and not involving any role state, and A0 is the initial role state of some
A1, . . . ,An;

• I precedes R and R precedes A1, . . . ,An (a theory T1 precedes a theory T2 if
no fact that appear in the left hand side of some rule in T1 is created by some
rule in T2).

The restricted form of MSR theories is obtained by imposing two more constraints
on top of well-foundedness:

• there are two finite lists NR1, . . . , NRm of network predicates for receive actions
and NS1, . . . , NSm of network predicates for send actions such that, for any role
i, its rules are of the form

Ai
p(. . .), NRj(. . .)→ ∃ . . . Ai

q(. . .)NSl(. . .)

where p < q and j < l;

• the initialization theory is a set of ground facts.

In [4], only security protocols modeled as well-founded protocol theories are stud-
ied.

The MSR formalism has been extended in [4] with tests for disequality, which
are constructs of the form “t1 6= t2”, where t1 and t2 are terms. These tests may be
added only to the left hand side of rules. For example,

P (t1), Q(t2), t1 6= t2 → ∃x.R(x)

17

is such a rule. It can be applied to a state S under a substitution σ if the state S

contains two facts σ(P (t1)) and σ(Q(t2)) such that σ(t1) 6= σ(t2).

The mechanism based on existentials in the MSR formalism is equivalent to
the freshness check mechanism used with the formalism in this paper. Disequality
tests somehow add more power to the MSR formalism and they do not have any
equivalent in the formalism in this paper. An “intruder with no existentials” in
the MSR formalism means that the intruder does not generate new elements and,
therefore, it is equivalent to an intruder without generation (i.e., NI ∪ K0,I = ∅) in
this paper. But an “intruder with existentials” in the MSR formalism, which means
that the intruder can generate new elements from an arbitrary (possible infinite) set
of elements does not have any equivalent in the formalism used in this paper because
there is no freshness check mechanism for the intruder in the formalism in this
paper. An “intruder with bounded existentials” in the MSR formalism means that
the intruder can generate new elements from a finite set of elements; this concept still
does not have any equivalent in the formalism used in this paper for the same reason
as that above (for a complete formalization of the intruder in the MSR formalism
the reader is referred to [4], page 264). A “protocol with bounded existentials” in [4]
means that the honest agents can generate new elements from a given finite set.

As a conclusion of our discussion above we can say that any protocol in the
formalism in this paper for which the intruder is without generation can be easily
translated into the MSR formalism:

• if the protocol is without freshness check then the corresponding protocol in
the MSR formalism does not have existentials and disequality tests, and the
intruder is with no existentials;

• if the protocol is with freshness check then the corresponding protocol in the
MSR formalism may have existentials but it does not have disequality tests
and the intruder is with no existentials

(we emphasize that the translation does not assure either restrictedness or well-
foundedness).

Example 2.3 The protocol in Example 2.1 can be translated into the MSR formal-
ism as shown below:

→ A0(x0)
→ B0()
→ C0()

A0(x0), NR1() → ∃K.A1(x0, K), NS2(x0, K)
B0(), NR2(x0, K) → B1(x0, K), NS3()
C0(), NR3() → ∃K.C1(K), NS4(K)

18

In this protocol, A0, B0, and C0 are initial role states, and A1, B1, and C1 are role
states. The first three rules define the role generation theory; they initializes the
roles for A, B, and C, allowing an unlimited number of sessions to be started for
any principal acting in these roles.

The fourth rule says that A, knowing the secret x0 in its initial state, generates
a key K, moves to the new state A1 where both x0 and K are memorized, and sends
the message “x0, K” on the network (NS2(x0, K)). The fifth rule says that B, being
in its initial state and receiving “x0, K”, moves to a new state B1 where both x0 and
K are memorized. The sixth rule is interpreted in a similar way to fourth rule.

One can easily see that the protocol above is in restricted form.

Now, we obtain the following results (in the MSR formalism).

Corollary 2.2 The following four problems, in the MSR formalism, are NEXP-
TIME-complete:

1. the initial secrecy problem for protocols in restricted form, with bounded length
messages, bounded existentials, without disequality tests, and an intruder with
no existentials;

2. the initial secrecy problem for protocols in restricted form, with bounded length
messages, bounded existentials, with disequality tests, and an intruder with no
existentials;

3. the initial secrecy problem for protocols in restricted form, with bounded length
messages, bounded existentials, without disequality tests, and an intruder with
existentials.

4. the initial secrecy problem for protocols in restricted form, with bounded length
messages, bounded existentials, with disequality tests, and an intruder with
bounded existentials.

Proof First, we transform the third problem into an equivalent problem by re-
placing the “intruder with existentials” by an intruder with no existentials and which
has a distinguished nonce n and a distinguished short-term key K in the initial state
(as in [4], the last paragraph of section 5.4.2). This transformation is simply per-
formed by removing intruder’s rule for generating new data and adding the ground
facts M(n) and M(K) to the initial state. These ground facts say that the intruder
knows initially the nonce n and the key K, and can use them during any computa-
tion. The protocol such obtained is equivalent to the original one (which is assumed
to be a protocol in restricted form, with bounded length messages, bounded existen-
tials, without disequality tests, and an intruder with existentials) in the sense that

19

it does not change the status of the secrecy problem of the original protocol. This is
simply obtained just because of the absence of disequality tests.

With the transformation above, every instance of any problem in the corollary
defines a finite set of ground facts and ground instances of the rules. Now, to show
that all these problems are in NEXPTIME, one can easily develop a non-deterministic
version of the algorithm in [4] (page 284). This algorithm works similarly to our
algorithm A2: it guesses a order in which all ground instances of the rules can be
applied, and then applies the rules in this order (as long as they can be applied). At
the end, the algorithm checks whether the intruder gets any initial secrets.

In order to show that these problems are NEXPTIME-complete it is sufficient to
show that they include a NEXPTIME-complete subproblem. In the proof of Theo-
rem 2.2 we may consider that the protocol satisfies NI ∪ K0,I = ∅ (i.e., the intruder
is without generation). As a conclusion, the initial secrecy problem for bounded
protocols with freshness check and an intruder without generation is NEXPTIME-
complete as well. Now, it is sufficient to show that any protocol in the proof of
Theorem 2.2, which simulates non-deterministic Turing machines, can be equiva-
lently translated (from the initial secrecy problem point of view) into a protocol in
restricted form, with bounded length messages, bounded existentials, without dise-
quality tests, and an intruder with no existentials. First, we may assume that all the
elements in Q∪ Γ are constants of sort nonce. We consider a distinguished constant
of sort nonce, $, a long-term key K and a secret information x0 known only to the
honest agents, the variables u, b, v, v′, z of sort nonce and the predicates At

0, At
1, Bt

0,
Bt

1, Ct
0, Ct

1, A
q
0, A

q
1, B

q
0, B

q
1, NRi, and NSi, for any i = 1, 2, 3, 4, transition t, and

final state q.
The current configuration of the Turing machine is encoded as in the proof of

Theorem 2.2, and the initial state of the new protocol (in the MSR formalism), for
an input w = a1 · · · an of the machine, consists of the following ground facts:

• NS1({u1, (q0, (2, $)), u2}K), if n = 0;

• NS1({u1, (q0, (a1, $)), u2}K), if n = 1;

• NS1({u1, (q0, a1), u2}K), NS1({u2, a2, u3}K), . . . , NS1({un−1, an−1, un}K), if
n > 1.

The rules of the new protocol are:

• the role generation theory consists of all rules → At
0(), → Bt

0(), → Ct
0(),

→ A
q
0(), and → B

q
0(), for any transition t and final state q;

• for each transition t = (q, a, q′, a′,−1) two role theories are included, each of
which consists of exactly one rule:

At
0(), NR1({u, b, v}K , {v, (q, a), z}K)→

20

∃v′.NS2({u, (q′, b), v′}K , {v′, a′, z}K), At
1()

and
Bt

0(), NR1({u, b, v}K , {v, (q, (a, $)), z}K)→

∃v′.NS2({u, (q′, b), v′}K , {v′, (a′, $), z}K), Bt
1()

• for each transition t = (q, a, q′, a′, 1) three role theories are included, each of
which consists of exactly one rule:

At
0(), NR1({u, (q, a), v}K , {v, b, z}K)→

∃v′.NS2({u, a′, v′}K , {v′, (q′, b), z}K), At
1()

and
Bt

0(), NR1({u, (q, a), v}K , {v, (b, $), z}K)→

∃v′.NS2({u, a′, v′}K , {v′, (q′, (b, $)), z}K), Bt
1()

and
Ct

0(), NR2({u, (q, (a, $)), v}K)→

∃v′.NS3({u, a′, v′}K , {v′, (q′, (2, $)), v}K), Ct
1()

• two role theories, each of which consists of exactly one rule,

A
q
0(), NR3({u, (q, b), v}K)→ NS4(x0), A

q
1()

and
B

q
0(), NR3({u, (q, (b, $)), v}K)→ NS4(x0), B

q
1()

are also included for each final state q.

It is easy to see that this protocol is in restricted form, with bounded length
messages, bounded existentials, without disequality tests, and an intruder with no
existentials; moreover, it does exactly the same job as the protocol in the proof of
Theorem 2.2. Therefore, the initial secrecy problem for protocols in restricted form,
with bounded length messages, bounded existentials, without disequality tests, and
an intruder with no existentials includes a NEXPTIME-complete problem, which
shows that it is NEXPTIME-complete too.

As the second, the third, and the fourth problem includes the first problem as a
subproblem, it follows that these problems are NEXPTIME-complete too. 2

Corollary 2.2 corrects three false statements in [4] according to which the ini-
tial secrecy problem for protocols in restricted form, with bounded length messages,
bounded existentials, with or without disequality tests, and an intruder with no

21

existentials, and the initial secrecy problem for protocols in restricted form, with
bounded length messages, bounded existentials, without disequality tests, and an in-
truder with existentials, are DEXPTIME-complete. The source of these mistakes was
that the authors in [4] claimed that the algorithm A1 works in the case of existentials
because, as the authors said, “... bounding the number of protocol existentials means
that we can generate all the existentials used by all runs of the protocol during the
initialization phase”. However, this is false as the protocol in Example 2.3 shows:

→ A0(x0)
→ B0()
→ C0()

A0(x0), NR1() → ∃K.A1(x0, K), NS2(x0, K)
B0(), NR2(x0, K) → B1(x0, K), NS3()
C0(), NR3() → ∃K.C1(K), NS4(K)

By the role generation theory (the first three rules) the ground facts A0(x0), B0(),
and C0() can be “pumped” unboundedly. Therefore, if all ground instances of the
sixth rule are applied first, the algorithm A1 generates a non-leaky maximal run and
concludes that the protocol is not leaky, while the protocol is leaky.

We would like to point out that the status of the initial secrecy problem for
protocols in restricted form, with bounded length messages, no existentials, and an
intruder with no existentials was correctly identified in [3] as being DEXPTIME-
complete.

In [4], the status of the initial secrecy problem for protocols in restricted form,
with bounded length messages, bounded existentials, disequality tests and an in-
truder with existential was left open. We do not have any solution to this problem
but we can prove that the problem is undecidable if the protocols are not well-founded
(but satisfy the other requirements listed above).

Theorem 2.3 The initial secrecy problem for non-well-founded MSR protocols,
with bounded length messages, no existentials, disequality tests and an intruder
with existentials is undecidable.

Proof We will reduce the halting problem for deterministic Turing machines to
this problem. Given a deterministic Turing machine and a input for this machine
we will construct a non-well-founded protocol with bounded length messages, no
existentials, disequality tests and an intruder with existentials such that the Turing
machine halts on the input iff the protocol is leaky. The construction follows the
same idea as in the proof of Theorem 2.2 adapted to the MSR formalism (and except
for the fact that in this case the Turing machines are deterministic).

22

Let TM = (Q,Σ, Γ, δ, q0, 2, F) be a deterministic Turing machine (Q, Σ, Γ, q0,
2, and F are as in the proof of Theorem 2.2, and δ ⊆ Q×Γ×Q×Γ×{−1, 1} defines
a partial function from Q× Γ into Q× Γ× {−1, 1}), and let w be an input for TM .
We construct a non-well-founded protocol PTM,w with bounded length messages, no
existentials, disequality tests and an intruder with existentials such that TM halts
on w if and only if PTM,w is leaky. First, we may assume that all the elements in
Q∪ Γ are constants of sort nonce. We consider three distinguished constants of sort
nonce, $, init, and ⊥, a long-term key K and a secret information x0 known only
to the honest agents, the variables x, y, u, b, v, v′, z of sort nonce and the predicates
At

0, At
1, Bt

0, Bt
1, Ct

0, Ct
1, A

q
0, A

q
1, B

q
0, B

q
1, Tq′,a, Tq′,a$, L, NRi, and NSi, for any

i = 1, 2, 3, 4, transition t ∈ δ, final state q, state q′, and tape symbol a. Type A

(type B, type C, type N) predicates will be used as in the proof of Corollary 2.2. L

is used to define a list of distinct nonces. The first element of the list is init and the
last element is ⊥. L(x, y) means that x and y are linked in the list. Tq′,a(x, y, u, b, z)
and Tq′,a$(x, y, u, b, z) means that the nonce x, which is an element of the list, is to
be compared against the nonce y and the nonces u, b, z will be used to compute the
new configuration of the machine. These predicates will be used in conjunction with
the predicate L and disequality tests: when a nonce is received, it is compared with
all nonces in the list; if it is different than all nonces in the list then it is appended
to the list. Only nonces in this list will be used to simulate the computation of the
Turing machine starting with w.

The current configuration of the Turing machine is encoded as in the proof of
Theorem 2.2, and the initial state of the new protocol (in the MSR formalism), for
an input w = a1 · · · an of the machine, consists of the following ground facts:

• NS1({u1, (q0, (2, $)), u2}K), L(init, u1), L(u1, u2), L(u2,⊥), if n = 0;

• NS1({u1, (q0, (a1, $)), u2}K), L(init, u1), L(u1, u2), L(u2,⊥), if n = 1;

• NS1({u1, (q0, a1), u2}K), NS1({u2, a2, u3}K), . . . , NS1({un−1, an−1, un}K),
NS1({un, (an, $), un+1}K), L(init, u1), . . . , L(un, un+1), L(un+1,⊥), if n > 1.

The protocol rules are:

• the role generation theory consists of the rules → At
0(), → Bt

0(), → Ct
0(),

→ A
q
0(), and → B

q
0(), for any transition t and final state q;

• for each transition t = (q, a, q′, a′,−1) two role theories are included, each of
which consists of three rules:

At
0(), NR1({u, b, v}K , {v, (q, a), z}K , v′) → Tq,a(init, v′, u, b, z)

Tq,a(x, v′, u, b, z), L(x, y), x 6= v′, y 6= ⊥ → L(x, y), Tq,a(y, v′, u, b, z)

23

Tq,a(x, v′, u, b, z), L(x,⊥), x 6= v′,⊥ 6= v′ →
L(x, v′), L(v′,⊥), NS2({u, (q′, b), v′}K , {v′, a′, z}K), At

1()

and

Bt
0(), NR1({u, b, v}K , {v, (q, (a, $)), z}K , v′)→ Tq,a$(init, v′, u, b, z)

Tq,a$(x, v′, u, b, z), L(x, y), x 6= v′, y 6= ⊥ → L(x, y), Tq,a$(y, v′, u, b, z)
Tq,a$(x, v′, u, b, z), L(x,⊥), x 6= v′,⊥ 6= v′ →

L(x, v′), L(v′,⊥), NS2({u, (q′, b), v′}K , {v′, (a′, $), z}K), Bt
1()

• for each transition t = (q, a, q′, a′, 1) three role theories are included, each of
which consists of three rules:

At
0(), NR1({u, (q, a), v}K , {v, b, z}K , v′) → Tq,a(init, v′, u, b, z)

Tq,a(x, v′, u, b, z), L(x, y), x 6= v′, y 6= ⊥ → L(x, y), Tq,a(y, v′, u, b, z)
Tq,a(x, v′, u, b, z), L(x,⊥), x 6= v′,⊥ 6= v′ →

L(x, v′), L(v′,⊥), NS2({u, a′, v′}K , {v′, (q′, b), z}K), At
1()

and

Bt
0(), NR1({u, (q, a), v}K , {v, (b, $), z}K , v′)→ Tq,a$(init, v′, u, b, z)

Tq,a$(x, v′, u, b, z), L(x, y), x 6= v′, y 6= ⊥ → L(x, y), Tq,a$(y, v′, u, b, z)
Tq,a$(x, v′, u, b, z), L(x,⊥), x 6= v′,⊥ 6= v′ →

L(x, v′), L(v′,⊥), NS2({u, a′, v′}K , {v′, (q′, (b, $)), z}K), Bt
1()

and

Ct
0(), NR2({u, (q, (a, $)), v}K , v′) → Tq,a$(init, v′, u, 2, z)

Tq,a$(x, v′, u, 2, z), L(x, y), x 6= v′, y 6= ⊥ → L(x, y), Tq,a$(y, v′, u, 2, z)
Tq,a$(x, v′, u, 2, z), L(x,⊥), x 6= v′,⊥ 6= v′ →

L(x, v′), L(v′,⊥), NS3({u, a′, v′}K , {v′, (q′, (2, $)), z}K), Ct
1()

• two role theories, each of which consists of exactly one rule:

A
q
0(), NR3({u, (q, b), v}K)→ NS4(x0), A

q
1()

and
B

q
0(), NR3({u, (q, (b, $)), v}K)→ NS4(x0), B

q
1()

are also included for any final state q.

24

It is clear that any computation of TM on w can be simulated by a run of
PTM,w. Moreover, if TM halts on w, then the intruder learns x0 and PTM,w is leaky.
Conversely, if a run of the protocol reveals the secret x0, then TM halts on w. 2

Remark 2.2 The proof of Theorem 2.3 does not work for protocols in the well-
founded form as one can easily see. However, we find the proof interesting by the
fact that it shows how, in the absence of freshness check, fresh generation of nonces
(or keys) can be simulated with the help of disequality tests. The main ideea is to
store in some list all the elements generated up to some step and when a fresh nonce
(key) is required it is generated and checked against all the elements in the list.

Theorem 2.3 also shows a new facet of the undecidability of the secrecy prob-
lem. All undecidability proofs for the secrecy problem known from the literature
on security protocols are based either on finitely many nonces generated by honest
agents and arbitrary length messages or infinitely many nonces generated by honest
agents and bounded length messages. Our proof shows undecidability of the secrecy
problem for protocols with bounded length messages, finitely many nonces generated
by honest agents, and infinitely many nonces generated by the intruder.

3 Conclusions

The table below summarizes the main complexity results regarding secrecy for boun-
ded protocols. As we can see, the secrecy problem for bounded protocols without
freshness check remains open.

Bounded protocols
without freshness check with freshness check

initial secrecy DEXPTIME-complete ([3], Corollary 2.1) NEXPTIME-complete

secrecy ? NEXPTIME-complete

The results in Section 2.3 correct Table 9 [4] as follows:

Unbounded # roles, Bounded ∃
(restricted form)

I with ∃ 6= ?
= NEXPTIME-complete

I no ∃ 6= NEXPTIME-complete
= NEXPTIME-complete

Acknowledgment The authors are indebted to an anonymous referee who pointed
out several subtleties of the multiset rewriting formalism which have led to an im-
proved version of the original submission.

25

References

[1] W. Charatonik, A. Podelski, J.M. Talbot, Paths vs. Trees in Set-based Program
Analysis, Proceedings of the 27th Annual ACM Symposium on Principles of

Programming Languages 2000, 330–338.

[2] D. Dolev, A. Yao, On the Security of Public-Key Protocols, IEEE Transactions

on Information Theory 29 (1983), 198–208.

[3] N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, Undecidability of Bounded Secu-
rity Protocols, Workshop on Formal Methods and security Protocols FMSP’99,
Trento (Italy), July 5, 1999.

[4] N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, Multiset Rewriting and the
Complexity of Bounded Security Protocols, Journal of Computer Security 12
(2004), 247–311.

[5] R. Ramanujam, S.P. Suresh, A Decidable Subclass of Unbounded Security Pro-
tocols, Proc. of WITS 2003, April 2003, 11–20.

26

