
Independence From Obfuscation:

A Semantic Framework for Diversity∗

Riccardo Pucella
Northeastern University
Boston, MA 02115 USA
riccardo@ccs.neu.edu

Fred B. Schneider
Cornell University

Ithaca, NY 14853 USA
fbs@cs.cornell.edu

May 1, 2008

Abstract

A set of replicas is diverse to the extent that all implement the same functionality but
they differ in their implementation details. Diverse replicas are less likely to succumb to
the same attacks, when attacks depend on memory layout and/or other implementation
details. Recent work advocates using mechanical means, such as program rewriting, to
create such diversity. A correspondence between the specific transformations being
employed and the attacks they defend against is often provided, but little has been said
about the overall effectiveness of diversity per se in defending against attacks. With
this broader goal in mind, we here give a precise characterization of attacks, applicable
to viewing diversity as a defense, and also show how mechanically-generated diversity
compares to a well-understood defense: type checking.

1 Introduction

Computers that execute the same program risk being vulnerable to the same attacks. This
explains why the Internet, whose machines typically have much software in common, is so
susceptible to malware. It is also a reason that replication of servers does not necessarily
enhance the availability of a service in the presence of attacks—geographically-separated
or not, server replicas, by definition, will all exhibit the same vulnerabilities and thus are
unlikely to exhibit the independence required for enhanced availablity.

A set of replicas is diverse if all implement the same functionality but differ in their
implementation details. Diverse replicas are less prone to having vulnerabilities in com-
mon. But building multiple distinct versions of a program is expensive, so researchers have
advocated mechanical means for creating diverse sets of replicas.

∗This work was mainly performed while the first author was at Cornell University. A preliminary version
of this paper appears in the Proc. 19th IEEE Computer Security Foundations Workshop, pp. 230–241,
2006. Supported in part by AFOSR grant F9550-06-0019, National Science Foundation grants 0430161 and
CCF-0424422 (TRUST), ONR grant N00014-01-1-0968, and grants from Microsoft and Intel. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of these organizations or the
U.S. Government.

1

Various approaches have been proposed, including relocation and/or padding the run-
time stack by random amounts [13, 6, 27], rearranging basic blocks and code within basic
blocks [13], randomly changing the names of system calls [9] or instruction opcodes [16, 4, 3],
and randomizing the heap memory allocator [5]. Some of these approaches are more effective
than others. For example, Shacham et al. [23] derive experimental limits on the address
space randomization scheme proposed by Xu et al. [27], while Sovarel et al. [24] discuss the
effectiveness of instruction set randomization and outline some attacks against it.

For mechanically-generated diversity to work as a defense, not only must implementa-
tions differ (so they have few vulnerabilities in common), but the detailed differences must
be kept secret from attackers. For example, buffer-overflow attacks are generally written
relative to some specific run-time stack layout. Alter this layout by rearranging the relative
locations of variables and the return address on the stack, and an input designed to perpe-
trate an attack for the original stack layout is unlikely to succeed. Were the new stack layout
to become known by the adversary, then crafting an attack again becomes straightforward.

The idea of transforming a program so that its internal logic is difficult to discern is not
new; programs to accomplish such transformations have been called obfuscators [10]. An
obfuscator τ takes two inputs—a program P and a secret key K—and produces a morph
τ(P,K), which is a program whose semantics is equivalent to P but whose implementation
differs. Secret key K prescribes which transformations are applied in producing τ(P,K).
Since P and τ are assumed to be public, knowledge of K would enable an attacker to learn
implementation details for morph τ(P,K) and perhaps even automate the generation of
attacks for different morphs.

Barak et al. [2] and Goldwasser and Kalai [14] give theoretical limits on the effectiveness
of obfuscators for keeping secret the details of an algorithm or its embodiment as a program.
This work, however, says nothing about using obfuscators to create diversity. For creating
diversity, we are concerned with preventing an attacker from learning details about the
output of the obfuscator (since these details are presumed needed for designing an attack),
whereas this prior work is concerned with preventing an attacker from learning the input
to the obfuscator.

The literature on diversity for guaranteeing availability [7] has also studied what happens
when failures are not independent. Eckhardt and Lee [12] and Littlewood and Miller [17],
for instance, formalize some of the concepts involve in assessing independence of failures,
or dually, what they term coincident failures, which are failures that affect more than one
implementation. That work focuses on how likely is a replica to fail based on how much
computing some input causes—a different question from what we study.

Different classes of transformations are more or less effective in defending against differ-
ent classes of attacks. Although knowing the correspondence is important when designing a
set of defenses for a given threat model, this is not the same as knowing the overall power of
mechanically-generated diversity as a defense. We explore that latter, broader, issue here,
by

• giving definitions suited for proving results about the defensive power of obfuscation;

• giving a precise characterization of attacks, applicable to viewing diversity as a defense;

• developing the thesis that mechanically-generated diversity is comparable to type

2

systems. We show that there can be no computable type system corresponding to a
rich obfuscator for an expressive programming language. We also show that under
suitable restrictions, it is possible to give an admittedly unusual type system equivalent
to obfuscation;

• exhibiting, for a C-like language and an obfuscator that rearranges memory, an in-
creasingly tighter sequence of type systems for soundly approximating the defenses
provided by that obfuscator. The most accurate of these type systems is based on
information flow.

Appendices A, B, and C give detailed semantics for the language and type systems we
describe in the main text. Appendix D contains a summary of notation.

2 Attacks and Obfuscators: A Framework

We assume, without loss of generality, that a program interacts with its environment through
inputs and outputs. Inputs include initial arguments supplied to the program when it is
invoked, additional data supplied during execution through communication, and so on.
Outputs are presumably sensed by the environment, and they can include state changes
(e.g., updates to observable program variables or memory locations). A program’s behavior
defines a sequence of inputs and outputs.

An implementation semantics [[·]]I describes executions of programs, generally at the
level of machine instructions: for a program P and inputs inps, [[P]]I(inps) is the set of
executions of program P comprising sequences of states that engender possible behaviors
of the program with inputs inps. For high-level languages, an implementation semantics
typically will include an account of memory layout and other machine-level details about
execution. Given a program P and input inps, executions given by two different implemen-
tation semantics could well be different.

Associate an implementation semantics [[P]]τ,K
I with each morph τ(P,K). This allows

us to model various kinds of obfuscations:

• If the original program is in a high-level language, then we can take obfuscators to be
source-to-source translators and take morphs to be programs in the same high-level
language.

• If the original program is object code, then we can take obfuscators to be binary
rewriters, and we take morphs to be object code as well.

• If the original program is in some source language, then we can take obfuscators to
be compilers with different compilation choices, and we take morphs to be compiled
code.

Notice that an obfuscator is not precluded from adding runtime checks. So, our character-
ization of an obfuscator admits program rewriters that add checks to protect against bad
programming practices.

Attacks are conveyed through inputs and are defined relative to some program P , an
obfuscator τ , and a finite set of keys K1, . . . ,Kn. A resistable attack on program P relative

3

to obfuscator τ and keys K1, . . . ,Kn is defined to be an input that produces a behavior
in some morph τ(P,Ki) where that behavior cannot be produced by some other morph
τ(P,Kj)—presumably because implementation details differ from morph to morph.1 When
morphs are deterministic, the definition of a resistable attack simplifies to being an input
that produces different behaviors in some pair of morphs τ(P,Ki) and τ(P,Kj).

Obfuscators may admit infinitely many keys. Although for many applications we care
only about a finite set of keys at any given time (e.g., when using morphs to implement
a finite number of server replicas), the exact set of keys might not be known in advance
or may change during the lifetime of the application. Therefore, it is sensible to try to
identify inputs that are resistable attacks relative to an obfuscator τ and some finite subset
of the possible keys. Accordingly, a resistable attack on program P relative to obfuscator
τ is defined to be an input inps for which there exists a finite set of keys K1, . . . ,Kn such
that inps is a resistable attack on P relative to τ and K1, . . . ,Kn.

Whether executions from two different morphs reading the same input constitute differ-
ent behaviors is subtle. Different morphs might represent state components and sequence
state changes in different ways (e.g., by reordering instructions). Therefore, whether two
executions engender the same behavior is best not defined in terms of the states of these
executions being equal or even occurring in the same order. For example, different morphs
of a routine that returns a tree (where we consider returning a value from the routine
an output) might create that tree in different regions of memory. Even though different
addresses are returned by each morph, we would want these executions to be considered
equivalent if the trees at those different addresses are equivalent.

We formalize execution equivalence for obfuscator τ and n executions using relations
Bτ

n(·), one for every n ≥ 0. These relations are parameters in our framework, and they
must be chosen appropriately to capture the desired notion of execution equivalence. It is
tempting to define Bτ

n(·) in terms of an equivalence relation on executions, where executions
σ1 and σ2 are put in the same equivalence class if and only if they engender the same
behavior. This, however, may be too restrictive, for reasons we detail below. So, for a tuple
of executions (σ1, . . . , σn) where each execution σi is produced by morph τ(P,Ki) run on
an input inps (i.e., σi ∈ [[P]]τ,Ki

I (inps) holds), we define

(σ1, . . . , σn) ∈ Bτ
n(P,K1, . . . ,Kn) (1)

to hold if and only if executions σ1, . . . , σn all engender equivalent behavior. Equation (1)
has to be instantiated for each given language and obfuscator. A common way to define
the Bτ

n(·) relation, but by no means the only way, is to relate implementation semantics to
an idealized execution, perhaps given by a more abstract semantics. We do this in §5 for a
particular language, Toy-C.

When morphs are deterministic programs, and thus each σi is a unique execution
of morph τ(P,Ki) on input inps, then by definition inps is a resistable attack when-
ever (σ1, . . . , σn) 6∈ Bτ

n(P,K1, . . . ,Kn). In the general case when morphs are nondeter-
1An attack that produces equivalent behavior in all morphs might indicate an obfuscator that does not

introduce sufficient diversity in the morphs, or it might indicate poorly chosen semantics of the program’s
interface [11]. We refer to the latter case as an interface attack. Without some independent specification,
interface attacks are indistinguishable from other program inputs; mechanically-generated diversity is useless
against interface attacks.

4

ministic programs, an input inps is a resistable attack if there exists an execution σj ∈
[[P]]τ,Kj

I (inps) for some j ∈ {1, . . . , n} such that for all choices of σi ∈ [[P]]τ,Ki

I (inps) (for
i ∈ {1, . . . , j − 1, j + 1, . . . , n}) we have (σ1, . . . , σn) 6∈ Bτ

n(P,K1, . . . ,Kn).
Bτ

n(·) need not in general be an equivalence relation on executions because execution
equivalence for some languages might involve supposing an interpretation for states—an
implicit existential quantifier—rather than requiring strict equality of all state components
(as we do require for outputs). For example, consider executions σ1, σ2, and σ3, each from
a different morph with the same input. Let σ[i] denote the ith state of σ, σ[i].v the value
of variable v in state σ[i], and suppose that for all i, σ1[i].x = σ2[i].x = 10, σ3[i].x = 22
and that location 10 in σ2 has the same value as location 22 in σ3. Now, by interpreting x
as an integer variable, we conclude σ1[i].x and σ2[i].x are equivalent; by interpreting x as
a pointer variable, we conclude σ2[i].x and σ3[i].x are equivalent; but it would be wrong to
conclude the transitive consequence: σ1[i].x and σ3[i].x are equivalent. Since equivalence
relations are necessarily transitive, an equivalence relation is not well suited to our purpose.

3 Obfuscation and Type Systems

Even when obfuscation does not eliminate vulnerabilities, it can make exploiting them more
difficult. Systematic methods for eliminating vulnerabilities not only form an alternative
defense but arguably define standards against which obfuscation could be compared. The
obvious candidate is type systems, which can prevent attackers from abusing knowledge
of low-level implementation details and performing unexpected operations. For example,
strong typing as found in Java would prevent overflowing a buffer (in order to alter a return
address on the stack) because it is a type violation to store more data into a variable
than that variable was declared to accommodate. More generally, the property commonly
enforced by type systems is code safety : every variable is associated with a set of values it
can store, every operation has a signature indicating what values it can take as arguments,
and execution is aborted when an attempt is made to store a unacceptable value in a variable
or invoke an operation with an unacceptable value as argument.

Eliminating vulnerabilities is clearly preferable to having them be difficult to exploit.
So why bother with obfuscation? The answer is that strong type systems are not always
an option with legacy code. The relative success of recent work [15, 18] in adding strong
typing to languages like C not withstanding, obfuscation is applicable to any object code,
independent of what high-level language it derives from. There are also settings where type
systems are not desirable because of cost. For example, most strongly-typed languages
involve checking that every access to an array is within bounds. Such checks can be expen-
sive. A careful comparison between obfuscation and type systems then helps understand
the trade-offs between the two approaches.

We distinguish two forms of type systems:

• Compile-time type systems report type errors before execution by analyzing the pro-
gram code. For an expressive enough programming language, analyzing program code
does not suffice to determine everything about its run-time behaviors. Therefore,
compile-time type systems may rule out programs whose behaviors are acceptable.

5

• Run-time type systems add checks to the program, and if one of those checks fails at
run-time the program halts. Given an execution, even if it does not halt due to a type
error, there might be another execution that does. Therefore, run-time type systems
may accept programs capable of exhibiting unacceptable behaviors. Run-time type
systems are, in effect, reference monitors. Hence, run-time type systems are restricted
to enforcing safety properties [22].

A type system is computable if the checks it implements terminate. Thus, a compile-
time type system is computable if it always terminates in response to the question “does
this program type check?” A run-time type system is computable if all the run-time checks
it implements terminate.

To compare obfuscation with type systems, we view obfuscation as a form of probabilistic
type checking. A compile-time or run-time type system is probabilistic if there is some
probability of error associated with the result. Thus, for a probabilistic run-time type
system, type-incorrect operations cause the program to halt with some probability p but
with probability 1 − p a type-incorrect operation is allowed to proceed. With a good
obfuscator, an attempt to overwrite a variable will, with high probability, trigger an illegal
operation and cause the program to halt (because the attacker will not have known enough
about storage layout), which is exactly the behavior expected from probabilistic run-time
type checking.

We start our comparison by first showing that for any expressive programming language
and a rich obfuscator, there is no computable type system that signals a type error on
an input exactly when that input is a resistable attack. By restricting the programming
language, however, we can (and do) exhibit an equivalence between obfuscators and type
systems. In §5.3, we build on these results and discuss, for a concrete programming language,
how the kind of strong typing being advocated for programming languages compares to what
can be achieved with obfuscation.

3.1 Exact Type Systems

It is well known that type checking is undecidable for an expressive programming language
and type system. What about type systems that attempt to signal a type error for resistable
attacks relative to an obfuscator? As we now show, these type systems are also undecidable
for an expressive programming language and obfuscator. More precisely, we show there can
exist no compile-time or run-time computable type system that signals a type error when
executing program P on input inps exactly when inps is a resistable attack relative to τ if
P is written in a language whose programs can detect differences among morphs.

That differences between morphs can be detected by a program is captured by the
existence of a program we call a key classifier for obfuscator τ with associated relation
Bn

τ (·). Intuitively, a key classifier for τ is a program KC τ that reads no input and classifies
each key into an equivalence class, where every key in an equivalence class produces a
morph of KC τ that returns the same element of some universe U . The intent is to use a key
classifier as a subroutine, where the value it returns is not observable by the environment
(for instance, by being stored in a variable that is not observable by the environment).

Formally, KC τ is a key classifier for τ if there exits a countable set A ⊆ U with at least
two elements satisfying:

6

(1) KC τ is a deterministic program that reads no inputs, halts, and returns an encoding
of an element in U (but see below);

(2) for all keys K, τ(KC τ ,K) returns an encoding of an element in A;

(3) Bn
τ (·) is such that for all finite sets of keys K1, . . . ,Kn, if σi is the execution of

τ(KC τ ,Ki) for i = 1, . . . , n, then (σ1, . . . , σn) ∈ Bn
τ (KC τ ,K1, . . . ,Kn); and

(4) for every element a ∈ A, there is a key K such that morph τ(KC τ ,K) returns an
encoding of a.

Roughly speaking, a key classifier distinguishes among τ -morphs to some extent.
We require that Turing-completeness of the programming language not be destroyed

by obfuscator τ . More precisely, not only must there be a way to write a Turing machine
simulator in the programming language, but the simulator must exhibit the same behavior
under obfuscation with any key.

Theorem 3.1. Let L be a programming language and let τ be an obfuscator for programs
in L. If

(1) there exists a key classifier KC τ for τ in L;

(2) there exists a Turing machine simulator sim(·, ·) written in L such that sim(M,x)
simulates Turing machine M on input x and has the same behavior as τ(sim(M,x),K)
for all keys K;

(3) for all keys K and programs P , morph τ(P ; output(0),K) has the same behavior as
τ(P,K); output(0);

then there is no computable type system for L that signals a type error on input inps to
program P if and only if inps is a resistable attack on program P relative to τ .

Proof. Assume by way of contradiction that there is a computable type system T that
signals a type error on program P and input inps if and only if inps is a resistable attack
relative to τ . In other words, there is a computable type system T that signals a type error
on program P and input inps if and only if there exists a finite set K1, . . . ,Kn of keys such
that inps is a resistable attack relative to τ and K1, . . . ,Kn. We derive a contradiction
by showing that such a computable type system can be used to construct an algorithm for
deciding the following undecidable problem: given a nonempty set I, determine whether a
Turing machine halts on all inputs in I.2

Let A be the set of elements into which KC τ classifies keys. (For simplicity of exposi-
tion, we equate elements and their encoding.) Let a be an arbitrary element of A, and let
I = A− {a}. Here is an algorithm to determine whether a Turing machine M halts on all
inputs in I:

2This problem is easily shown undecidable by reduction from the problem of determining whether a
Turing machine accepts all inputs in some given nonempty set I of inputs, which can be shown undecidable
using Rice’s Theorem [21].

7

Algorithm HaltI :

1. Construct Turing machine Ma that behaves just like Turing machine M ,
except that it halts immediately on input a.

2. Construct program Test :

let x = KC τ in sim(Ma, x); output(0).

3. If type system T is a run-time type system, run Test (on a void input).

4. If a type error is signaled by T , return “No, M does not halt on all inputs
in I”.

5. If no type error is signaled by T , return “Yes, M halts on all inputs in I”.

We claim that this algorithm is correct: it returns “Yes, M halts on all inputs in I” if and
only if Turing machine M halts on all inputs in I. Two facts are important for the proof of
correctness of algorithm HaltI .

Fact 1: M halts on all inputs in I if and only if Ma halts on all inputs in I, because a 6∈ I,
by construction of I.

Fact 2: Morph τ(Test ,K) has the same behavior as

let x = τ(KC τ ,K) in sim(Ma, x); output(0),

using hypotheses (2) and (3).

Here now is the correctness proof for HaltI .

• Assume that M halts on all inputs in I. We need to prove that algorithm HaltI

returns “Yes, M halts on all inputs in I”. According to step 5 of HaltI , it suffices to
show that Test does not signal a type error. By assumption, Test does not signal a
type error on its void input if and only if that input is not a resistable attack relative
to τ . Thus, if we want Test not to signal a type error, then it suffices to show that
given any finite set of keys K1, . . . ,Kn, morphs τ(Test ,K1), . . . , τ(Test ,Kn) have the
same behavior.

Let K1, . . . ,Kn be any finite set of keys. Let a1, . . . , an the values into which key
classifier KC τ classifies keys K1, . . . ,Kn, respectively. (That is, τ(KC τ ,Ki) returns
value ai.) By definition, every ai is in A. By assumption, M halts on all inputs in I;
thus, by Fact 1 above, Ma halts on all inputs in I as well. Moreover, Ma also halts
on input a by construction. Thus, Ma halts on all inputs in I ∪ {a} = A. This means
that

let x = τ(KC τ ,Ki) in sim(Ma, x); output (0)

halts and outputs 0 for i = 1, . . . , n. By Fact 2, this means that τ(Test ,Ki) halts
and outputs 0 for i = 1, . . . , n, and thus morphs τ(Test ,K1), . . . , τ(Test ,Kn) have the
same behavior, and therefore T does not signal a type error; so HaltI returns “Yes”.

8

• Assume that M does not halt on all inputs in I. We need to prove that algorithm
HaltI returns “No, M does not halt on all inputs in I”. According to step 4 of
HaltI , it suffices to show that Test signals a type error. By assumption, Test signals
a type error on its void input if and only if that input is a resistable attack relative
to τ and some finite set of keys K1, . . . ,Kn; that is, if τ(Test ,K1), . . . , τ(Test ,Kn) do
not all have the same behavior. Thus, it suffices to show that there exists a finite set
of keys K1, . . . ,Kn such that τ(Test ,K1), . . . , τ(Test ,Kn) do not all have the same
behavior.

Let a′ be an input in I on which M does not halt. By construction, Ma also does
not halt on a′. Let Ka′ be a key that key classifier KC τ classifies as returning value
a′. Such an a′ exists by definition of KC τ . By construction, Ma halts on input
a. Let Ka be a key that key classifier KC τ classifies as returning value a. Again,
such an a exists by definition of KC τ . We claim that keys Ka,Ka′ are such that
τ(Test ,Ka), τ(Test ,Ka′) do not have the same behavior, since τ(Test ,Ka) halts but
τ(Test ,Ka′) does not. By Fact 2, τ(Test ,Ka) has the same behavior as

let x = τ(KC τ ,Ka) in sim(Ma, x); output (0)

and τ(Test ,Ka′) has the same behavior as

let x = τ(KC τ ,Ka′) in sim(Ma, x); output (0).

But the first of these programs outputs 0, because Ma halts on input a, while the sec-
ond of these programs does not output 0, because Ma does not halt on input a′. Thus,
these two programs do not have the same behavior, and τ(Test ,Ka), τ(Test ,Ka′) do
not have the same behavior, and therefore T signals a type error; so HaltI returns
“No”.

Correctness of HaltI implies that algorithm HaltI decides an undecidable problem, which
is the sought contradiction.

Theorem 3.1 establishes that it is impossible, for a general enough programming lan-
guage and a rich enough obfuscator, to devise a computable type system that signals a type
error exactly when an input is a resistable attack relative to τ and an arbitrary finite set of
keys. Any computable type system must therefore approximate this.

It is possible to obtain a computable type system by simplifying either the programming
language or the property checked by the type system. This suggests that if we restrict the
programming language, then it could be possible to devise a type system that exactly
signals a type error when an input is a resistable attack relative to an obfuscator. For
example, if we are willing to restrict the behavior of morphs and require that only finitely
many execution steps separate successive outputs, then the following type system signals a
type error for exactly those executions corresponding to inputs that are resistable attacks
relative to any τ and some fixed and finite set K1, . . . ,Kn of keys. (For simplicity, here, we
assume execution equivalence is defined as having the same sequence of observable outputs.)
This type system, admittedly unusual, will be called the trivial type system, Tmrph

K1,...,Kn
,

instantiated by an implementation semantics [[P]]mrph,K1,...,Kn

I (inps) that repeatedly runs all
morphs in parallel alongside P with the same input, checking for unanimous consensus on
each value to be output before performing each output action by P :

9

Execute morphs τ(P,K1), . . . , τ(P,Kn) up to their next output statement:

• If the same output is next about to be produced by all morphs, then the
type system allows that output to be produced, and repeats the procedure;

• If not, then the type system signals a type error and aborts execution.

This run-time type system implements a form of N -version programming [8].

Theorem 3.2. Let K1, . . . ,Kn be arbitrary keys for τ . For any program P and inputs
inps satisfying

For every Ki, τ(P,Ki) takes finitely many execution steps between subsequent outputs;

then inps is a resistable attack on P relative to τ and K1, . . . ,Kn if and only if σ ∈
[[P]]mrph,K1,...,Kn

I (inps) signals a type error.

Proof. Immediate from the description of the procedure and the definition of a resistable
attack relative to τ and K1, . . . ,Kn.

This theorem establishes that when programs are restricted enough, run-time type systems
are equivalent to obfuscation under a fixed finite set of keys for defending against attacks.
This correspondence is used below.

Tmrph

K1,...,Kn
can be viewed as approximating a type system that aborts exactly those exe-

cutions corresponding to inputs that are resistable attacks relative to τ and any finite set of
keys. Adding keys—that is, considering type system Tmrph

K1,...,Kn,K′—improves the approxima-
tion, because there are fewer programs and inputs for which Tmrph

K1,...,Kn,K′ will fail to signal
a type error, even though the inputs are resistable attacks. This is because every resistable
attack relative to τ and K1, . . . ,Kn is a resistable attack relative to τ and K1, . . . ,Kn,K ′,
but not vice versa.

The approximation embodied by type system Tmrph

K1,...,Kn
serves as a basis for a probabilis-

tic approximation of the type system that aborts exactly those executions corresponding to
inputs that are resistable attacks relative to τ and some finite set of keys. Consider a type
system T rand that works as follows: before executing a program, keys K1, . . . ,Kn are chosen
at random, and then the type system acts as Tmrph

K1,...,Kn
. For any fixed finite set K1, . . . ,Kn

of keys, Tmrph

K1,...,Kn
will identify inputs that are resistable attacks relative to τ and K1, . . . ,Kn

but may miss inputs that are resistable attacks relative to τ and some other finite set of
keys. By choosing the set of keys at random, type system T rand has some probability of
identifying any input that is a resistable attack relative to some finite set of keys.

4 Execution Equivalence for C-like Languages

We illustrate our framework by examining how the definitions above may be instantiated
for C-like languages—imperative languages with pointer-addressable memory, and allocat-
able buffers. Our interest in C-like languages, arises from an interest in understanding
obfuscation for legacy code written in C.

10

States. States in C-like languages model snapshots of memory. In the implementation
semantics for such a language, a state must not only associate a value with each variable
but the state must also capture details of memory layout so that, for example, pointer
arithmetic works. We therefore would model a state as a triple (L, V,M), where

• L is the set of memory locations (i.e., addresses);

• V is a variable map, which associates relevant information with every variable. For
variables available to programs, V associates the memory locations where the content
of the variable is stored; and for variables used to model other facets of program
execution, V associates information such as sequences of outputs, inputs, or memory
locations holding the current stack location or next instruction to execute;

• M is a memory map, which gives the contents of every memory location; thus,
dom(M) = L holds.

The domain of variable map V includes program variables and hidden variables. Program
variables are explicitly manipulated by programs, and each program variable is bound to a
finite, though not necessarily contiguous, sequence 〈`1, . . . , `k〉 of memory locations in L:

• If k = 1, then the variable holds a single value; memory location `1 stores that value;

• If k > 1, then the variable holds multiple values (for instance, it may be an array
variable, or a C-like struct variable); `1, . . . , `k stores its values;

• If k = 0, the variable is not bound in that state.

Hidden variables are artifacts of the language implementation and execution environment.
For our purposes, it suffices to assume the following hidden variables exist:

• pc records the memory location of the next instruction to execute; it is always bound
to an element of L ∪ {•}, where • indicates the program terminated;

• outputs records the finite sequence of outputs the program has produced;

• inputs holds a (possibly infinite) sequence of inputs still available for reading by the
program.

Memory map M assigns to every location in L a value representing the content stored
there. A memory location can contain either a data value (perhaps representing an instruc-
tion or integer) or another memory location (i.e., a pointer). Thus, what is stored in a
memory location is ambiguous, interpretable as a data value or as a memory location. This
ambiguity reflects an unfortunate reality of system implementation languages, such as C,
that do not distinguish between integers and pointers.

Executions. Let Σ be the set of states. An execution σ ∈ [[P]]I(inps) of program P in
a C-like language, when given input inps, can be represented as an infinite sequence σ of
states from Σ in which each state corresponds to execution of a single instruction in the
preceding state, and in which the following general requirements are also satisfied.

11

(1) L is the same at all states of σ; the set of memory locations does not change during
execution.

(2) If σ[i].pc = • for some i, then σ[j] = σ[i] for all j ≥ i; if the program has terminated
in state σ[i], then that state is stuttered for the remainder of the execution.3

(3) There is either an index i with σ[i].pc = • or for every index i there is an index
j > i with σ[j] 6= σ[i]; an execution either terminates with pc set to • or it does not
terminate and changes state infinitely many times.4

(4) σ[1].outputs = 〈〉 and for all i, σ[i + 1].outputs is either exactly σ[i].outputs, or
σ[i].outputs with a single additional output appended; the initial sequence of outputs
produced is empty, and it can increase by at most one at every state.

(5) σ[1].inputs = inps and for all i, σ[i+1].inputs is either exactly σ[i].inputs, or σ[i].inputs
with the first input removed; input values only get consumed, and at most one input
is consumed at every execution step.

Equivalence of Executions. The formal definition of Bτ
n(P,K1, . . . ,Kn) for a C-like lan-

guage is based on relating executions of morphs to executions in a suitably chosen high-level
semantics of the original program, which serves as an idealized specification for the lan-
guage. A high-level semantics [[·]]H associates a sequence of states with an input but comes
closer to capturing the intention of a programmer—it may, for example, be expressed as
execution steps of a virtual machine that abstracts away how data is represented in memory,
or it may distinguish the intended use of values that have the same internal representation
(e.g., integer values and pointer values in C). Executions from different morphs of P are
deemed equivalent if it is possible to rationalize each execution in terms of a single execution
in the high-level semantics of P .

To relate executions of morphs to executions in the high-level semantics, we assume a
deobfuscation relation δ(P,Ki) between executions σi of τ(P,Ki) and executions σ̂ in the
high-level semantics [[P]]H(·) of P , where (σi, σ̂) ∈ δ(P,Ki) means that execution σi can
be rationalized to execution σ̂ in the high-level semantics of P . A necessary condition for
morphs to be equivalent is that they produce equivalent outputs and read the same inputs;
therefore, relation δ(P,Ki) must satisfy

For all (σi, σ̂) ∈ δ(P,Ki) : Obs(σi) = Obs(σ̂),

where Obs(σ) extracts the sequence of outputs produced and inputs remaining to be con-
sumed by execution σ. Obs(σ) is defined by projecting the bindings of the outputs and
inputs hidden variables and removing repetitions in the resulting sequence.5 Such a relation
for a family of obfuscations and a C-like language is given in §5.

3This simplifies the technical development by allowing infinite sequences of states to represent all execu-
tions.

4This rules out direct loops, such as statements of the form ` : goto `. This restriction does not funda-
mentally affect our results, but it is technically convenient.

5Removing repetitions is necessary so that the sequence has one element per output produced or input
read.

12

main(i : int) {
observable ret
var ret : int;

buf : int[3];
tmp : ∗int;

ret := 99;
tmp := &buf + i;
∗tmp := 42;

}

Figure 1: Example Toy-C program

Given a tuple of executions (σ1, . . . , σn) for a given input inps where each σi is produced
by morph τ(P,Ki), we define these executions to be equivalent if and only if they all
correspond to the same execution in the high-level semantics [[P]]H(·) of program P . This
is formalized by instantiating Equation (1) as follows.

(σ1, . . . , σn) ∈ Bτ
n(P,K1, . . . ,Kn) if and only if

Exists σ̂ ∈ [[P]]H(inps) :
For all i : σi ∈ [[P]]τ,Ki

I (inps) ∧ (σi, σ̂) ∈ δ(P,Ki).
(2)

5 Concrete Example: The Toy-C Language

5.1 The Language

In order to give a concrete example of how to use our framework to reason about diversity
and attacks, we introduce a toy C-like language, Toy-C. Despite its simplicity, it remains
subject to many of the same attacks as the full C language. The syntax and operational
semantics of Toy-C programs should be self-explanatory. We only outline the language here,
giving complete details in Appendix A.

Figure 1 presents an example Toy-C program. A program is a list of procedure decla-
rations, where each procedure declaration gives local variable declarations (introduced by
var) followed by a sequence of statements. Every procedure can optionally be annotated
to indicate which variables are observable—that is, variables that can be examined by the
environment. Whether a variable is observable does not affect execution of a program; the
annotation is used only for determining equivalence of executions (see §5.2).

Procedure main is the entry point of the program. Procedure parameters and local
variables are declared with types, which are used only to convey representations for values.
Types such as ∗int represent pointers to values (in this case, pointers to values of type int).
Types such as int[4] represent arrays (in this case, an array with four entries); arrays are
0-indexed and can appear only as the type of local variables.

Toy-C statements include standard statements of imperative programming languages,
such as conditionals, loops, and assignment. We assume the following statements also are
available:

13

• An output statement corresponding to every output, such as printing and sending to
the network. For simplicity, we identify an output statement with the output that it
produces.

• A statement fail that simply terminates execution with an error.

As in most imperative languages, we distinguish between two kinds of expressions, whose
meaning depends on where they appear in a program. Expressions may evaluate to values
(value-denoting expressions, or VD-expressions for short), and expressions may evaluate
to memory locations (address-denoting expressions, or AD-expressions for short). AD-
expressions are assignable expressions, and they appear on the left-hand side of assignment
statements. All other expressions in a program are VD-expressions. VD-expressions in-
clude constants, variables, pointer dereference, and address-of and arithmetic operations,
while AD-expressions are restricted to variables and pointer dereferences. However, array
operations can still be synthesized from existing expressions using pointer arithmetic, in
the usual way, as illustrated in Figure 1 which in effect implements buf[i] := 42.

Base Semantics. Toy-C program execution is described by a base semantics [[·]]baseI , which
we use as a basis for other semantics defined in subsequent sections. Full details of the base
semantics appear in Appendix A.2.

Base semantics [[·]]baseI captures the stack-based allocation found in standard implemen-
tations of C-like languages. Values manipulated by Toy-C programs are integers, which
are used as the representation both for integers and pointers; the set of memory locations
used by the semantics is just the set of integers. To model stack-based allocation, a hidden
variable stores a pointer to the top of the stack; when a procedure is called, the arguments
to the procedure are pushed on the stack, the return address is pushed on the stack, and
space for storing the local variables is allocated on the stack. Upon return from a procedure,
the stack is restored by popping-off the allocated space, return address, and arguments of
the call; push increments the stack pointer and pop decrements it.

Vulnerabilities. Base semantics [[·]]baseI of Toy-C does not mandate safety checks when
dereferencing a pointer or when adding integers to pointers. Attackers can take advantage
of this freedom to execute Toy-C programs in a way never intended by the programmer,
causing undesirable behavior through techniques such as [20]:

• Stack smashing: overflowing a stack-allocated buffer (array) to overwrite the return
address of a procedure with a pointer to attacker-supplied code (generally supplied in
the buffer itself);

• Arc injection: using a buffer overflow to change the control flow of the program;

These techniques involve updating a memory location that the programmer thought could
not be affected by that operation.6

6Pincus and Baker [20] describe two further attack techniques, namely pointer subterfuge (modifying a
function pointer’s value to point to attacker-supplied code) and heap smashing (exploiting the implementa-
tion of the dynamic memory allocator, such as overwriting the header information of allocated blocks so that
an arbitrary memory location is modified when the block is freed). It is straightforward to extend Toy-C to
model these attacks, by adding function pointers and dynamic memory allocation, respectively.

14

Consider a threat model in which attackers are allowed to invoke programs and supply
inputs. Inputs are used as arguments to the main procedure of the program. For example,
consider the program of Figure 1. According to base semantics [[·]]baseI , on input 0, 1, or 2,
the program terminates in a final state where ret is bound to a memory location containing
the integer 99. However, on input −1, the program terminates in a final state where ret
is bound to a memory location containing the integer 42; the input −1 makes the variable
tmp point to the memory location bound to variable ret, which (according to base semantics
[[·]]baseI) precedes buf on the stack, so that the assignment ∗tmp := 42 stores 42 in the location
associated with ret. Presumably, this behavior is undesirable, and input −1 ought to be
considered an attack.

5.2 An Obfuscator

An obfuscator that implements address obfuscation to protect against buffer overflows was
defined by Bhaktar et al. [6]. It attempts to ensure that memory outside an allocated buffer
cannot be accessed reliably using statements intended for accessing the buffer.

This obfuscator, which we will call τaddr , relies on the following transformations: varying
the starting location of the stack; adding padding around procedure arguments on the stack,
blocks of local variables on the stack, and the return location of a procedure call on the
stack; permuting the allocation order of variables and the order of procedure arguments on
the stack; and supplying different initial memory maps.7

Keys for τaddr are tuples (`s, d,Π,Minit) describing which transformations to apply: `s

is a starting location for the stack; d is a padding size; Π = (π1, π2, . . .) is a sequence
of permutations, with πn (for each n ≥ 1) a permutation of the set {1, . . . , n}; and Minit

represents the initial memory map in which to execute the morph. Morph τaddr(P,K) is
program P compiled under the above transformations.

An implementation semantics [[P]]τaddr ,K
I specifying how to execute morph τ(P,K) is

obtained by modifying base semantics [[P]]baseI to take into account the transformations
prescribed by key K. These modifications affect procedure calls; more precisely, with im-
plementation semantics [[P]]τaddr ,K

I for K = (`s, d,Π,Minit), procedure calls now execute as
follows:

• d locations of padding are pushed on the stack;

• the arguments to the procedure are pushed on the stack, in the order given by per-
mutation πn, where n is the number of arguments—thus, if v1, . . . , vn are arguments
to the procedure, then they are pushed in order vπn(1), . . . , vπn(n);

• d locations of padding are pushed on the stack;

• the return address of the procedure call is pushed on the stack;

• d locations of padding are pushed on the stack;

• memory for the local variables is allocated on the stack, in the order given by permu-
tation πn, where n is the number of local variables;

7Different initial memory maps model the unpredictability of values stored in memory on different ma-
chines running morphs.

15

• d locations of padding are pushed on the stack;

• the body of the procedure executes.

Full details of implementation semantics [[P]]τaddr ,K
I are given in Appendix B.

Notice that whether an input causes undesirable behavior (e.g., input −1 causing ret to
get value 42 if supplied to the program of Figure 1) depends on which morph is executing—
if the morph uses a padding value d of 2 and an identity permutation, for instance, then
input −3 causes the undesirable behavior in the morph that −1 had caused.

To instantiate Bτaddr
n (·) for Toy-C and τaddr , we need a description of the intended high-

level semantics and deobfuscation relations.
A high-level semantics [[·]]H that serves our purpose can be defined similarly to the base

semantics [[·]]baseI , except that values are used only as the high-level language programmer
expects. For example, integers are not used as pointers. Our high-level semantics for
Toy-C distinguishes between direct values and pointers. Roughly speaking, a direct value
is interpreted literally—for instance, an integer representing some count. In contrast, a
pointer is interpreted as a stand-in for the value stored at the memory location pointed to;
the actual memory location given by a pointer is typically irrelevant.8

Executions in high-level semantics [[·]]H are similar to executions described in §4, using
states of the form (L̂, V̂ , M̂), where set of locations L̂ is N, V̂ is the variable map, and M̂
is the memory map. To account for the intended use of values, the memory map associates
with every memory location a tagged value c(v), where tag c indicates whether value v is
meant to be used as a direct value or as a pointer. Specifically, memory map M̂ associates
with every memory location ̂̀∈ L̂ a tagged value

• direct(v) with v ∈ Value, indicating that M̂(̂̀) contains direct value v; or

• pointer(̂̀′) with ̂̀′ ∈ L̂, indicating that M̂(̂̀) contains pointer ̂̀′.
Deobfuscation relations δ(P,K) for τaddr are based on the existence of relations between

individual states of executions, where these relations rationalize an implementation state
in terms of a high-level state. More precisely, an execution σ ∈ [[P]]τaddr ,K

I (inps) in the
implementation semantics of τaddr(P,K) and an execution σ̂ ∈ [[P]]H(inps) in the high-level
semantics of P are related through δ(P,K) if there exists a relation - on states (subject to
a property that we describe below) such that for some stuttered sequence9 σ̂′ of σ̂, we have

For all j : σ[j] - σ̂′[j].

The properties we require of relation - capture how we are allowed to interpret the
states of morph τaddr(P,K). There is generally a lot of flexibility in this interpretation. For
analyzing τaddr , it suffices that - allows morphs to allocate variables at different locations
in memory, and captures the intended use of values. Generally, relation - might also need
to relate states in which values have different representations.

8Other high-level semantics are possible, of course, and our framework can accommodate them. For
instance, a high-level semantics could additionally model that arrays are never accessed beyond their declared
extent. Different high-level semantics generally lead to different notions of equivalence of executions.

9bσ′ is a stuttered sequence of bσ if bσ′ can be obtained from bσ by replacing individual states by a finite
number of copies of that state.

16

The required property of relation - is that there exists a map h (indexed by implemen-
tation states in σ) that, for any given j, maps memory locations in σ[j] to memory locations
in σ̂′[j], such that h determines -. The map is parameterized by implementation states so
that it may be different at every state of an execution, since a morph might reuse the same
memory location for different variables at different points in time.

A map h determines - when, roughly speaking, - relates implementation states and
high-level states that are equal in all components, except that data in memory location `
in the implementation state s is found at memory location h(s, `) in the high-level state.
Formally, h determines - when the relation satisfies the following property: (L, V,M) -
(L̂, V̂ , M̂) holds if and only if

(1) Either V (pc) = V̂ (pc) = •, or h((L, V,M), V (pc)) = V̂ (pc);

(2) V (outputs) = V̂ (outputs);

(3) V (inputs) = V̂ (inputs);

(4) For every observable program variable x, there exists k ≥ 0 such that V (x) =
〈`1, . . . , `k〉, V̂ (x) = 〈 ̂̀1, . . . , ̂̀

k〉, and for all i ≤ k we have `i - ̂̀
i,

where ` - ̂̀ relates implementation locations ` ∈ L and high-level locations ̂̀ ∈ L̂ and
captures when these locations hold similar structures. It is the smallest relation such that
` - ̂̀holds if whenever h(σ[j], `) = ̂̀holds then so does one of the following conditions:

• M(`) = v and M̂(̂̀) = direct(v);

• M(`) = `′, M̂(̂̀) = pointer(̂̀′) and `′ - ̂̀′.
Given this definition of deobfuscation relations, it is now immediate to define equivalence

Bτaddr
n (·) of executions for morphs of τaddr using definition (2).

5.3 Type Systems for Toy-C

We can check that Toy-C and τaddr satisfy the premises of Theorem 3.1, so there can be no
computable type system for Toy-C that exactly identifies inputs that are resistable attacks
relative to τaddr . It is straightforward to implement a Turing machine simulator in Toy-C,
and here is a key classifier for τaddr :

classify(ret : ∗int) {
var a : int[5];
∗ret := ∗(&a− 2);

}

where ret holds a memory location in which to store the return value. The intuition is that
a morph of classify will return an arbitrary value (viz., the result of dereferencing &a− 2).
Observe that for every possible integer value v, there is a morph of classify that returns
v. (For example, take the infinite set of keys K = {K1,K2, . . . }, where Ki = (s, 0,Π0,Mi)
with s an initial stack position, Π0 the sequence of identity permutations and Mi a memory
map that assigns value 〈i − 1, int〉 to the location `RW . According to semantics [[·]]τaddr ,K

I

17

(Appendix B), when passed any input value, any morph of the program with respect to
a key Ki ∈ K will return the content of memory location `RW (viz., i − 1).) It is easy to
verify that classify is a key classifier for τaddr . The remaining hypotheses, (2) and (3), of
Theorem 3.1 are similarly easy to discharge.

We also saw in §3 that we can approximate an arbitrary obfuscator by considering
only finite sets of keys. However, if we consider a particular programming language and
a particular obfuscator, we may devise more interesting approximations. In particular, for
Toy-C, we examine how strong typing approximates τaddr .

5.3.1 Strong Typing for Toy-C

Obfuscator τaddr is intended to defend against attacks that involve overflowing a buffer to
corrupt memory. Thus, to eliminate the vulnerabilities targeted by τaddr , a type system only
has to check that a memory read10 or write through a pointer into a buffer does not access
memory outside that buffer.

In Toy-C, there are only two ways in which such a memory access can happen. First,
the program can read a value using a pointer that addresses a location outside the extent
of a buffer, as in Figure 2(a). (A buffer is simply the area of memory allocated for storing
the value of a variable—a single location for an integer or pointer variable, and a sequence
of contiguous locations for an array variable.) Second, the program can write through a
pointer that has been moved past either end of a buffer, as in Figure 2(b). Our type system
must abort executions of these programs.

To put strong typing into Toy-C, we associate information with values manipulated
by programs. More precisely, values will be represented as pairs 〈i, int〉—an integer value
i—and 〈i,ptr(start , end)〉—a pointer value i pointing to a buffer starting at address start
and ending at address end [15, 18]. Our type system T strg enforces the following invariant:
whenever a pointer value 〈i,ptr(start , end)〉 is dereferenced, it must satisfy start ≤ i ≤ end .
Information associated with values is tracked and checked during expression evaluation, as
follows.

S1. The representation of an integer constant i is 〈i, int〉.

S2. Dereferencing an integer value results in a type error. The result of dereferencing a
pointer value 〈i,ptr(start , end)〉 returns the content of memory location i; however,
if i is not in the range delimited by start and end , then a type error is signalled.

S3. Taking the address of an AD-expression lv denoting an address i returns a pointer
value 〈i,ptr(start , end)〉, where start and end are the start and end of the buffer in
which address i is located.

S4. An addition operation signals a type error if both summands are pointer values; if both
summands are integer values, the result is an integer value; if one of the summands is a
pointer value 〈i,ptr(start , end)〉 and the other an integer value 〈i′, int〉, the operation
returns 〈i + i′,ptr(start , end)〉.

10While reading a value is not by itself generally considered an attack, allowing an attacker to read an
arbitrary memory location can be used to mount attacks.

18

main() {
observable x
var a : int[5];

x : int;
x := ∗(&a + 10);

}

(a)

main() {
observable pa
var a : int[5];

pa : ∗int;
pa := &a + 10;
∗pa := 0;

}
(b)

Figure 2: Accessing memory outside a buffer

main() {
observable x
var a : int[5];

pa : ∗int;
x : int;

pa := &a + 10;
x := ∗pa;

}
(a)

main() {
observable x
var a : int[5];

pa : ∗int;
x : int;

pa := &a + 10;
x := 10;

}
(b)

Figure 3: Signalling type errors at pointer value construction versus use

S5. An equality test signals a type error if the operands are not both integer values or
both pointer values.

An alternate form of strong typing is to enforce the following, stronger, invariant: every
pointer value 〈i,ptr(start , end)〉 always satisfies start ≤ i ≤ end . This alternate form
has the advantage of being enforceable whenever a pointer value is constructed, rather
than when a pointer value is used. Compare the two programs in Figure 3. According to
this alternate form of strong typing, both programs signal a type error when evaluating
expression &a + 10: it evaluates to a pointer value outside its allowed range (viz., extent
of a). But although signalling a type error seems reasonable for program (a) in Figure 3,
it seems inappropriate with program (b) because this problematic pointer value is never
actually used. Moreover, morphs created by τaddr will not differ in behavior when executing
program (b).

To illustrate type system T strg , consider the program of Figure 2(a) again. Assume
that variable a is allocated at memory location `a. To execute x := ∗(&a + 10), expression
∗(&a+10) is evaluated. Expression &a evaluates to 〈`a,ptr(`a, `a+4)〉, by S3. The constant
10 evaluates to 〈10, int〉, by S1. The sum &a+10 is type correct (see S4), because no more
than one summand is a pointer, and yields 〈`a+10,ptr(`a, `a+4)〉. However, the subsequent
dereference ∗〈`a +10,ptr(`a, `a +4)〉 signals a type error because location `a +10 is out the
range delimited by `a and `a + 4.

The same thing happens in the program of Figure 2(b). Assume that variable a is
allocated at memory location `a, and that variable pa is allocated at memory location `pa.
The first statement executes by evaluating &a + 10 to a value 〈`a + 10,ptr(`a, `a + 4)〉,

19

as before. The left-hand side of the assignment statement, pa is evaluated to the value
representing the memory location allocated to variable pa, namely 〈`pa,ptr(`pa, `pa)〉; the
assignment stores value 〈`a +10,ptr(`a, `a +4)〉 in location `pa. Note that according to S1–
S5, values are not checked when they are stored. The next assignment statement, however,
signals a type error. The right-hand side evaluates to the value 〈0, int〉, but the left-hand
side attempts a dereference of the value stored in pa, that is, attempts the dereference
∗〈`a + 10,ptr(`a, `a + 4)〉, which signals a type error because location `a + 10 is not in the
range delimited by `a and `a + 4.

To formalize how Toy-C programs execute under type system T strg , we extend base se-
mantics [[·]]baseI to track the types of values. Details of the resulting implementation semantics
[[·]]strgI appear in Appendix C.1. One modification to [[·]]baseI is that [[·]]strgI uses values of the
form 〈i, t〉, where i is an integer and t is a type, as described above.

Attacks disrupted by obfuscator τaddr lead to type errors in Toy-C equipped with T strg .
The following theorem makes this precise.

Theorem 5.1. Let K1, . . . ,Kn be arbitrary keys for τaddr . For any program P and in-
puts inps, if inps is a resistable attack on P relative to τaddr and K1, . . . ,Kn, then σ ∈
[[P]]strgI (inps) signals a type error. Equivalently, if σ ∈ [[P]]strgI (inps) does not signal a type
error, then inps is not a resistable attack on P relative to τaddr and K1, . . . ,Kn.

Proof. See Appendix C.1.

Thus, T strg is a sound approximation of τaddr , in the sense that it signals type errors for all
inputs that are resistable attacks relative to τaddr and a finite set of keys K1, . . . ,Kn. This
supports our thesis about a connection between type systems and obfuscation. Moreover,
any type system that is more restrictive than T strg and therefore causes more executions to
signal a type error will also have the property given in Theorem 5.1.

Notice that τaddr and T strg do not impose equivalent restrictions. Not every input for
which T strg signals a type error corresponds to a resistable attack. When executing the
program of Figure 4(a), for instance, T strg signals a type error because &a + 10 yields a
pointer that cannot be dereferenced. But there is no resistable attack relative to τaddr

because morphs created by τaddr do not differ in their behavior according to Bτaddr
n (·) (see

§5.2), since output statement print(0) is always going to be executed.
Figure 4(a) is a program for which strong typing is stronger than necessary—at least if

one accepts our definition of a resistable attack as being an input that leads to differences
in observable behavior. So in the remainder of this section, we examine weakenings of T strg

with the intent of more tightly characterizing the attacks τaddr defends against.

5.3.2 A Tighter Type System for τaddr

One way to understand the difference between τaddr and T strg is to think about integrity of
values. Intuitively, if a program accesses a memory location through a corrupted pointer,
then the value computed from that memory access has low integrity. This is enforced with
τaddr when different morphs compute different values. We thus distinguish between values
having low integrity, which are obtained by somehow abusing pointers, and values having
high integrity, which are not. This suggests equating integrity with variability under τaddr ;
a value has low integrity if and only if it differs across morphs.

20

main() {
var a : int[5];

x : int;
x := ∗(&a + 10);
print(0);

}

(a)

main() {
var a : int[5];

x : int;
x := ∗(&a + 10);
if (x = 0) then {

print(1);
} else {

print(2);
}

}
(b)

main() {
var a : int[5];

x : int;
x := ∗(&a + 10);
if (x = x) then {

print(1);
} else {

print(2);
}

}
(c)

Figure 4: Sample programs

If we require only that outputs cannot depend on values with low integrity, then execu-
tion should be permitted to continue after reading a value with low integrity. This is the
key insight for a defense, and it will be exploited for the type system in this section.

Tracking whether high-integrity values depend on low-integrity values can be accom-
plished using information flow analyses, and type systems have been developed for this,
both statically [1] and dynamically [19]. That information flow arises when trying to develop
more precise type systems corresponding to obfuscator is, in retrospect, not surprising. As
Tse and Zdancewic [25] have shown, there is a tight relationship between information-flow
type systems and representation independence, where type systems guarantee type safety
even though underlying data representations may vary; the kind of obufscation performed
by τaddr can be seen as varying data representation.

We adapt T strg and design a new type system T info that takes integrity into account. A
new type low is associated with any value having low integrity. Rather than signalling a
type error when dereferencing a pointer to a memory location that lies outside its range,
the type of the value extracted from the memory location is set to low. The resulting
implementation semantics [[P]]info

I appears in Appendix C.2.
T info will signal a type error whenever an output statement is attempted and that output

statement depends on a value with type low. In other words, if control reaches an output
statement due to a value with type low, then a type error is signalled. So, for example, if
a conditional statement branches based on a guard that depends on values with type low,
and one of the branches produces an output, then a type error is signalled. To implement
T info, we track when control flow depends on values with type low. This is achieved by
associating a type not only with values stored in program variables, but with the content
of the program counter itself, in such a way that the program counter has type low if and
only if control flow somehow depended on values with type low.

Consider Figure 4(a). When executing that program, expression &a + 10 evaluates to
〈`a + 10,ptr(`a, `a + 4)〉 (using a similar reasoning as for T strg), and therefore, because
location `a +10 is outside its range, ∗(&a+10) evaluates to 〈i, low〉 for some integer i—the
actual integer is unimportant, since having type low will prevent the integer from having
an observable effect. Value 〈i, low〉 is never actually used in the rest of the program, so

21

execution proceeds without signalling a type error (in contrast to T strg , which does signal a
type error).

By way of contrast, consider Figure 4(b). When executing the if statement in that
program, ∗(&a + 10) evaluates to 〈i, low〉 (for some integer i), and 0 evaluates to 〈0, int〉.
Comparing these two values yields a value with type low, since one of the values in the
guard had type low. (Computing using a value of low integrity yields a result of low
integrity.) Because the guard’s value affects the control flow of the program, the program
counter receives type low as well. When execution reaches the print statement—either in
the then or the else—a type error is signalled because the program counter has type low.

Theorem 5.2. Let K1, . . . ,Kn be arbitrary keys for τaddr . For any program P and in-
puts inps, if inps is a resistable attack on P relative to τaddr and K1, . . . ,Kn, then σ ∈
[[P]]info

I (inps) signals a type error.

Proof. See Appendix C.2.

Thus, just like T strg , type system T info is a sound approximation of τaddr . Moreover, as
illustrated by the programs of Figure 4, T info corresponds more closely to τaddr than does
T strg . Information flow therefore captures our definition of resistable attack relative to τaddr

more closely than strong typing. But, as we see below, T info still aborts executions on inputs
that are not resistable attacks relative to τaddr , so T info is still stronger than τaddr .

One problem is the familiar “label creep” that affects dynamic enforcement mechanisms
for information-flow properties. Label creep refers to the propensity for integrity labels to
be coerced downward while upward relabeling is rare and difficult to do correctly. Label
creep occurs in our type system when the program counter gets a low type because of a
conditional branch that depends on a low-integrity value, even though the two branches of
the conditional may have exactly the same behavior in every morph.

Another problem with T info is illustrated by the program of Figure 4(c). Here, the value
read from location &a + 10 has type low, and it is being used in a conditional test that
can potentially select between different output statements. However, because equality is
reflexive, the fact that we are comparing to a value with type low is completely irrelevant—
the guard always yields true. We believe it would be quite difficult to develop a type system11

that can identify guards that are validities, because doing so requires a way to decide when
two expressions have the same value in all executions. Yet, if we had a more precise way
to establish the integrity of the program counter (for instance, by being able to establish
that two expressions affecting control flow have the same value in all executions), then we
could obtain a type system that more closely correspond to τaddr . Theorem 3.1, however,
indicates that obtaining a type system equivalent to τaddr would be impossible.

6 Concluding Remarks

This paper gives a reduction from defenses created by mechanically-generated diversity to
probabilistic dynamic type checking. But we have ignored the probabilities. For practical

11There are static analyses, such as constant propagation with conditional branches [26], that achieve
some, but not all, of what is needed.

22

applications, these probabilities actually do matter, because if the dynamic type checking is
performed with low probability, then checks are frequently skipped and attacks are likely to
succeed. The probabilities, then, are the interesting metric when trying to decide in practice
whether mechanically-generated diversity actually is useful. Unfortunately, obtaining these
probabilities appears to be a difficult problem. They depend on how much diversity is
introduced and how robust attacks are to the resulting diverse semantics. Our framework is
thus best seen as only a first step in characterizing the effectiveness of program obfuscation
and other mechanically-generated diversity.

Note that a reduction from obfuscation to non-probabilistic type checking—although
clearly stronger than the results we give—would not help in characterizing the effective-
ness of mechanically-generated diversity. This is because there is (to our knowledge) no
non-trivial and complete characterization of the attacks that strong typing repels. Simply
enumerating which specific known attacks are blocked and which are not does not give
a satisfying basis for characterizing a defense in a world where new kinds of attacks are
constantly being devised. We strive for characterizations that are more abstract—a threat
model based on the resources or information available to the attacker, for example. In the
absence of suitable abstract threat models, reductions from one defense to another, like
what is being introduced in this paper, might well be the only way to get insight into the
relative powers of defenses. Moreover, such reductions remain valuable even after suitable
threat models have been developed.

We focus in this paper on a specific language, a single obfuscator, and a few simple type
systems. Our primary goal, however, was not to analyze these particular artifacts, although
the analysis does shed light on how the obfuscators and type systems defend against attacks
(and some of the results for these artifacts are surprising). Rather, our goal has been
to create a framework that allows such an analysis to be performed for any language,
obfuscator, or type system. The hard part was finding a suitable, albeit unconventional,
definition of resistable attack and appreciating that probabilistic variants of type systems
constitute a useful vocabulary for describing the power of mechanically-generated diversity.

Acknowledgments. Thanks to Michael Clarkson, Matthew Fluet, Greg Morrisett, An-
drew Myers, and Tom Roeder for their comments on a draft of this paper. Thanks as well
to Mart́ın Abadi for pointing out the relationship between obfuscation and representation
independence.

23

A A Semantics for Toy-C

A.1 Syntax

Let Var be a set of variables, Proc be a set of procedure names, and Outputs be a set of
possible outputs. The syntax of Toy-C is given by the following grammar.

P ::= pd1 . . . pdk program
pd ::= m(x1 :py1, . . . , xm :pym) { ld ; sts } procedure (m ∈ Proc, x1, . . . , xm ∈ Var)
ty ::= py base type

py [i] array type (i an integer constant)
py ::= int integer type

∗ ty pointer type
ld ::= var x1 : ty1; . . . ;xn : tyn local declaration list (x1, . . . , xn ∈ Var)

observable x; ld observable declaration (x ∈ Var)
st ::= lv := ex assignment statement

m(ex 1, . . . , exn) procedure call (m ∈ Proc)
if ex then { sts1 } else { sts2 } conditional statement
while ex do { sts } loop statement
out output statement (out ∈ Outputs)
fail exception statement

sts ::= ε empty statement sequence
st ; sts statement sequencing

ct ::= i integer constant
null null pointer constant

ex ::= ct constant
∗ ex pointer dereference
x variable (x ∈ Var)
&lv address
ex 1 + ex 2 addition
ex 1 = ex 2 comparison

lv ::= x variable (x ∈ Var)
∗ lv pointer dereference

A program is a sequence of procedure declarations, where each procedure declaration con-
sists of local variable declarations followed by a sequence of statements. Every program
P must define a procedure main, which is the entry point of P ; inputs to P are inputs to
procedure main.

Procedure parameters and local variable are declared with types, which describe repre-
sentation of values. General types ty include base types and array types. Base types py

24

characterize variables whose value fit in a single memory location (viz., integer constants
and pointers); variables of array types can refer to values in multiple memory locations.
While local variables may have general types, procedure parameters, as in C, must have
base types. The following function computes the size of values of a given type:

size(py) , 1

size(py [i]) , i.

Statements include standard statements of imperative programming languages: assign-
ment, procedure call, conditional, and iteration. We identify outputs with statements that
produce those outputs; thus, there is a statement out for every output in Outputs. State-
ment fail terminates an execution with an error. Every sequence of statements is terminated
by an empty sequence statement ε, which we generally omit.

We distinguish VD-expressions ex , which evaluate to values, from AD-expressions lv ,
which denote memory locations. For simplicity, integers and the null pointer are the only
constants. Notation ∗ex (and ∗lv) dereferences a pointer, while &lv returns the address
of a variable (or, more generally, of an AD-expression). Toy-C does not contain an array
dereferencing operator, since it can be synthesized from other operations. For instance,
array dereference x[5] in a VD-expression can be written

∗(&x + 5)

(recall that all values fit in a single memory location), and similarly, assignment x[5] := 10
can be written using a temporary variable:

var y :∗int;
y := (&x + 5);
∗y := 10.

To reduce the number of rules we need to consider in the semantics, the more direct ∗(&x+
5) := 10 is not allowed by our syntax. The only operations we include in our semantics are
+ and =. It is completely straightforward to add new operations.

A.2 Base Semantics

In order to define base semantics [[·]]baseI for Toy-C, we need to describe the states; in par-
ticular, we need to describe locations, variable maps (including all hidden variables), and
memory maps.

For simplicity, we take N as set of memory locations where the stack and variables live.
Assume the first locations of N are locations that store program code; those locations are
not readable or writable. Let `RW be the first readable/writable memory location. We
assume a map loc that returns the location loc(sts) in the first `RW locations of N where
the statement sequence sts is stored. Conversely, we assume a map code that extracts code
from memory: code(`) returns a sequence of statements sts. Clearly, functions loc and code
are inverses: code(loc(sts)) = sts.

Variable maps are standard. Hidden variables pc, outputs, and inputs are as before.
We also have additional hidden variables: sp holds the current stack pointer—that is, the

25

memory location at the top of the stack (initially `s); return holds the location on the
stack where the return address of the current procedure invocation lives; and status records
whether an evaluation terminated successfully (value

√
) or failed (value ×). We shall need

the empty variable map V0, which maps every variable to the empty sequence 〈〉 of locations.
Memory maps are also standard. We shall need the empty memory map M0, which

maps every location to value 0. Our semantics ensures programs cannot access memory
locations below `RW ; any read/write to a memory location below `RW is interpreted as a
read/write to memory location `RW . (An acceptable alternative would be to signal a failure
when a read/write to a memory location below `RW is attempted.)

Before presenting the semantics, we give functions to evaluate AD-expressions to loca-
tions, and VD-expressions to values. Evaluation function A[[lv]](V,M) is used to evaluate
an AD-expression lv in variable map V and memory map M :

A[[x]](V,M) , `1 when V (x) = 〈`1, . . . , `k〉

A[[∗lv]](V,M) ,

{
M(`RW) if A[[lv]](V,M) < `RW

M(A[[lv]](V,M)) otherwise.

Evaluation function E[[ex]](V,M) is used to evaluate a VD-expression ex in variable map
V and memory map M :

E[[∗ex]](V,M) ,

{
M(`RW) if E[[ex]](V,M) < `RW

M(E[[ex]](V,M)) otherwise

E[[i]](V,M) , i

E[[null]](V,M) , 0

E[[x]](V,M) , M(`1) when V (x) = 〈`1, . . . , `k〉
E[[&lv]](V,M) , A[[lv]](V,M)

E[[ex 1 + ex 2]](V,M) , E[[ex 1]](V,M) + E[[ex 2]](V,M)

E[[ex 1 = ex 2]](V,M) ,

{
1 if E[[ex 1]](V,M) = E[[ex 2]](V,M)
0 otherwise.

Executions comprising semantics [[P]]baseI (·) are constructed using standard reduction
rules between operational states of the form (sts, V, M, Vs), where V is a variable map,
Vs = 〈V1, . . . , Vk〉 is a stack of variable maps, M is a memory map, and sts is a sequence of
statements to execute. (Stacks of variable maps record the layers of environment introduced
by the block structure of the language.) The reduction rules are given in Figures 5 and
6. A reduction rule of the form (sts, V, M, Vs) −→ (sts ′, V, M ′, Vs′), describes one step of
the execution of sts. To simplify the description of the semantics, we extend statement
sequences with token • to represent termination. We use notation V {x 7→ 〈`1, . . . , `k〉} to
represent map V updated so that variable x is mapped to 〈`1, . . . , `k〉; similarly for memory
map M . We use ++ to denote sequence concatenation in rule (R10).

Base semantics [[P]]baseI (·) proper is defined by extracting a sequence of states from a
sequence of reductions starting from an initial operational state that corresponds to invoking
procedure main:

26

(•, V, M, Vs) −→ (•, V, M, Vs) (R1)

(ε, V, M, Vs) −→ (•, V {pc 7→ •}, M, Vs) (R2)

if V (return) = •

(ε, V, M, 〈V1, . . . , Vk〉) −→ (sts, V1{pc 7→ `}, M, 〈V2, . . . Vk〉) (R3)

if V (return) = `′, M(`′) = `, and code(`) = sts

(lv := ex ; sts, V, M, Vs) −→ (sts, V {pc 7→ loc(sts)}, M{` 7→ v}, Vs) (R4)

if E[[ex]](V, M) = v and A[[lv]](V, M) = `

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(sts1; sts, V {pc 7→ loc(sts1)}, M, Vs)

(R5)

if E[[ex]](V, M) 6= 0

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(sts2; sts, V {pc 7→ loc(sts2)}, M, Vs)

(R6)

if E[[ex]](V, M) = 0

(while ex do { sts1 }; sts, V, M, Vs) −→
(sts1;while ex do { sts1 }; sts, V {pc 7→ loc(sts1)}, M, Vs)

(R7)

if E[[ex]](V, M) 6= 0

(while ex do { sts1 }; sts, V, M, Vs) −→ (sts, V {pc 7→ loc(sts)}, M, Vs) (R8)

if E[[ex]](V, M) = 0

(fail; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ ×}, M, Vs) (R9)

(out ; sts, V, M, Vs) −→ (sts, V ′, M, Vs) (R10)

where V ′ , V {pc 7→ loc(sts),
outputs 7→ V (outputs)++〈out〉}

Figure 5: Reduction rules for [[·]]baseI

27

(m(ex1, . . . , exn); sts, V, M, 〈V1, . . . , Vk〉) −→ (stsm, V ′, M ′, 〈V, V1, . . . , Vk〉) (R11)

if E[[ex i]](V, M) = ct i for all i

where V ′ , V {pc 7→ loc(stsm),

sp 7→ V (sp) + n +

kX
i=1

size(ty i) + 1,

return 7→ V (sp) + n,
x1 7→ 〈V (sp)〉,
...
xn 7→ 〈V (sp) + n− 1〉,
y1 7→ 〈V (sp) + n + 1, . . . , V (sp) + n + 1 + size(ty1)− 1〉
...

yk 7→ 〈V (sp) + n + 1 +

k−1X
i=1

size(ty i),

. . . ,

V (sp) + n + 1 +

k−1X
i=1

size(ty i) + size(tyk)− 1〉}

M ′ , M{V (sp) 7→ ct1,
...
V (sp) + n− 1 7→ ctn,
V (sp) + n 7→ loc(sts)
V (sp) + n + 1 7→ 0,
...

V (sp) + n + 1 +

k−1X
i=1

size(ty i) 7→ 0}

for m(x1 :py1, . . . , xn :pyn) { var y1 : ty1; . . . ; yk : tyk; stsm } a procedure

Figure 6: Reduction rules for [[·]]baseI , continued

28

[[P]]baseI (〈ct1, . . . , ctk〉) , {〈s1, s2, s3, . . . 〉 | (sts1, V1,M1, Vs1) −→
(sts2, V2,M2, Vs2) −→ . . . ,

si = (N, Vi,Mi) for all i ≥ 1}

where

Vs1 , 〈〉
V1 , V0{sp 7→ `RW ,

return 7→ •,
pc 7→ loc(main(ct1, . . . , ctk);),
inputs 7→ 〈〉,
status 7→

√
,

outputs 7→ 〈〉}
M1 , M0

sts1 , main(ct1, . . . , ctk).

Note that stack pointer sp is initially set to the first readable/writable location in memory
and that program counter pc is set to a code location corresponding to invoking procedure
main with the supplied inputs before returning immediately. All inputs are consumed in the
first step of execution, and therefore variable inputs remains empty for the whole execution.

To simplify the presentation of the reduction rules, operational states hold redundant
information; for instance, the statement being executed in an operational state not only
appears in the operational state but is also given by the code at the location in the program
counter. As the following lemma shows, this redundancy is consistent.

Lemma A.1. Let (sts, V, M, Vs) be an operational state reachable from (sts1, V1,M1, Vs1).
The following properties hold:

(1) V (pc) = • if and only if sts is •;

(2) If sts is not •, then V (pc) = loc(sts).

Proof. This is a straightforward induction on the length of the reduction sequence reach-
ing operational state (sts, V, M, Vs). Every reduction rule of the form (sts, V, M, Vs) −→
(sts ′, V ′,M ′, Vs′) satisfies V ′(pc) = loc(sts ′).

We can verify that the resulting traces are executions as defined in §4.

Lemma A.2. Infinite trace [[P]]baseI (〈ct1, . . . , ctk〉) is an execution.

Proof. Let σ be the single infinite trace in [[P]]baseI (〈ct1, . . . , ctk〉), generated by the sequence
of reductions (sts1, V1,M1, Vs1) −→ (sts2, V2,M2, Vs2) −→ We check the five conditions
defining an execution:

(1) By definition, every state in σ uses N as locations.
(2) By Lemma A.1, if σ[i].pc = •, then sts i = •. Only rule (R1) can apply from

operational state i on, and thus stsj = • for all j ≥ i, that is, σ[j].pc = • for all j ≥ i.

29

(3) If there exists an i ≥ 1 with σ[i].pc = •, we are done. If there is no i ≥ 1 with
σ[i].pc = •, then by Lemma A.1, there is no i ≥ 1 such that sts i = •. Therefore, for every
i ≥ 1, the reduction rule applied at step i must be one of (R3), (R4), (R5), (R6), (R7),
(R8), (R10), or (R11). Each of these rules changes the state (if only because they change
pc). Thus, we cannot have σ[i] = σ[i + 1].

(4) By definition, σ[1].outputs = 〈〉. The only rule that adds outputs to hidden variable
outputs is (R10), which adds a single output at every application of the rule.

(5) By definition, σ[1].inputs = 〈〉, and examination of the rules shows that inputs is
unchanged throughout execution.

B Detailed Account of Obfuscator τaddr

Implementation semantics [[P]]τ,K
I is obtained by modifying [[P]]baseI using:

(1) A memory location `s ≥ `RW representing the start of the stack;

(2) An initial memory map Minit ;

(3) A positive integer d, which is a padding size for data on the stack;

(4) A sequence of permutations Π = {πn | n ≥ 0}, where πn is a permutation of {1, . . . , n}
used to permute parameters and local variables on the stack.

Implementation semantics [[P]]τaddr ,K
I corresponding to morph τaddr(P,K) is obtained by

modifying base semantics [[P]]baseI (·) in a simple way. To account for (1), we initially set sp
to `s instead of `RW . To account for (2), we initially set M to Minit . To account for (3)
and (4), we replace the procedure call reduction rule (R11) in Figure 6 by rule (R11*) in
Figure 7.

C Type Systems for τaddr

C.1 Implementation Semantics [[·]]strgI

Values in implementation semantics [[·]]strgI have the form 〈i, t〉, where i is an integer, and t
is a type (integer or pointer).

Type checking for T strg occurs when operations ∗, +, and = are evaluated (rules S2,
S4, and S5 in §5.3.1). Recall, Toy-C supports two kinds of expressions: VD- and AD-
expressions, denoting values (integer or pointer) and memory locations, respectively. Base
semantics [[·]]baseI (see Appendix A.2) uses evaluation function A[[lv]](V,M) to evaluate an
AD-expression lv in variable map V and memory map M to a location, and evaluation
function E[[ex]](V,M) to evaluate a VD-expression ex in variable map V and memory map
M to a value. To implement type checking for T strg , it suffices to replace these evalua-
tion functions by the following type-checking evaluation functions As and E s, which check
suitable conditions on values:

30

(m(ex1, . . . , exn); sts, V, M, 〈V1, . . . , Vk〉) −→ (stsm, V ′, M ′, 〈V, V1, . . . , Vk〉) (R11*)

if E[[ex i]](V, M) = ct i for all i

where V ′ , V {pc 7→ loc(stsm),

sp 7→ V (sp) + n +

kX
i=1

size(ty i) + 1 + 4d,

return 7→ V (sp) + n + 2d,
xπn(1) 7→ 〈V (sp) + d〉,
...
xπn(n) 7→ 〈V (sp) + d + n− 1〉,
yπk(1) 7→ 〈V (sp) + 3d + n + 1, . . . , V (sp) + 3d + n + 1 + size(tyπk(1))− 1〉
...

yπk(k) 7→ 〈V (sp) + 3d + n + 1 +

k−1X
i=1

size(tyπk(i)),

. . . ,

V (sp) + 3d + n + 1 +

k−1X
i=1

size(tyπk(i)) + size(tyπk(k))− 1〉}

M ′ , M{V (sp) + d 7→ ctπn(1),
...
V (sp) + d + n− 1 7→ ctπn(n),
V (sp) + 2d + n 7→ loc(sts)
V (sp) + 3d + n + 1 7→ 0,
...

V (sp) + 3d + n + 1 +

k−1X
i=1

size(tyπk(i)) 7→ 0}

for m(x1 :py1, . . . , xn :pyn) { var y1 : ty1; . . . ; yk : tyk; stsm } a procedure

Figure 7: Replacement reduction rule for [[·]]τaddr ,(`s,d,Π,Minit)
I

31

As[[x]](V,M) , 〈`1,ptr(`1, `k)〉 when V (x) = 〈`1, . . . , `k〉

As[[∗lv]](V,M) ,

M(i) if As[[lv]](V,M) = 〈i,ptr(start , end)〉, i ≥ `RW ,

and start ≤ i ≤ end
TE otherwise

E s[[∗ex]](V,M) ,

M(i) if E s[[ex]](V,M) = 〈i,ptr(start , end)〉, i ≥ `RW ,

and start ≤ i ≤ end
TE otherwise

E s[[i]](V,M) , 〈i, int〉
E s[[null]](V,M) , 〈0,ptr(0, 0)〉

E s[[x]](V,M) , M(`1) when V (x) = 〈`1, . . . , `k〉
E s[[&lv]](V,M) , As[[lv]](V,M)

E s[[ex 1 + ex 2]](V,M) ,

〈i1 + i2, int〉 if t1 = t2 = int
〈i1 + i2,ptr(start , end)〉 if t1 = ptr(start , end) and t2 = int,

or t1 = int and t2 = ptr(start , end)
TE otherwise

where E s[[ex 1]](V,M) = 〈i1, t1〉
E s[[ex 2]](V,M) = 〈i2, t2〉

E s[[ex 1 = ex 2]](V,M) ,

〈1, int〉 if i1 = i2 and t1 = t2 = int
〈1, int〉 if i1 = i2, t1 = ptr(−,−) and t2 = ptr(−,−)
〈0, int〉 if i1 6= i2 and t1 = t2 = int
〈0, int〉 if i1 6= i2, t1 = ptr(−,−), and t2 = ptr(−,−)
TE otherwise

where E s[[ex 1]](V,M) = 〈i1, t1〉
E s[[ex 2]](V,M) = 〈i2, t2〉.

These functions return either a value or TE (indicating a type error).
The semantics proper is obtained from the reduction rules given in Figures 8 and 9.

Rules (T4’), (T6’), (T8’), and (T11’) are concerned specifically with reporting type errors.
Hidden variable status is set to

√
if termination is successful, × if termination is due to a

failure, and TE if termination is due to a type error. We say an execution trace signals a
type error if it terminates with status equal to TE.

The semantics [[P]]strgI is defined as follows:

[[P]]strgI (〈ct1, . . . , ctk〉)T , {〈s1, s2, s3, . . . 〉 | (sts1, V1,M1, Vs1) −→
(sts2, V2,M2, Vs2) −→ . . . ,

si = (N, Vi,Mi) for all i ≥ 1}

32

(•, V, M, Vs) −→ (•, V, M, Vs) (T1)

(ε, V, M, Vs) −→ (•, V {pc 7→ •}, M, Vs) (T2)

if V (return) = •

(ε, V, M, 〈V1, . . . , Vk〉) −→ (sts, V1{pc 7→ `}, M, 〈V2, . . . , Vk〉) (T3)

if V (return) = `′, M(`′) = `, and code(`) = sts

(lv := ex ; sts, V, M, Vs) −→ (sts, V {pc 7→ loc(sts)}, M{` 7→ v}, Vs) (T4)

if E s[[ex]](V, M) = v and As[[lv]](V, M) = 〈`,−〉

(lv := ex ; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ TE}, M, Vs) (T4’)

if E s[[ex]](V, M) = TE or As[[lv]](V, M) = TE

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(sts1; sts, V {pc 7→ loc(sts1)}, M, Vs)

(T5)

if E s[[ex]](V, M) 6= 〈0, int〉

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(sts2; sts, V {pc 7→ loc(sts2)}, M, Vs)

(T6)

if E s[[ex]](V, M) = 〈0, int〉

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(•, V {pc 7→ •, status 7→ TE}, M, Vs)

(T6’)

if E s[[ex]](V, M) = TE

(while ex do { sts1 }; sts, V, M, Vs) −→
(sts1;while ex do { sts1 }; sts, V {pc 7→ loc(sts1)}, M, Vs)

(T7)

if E s[[ex]](V, M) 6= 〈0,−〉

(while ex do { sts1 }; sts, V, M, Vs) −→ (sts, V {pc 7→ loc(sts)}, M, Vs) (T8)

if E s[[ex]](V, M) = 〈0,−〉

(while ex do { sts1 }; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ TE}, M, Vs) (T8’)

if E s[[ex]](V, M) = TE

Figure 8: Reduction rules for [[·]]strgI

33

(fail; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ ×}, M, Vs) (T9)

(out ; sts, V, M, Vs) −→ (sts, V ′, M, Vs) (T10)

where V ′ , V {pc 7→ loc(sts),
outputs 7→ V (outputs)++〈out〉}

(m(ex1, . . . , exn); sts, V, M, 〈V1, . . . , Vk〉) −→ (stsm, V ′, M ′, 〈V, V1, . . . , Vk〉) (T11)

if E s[[ex i]](V, M) = vi for all i

where V ′ , V {pc 7→ loc(stsm),

sp 7→ V (sp) + n +

kX
i=1

size(ty i) + 1,

return 7→ V (sp) + n,
x1 7→ 〈V (sp)〉,
...
xn 7→ 〈V (sp) + n− 1〉,
y1 7→ 〈V (sp) + n + 1, . . . , V (sp) + n + 1 + size(ty1)− 1〉
...

yk 7→ 〈V (sp) + n + 1 +

k−1X
i=1

size(ty i),

. . . ,

V (sp) + n + 1 +

k−1X
i=1

size(ty i) + size(tyk)− 1〉}

M ′ , M{V (sp) 7→ v1,
...
V (sp) + n− 1 7→ vn,
V (sp) + n 7→ loc(sts)
V (sp) + n + 1 7→ 0,
...

V (sp) + n + 1 +

k−1X
i=1

size(ty i) 7→ 0}

for m(x1 :py1, . . . , xn :pyn) { var y1 : ty1; . . . ; yk : tyk; stsm } a procedure

(m(ex1, . . . , exn); sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ TE}, M, Vs) (T11’)

if E s[[ex i]](V, M) = TE for some i

Figure 9: Reduction rules for [[·]]strgI , continued

34

where

Vs1 , 〈〉
V1 , V0{sp 7→ `RW ,

return 7→ •,
pc 7→ loc(main(ct1, . . . , ctk);),
inputs 7→ 〈〉,
status 7→

√
,

outputs 7→ 〈〉}
M1 , M0

sts1 , main(ct1, . . . , ctk).

Theorem 5.1. Let K1, . . . ,Kn be arbitrary keys for τaddr . For any program P and in-
puts inps, if inps is a resistable attack on P relative to τaddr and K1, . . . ,Kn, then σ ∈
[[P]]strgI (inps) signals a type error. Equivalently, if σ ∈ [[P]]strgI (inps) does not signal a type
error, then inps is not a resistable attack on P relative to τaddr and K1, . . . ,Kn

Proof. Assume that σ ∈ [[P]]strgI (inps) does not signal a type error. We need to prove that
inps is not a resistable attack relative to P and K1, . . . ,Kn. In other words, if σi is the single
execution in [[P]]τaddr ,Ki

I (inps), we need to prove that (σ1, . . . , σn) ∈ Bτaddr
n (P,K1, . . . ,Kn).

By definition of Bτaddr
n (·), this requires finding an appropriate σ̂ ∈ [[P]]H(inps).

We derive the required σ̂ from σ as follows. When σ[j] = (N, V, M), we take σ̂[j] to be
(N, V, M̂), where M̂ is defined by:

M̂(`) =

{
direct(i) if M(`) = 〈i, int〉
pointer(i) if M(`) = 〈i,ptr(−,−)〉.

It remains to show that for every i we have (σi, σ̂) ∈ δ(P,Ki). Fix i. We exhibit a
relation - determined by a map h such that σi[j] - σ̂[j] for all j. The map h maps memory
locations in the states of execution σi to corresponding memory locations in the states of
the high-level execution σ̂. Roughly speaking, for any ` ∈ N, if ` is in the range of some
observable program variable x in V , then we put h(s, `) in the corresponding range of that
same x in V̂ .

The relevant portions of the map h are defined inductively over the sequence of reduc-
tions (sts1, V1,M1, Vs1) −→ (sts2, V2,M2, Vs2) −→ . . . generating σi for morph τaddr(P,Ki).
Let (sts1, V1,M1, Vs1) −→ (sts2, V2,M2, Vs2) −→ . . . be the sequence of reductions gener-
ating σ for P . Without loss of generality, we can assume that programs occupy the same
locations in both semantics. (If not, we simply map program locations in one semantics to
the appropriate program locations in the other semantics.) Thus, we take h(s, `) = ` for
every state s and every location ` < `RW . We specify h(s, `) only for states s of the form
(N, Vj ,Mj), for every j ≥ 1. For j = 1, we can take h((N, V1,M1), `) to be arbitrary, since
there are no observable program variables in the initial state of the execution. Inductively,
assume that we have function h((N, Vj ,Mj), ·). If the reduction rule applied at step j is any
reduction but (R11*) of Figure 7, then take function h((N, Vj+1,Mj+1), ·) to be the same

35

as h((N, Vj ,Mj), ·). If the reduction rule applied at step j is (R11*), then take function
h((N, Vj+1,Mj+1), ·) to be h((N, Vj ,Mj), ·), updated to map

Vj+1(sp) + 3d + n + 1 to

Vj+1 + n + 1 +
π−1

k (1)−1∑
i=1

size(ty i)

...

Vj+1(sp) + 3d + n + 1 + size(tyπk(1)) to

Vj+1 + n + 1 +
π−1

k (1)−1∑
i=1

size(ty i) + size(tyπ−1
k (1))

...

Vj+1(sp) + 3d + n + 1 +
k−1∑
i=1

size(tyπk(i)) to

Vj+1 + n + 1 +
π−1

k (k)−1∑
i=1

size(ty i)

...

Vj+1(sp) + 3d + n + 1 +
k−1∑
i=1

size(tyπk(i)) + size(tyπk(k)) to

Vj+1 + n + 1 +
π−1

k (k)−1∑
i=1

size(ty i) + size(tyπ−1(k)).

Let - be a relation determined by h. (It is easy to see that such a relation can be
found.) We use induction to show that for all j ≥ 1:

(i) stsj = stsj ;

(ii) for all ex ,

• if E s[[ex]](Vj ,MJ) = 〈i′, int〉, then E[[ex]](Vj ,Mj) = i′;

• if E s[[ex]](Vj ,Mj) = 〈i′,ptr(−,−)〉, then E[[ex]](Vj ,Mj) = i′′ and h((N, Vj ,Mj), i′′) =
i′;

and similarly for all lv ;

(iii) If reduction (Rn), for some n < 11, applies at step j to produce σi[j + 1], then
reduction (Tn) applies at step j to produce σ[j + 1]; if reduction (R11*) applies at
step j to produce σi[j +1], then reduction (T11) applies at step j to produce σ[j +1];

(iv) σi[j] - σ̂[j];

36

The base case, j = 1, is immediate, since initial states σ[1] and σi[1] are the same, up
to the types associated with the values in memory, meaning that states σ̂[1] and σi[1] are
also the same, up to the tagging of the values required by high-level semantics [[·]]H .

For the inductive case, assume the result holds for j; we show it for j + 1. Establishing
(i), (ii), and (iii) is straightforward. To establish (iv), we need to establish:

(1) either Vj+1(pc) = • and Vj+1(pc) = •, or h(σi[j + 1], Vj+1(pc)) = Vj+1(pc);

(2) Vj+1(outputs) = Vj+1(outputs);

(3) Vj+1(inputs) = Vj+1(inputs);

(4) for every observable program variable x, there exists k ≥ 0 such that Vj+1(x) =
〈`1, . . . , `k〉, Vj+1(x) = 〈 ̂̀1, . . . , ̂̀

k〉, and for all j ≤ k we have `j - ̂̀
j .

The proof proceeds by case analysis on the reduction rule that applies at step j. (By
(iii), we know that corresponding reduction rules apply to produce σi[j + 1] and σ[j + 1].)
Most of the cases are trivial using (i)–(iii). The only case of interest is when the rules
that apply at step j are (R11*) and (T11). Thus, stsj = stsj = m(ex 1, . . . , exn); sts, and
E s[[exk]](Vj ,Mj) = 〈ik, tk〉 for all k. By (ii), E[[exk]](Vj ,Mj) = i′k for all k, where ik = i′k if
tk = int, and h(σi[j], i′k) = ik if tk = ptr(−,−). (1), (2), and (3) follow immediately. For
(4), note that if Vj+1(x) = 〈`1, . . . , `k〉 for an observable program variable x, then either x
was not newly allocated with the current reduction rule, in which case we already have (4)
by the induction hypothesis, or x is newly allocated, in which case by observation of the
rules and by the construction of h, (4) holds. Thus, we have σi[j + 1] - σ̂[j + 1].

C.2 Implementation Semantics [[·]]info

I

Implementation semantics [[·]]info

I extends [[·]]strgI by adding a new type, low. To implement
type checking for T info, we replace evaluation functions A and E in semantics [[·]]baseI by the
following type-checking evaluation functions Ai and E i, which check suitable conditions on
values:

Ai[[x]](V,M) , 〈`1,ptr(`1, `k)〉 when V (x) = 〈`1, . . . , `k〉

Ai[[∗lv]](V,M) ,

M(i) if Ai[[lv]](V,M) = 〈i,ptr(start , end)〉, i ≥ `RW ,

and start ≤ i ≤ end
〈i′, low〉 otherwise, where Ai[[lv]](V,M) = 〈i,−〉 and M(i) = 〈i′,−〉

E i[[∗ex]](V,M) ,

M(i) if E i[[ex]](V,M) = 〈i,ptr(start , end)〉, i ≥ `RW ,

and start ≤ i ≤ end
〈i′, low〉 otherwise, where E i[[ex]](V,M) = 〈i,−〉 and M(i) = 〈i′,−〉

E i[[i]](V,M) , 〈i, int〉
E i[[null]](V,M) , 〈0,ptr(0, 0)〉

E i[[x]](V,M) , M(`1) when V (x) = 〈`1, . . . , `k〉

37

E i[[&lv]](V,M) , Ai[[lv]](V,M)

E i[[ex 1 + ex 2]](V,M) ,

〈i1 + i2, int〉 if t1 = t2 = int
〈i1 + i2,ptr(start , end)〉 if t1 = ptr(start , end) and t2 = int,

or t1 = int and t2 = ptr(start , end)
〈i1 + i2, low〉 otherwise

where E i[[ex 1]](V,M) = 〈i1, t1〉
E i[[ex 2]](V,M) = 〈i2, t2〉

E i[[ex 1 = ex 2]](V,M) ,

〈1, int〉 if i1 = i2 and t1 = t2 = int
〈1, int〉 if i1 = i2, t1 = ptr(−,−) and t2 = ptr(−,−)
〈0, int〉 if i1 6= i2 and t1 = t2 = int
〈0, int〉 if i1 6= i2, t1 = ptr(−,−), and t2 = ptr(−,−)
〈1, low〉 otherwise, where i1 = i2

〈0, low〉 otherwise, where i1 6= i2

where E i[[ex 1]](V,M) = 〈i1, t1〉
E i[[ex 2]](V,M) = 〈i2, t2〉.

These functions return either a value or TE (indicating a type error).
Reduction rules for T info are given in Figures 10 and 11. The main difference from the

reduction rules in §C.1 is that type checking is only performed in rules (T4’) and (T10’),
when integrity of a value can influence a variable or control flow. (Hidden variables pc and
return also carry a type, to account for a value influencing control flow.) To simplify the
presentation of the semantics, we define an operation t1 ↓ t2 on types:

t1 ↓ t2 ,

{
t1 if t2 6= low
low if t2 = low.

Thus, t1 ↓ t2 is low if and only if at least one of t1 or t2 is low.
Hidden variable status is set to

√
if termination is successful, × if termination is due

to a failure, and TE if termination is due to a type error. As in §C.1, we say an execution
trace signals a type error if it terminates with status equal to TE.

The semantics [[P]]info

I is defined as follows:

[[P]]info

I (〈ct1, . . . , ctk〉)T , {〈s1, s2, s3, . . . 〉 | (sts1, V1,M1, Vs1) −→
(sts2, V2,M2, Vs2) −→ . . . ,

si = (N, Vi,Mi) for all i ≥ 1}
where

Vs1 , 〈〉
V1 , V0{sp 7→ `RW ,

return 7→ •,
pc 7→ 〈loc(main(ct1, . . . , ctk);), int〉,
inputs 7→ 〈〉,
status 7→

√
,

outputs 7→ 〈〉}

38

(•, V, M, Vs) −→ (•, V, M, Vs) (T1)

(ε, V, M, Vs) −→ (•, V {pc 7→ •}, M, Vs) (T2)

if V (return) = •

(ε, V, M, 〈V1, . . . , Vk〉) −→ (sts, V1{pc 7→ 〈`, t↓ t′〉}, M, 〈V2, . . . , Vk〉) (T3)

if V (return) = `′, V (pc) = 〈−, t′〉, M(`′) = 〈`, t〉, and code(`) = sts

(lv := ex ; sts, V, M, Vs) −→ (sts, V {pc 7→ 〈loc(sts), t′〉}, M{` 7→ v}, Vs) (T4)

if E i[[ex]](V, M) = v, Ai[[lv]](V, M) = 〈`, t〉, V (pc) = 〈`′, t′〉,
and t, t′ 6= low

(lv := ex ; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ TE}, M, Vs) (T4’)

if V (pc) = 〈`, low〉 or Ai[[lv]](V, M) = 〈i, low〉

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(sts1; sts, V {pc 7→ 〈loc(sts1), t↓ t′〉}, M, Vs)

(T5)

if E i[[ex]](V, M) = 〈i, t〉, i 6= 0, and V (pc) = 〈−, t′〉

(if ex then { sts1 } else { sts2 }; sts, V, M, Vs) −→
(sts2; sts, V {pc 7→ 〈loc(sts2), t↓ t′〉}, M, Vs)

(T6)

if E i[[ex]](V, M) = 〈0, t〉 and V (pc) = 〈−, t′〉

(while ex do { sts1 }; sts, V, M, Vs) −→
(sts1;while ex do { sts1 }; sts, V {pc 7→ 〈loc(sts1), t↓ t′〉}, M, Vs)

(T7)

if E i[[ex]](V, M) = 〈i, t〉, i 6= 0, and V (pc) = 〈−, t′〉

(while ex do { sts1 }; sts, V, M, Vs) −→ (sts, V {pc 7→ 〈loc(sts), t↓ t′〉}, M, Vs) (T8)

if E i[[ex]](V, M) = 〈0, t〉 and V (pc) = 〈−, t′〉

Figure 10: Reduction rules for [[·]]info

I

39

(fail; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ ×}, M, Vs) (T9)

(out ; sts, V, M, Vs) −→ (sts, V ′, M, Vs) (T10)

if V (pc) = 〈`, t〉 and t 6= low

where V ′ , V {pc 7→ 〈loc(sts), t〉,
outputs 7→ V (outputs)++〈out〉}

(out ; sts, V, M, Vs) −→ (•, V {pc 7→ •, status 7→ TE}, M, Vs) (T10’)

if V (pc) = 〈`, low〉

(m(ex1, . . . , exn); sts, V, M, 〈V1, . . . , Vk〉) −→ (stsm, V ′, M ′, 〈V, V1, . . . , Vk〉) (T11)

if E i[[ex i]](V, M) = vi for all i

where V (pc) = 〈−, t〉

V ′ , V {pc 7→ 〈loc(stsm), t〉,

sp 7→ V (sp) + n +

kX
i=1

size(ty i) + 1,

return 7→ V (sp) + n,
x1 7→ 〈V (sp)〉,
...
xn 7→ 〈V (sp) + n1〉,
y1 7→ 〈V (sp) + n + 1, . . . , V (sp) + n + 1 + size(ty1)− 1〉
...

yk 7→ 〈V (sp) + n + 1 +

k−1X
i=1

size(ty i),

. . . ,

V (sp) + n + 1 +

k−1X
i=1

size(ty i) + size(tyk)− 1〉}

M ′ , M{V (sp) 7→ v1,
...
V (sp) + n− 1 7→ vn,
V (sp) + n 7→ 〈loc(sts), t〉,
V (sp) + n + 1 7→ 0,
...

V (sp) + n + 1 +

k−1X
i=1

size(ty i) 7→ 0}

for m(x1 :py1, . . . , xn :pyn) { var y1 : ty1; . . . ; yk : tyk; stsm } a procedure

Figure 11: Reduction rules for [[·]]info

I , continued

40

M1 , M0

sts1 , main(ct1, . . . , ctk).

Lemma C.1. Let (sts1, V1,M1, Vs1) −→ (sts2, V2,M2, Vs2) −→ . . . be a reduction se-
quence. If Vi(pc) = 〈−, low〉 for some i, then for all j > i, Vj(pc) = 〈−, low〉.

Proof. This is a straightforward induction on the length of the reduction sequence.

Theorem 5.2. Let K1, . . . ,Kn be arbitrary keys for τaddr . For any program P and in-
puts inps, if inps is a resistable attack on P relative to τaddr and K1, . . . ,Kn, then σ ∈
[[P]]info

I (inps) signals a type error.

Proof. This proof has the same structure as that of Theorem 5.1.
Assume that σ ∈ [[P]]strgI (inps) does not signal a type error. We need to prove that inps

is not a resistable attack relative to P and K1, . . . ,Kn. In other words, if σi is the single
execution in [[P]]τaddr ,Ki

I (inps), we need to prove that (σ1, . . . , σn) ∈ Bτaddr
n (P,K1, . . . ,Kn).

By definition of Bτaddr
n (·), this requires finding an appropriate σ̂ ∈ [[P]]H(inps).

We derive the required σ̂ from σ as follows. When σ[j] = (N, V, M), we take σ̂[j] to be
(N, V, M̂), where M̂ is defined by:

M̂(`) =

{
direct(i) if M(`) = 〈i, int〉
pointer(i) if M(`) = 〈i,ptr(−,−)〉.

It remains to show that for every i we have (σi, σ̂) ∈ δ(P,Ki). Fix i. We exhibit a
relation - determined by a map h such that σi[j] - σ̂[j] for all j. The map h maps memory
locations in the states of execution σi to corresponding memory locations in the states of
the high-level execution σ̂. Roughly speaking, for any ` ∈ N, if ` is in the range of some
observable program variable x in V , then we put h(s, `) in the corresponding range of that
same x in V̂ .

The relevant portions of the map h are defined inductively over the sequence of reduc-
tions (sts1, V1,M1, Vs1) −→ (sts2, V2,M2, Vs2) −→ . . . generating σi for morph τaddr(P,Ki).
Let (sts1, V1,M1, Vs1) −→ (sts2, V2,M2, Vs2) −→ . . . be the sequence of reductions gener-
ating σ for P . As in the proof of Theorem 5.1, we assume without loss of generality that
programs occupy the same locations in both semantics; thus, we take h(s, `) = ` for ev-
ery state s and every location ` < `RW . We specify h(s, `) only for states s of the form
(N, Vj ,Mj), for every j ≥ 1. For j = 1, we can take h((N, V1,M1), `) to be arbitrary, since
there are no observable program variables in the initial state of the execution. Inductively,
assume that we have function h((N, Vj ,Mj), ·). If the reduction rule applied at step j is any
reduction but (R11*) of Figure 7, then take function h((N, Vj+1,Mj+1), ·) to be the same
as h((N, Vj ,Mj), ·). If the reduction rule applied at step j is (R11*), then take function

41

h((N, Vj+1,Mj+1), ·) to be h((N, Vj ,Mj), ·), updated to map

Vj+1(sp) + 3d + n + 1 to

Vj+1 + n + 1 +
π−1

k (1)−1∑
i=1

size(ty i)

...

Vj+1(sp) + 3d + n + 1 + size(tyπk(1)) to

Vj+1 + n + 1 +
π−1

k (1)−1∑
i=1

size(ty i) + size(tyπ−1
k (1))

...

Vj+1(sp) + 3d + n + 1 +
k−1∑
i=1

size(tyπk(i)) to

Vj+1 + n + 1 +
π−1

k (k)−1∑
i=1

size(ty i)

...

Vj+1(sp) + 3d + n + 1 +
k−1∑
i=1

size(tyπk(i)) + size(tyπk(k)) to

Vj+1 + n + 1 +
π−1

k (k)−1∑
i=1

size(ty i) + size(tyπ−1(k)).

Let - be a relation determined by h. (It is easy to see that such a relation can be
found.) We use induction to show that for all j ≥ 1 such that Vj(pc) = 〈−, t〉 and t 6= low:

(i) stsj = stsj ;

(ii) for all ex ,

• if E i[[ex]](Vj ,MJ) = 〈i′, int〉, then E[[ex]](Vj ,Mj) = i′;

• if E i[[ex]](Vj ,Mj) = 〈i′,ptr(−,−)〉, then E[[ex]](Vj ,Mj) = i′′ and h((N, Vj ,Mj), i′′) =
i′;

and similarly for all lv ;

(iii) If reduction (Rn), for some n < 11, applies at step j to produce σi[j + 1], then
reduction (Tn) applies at step j to produce σ[j + 1]; if reduction (R11*) applies at
step j to produce σi[j +1], then reduction (T11) applies at step j to produce σ[j +1];

and for all j ≥ 1:

(iv) σi[j] - σ̂[j];

42

The base case, j = 1, is immediate, since initial states σ[1] and σi[1] are the same, up
to the types associated with the values in memory, meaning that states σ̂[1] and σi[1] are
also the same, up to the tagging of the values required by high-level semantics [[·]]H .

For the inductive case, assume the result holds for j; we show it for j + 1. Establishing
(i), (ii), and (iii) is straightforward. (This is only needed as long as Vj(pc) = 〈−, t〉 with
t 6= low, by Lemma C.1.) To establish (iv), we consider two cases. If Vj(pc) = 〈−, low〉,
then because execution does not signal a type error, Vj+1(outputs) = Vj(outputs), and
Vj+1(x) = Vj(x) for every observable program variable x. The result then follows easily by
choice of h, and stuttering. If Vj(pc) = 〈−, t〉 with t 6= low, then we need to establish:

(1) either Vj+1(pc) = • and Vj+1(pc) = •, or h(σi[j + 1], Vj+1(pc)) = Vj+1(pc);

(2) Vj+1(outputs) = Vj+1(outputs);

(3) Vj+1(inputs) = Vj+1(inputs);

(4) for every observable program variable x, there exists k ≥ 0 such that Vj+1(x) =
〈`1, . . . , `k〉, Vj+1(x) = 〈 ̂̀1, . . . , ̂̀

k〉, and for all j ≤ k we have `j - ̂̀
j .

The proof proceeds by case analysis on the reduction rule that applies at step j. (By
(iii), we know that corresponding reduction rules apply to produce σi[j + 1] and σ[j + 1].)
Most of the cases are trivial using (i)–(iii). The only case of interest is when the rules
that apply at step j are (R11*) and (T11). Thus, stsj = stsj = m(ex 1, . . . , exn); sts, and
E i[[exk]](Vj ,Mj) = 〈ik, tk〉 for all k. By (ii), E[[exk]](Vj ,Mj) = i′k for all k, where ik = i′k if
tk = int, and h(σi[j], i′k) = ik if tk = ptr(−,−). (1), (2), and (3) follow immediately. For
(4), note that if Vj+1(x) = 〈`1, . . . , `k〉 for an observable program variable x, then either x
was not newly allocated with the current reduction rule, in which case we already have (4)
by the induction hypothesis, or x is newly allocated, in which case by observation of the
rules and by the construction of h, (4) holds. Thus, we have σi[j + 1] - σ̂[j + 1].

43

D Summary of Notation

P Program

inps Inputs

τ(P,K) Morph of program P with key K under obfuscator τ

[[P]]I(inps) Implementation semantics of P with input inps (generic)

[[P]]τ,K
I (inps) Implementation semantics of morph τ(P,K) with input inps

Bτ
n(P,K1, . . . ,Kn) Equivalence of execution for morphs τ(P,K1), . . . , τ(P,Kn)

KC τ Key classifier for obfuscator τ

Tmrph

K1,...,Kn
Exact type system corresponding to K1, . . . ,Kn

[[P]]mrph,K1,...,Kn

I (inps) Implementation semantics for Tmrph

K1,...,Kn

T rand Randomized exact type system

L Memory locations

V Variable map

M Memory map

Σ Set of states

σ sequence of states in Σ

σ[i] ith state of sequence σ

σ[i].v value of variable v in ith state of σ

δ(P,K) Deobfuscation relation for program P and key K

[[P]]H(inps) High-level semantics of program P on input inps

[[P]]baseI (inps) Base semantics of Toy-C program P on input inps

τaddr Address obfuscator for Toy-C

T strg Toy-C type system for strong typing

[[P]]strgI (inps) Implementation semantics for T strg

T info Toy-C type system for integrity-based typing

[[P]]info

I (inps) Implementation semantics for T info

44

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of depen-
dency. In Proc. 26th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL’99), pages 147–160. ACM Press, 1999.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In Proc. 21th Annual International
Cryptology Conference (CRYPTO’01), volume 2139 of Lecture Notes in Computer Sci-
ence, pages 1–18. Springer-Verlag, 2001.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovic. Randomized instruction
set emulation. ACM Transactions on Information and System Security, pages 3–40,
2005.

[4] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. Dai Zovi. Random-
ized instruction set emulation to disrupt binary code injection attacks. In Proc. 10th
ACM Conference on Computer and Communications Security (CCS’03), pages 281–
289. ACM Press, 2003.

[5] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety for unsafe lan-
guages. Department of Computer Science Technical Report 05-65, University of Mas-
sachusetts Amherst, 2005.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In Proc. 12th USENIX Security
Symposium, pages 105–120, 2003.

[7] P. G. Bishop. Software fault tolerance by design diversity. In M. Lyu, editor, Software
Fault Tolerance, chapter 9. John Wiley & Sons, 1995.

[8] L. Chen and A. Avizienis. N -version programming: A fault-tolerance approach to
reliability of software operation. In Proc. 25th International Symposium on Fault-
Tolerant Computing, pages 113–119. IEEE Computer Science Press, 1995.

[9] M. Chew and D. Song. Mitigating buffer overflows by operating system randomiza-
tion. Technical Report CMU-CS-02-197, School of Computer Science, Carnegie Mellon
University, 2002.

[10] C. S. Collberg, C. Thomborson, and D. Low. Breaking abstractions and unstructuring
data structures. In Proc. 1998 International Conference on Computer Languages, pages
28–38. IEEE Computer Society Press, 1998.

[11] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: Attacks
and defenses for the vulnerability of the decade. In DARPA Information Survivability
Conference and Expo (DISCEX), 2000.

[12] D. E. Eckhardt and L. D. Lee. A theoretical basis for the analysis of multiversion
software subject to coincident errors. IEEE Transactions on Software Engineering,
11(12):1511–1517, 1985.

45

[13] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems. In
Proc. 6th Workshop on Hot Topics in Operating Systems, pages 67–72. IEEE Computer
Society Press, 1997.

[14] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary
inputs. In Proc. 46th IEEE Symposium on the Foundations of Computer Science
(FOCS’05), 2005.

[15] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A
safe dialect of C. In Proc. USENIX Annual Technical Conference, pages 275–288, 2002.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks
with instruction-set randomization. In Proc. 10th ACM Conference on Computer and
Communications Security (CCS’03), pages 272–280. ACM Press, 2003.

[17] B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in multiver-
sion software. IEEE Transactions on Software Engineering, 15(12):1596–1614, 1989.

[18] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy
code. In Proc. 29th Annual ACM Symposium on Principles of Programming Languages
(POPL’02), pages 128–139. ACM Press, 2002.

[19] P. Ørbæk and J. Palsberg. Trust in the λ-calculus. Journal of Functional Programming,
7(6):557–591, 1997.

[20] J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting buffer
overruns. IEEE Security and Privacy, 2(4):20–27, 2004.

[21] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967.

[22] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, 2000.

[23] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh. On the effec-
tiveness of address-space randomization. In Proc. 11th ACM Conference on Computer
and Communications Security (CCS’04), pages 298–307. ACM Press, 2004.

[24] A. N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB?: The effectiveness of
instruction set randomization. In Proc. 14th USENIX Security Symposium, 2005.

[25] S. Tse and S. Zdancewic. Translating dependency into parametricity. In Proc. 9th ACM
SIGPLAN International Conference on Functional Programming (ICFP’04), pages
115–125. ACM Press, 2004.

[26] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems, 13(2):181–210, 1991.

[27] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for security.
In Proc. 22nd International Symposium on Reliable Distributed Systems (SRDS’03),
pages 260–269. IEEE Computer Society Press, 2003.

46

