
Computationally Sound Analysis of Protocols
using Bilinear Pairings ?

Laurent Mazaré

LSV, ENS Cachan & CNRS
mazare@lsv.ens-cachan.fr

Abstract. In this paper, we introduce a symbolic model to analyse pro-
tocols that use a bilinear pairing between two cyclic groups. This model
consists in an extension of the Abadi-Rogaway logic and we prove that
the logic is still computationally sound: symbolic indistinguishability im-
plies computational indistinguishability provided that the Bilinear Deci-
sional Diffie-Hellman assumption holds and that the encryption scheme
is IND-CPA secure. We illustrate our results on classical protocols using
bilinear pairing like Joux tripartite Diffie-Hellman protocol or the TAK-2
and TAK-3 protocols.
Keywords: Security, Formal Methods, Dolev-Yao Model, Computa-
tional Soundness, Bilinear Pairing

1 Introduction

Recently bilinear pairings such as Weil pairing or Tate pairing on elliptic and
hyperelliptic curves have been used to build several cryptographic protocols. One
of the first usable pairing-based protocol has been designed by Joux in [Jou00]
where a key exchange protocol based on pairing is proposed. This protocol al-
lows three participants to build a shared secret key in a singe round. However
this protocol was only designed to be secure in the passive setting and is sub-
ject to man-in-the-middle attacks. Several key exchange protocols that extends
this original protocol were developed, either to ensure some form of authentica-
tion [ARP03] or to extend it to a group setting [BDS03]. Pairings were also used
as a robust building block for other cryptographic primitives such as identity
based encryption schemes or signature schemes [DBS04].

Our contribution. In this paper, we propose an extension of the symbolic model
from Dolev and Yao [DY83] for protocols using bilinear pairing and symmetric
encryption. To the best of our knowledge, this is the first time pairings are con-
sidered in a Dolev-Yao like model. Moreover we prove that our symbolic model
is sound in the computational setting: if there are no attacks in the symbolic set-
ting, then attacks in the computational setting have only a negligible probability
of success. This is done by extending the Abadi-Rogaway logic from [AR00] to
symbolic terms using pairings. We use classical cryptographic assumptions from
? Work partly supported by the ARA SSIA Formacrypt.

the standard model to prove soundness: the symmetric encryption scheme has to
satisfy indistinguishability against chosen-plaintext attacks (IND-CPA) and the
bilinear mapping has to satisfy the bilinear decisional Diffie-Hellman assump-
tion (BDDH). Under these assumptions, our soundness result can be used to
prove computational security of protocols such as Joux tripartite Diffie-Hellman
protocol [Jou00] or the TAK-2 and TAK-3 protocols from Al-Riyami and Pater-
son [ARP03].

We stick to this passive setting of [AR00]. This setting is restrictive compared
to results for active adversaries. However this restriction can be partially removed
because as shown by Katz and Yung in [KY03], it is possible to automatically
transform a (key agreement) protocol that is secure in the passive setting into a
protocol that is secure in the active setting. Thus in order to design a protocol
that is secure in the active case, one can write a protocol that is secure against
passive adversaries in the symbolic setting. Our result can be used to prove that
this protocol is secure against passive adversaries in the computational setting.
Then the Katz and Yung compiler can be used to generate a protocol that is
secure against active adversaries in the computational setting.

Related work. This result follows the line of a recent trend in bridging the gap
which separates the symbolic and computational views of cryptography. This
work started with [AR00,AJ01] where only passive adversaries are considered.

Further works focussed on extending this result by considering the active
setting and by adding cryptographic primitives. The active setting has been
explored through a very rich and generic framework by Backes et al. in [BPW03]
and subsequent papers. The work of Canetti and Herzog [CH04] uses a similar
model but add the notion of universal composability. Micciancio and Warinschi
later proposed another soundness result for the active case in [MW04b]. They
consider a less general framework but in their model automatic verification of
protocols in the symbolic model is possible through existing tools. This model
was later extended in [CW05,JLM05] in order to remove some of the original
limitations and to consider digital signatures.

In the passive setting, numerous cryptographic primitives have been studied.
For example, exclusive or and ciphers have been considered in [BCK05], low
entropy passwords which are subject to guessing attacks are studied in [ABW06],
in [GvR06] probabilistic hash functions are used to prove soundness of symbolic
hashes and in [ABHS05] a stronger variant of semantic security is used to consider
symmetric encryption schemes in presence of key cycles. However we are not
aware of any computational soundness result involving pairing-based protocols.

The concept and difficulties of considering pairings are close to those intro-
duced by modular exponentiation. But computational soundness for this primi-
tive has only been considered in a few works. In [GS05], a logic is used to verify
protocols that use modular exponentiation and digital signature. However only
two-party protocols are handled. Herzog presents in [Her04] an abstract model
for Diffie-Hellman key exchange protocols but in this work the adversary is ex-
tended with the capability of applying arbitrary polynomial time functions.

Outline of this paper. The next section recalls the necessary definition for bilin-
ear pairings and introduces BDDH security. Section 3 details our symbolic model:
terms, deductibility and equivalence are defined in this setting. Then section 4
precises our computational setting by giving concrete semantics to symbolic
terms. Our main soundness result is given in section 5: symbolic indistinguisha-
bility implies computational indistinguishability for secure cryptographic prim-
itives. Section 6 illustrates this soundness result on some simple protocols using
bilinear pairings. Finally a short conclusion is drawn in section 7.

2 Preliminaries for Pairing

In this section, we briefly recall the basics of bilinear pairings. The formal defi-
nition is given in section 4. Let G1 and G2 be two cyclic groups of same prime
order q. Let g1 be a generator of G1. We use multiplicative notations for both
groups. A mapping e from G1 ×G1 to G2 is called a cryptographic bilinear map
if it satisfies the three following properties.

– Bilinearity: e(gx1 , g
y
1) = e(g1, g1)xy for any x, y in Zq.

– Non-degeneracy: e(g1, g1) is a generator of G2 which is also denoted by
g2, i.e. g2 6= 1G2 .

– Computable: there exists an efficient algorithm to compute e(u, v) for any
u and v in G1.

Examples of cryptographic bilinear maps includes modified Weil pairing [BF01]
and Tate pairing [BKLS02]: G1 is a group of points on an elliptic curve and G2

is a multiplicative subgroup of a finite field. The traditional notation for group
G1 originates from elliptic curve groups and thus is additive however we stick to
multiplicative notations in order to simplify our symbolic model of section 3.

The classical decisional security assumption for groups with pairing is the
Bilinear Decisional Diffie-Hellman (BDDH) assumption. This assumption states
it is difficult for an adversary that has access to three elements of G1, gx1 , gy1 and
gz1 to distinguish gxyz2 from a randomly sampled element gr2 of G2.

A simple key exchange protocol has been proposed by Joux in [Jou00]. This
protocol is an extension of the classical Diffie-Hellman key exchange for three
participants. Let A, B and C be the three participants. Each of them randomly
samples a value in Zq (denoted by x for A, by y for B and by z for C). Then
the three following messages are exchanged:

(1) A → B,C : gx1 (2) B → A,C : gy1 (3) C → A,B : gz1

The shared secret key is gxyz2 , it is easy to check that A, B and C can compute
this key by using the bilinear map e on the two messages that they have received.
This protocol is safe in the passive setting provided that the BDDH assumption
holds. No form of authentication is provided in this protocol, so it is trivially
subject to man-in-the-middle attacks.

In the following sections, our objective is to provide a symbolic model for
protocols using bilinear maps and to give a computational justification of this

model. We stick to the passive setting but as noted earlier this is not a real
restriction thanks to the Katz and Yung compiler [KY03]. As usual the com-
putational setting is parameterized by a security parameter η which can be
thought of as the length of keys. Adversaries are probabilistic polynomial-time
(in η) Turing machines. By convention, the adversaries considered in this paper
are given access implicitly to as many fresh random coins as needed, as well as
the complexity parameter η.

3 The Symbolic Setting

In this section, we introduce the symbolic view of cryptography: messages are
represented as algebraic terms, the adversary’s capabilities are defined by an
entailment relation ` and an observational equivalence ∼=. This equivalence is
an extension of the well-known Abadi-Rogaway logic to terms using symmetric
encryption and pairing. The main difference with the original logic is that we
introduce generator g1 for the first group (G1), and generator g2 for the second
group (G2) as long as an infinite set of names representing exponents.

3.1 Terms and Deductibility

Let Keys and Exponents be two countable disjoint sets of symbols for keys and
exponents. A power-free 3-monomial is a product of three distinct exponents and
a power-free 3-polynomial is a linear combination of monomials using coefficients
in Z (with no constant coefficient), hence 2x1x2x3 + x3x4x5 is a power-free 3-
polynomial but x2

1x2 and x1x2x3+1 are not. We let Poly be the set of power-free
3-polynomials with variables in Exponents and coefficients in Z. With a slight
abuse of notation, we often refer to power-free 3-monomials as monomials and
to power-free 3-polynomials as polynomials.

Let k, x and p be meta-variables over Keys, Exponents and Poly respec-
tively. Polynomials can be exponentiated and the set T of terms is built using
symbolic encryption and concatenation of keys, exponents and exponentiations:

msg ::= (msg,msg) | {msg}key | x | key | gx1
key ::= k | gp2

Term (t1, t2) represents the pair composed of terms t1 and t2, {t}k represents
(symmetric) encryption of term t using key k. {t}gp

2
represents encryption of term

t using a key derived from gp2 (there is an implicit application of a deterministic
key extraction algorithm Kex which is detailed in the computational semantics),
in this case gp2 is said to occur at a key position. gx1 and gp2 represent modular
exponentiation of g1 (generator of the first group) and g2 (generator of the second
group) to the power of an exponent x in the first case and a polynomial p in the
second case. An exponent x can be used exponentiated using g1 or g2 but can
also be used as plaintext.

For any term t, pol (t) designates the set of polynomials that appear in t and
mon (t) designates the set of monomials used by polynomials in pol (t).

Equality between polynomials is considered modulo the classical equational
theory: associativity and commutativity for addition and multiplication, dis-
tributivity of multiplication over addition.

First we define a deduction relation E ` t where E is a finite set of terms
and t is a term. The intuitive meaning of E ` t is that t can be deduced from
E. The deductibility relation is an extension of the classical Dolev-Yao inference
system [DY83]:

t ∈ E
E ` t

E ` (t1, t2)
E ` t1

E ` (t1, t2)
E ` t2

E ` {t}k E ` k
E ` t

Note that we did not consider composition rules like if t1 and t2 are deductible
then (t1, t2) is also deductible. Indeed these rules are not necessary as deduction
is only used to check whether some key can be deduced from a term. As keys
are atomic, it is sufficient to consider the four previous rules. We add four new
deduction rules in order to handle pairing. The three first rules correspond to
the three possible ways to obtain an exponentiation gxyz2 using the cryptographic
bilinear map:

E ` x E ` gy1 E ` gz1
E ` gxyz2

E ` x E ` y E ` gz1
E ` gxyz2

E ` x E ` y E ` z
E ` gxyz2

Note that these three rules correspond to “real” capacities of the adversary in
the computational setting. In the first case, an adversary knowing gy1 and gz1 can
use the bilinear map to produce gyz2 . As he also knows x he can exponentiate gyz2
to obtain gxyz2 . In the second case, the adversary knows y so he can produce gy1
and act as in the first case. Finally, the third case is also similar, the adversary
can compute gz1 and act as in the second case.

The fourth rule handles linear relations between polynomials.

E ` gp2 E ` gq2
E ` gλp+q2

λ ∈ Z

In the computational world an adversary can multiply two group elements gp2
and gq2 in order to get gp+q2 . He can also exponentiate a group element gp2 and
obtain gλp2 . Thus it is feasible for the adversary to produce gλp+q2 from gp2 and gq2.
After adding these new deductions, the deductibility relation is still decidable.

Proposition 1. Let t be a term and E be a finite set of terms. Then deductibility
of t from E is decidable.

3.2 Equivalence

Well-formed Terms. Equivalence is only defined for terms that make a correct
use of the bilinear pairing. Such terms are called well-formed terms. Formally a
term t is well-formed if for any distinct monomials m and m′ in mon (t), m and
m′ do not have any common exponent.

Patterns. Patterns are used to characterize the information that can be ex-
tracted from a well-formed term. These patterns are close to those introduced
in [AR00,MP05] but are extended in order to handle modular exponentiation.
We introduce a new symbol � representing a ciphertext that the adversary can-
not decrypt. Moreover we consider that the encryption scheme is not necessarily
key-concealing hence it could be possible for an adversary to tell that two ci-
phertexts have been produced using the same key. Let t be a term and K be
a finite set of keys and elements of the second group gp2 , then the pattern of t
using K, pat (t,K) is inductively defined by:

pat ((t1, t2),K) =
(
pat (t1,K), pat (t2,K)

)
pat ({t′}key,K) = {pat (t′,K)}key if key ∈ K
pat ({t′}key,K) = {�}key if key /∈ K
pat (a,K) = a for a in x, k, gx1 and gp2

The set K is used to store keys that are known by the adversary, for that
purpose we use a function K(t) that associates to each term t the set of keys
k and exponentiations gp2 which are subterms of t and deductible from t. Note
that we consider k to be a subterm of {m}k and gp2 to be a subterm of {m}gp

2
.

K(t) = {k|t ` k} ∪ {gp2 |t ` g
p
2 ∧ g

p
2 is a subterm of t}

We say that two well-formed terms t1 and t2 are equivalent, t1 ≡ t2, if they
have the same pattern: t1 ≡ t2 if and only if pat (t1,K(t1)) = pat (t2,K(t2)).
Intuitively patterns hide information that are encrypted with secure keys. Hence
two terms have the same pattern if the information that can be extracted are
the same, so it is impossible to distinguish these two terms.

Equivalence up to renaming. We allow renaming of keys in a similar way as [AR00]
but renaming of polynomials is slightly more complex and is realized through
linear relation preserving bijections. Let us illustrate this on the two following
examples.

– Let t1 be the term (x1, x2, g
x3
1 , gx4x5x6

2 , gx1x2x3+x4x5x6
2) and t2 be the term

(x1, x2, g
x3
1 , gx4x5x6

2 , gx7x8x9
2). A renaming from polynomials of t2 to polyno-

mials of t1 could be

{x7x8x9 7→ x1x2x3 + x4x5x6}

However this renaming does not correctly preserve linear relations. In term
t1, gx1x2x3+x4x5x6

2 can be obtained by multiplying gx4x5x6
2 with gx1x2x3

2 (which
is obtained by applying the bilinear map to gx2

1 and gx3
1 and raising the result

to the power x1). In term t2, gx7x8x9
2 cannot be obtained in a similar way.

– Let t1 be the term (gx4x5x6
2 , gx1x2x3+x4x5x6

2) and t2 be the term (gx4x5x6
2 , gx7x8x9

2).
The associated renaming is also:

{x7x8x9 7→ x1x2x3 + x4x5x6}

This correctly preserves linear relations as gx1x2x3+x4x5x6
2 cannot be obtained

from other parts of t1 (x1x2x3+x4x5x6 is not involved in any linear relations)
and gx7x8x9

2 cannot be obtained from other parts of t2.

Two well-formed terms t1 and t2 are equivalent up to renaming, t1 ∼= t2 if
they are equivalent up to some renaming of keys and monomials.

t1 ∼= t2 if and only if ∃σ1 a permutation of Keys

∃σ2 a linear relation preserving renaming from t2 to t1
such that t1 ≡ t2σ1σ2

We first define the set dm(t) of deductible monomials from t, i.e. monomials
that can be obtained using the bilinear map operation (this is a slight abuse of
notation as the monomial itself can be not deductible its exponentiation using
g2 is deductible). A monomial x1x2x3 from mon (t) is in dm(t) if one of the
following conditions hold:

– Either x1, x2 and x3 are deductible from t,
– or x1, x2 and gx3

1 are deductible from t,
– or x1, gx2

1 and gx3
1 are deductible from t.

Let t2 and t1 be two terms, a renaming σ from t2 to t1 is linear relation preserving
if the same linear relations are verified between polynomials from t2 and their
image using σ. However monomials from dm(t2) cannot be renamed as they are
linked to other parts of term t2 due to the bilinear pairing. Formally, σ has to
verify the following condition:

∀p1, ..., pn ∈ pol (t2), ∀a1, ..., an ∈ Z, ∀m1, ...,mn′ ∈ dm(t2), ∀b1, ..., bn′ ∈ Z,
n∑
i=1

aipi =
n′∑
j=1

bjmj ⇔
n∑
i=1

ai(piσ) =
n′∑
j=1

bjmj

In this definition of equivalence, we have not considered renaming of Ex-
ponents to preserve simplicity but this can easily be added. Using this new
definition, an interesting result is the decidability of equivalence up to renam-
ing.

Proposition 2. Let t1 and t2 be two well-formed terms. Equivalence up to re-
naming of t1 and t2 is decidable.

In our symbolic model, we have two important restrictions: elements of the
first group have the form gx1 where x is an exponent and elements of the second
group have the form gp2 where p is a linear combination of monomials of order
3. The first restriction is useful as the Decisional Diffie-Hellman assumption is
always false on the first group, knowing gx1 , gy1 it is easy to distinguish gxy1 from
a random group element by using the cryptographic bilinear map. The second
restriction illustrates correct use of pairing. Pairing allows a safe use of keys
using monomials of order 3, however this might not be the case for monomials
of order different from 3.

3.3 Examples

Here we give some examples that illustrate the choices we made when defining
the equivalence. These choices are motivated by the possibilities of adversaries in
the computational setting. Unlike [AR00], our symbolic model does not include
symbolic constants like 0 or 1 as plaintexts. However it is possible to encode
these constants using for example two key names k0 and k1. Then 1 denotes k1

and 0 denotes k0 and instead of looking at equivalence between t and t′, we look
at equivalence between (k0, k1, t) and (k0, k1, t

′).

1. {0}k ∼= {1}k. This example shows that symmetric encryption perfectly hides
its plaintext.

2. ({0}k, {0}k) ∼= ({0}k, {1}k). Symmetric encryption also hides equalities among
the underlying plaintexts. To achieve this, encryption has to be probabilistic.
As modular exponentiation is deterministic, we cannot ask modular expo-
nentiation to hide such relations.

3. (gx1
1 , gx2

1 , gx3
1 , gx1x2x3

2) ∼= (gx1
1 , gx2

1 , gx3
1 , g

x′1x
′
2x
′
3

2). This example illustrates se-
curity of the Joux protocol [Jou00] against passive adversaries. The adver-
sary observes the unfolding of the protocol where three exponentiations are
exchanged. These exponentiations allows the three participants to build a
shared secret key gx1x2x3

2 . Then the adversary cannot distinguish the shared
key from a randomly sampled element of the second group g

x′1x
′
2x
′
3

2 (as the
order of the group is prime, gx

′
1x
′
2x
′
3

2 has a uniform distribution over elements
of the second group).
Moreover the symbolic setting can be used to verify that each participant is
able to compute the shared key. For example the first participant generates
exponent x1 and receives gx2

1 and gx3
1 from the second and third partici-

pants. Using this knowledge, he is able to compute the shared secret key as
x1, g

x2
1 , gx3

1 ` g
x1x2x3
2 .

4. (gx1
1 , gx2

1 , gx3
1 , {0}gx1x2x3

2
) ∼= (gx1

1 , gx2
1 , gx3

1 , {1}gx1x2x3
2

). This example combines
the Joux protocol with an exchange of secret information using the shared
key. Thus in this example symmetric encryption and bilinear pairing are
used simultaneously.

4 The Computational Setting

In this section, we formalize the mapping between symbolic terms and distribu-
tions of bit-strings. This mapping depends on the algorithm used to implement
the two cryptographic primitives used in the symbolic setting: symmetric en-
cryption and pairing.

4.1 Encryption Scheme

We recall the standard definition for symmetric encryption schemes. A symmetric
encryption scheme SE is defined by three algorithms KG, E and D. The key

generation algorithm KG takes as input the security parameter η and outputs a
key k. The encryption algorithm E is randomized, it takes as input a bit-string
s and a key k and returns the encryption of s using k. The decryption algorithm
D takes as input a bit-string c representing a ciphertext and a key k and outputs
the corresponding plaintext. Given k ← KG(η), we have that for any bit-string
s, if c← E(k, s) then it is required that D(c) = s.

In order to characterize security of a symmetric encryption scheme, we use
the classical IND-CPA (indistinguishability against chosen plaintext attacks) no-
tion [GM82].

IND-CPA security. In this paper we use schemes that satisfy length-concealing
semantic security 1. The definition that we recall below uses a left-right encryp-
tion oracle LRbSE . This oracle first generates a key k using KG. Then it answers
queries of the form (bs0, bs1), where bs0 and bs1 are bit-strings. The oracle re-
turns ciphertext E(bsb, k). The goal of the adversary A is to guess the value of
bit b. His advantage is defined as:

AdvCPA
SE,A(η) =

∣∣∣P [ALR1
SE (η) = 1

]
− P

[
ALR

0
SE (η) = 1

]∣∣∣
Encryption scheme SE is IND-CPA secure if the advantage of any adversary A is
negligible in η. The difference with the standard notion of semantic security is
that we require that the scheme hides the length of the plaintext (and therefore
we do not restrict bs0 and bs1 to have equal length). By abuse of notation we
call the resulting scheme also IND-CPA secure.

4.2 Pairing

A bilinear pairing instance generator is defined as a probabilistic polynomial-
time algorithm IG which given a security parameter η outputs a tuple (q,G1,G2, g1, e)
composed by two groups G1 and G2 of prime order q, a generator g1 of G1 and
a cryptographic bilinear map e between G1 and G2. A generator g2 of group G2

is obtained by applying e to (g1, g1).

BDDH security. An instance generator IG satisfies the Bilinear Decisional Diffie-
Hellman assumption, BDDH, iff for any probabilistic polynomial-time adversary
A, the advantage of A against BDDH, AdvBDDH

A,IG , defined above is negligible in
η.

AdvBDDH
A,IG (η) = P

[
(q,G1,G2, g1, e)← IG(η)

x, y, z ← Zq
, A(g1, gx1 , g

y
1 , g

z
1 , g

xyz
2) = 1

]
−P
[

(q,G1,G2, g1, e)← IG(η)
x, y, z, r ← Zq

, A(g1, gx1 , g
y
1 , g

z
1 , g

r
2) = 1

]
This means that an adversary that is given gx1 , gy1 and gz1 can only make the
difference between gxyz2 and a random group element with negligible probability.
1 Such schemes can only exist if the maximum length of plaintexts is bounded, however

we do not take this into account in this paper.

4.3 Computational Semantics of Terms

Computational semantics depend on a symmetric encryption scheme SE =
(KG, E ,D) and of an instance generator IG. In order to transform elements
of the second group into keys usable for SE , we assume the existence of a key
extractor [CFGP05] algorithm Kex (usually a universal hash function used with
the entropy smoothing theorem). We suppose that the distribution of keys gen-
erated by KG is equal to the distribution obtained by applying Kex to a random
element of G2 (generated as second group by IG). We associate to each sym-
bolic term t a distribution of bit-strings [[t]]SE,IG that depends on the security
parameter η. This distribution is defined by the following random algorithm:

1. Algorithm IG is used to generate two paired groups G1 and G2 of order q
and of generators ĝ1 and ĝ2. For each key k from t, a value k̂ is randomly
drawn using KG. For each exponent x, a value x̂ is randomly sampled in Zq
equipped with the uniform distribution.

2. Then the bit-string evaluation of term t is computed recursively on the struc-
ture of t:
– If t is a pair (t1, t2), the algorithm is applied recursively on t1 holding bs1

and on t2 holding bs2. The output of the algorithm is the concatenation
of bs1 and bs2.

– If t is an encryption {t′}k, the algorithm is applied recursively on t′ hold-
ing bs′ and on k holding bsk. The output of the algorithm is E(bs′, bsk).

– If t is an encryption {t′}gp
2
, the algorithm is applied recursively on

t′ holding bs′ and on gp2 holding bsk. The output of the algorithm is
E (bs′,Kex(bsk)).

– If t is an exponentiation gpb for b in [0, 1] (p is an exponent if b = 0), then
the algorithm computes the value n of p in Zq, and the exponentiation
of ĝb to the power of n is returned.

– If t is a key k or an exponent x, then the value t̂ is returned.

5 Soundness of the Symbolic Model

In this section we prove that the extension of the Abadi-Rogaway logic given
in section 3 is computationally sound when implemented using an IND-CPA
encryption scheme and using an instance generator satisfying BDDH: if two terms
are equivalent up to renaming in the symbolic setting, their evaluations (given by
the computational semantics of section 4) are computationally indistinguishable.

Acyclicity Restrictions. The importance of key cycles was already described
in [AR00]. In general IND-CPA is not sufficient to prove any soundness result
in presence of key cycles, thus as in numerous previous work we forbid the
symbolic terms to contain such cycles. (Another possibility to handle key cycles
is to consider stronger computational requirements like Key Dependent Message
– KDM – security as done in [ABHS05].) For any well-formed term t, let kp(t)
be the set of polynomials p such that gp2 occurs at a key position in t and gp2 is
not deductible from t. Let dm′(t) be the set of monomials x1x2x3 such that:

– x1, x2 and x3 occur as plaintexts in t.
– x1 and x2 occur as plaintexts in t and gx3

1 also appears in t.
– x1 occurs as plaintext in t and gx2

1 and gx3
1 also appear in t.

A well-formed term t is acyclic if the two following restrictions are verified.

– For any p in kp(t), p is linearly independent from any other polynomials
from pol (t) and from monomials from dm′(t), i.e. if pol (t) = {p, p1, ..., pn}
and dm′(t) = {m1, ...,mn′} then there does not exist any integers a, a1 to
an and b1 to bn′ such that a 6= 0 and:

a.p =
n∑
i=1

aipi +
n′∑
j=1

bjmj

– Let t′ be term t where each gp2 for p in kp(t) has been replaced by a fresh key
name k. Then there exists an order ≺ among keys such that for any subterm
{t′}k of t, k′ can only occur in t′ if k′ ≺ k.

5.1 Soundness Result

Indistinguishable Distributions. Before giving our soundness result, we recall
the usual notion of indistinguishable distributions. Intuitively, two distributions
D1 and D2 are computationally indistinguishable if for any adversary A, the
probability for A to detect the difference between a randomly sampled element
of D1 and a randomly sampled element of D2 is negligible.

Definition 1. Let D1 and D2 be two distributions (that depend on η). The
advantage of an adversary A in distinguishing D1 and D2 is defined by:

AdvD1,D2
A = P [x← D1(η) ; A(x) = 1]− P [x← D2(η) ; A(x) = 1]

Distributions D1 and D2 are computationally indistinguishable, D1 ≈ D2, if the
advantage for any adversary A in distinguishing D1 and D2 is negligible.

Then our main soundness result states that distributions related to equivalent
terms are computationally indistinguishable.

Proposition 3. Let t0 and t1 be two acyclic well-formed terms, such that t0 ∼=
t1. Let SE be a symmetric encryption scheme that is secure for IND-CPA and
IG be an instance generator satisfying BDDH, then [[t0]]SE,IG ≈ [[t1]]SE,IG.

This result states soundness of symbolic equivalence in the computational
world. However, the reciprocal (i.e. completeness) is in general false. There are
two main problems that prevent completeness. First, the symmetric encryption
scheme may allow decryption with the wrong key and output a random bit-string
in that case. Then the distributions related to terms ({x}k, k) and ({x}k, k′) can
be computationally indistinguishable, even though these two terms do not have
the same pattern. This can be solved by adding a confusion freeness hypothesis

for the symmetric encryption scheme [MW04a,AJ01]. The second problem is that
the symmetric encryption scheme can satisfy key concealing (this is ensured by
type 0 security in [AR00]). Then the distributions related to terms ({0}k, {0}k′)
and ({0}k, {0}k) are computationally indistinguishable but these terms are not
equivalent even with renaming. To solve this, one can either ask the encryption
scheme to be key revealing or modify the pattern definition in order to hide the
key name (but the encryption scheme has to be key concealing in order to prove
soundness).

The previous proposition considers the case of equivalence and is typically
used to verify security of key-exchange protocols. In the next proposition, we are
interested in completeness for deductibility. We prove even more than complete-
ness: if t is deductible from E then there exists an algorithm which is able to
build an evaluation of t from an evaluation of E with probability 1. This result
can be used to verify that a key-agreement protocol can really be implemented
in the computational setting: we first check that the shared key is deductible
from the knowledge of any participants in the symbolic setting, then applying
the following proposition tells us that there exists an efficient algorithm to obtain
the shared key from the participant knowledge in the computational setting.

Proposition 4. Let E be a finite set of terms t1 to tn and t be a term that
does not use any encryption (e.g. a modular exponentiation). If E ` t then there
exists a polynomial-time algorithm A such that A ([[(t1, ..., tn)]]SE,IG) outputs the
evaluation of t using values for exponents and keys that have been generated to
compute [[(t1, ..., tn)]]SE,IG, i.e.:

(bs, bs′)← [[((t1, ..., tn), t)]]SE,IG : A(bs) = bs′

Note that it is not necessary for terms to be well-formed or acyclic in this propo-
sition.

6 Examples of Application

Now we illustrate how proposition 3 can be used to prove a key-exchange protocol
secure in the computational world.

Our notion of security is strong secrecy of the shared key in the passive set-
ting: the adversary gets to observe messages exchanged between the participants
and has to distinguish the shared key from a random group element. In the sym-
bolic world, let us suppose that the exchanged terms where t1 to tn and that the
shared key is gp2 , then security in the symbolic setting holds if:

(t1, ..., tn, g
p
2) ≈ (t1, ..., tn, gr1r2r32)

Where r1, r2 and r3 are three fresh exponent names. It is then possible to apply
proposition 3 in order to prove security in the computational setting.

We are also interested in executability of key exchange protocols. A protocol
is executable if it is feasible for any participant to compute the shared key from

his knowledge. Let us still suppose that the exchanged terms were t1 to tn and
that the shared key is gp2 , moreover let x1

i , ..., x
k
i be the exponents which are

generated by the ith participant. The protocol is executable in the symbolic
setting if for any i,

t1, ..., tn, x
1
i , ..., x

1
i ` g

p
2

Executability in the computational world can easily be obtained from here by
applying proposition 4.

6.1 Joux Protocol

The Joux protocol has been described in section 2. In an execution of this pro-
tocol, three messages are sent, corresponding to terms gx1

1 , gx2
1 and gx3

1 then the
shared key is gx1x2x3

2 . Strong secrecy for this key-exchange protocol has been
given as an example for our symbolic equivalence notion:

(gx1
1 , gx2

1 , gx3
1 , gx1x2x3

2) ∼= (gx1
1 , gx2

1 , gx3
1 , g

x′1x
′
2x
′
3

2)

Proposition 3 can be applied to show that this protocol is secure in the compu-
tational setting if the BDDH assumption holds.

We also verify that this protocol is executable. In the symbolic setting this
is the case as we have the following deductibility relation:

x1, g
x2
1 , gx3

1 ` g
x1x2x3
2

And similar relation holds when permuting the roles of x1 and x2 and of x1

and x3. Thus proposition 4 proves that there exists an efficient algorithm in
the computational setting which allows each participant to compute his shared
secret key.

6.2 TAK-2 and TAK-3 Protocols

The TAK-2 and TAK-3 protocols are two variants of the Joux protocol which
were proposed by Al-Riyami and Paterson in [ARP03]. TAK-1 and TAK-2 are
tripartite key-exchange protocols which work in the same way, the only difference
lies in the shared key. These protocols uses certificates to provide authentication.
However as we are only interested in indistinguishability of the shared key, we
use a simplified version of the protocol. Let A, B and C be three participants:

(1) A → B,C : (gx1
1 , gy11)

(2) B → A,C : (gx2
1 , gy21)

(3) C → A,B : (gx3
1 , gy31)

In TAK-2, the shared key is gx1x2y3+x1y2x3+y1x2x3
2 . In TAK-3, gx1y2y3+y1x2y3+y1y2x3

2

is used as shared key. Our simplified version of the two protocols are quite close
as we do not make any difference between short-term secrets (y1, y2 and y3) and
long-term secrets (x1, x2 and x3). Thus in our setting it is sufficient to analyse
one of the protocol, TAK-2 for example.

Security. In the symbolic setting, strong secrecy of the key generated by the
TAK-2 protocol comes from the following equivalence (up to renaming). Note
that the two equivalent terms are well-formed and trivially acyclic:(

gx1
1 , gy11 , gx2

1 , gy21 , gx3
1 , gy31 , gx1x2y3+x1y2x3+y1x2x3

2

)
∼=(

gx1
1 , gy11 , gx2

1 , gy21 , gx3
1 , gy31 , g

x′1x
′
2x
′
3

2

)
Hence by using proposition 3, we obtain that in the computational setting an
adversary that has access to values for gx1

1 , gy11 , gx2
1 , gy21 , gx3

1 and gy31 cannot
distinguish the shared key gx1x2y3+x1y2x3+y1x2x3

2 from a random group element,
so the adversary is not able to obtain a single bit of information on the shared
key.

Executability. We also verify executability of the protocol. By symmetry we
consider the case of A. A generates two exponents x1 and y1 and receives two
messages corresponding to terms (gx2

1 , gy21) and (gx3
1 , gy31). Hence executability

in the symbolic setting is a consequence of the following deduction:

x1, y1, g
x2
1 , gy21 , gx3

1 , gy31 ` g
x1x2y3+x1y2x3+y1x2x3
2

Thus proposition 4 proves that there exists an efficient algorithm in the com-
putational setting which allows participant A to compute his shared secret key.
The same thing holds for B and C.

7 Conclusions and Future Work

We have proposed a first symbolic model to analyse cryptographic protocols
which use a bilinear pairing. This model can be used to verify security of well-
known key-exchange protocols using pairing like Joux protocol or the TAK-2 and
TAK-3 protocol. Moreover our symbolic model consists in an extension of Abadi-
Rogaway logic which is computationally sound provided that the encryption
scheme and the pairing satisfy classical requirements from provable security. A
direct consequence of this soundness result is that the Joux, TAK-2 and TAK-3
protocol are also secure in the computational setting.

This paper only consider passive adversaries, an obvious line for future work
is to extend the results to deal with active adversaries. Another interesting
follow-up would be to investigate completeness of the extended version of Abadi-
Rogaway logic as in [MW04a]. However this would require either to tighten the
symbolic model or to use stronger versions of the computational requirements
IND-CPA and BDDH.

References

[ABHS05] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness
of formal encryption in the presence of key-cycles. In Proceedings of the

10th European Symposium on Research in Computer Security (ESORICS),
volume 3679 of Lecture Notes in Computer Science, pages 374–396. Springer-
Verlag, 2005.

[ABW06] Mart́ın Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks
and the computational soundness of static equivalence. In Proceedings of
the 9th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’06), volume 3921 of Lecture Notes in
Computer Science, pages 398–412, Vienna, Austria, 2006. Springer.

[AJ01] M. Abadi and J. Jürgens. Formal eavesdropping and its computational
interpretation. In Proceedings of the Fourth International Symposium on
Theoretical Aspects of Computer Software. Springer, 2001.

[AR00] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). In IFIP International Con-
ference on Theoretical Computer Science (IFIP TCS2000), Sendai, Japan,
2000. Springer-Verlag.

[ARP03] Sattam S. Al-Riyami and Kenneth G. Paterson. Tripartite authenticated key
agreement protocols from pairings. In Cryptography and Coding, 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003, Proceed-
ings, volume 2898 of Lecture Notes in Computer Science, pages 332–359.
Springer, 2003.

[BCK05] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally
sound implementations of equational theories against passive adversaries. In
Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP’05), volume 3580 of Lecture Notes in Computer
Science, pages 652–663. Springer, 2005.

[BDS03] Rana Barua, Ratna Dutta, and Palash Sarkar. Extending joux’s protocol
to multi party key agreement (extended abstract). In Proceedings of IN-
DOCRYPT 2003, 4th International Conference on Cryptology in India, vol-
ume 2904 of Lecture Notes in Computer Science, pages 205–217. Springer,
2003.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In Proceedings of CRYPTO 2001, 21st Annual International
Cryptology Conference, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[BKLS02] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystcms. In Proceedings of Crypro 2002, 2002.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In Proceedings of the Tenth ACM confer-
ence on Computer and Communication Security, pages 220–230. ACM Press,
2003.

[CFGP05] Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, and David
Pointcheval. Key derivation and randomness extraction. Technical Report
2005/061, Cryptology ePrint Archive, 2005. http://eprint.iacr.org/.

[CH04] R. Canetti and J. Herzog. Universally composable symbolic analysis of
cryptographic protocols (the case of encryption-based mutual authentication
and key exchange). Cryptology ePrint Archive, Report 2004/334, 2004.

[CW05] V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for
Security Protocols. In Proceeding of the Fourtennth European Symposium
on Programming (ESOP’05), pages 157–171. Springer, 2005.

[DBS04] Ratna Dutta, Rana Barua, and Palash Sarkar. Pairing-based cryptographic
protocols : A survey. Cryptology ePrint Archive, Report 2004/064, 2004.
http://eprint.iacr.org/.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 1983.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing (STOC 1982). ACM Press,
1982.

[GS05] P. Gupta and V. Shmatikov. Towards computationally sound symbolic anal-
ysis of key exchange protocols. In Proceedings of the Third ACM Workshop
on Formal Methods in Security Engineering: From Specifications to Code,
2005.

[GvR06] Flavio D. Garcia and Peter van Rossum. Sound computational interpreta-
tion of symbolic hashes in the standard model. In Proceedings of Advances
in Information and Computer Security. First International Workshop on
Security, IWSEC 2006, volume 4266 of Lecture Notes in Computer Science,
pages 33–47. Springer, 2006.

[Her04] Jonathan Herzog. Computational soundness for standard assumptions of
formal cryptography. PhD thesis, MIT, 2004.

[JLM05] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness
of formal encryption in the presence of active adversaries. In Proceedings
of the Fourteenth European Symposium on Programming (ESOP’05), pages
172–185. Springer, 2005.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In ANTS-
IV: Proceedings of the 4th International Symposium on Algorithmic Number
Theory, pages 385–394, London, UK, 2000. Springer-Verlag.

[KY03] J. Katz and M. Yung. Scalable protocols for authenticated group key ex-
change. In Proceedings of the Twenty-Third Annual International Cryptology
Conference (CRYPTO 2003). Springer, 2003.

[MP05] D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In
Proceedings of the Theory of cryptography conference (TCC 2005). Springer-
Verlag, 2005.

[MW04a] D. Micciancio and B. Warinschi. Completeness theorems for the abadi-
rogaway logic of encrypted expressions. Journal of Computer Security, 2004.
Preliminary version in WITS 2002.

[MW04b] D. Micciancio and B. Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Proceedings of the Theory of Cryptography
Conference (TCC 2004), pages 133–151. Springer, 2004.

