
Computational Soundness of

Symbolic Zero-Knowledge Proofs1

Michael Backesa,b and Dominique Unruha

a Saarland University
b Max Planck Institute for Software Systems (MPI-SWS)

September 10, 2009

Comments and corrections are welcome. Please send them to
Dominique Unruh <u r h m c . n - a r a d dn u @ m i u i s a l n . e>.

The abstraction of cryptographic operations by term algebras, called Dolev-Yao models, is essential
in almost all tool-supported methods for proving security protocols. Recently significant progress was
made in proving that Dolev-Yao models offering the core cryptographic operations such as encryption and
digital signatures can be sound with respect to actual cryptographic realizations and security definitions.
Recent work, however, has started to extend Dolev-Yao models to more sophisticated operations with
unique security features. Zero-knowledge proofs arguably constitute the most amazing such extension.

In this paper, we first identify which additional properties a cryptographic (non-interactive) zero-
knowledge proof needs to fulfill in order to serve as a computationally sound implementation of symbolic
(Dolev-Yao style) zero-knowledge proofs; this leads to the novel definition of a symbolically-sound zero-

knowledge proof system. We prove that even in the presence of arbitrary active adversaries, such proof
systems constitute computationally sound implementations of symbolic zero-knowledge proofs. This
yields the first computational soundness result for symbolic zero-knowledge proofs and the first such result
against fully active adversaries of Dolev-Yao models that go beyond the core cryptographic operations.

Keywords: Computational soundness, zero-knowledge, symbolic cryptography.

Contents

1 Introduction 2

2 Zero-Knowledge Proofs 4

2.1 Symbolic Zero-Knowledge
Proofs 4

2.2 Computational Zero-
Knowledge Proofs 5

3 The Symbolic Model 9

3.1 Postponed definitions 15

4 The Computational Model 17

4.1 Postponed definitions 20

5 Computational Soundness 24

6 Proof of the Main Theorem 27

7 Conclusions 40

A Postponed proofs 41

References 56

Index 62

1To appear in the Journal of Computer Security. A preliminary version appeared at CSF 2008 [BU08].

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 2

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system
aspects of multiple interleaved protocol runs, awkward for humans to make. In fact, vulner-
abilities have accompanied the design of such protocols such as early authentication proto-
cols like Needham-Schroeder [DS81, NS78], carefully designed de-facto standards like SSL and
PKCS [WS96, Ble98], and current widely deployed products like Microsoft Passport [Fis03]
and Kerberos [BCJ+06]. Hence work towards the automation of such proofs started soon af-
ter the first protocols were developed. From the start, the actual cryptographic operations in
such proofs were idealized into so-called Dolev-Yao models, following [DY83, EG83, Mer83],
e.g., see [KMM94, Sch96, nAG97, Low96, Pau98, BMV04]. This idealization simplifies proof
construction by freeing proofs from cryptographic details such as computational restrictions,
probabilistic behavior, and error probabilities. It was not at all clear from the outset
whether Dolev-Yao models are a sound abstraction from real cryptography with its compu-
tational security definitions. Recent work has largely bridged this gap for Dolev-Yao mod-
els offering the core cryptographic operations such as encryption and digital signatures, e.g.,
see [AR02, Lau01, BPW03a, BP04, Lau04, MW04, CW05, CH06, SBB+06].

While Dolev-Yao models traditionally comprised only basic cryptographic operations such as
encryption and digital signatures, recent work has started to extend them to more sophisticated
primitives with unique security features that go far beyond the traditional goal of cryptography
to solely offer secrecy and authenticity of communication.

Zero-knowledge proofs constitute arguably the most prominent and most amazing such prim-
itive (though not the only one2). A zero-knowledge proof consists of a message or a sequence of
messages that combines two seemingly contradictory properties: First, it constitutes a proof of a
statement x (e.g, x = ”the message within this ciphertext begins with 0”) that cannot be forged,
i.e., it is impossible, or at least computationally infeasible, to produce a zero-knowledge proof
of a wrong statement. Second, a zero-knowledge proof does not reveal any information besides
the bare fact that x constitutes a valid statement. Zero-knowledge proofs were introduced in
[GMR89], they were proven to exist for virtually all statements [GMW91], and they in particular
serve as the central ingredient of modern e-voting and attestation protocols such as the Direct
Anonymous Attestation (DAA) protocol [BCC04].

A Dolev-Yao style (symbolic) abstraction of (non-interactive) zero-knowledge proofs has re-
cently been put forward in [BMU08]. The proposed abstraction is suitable for mechanized proofs
and was already successfully used to produce the first fully mechanized proof of central properties
of the DAA protocol. However, no computational soundness guarantee for this abstraction has
been established yet, i.e., it is not clear if security guarantees established using the symbolic ab-
straction of zero-knowledge will carry over to protocol implementations relying on cryptographic
zero-knowledge proofs, or which of the various standard or nonstandard additional properties of
zero-knowledge proofs would be required to achieve this computational soundness result.

In this paper, we first identify which standard and which more sophisticated properties a cryp-
tographic (non-interactive) zero-knowledge proof needs to fulfill in order to serve as a computa-
tionally sound implementation of symbolic zero-knowledge proofs. This process culminates in the
novel definition of a symbolically-sound zero-knowledge proof system; we remark that protocols
already exist that satisfy this definition. Our main result will then show that symbolically-sound
zero-knowledge proof systems constitute computationally sound implementations of symbolic
zero-knowledge proofs. This in particular yields the first computational soundness result against
fully active attackers of Dolev-Yao models that go beyond the core cryptographic operations,
and it constitutes the first soundness result for symbolic zero-knowledge proofs. Our soundness
result applies to trace-properties like authentication and weak secrecy.

Related work. Cryptographic underpinnings of a Dolev-Yao model were first addressed by
Abadi and Rogaway in [AR02] for passive adversaries and symmetric encryption. The protocol

2Examples for other primitives studied in the Dolev-Yao model are blind-signatures (e.g., in [KR05]), Diffie-
Hellman-style exponentiation (e.g., in [AF01]), or private contract signatures (e.g., in [KRW04]).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 3

language and security properties handled were extended in [AJ01, Lau01, HLM03, ABW06], but
still apply only for passive adversaries. This excludes most of the typical ways of attacking
protocols, e.g., man-in-the-middle attacks and attacks by reusing a message part in a concurrent
protocol run.

A cryptographic justification of a Dolev-Yao model for arbitrary active attacks and within
arbitrary surrounding interactive protocols (within the Reactive Simulatability (RSIM) Frame-
work [BPW07]) was first given by Backes, Pfitzmann, and Waidner in [BPW03a] with extensions
in [BPW03b, BP04]. Tool support for this Dolev-Yao model was subsequently added in [SBB+06].
Laud [Lau04] has subsequently presented a cryptographic underpinning for a Dolev-Yao model
of symmetric encryption under active attacks. His work enjoys a direct connection with a formal
proof tool, but it is specific to certain confidentiality properties and restricts the surrounding pro-
tocols to straight-line programs. Micciancio and Warinschi [MW04] and Janvier, Lakhnech, and
Mazaré [JLM05] have presented cryptographic underpinnings for a Dolev-Yao model of public-
key encryption. Their results are narrower than those in [BPW03a] since they are specific for
public-key encryption and restricted classes of protocols, but they consider simpler real implemen-
tations. Baudet, Cortier, and Kremer [BCK05] have established the soundness of specific classes
of equational theories in a Dolev-Yao model under passive attacks. Canetti and Herzog [CH06]
have shown that a Dolev-Yao-style symbolic analysis can be conducted using the framework of
universal composability [Can01] for a restricted class of protocols.

Subsequent work concentrated on linking symbolic and cryptographic secrecy properties.
Cortier and Warinschi [CW05] have shown that symbolically secret nonces are also computa-
tionally secret, i.e., indistinguishable from a fresh random value given the view of the adversary.
Backes and Pfitzmann [BP05] and Canetti and Herzog [CH06] have established new symbolic cri-
teria for showing that a key is cryptographically secret. Laud [Lau05] has designed a type system
for proving payload secrecy of security protocols based on the BPW model [BPW03a]. His work
is extended to key secrecy in [BL06]. Kremer and Mazaré [KM07] have established computational
soundness results for static equivalence. Adão and Fournet [AF06] have shown computational
soundness in the sense of observational equivalence of cryptographic implementations of pro-
cesses. Cortier and Comon-Lundh [CLC08] have established computational soundness results as
the preservation of observational equivalence within a fragment of the applied π-calculus (this
fragment is restricted to protocols that do not branch).

Further work aimed at establishing computational soundness results for additional crypto-
graphic primitives. Cortier, Kremer, Küsters, and Warinschi [CKKW06a] and Backes, Pfitzmann,
and Waidner [BPW06] have shown computational soundness of hash functions in the random
oracle model. Janvier, Lakhnech, and Mazaré [JLM07] have shown computational soundness
of hash functions under a non-standard cryptographic assumption in the standard model, i.e.,
without random oracles. Garcia and van Rossum [GvR08] have showed computational sound-
ness of hash functions under passive adversaries when implemented using perfect one-way hash
functions [CMR98]. Bresson, Lakhnech, Mazaré, and Warinschi [BLMW07] have provided a com-
putationally sound theory for reasoning about protocols based on the decisional Diffie-Hellman
assumption (DDH) for passive adversaries. Limitations of computational soundness in the sense
of Reactive Simultability were shown by Backes and Pfitzmann for hash functions [BPW06] and
the XOR operation [BPW05].

Recently, efforts have also been started to formulate syntactic calculi with a probabilistic,
polynomial-time semantics to directly reason about cryptographic primitives/protocol, including
approaches based on process algebra [MMS98, LMMS98], security logics [IK03, DDM+05] and
cryptographic games [Bla06, BP06, Cd06, Now07, BGJZ07, BBU08]. In general, this line of
work is orthogonal to the work of justifying Dolev-Yao models, which offer a higher level of
abstractions and thus much simpler proofs where applicable, so that proofs of larger systems can
be automated.

Outline of the Paper. In Section 2, we briefly review the modeling of symbolic zero-knowledge
proofs, and we identify the properties a cryptographic zero-knowledge proof should fulfill to serve
as a computationally sound implementation of the abstraction. Sections 3 and 4 contain the

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 4

symbolic and computational execution model. Section 5 contains our computational soundness
result for symbolic zero-knowledge. Section 7 concludes and outlines future work.

Notation. By [n] we denote {1, . . . , n}. We abbreviate x1, . . . , xn by x where n is implicit. We
will sometimes use sets and non-terminals interchangeably, e.g., given a grammar A = B|(C, A)
we write x ∈ (C, A), or we say “x has the form (C, A)”. We also write “x has the form (c, A)” for
a given c ∈ C. Given a term t and a substitution θ, we write tθ for the result of applying the
substitution θ to t. We call two partial functions θ and θ′ compatible if θ(x) = θ′(x) whenever
both are defined. Given two compatible partial functions θ and θ′, we write θ∪θ′ for the function
satisfying θ ∪ θ′(x) = θ(x) if θ(x) and θ ∪ θ′(x) = θ′(x) otherwise. We write θ[x := y] for the
function θ′ defined by θ′(z) = θ(z) for z 6= x and θ′(x) = y.

We call a function f negligible if for all positive polynomials p and sufficiently large n, f(n) ≥
1/p(n). We call a function non-negligible if it is not negligible. We call a function f overwhelming
if f ≥ 1− µ for some negligible function µ.

2 Zero-Knowledge Proofs

In this section, we first introduce our modeling of symbolic zero-knowledge proofs in an intuitive
manner to familiarize the reader with our notation and to prepare the ground for the examples
discussed below. A formal semantics will be given to these expressions in Section 3. We after-
wards review computational (non-interactive) zero-knowledge proofs, i.e., zero-knowledge proofs
in the cryptographic setting. Our particular focus is on identifying which standard and more
sophisticated properties such a proof needs to fulfill in order to serve as a cryptographically sound
implementation of symbolic zero-knowledge proofs.

2.1 Symbolic Zero-Knowledge Proofs

We start with an example that involves a zero-knowledge proof of medium complexity. Assume
that an agent B expects a message m and is supposed to answer with an encryption c :=
{

{〈〈m, n〉, m′〉}R1

ek(A)

}R2

ek(S)
for a random nonce n, a value m′ ∈ {m1, m2, m3} and for some agents

A and S. Here ek(X) denotes the public key of X , and R1, R2 denote the symbolic randomness
used to build the encryptions. The protocol under consideration now aims at convincing the
recipient C of c that c is of the right form, i.e., the inner plaintext should contain m and some
value m′ ∈ {m1, m2, m3}. In addition, the protocol aims at hiding from C the nonce n and the
precise selection of the message m′. Zero-knowledge proofs constitute salient tools to achieve
these seemingly contradictory properties in that they allow B to prove that it knows some terms
that satisfy the desired properties without revealing those terms.

In the example we consider, B intends to prove that it knows some symbolic randomness
ρ1, ρ2 and some values α1, α2 such that with β1 := m1, β2 := m2, β3 := m3, β4 := S, β5 := D,
β6 := c, and β7 := m the following formula F evaluates to true:

β6 =
{

{〈〈β7, α1〉, α2〉}
ρ1

ek(β5)

}ρ2

ek(β4)
∧ (α2 = β1 ∨ α2 = β2 ∨ α2 = β3).

Immediately including the values of βi in the formula F would arguably have increased the
readability of the formula; our language defined in Section 3, however, will require a strict
separation of the actual formula F and the public parameters that are determined at runtime,
resulting in this slightly more complicated notation.

Granting B the ability to produce such a proof is modeled by introducing a symbolic con-
structor ZKR

F (r; a; b), called a zero-knowledge proof. (Recall that we abbreviate tuples r1, . . . , rn

by r, similarly for a and b). Its arguments are a symbolic randomness R, a formula F , as well as
values ri, ai, bi that will serve as substitutes for the variables ρi, αi, βi in F . In our example, the
agent B will send the proof z := ZKR

F (R1, R2; n, m; m1, m2, m3, S, D, c, m). The semantics of this
constructor (formally defined in Section 3) will guarantee two properties: First, a zero-knowledge
proof can only be constructed by providing suitable instantiations r, a, b for ρ, α, β so that the

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 5

formula F yields true. Second, while the formula F and the values b can be retrieved from a
zero-knowledge proof, the values a and the randomness r are kept secret. These properties imply
that the proof z indeed guarantees that c has the right form without revealing any additional
information about n, m. In a symbolic zero-knowledge proof, we call r; a the witness and b the
public part .

For more elaborate examples on how zero-knowledge proofs can be used in a symbolic setting,
comprising a larger set of base constructors such as blind signatures, we refer the interested
reader to [BMU08].

2.2 Computational Zero-Knowledge Proofs

We now move to computational zero-knowledge proofs, i.e., zero-knowledge proofs in the cryp-
tographic setting. A central contribution of this paper is to identify which standard and more
sophisticated additional properties of zero-knowledge proofs are required to establish the desired
computational soundness result. Hence we now explain in some detail why each such property
is needed. In the end, this task will culminate in the novel definition of a symbolically-sound
zero-knowledge proof system. We first state the properties in an informal way and give the exact
definitions in Definition 1.

Completeness, Soundness, and Zero-knowledge. We start with the basic definition of
a non-interactive zero-knowledge proof. We need to focus on non-interactive proofs since the
symbolic model considers a proof as a single message that can be processed further locally, e.g.,
it can be encrypted. This would not be meaningful if the zero-knowledge proof was allowed to
be interactive.

A zero-knowledge proof consists of four algorithms K, P, V, S, called the CRS-generator, the
prover, the verifier, and the simulator, respectively. The CRS-generator outputs a random bit-
string called the common reference string (CRS) (such a CRS is comparable to the public key
of an encryption scheme). The prover P expects as inputs the CRS, a circuit C, and a witness
w such that C(w) = 1 and outputs a corresponding proof z (intuitively denoting that C is a
satisfiable circuit). The verifier expects the CRS, a circuit C, and a proof z and checks whether
z is indeed a proof for the satisfiability of C. (It is sufficient to consider satisfiability of circuits
since every NP-language can be reduced to this problem.)

Three properties are expected from a zero-knowledge proof: It should be possible to prove
correct statements (completeness), it should not be possible to prove incorrect statements (sound-
ness), and the verifier should not learn anything about the witness, beyond what can be deduced
from the fact that C is satisfiable (zero-knowledge):

• Completeness: For any C and w with C(w) = 1, if z is the proof produced by P , then V
accepts z.

• Soundness: For any C and w with C(w) = 0, and for any polynomial-time adversary A
that outputs a proof z, the verifier does not accept z.

• Zero-knowledge: When computing the CRS, the algorithm K additionally outputs a simu-
lation trapdoor simtd (that can be seen as a secret key for the CRS) such that the following
holds: Fix C and w with C(w) = 1. Let z be the proof produced by prover P . Let z′ be the
proof produced by S on input simtd and C (but not w). Then z and z′ are computationally
indistinguishable.

In this section, we omit certain details such as the fact that the conditions are allowed to be
broken with negligible probability. Similarly, we implicitly assume that P and V use the circuit
C and the witness w. The final Definition 1 below will contain all these details.

A scheme satisfying these three properties is referred to as a non-interactive zero-knowledge
proof system. Readers that are familiar with interactive zero-knowledge proof may notice that
the definition of interactive zero-knowledge proofs does not include a CRS. In the non-interactive
case, however, zero-knowledge proofs without a CRS are impossible unless NP ⊆ BPP [Gol01,
Thm. 4.4.12].

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 6

Extractability. While the three properties of completeness, soundness, and zero-knowledge
are sufficient for many applications, they do not suffice to offer a cryptographically sound im-
plementation of symbolic zero-knowledge proofs. This can be seen by inspecting the following
example: Assume that we are using an encryption scheme that permits to efficiently check that
a given ciphertext c constitutes a valid encryption of some message (without having to know this

message or the secret key). Then let c := {m}R
ek(a) and consider the proof z := ZKR′

F (R; m; c, a)

with F := (β1 = {α1}
ρ1

ek(β2)
), i.e., a proof that one knows the message and the randomness con-

tained in c. In the cryptographic setting, this proof would be performed by first constructing a
circuit C such that C(R, m) = 1 iff m encrypted with randomness R and the public key of a
yields the ciphertext c. Since one can efficiently check if c is the encryption of some message, one
can hence efficiently check as well if C has a satisfying input. Thus, one can prove the satisfia-
bility of C without having to use R, m. Such a proof trivially conforms to the zero-knowledge
property, since the proof does not exploit the witness, and it satisfies soundness since it only
proves valid statements (if C was not satisfiable, the proof would not succeed). In the symbolic
model, however, it is obvious that one needs to know m in order to produce z. What went wrong?
The soundness condition only guarantees the existence of a witness, but it does not require the
prover to actually know this witness. We introduce an additional algorithm E (besides K, P, V, S,
called the extraction algorithm) to capture this requirement and define the stronger condition of
extractability. A proof system with extractability is called a proof of knowledge.

• Extractability: When computing the CRS, the algorithm K additionally outputs an ex-
traction trapdoor extd such that: Fix C (where C may or may not be satisfiable). For a
polynomial-time adversary A that outputs a proof proof , we have that if V accepts proof ,
then E(C, proof , extd) outputs a witness w with C(w) = 1.

With this definition, our example no longer causes any problems: An extractable proof system
that allows to prove the satisfiability of C without using w would lead to a contradiction since
the machines A and E together could then compute w. (Technically, this is only a contradiction
if w is not easy to compute from C in the first place.) We stress that extractability already
implies soundness: If C is not satisfiable, then E(C, proof , extd) cannot output a witness w with
C(w) = 1, thus by contraposition we have that V does not accept proof .

Extraction zero-knowledge. Even complementing the properties completeness, soundness,
and zero-knowledge with the extractability property is still not sufficient for the desired com-
putational soundness result. Consider a proof system with the following property: If proof 1

constitutes a proof for the circuit C1 and proof 2 constitutes a proof for the circuit C2,
then (proof 1, proof 2) constitutes a proof for the circuit C1 ∧ C2 (with (C1 ∧ C2)(w1, w2) :=
C1(w1) ∧ C2(w2)). This property is not unrealistic, and for circuits that are of this conjunctive
form, concatenating proofs for the individual circuits indeed often constitutes the most efficient
way to produce a proof for the combined circuit. Furthermore, allowing to prove these sub-
circuit individually does not contradict the properties we have discussed so far. In the symbolic

model, however, given ZKR
F (r; a; b) and ZKR′

F ′(r′; a′; b′), it is not possible to construct a proof
ZKF∧F ′(; ; b, b′) without knowing r, r′, a, a′ (where matches everything, and where in the for-
mula F ′ the ρ1, α1, β1 are renamed to ρ2, α2, β2). We hence have to exclude the possibility of
concatenating proofs to generate new proofs. More precisely, we have to ensure that given a proof
for some statement x1, it is not possible to construct a proof for another statement x2, even if x2

is logically related to x1. This property is called non-malleability and closely resembles the notion
of non-malleability of encryption schemes. In the context of zero-knowledge, several properties
are known to imply non-malleability. We will exploit the extraction zero-knowledge property from
[GO07]. Although this is a rather strong property and weaker definitions of non-malleability exist,
our proof relies on this particular property; we leave it as an open problem if our computational
soundness result can be proven using a weaker formalization of non-malleability.

• Extraction zero-knowledge: Let simtd , extd be the simulation and the extraction trapdoor as
output by K, respectively. Consider a polynomial-time adversary A that has access to the

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 7

simulation trapdoor simtd and to an extraction oracle E(C, ·, extd), i.e., when invoking the
oracle E(C, ·, extd) with input proof , it returns E(C, proof , extd) where E is the extraction
algorithm. The adversary may output C, w with C(w) = 1. Then the adversary gets either
(a) a real proof proof produced by P , or (b) a simulated proof proof produced by the
simulator S (which has no access to w). We then require that A cannot distinguish the
cases (a) and (b) as long as it does not query proof from the extraction oracle.

We stress that extraction zero-knowledge implies the zero-knowledge property since it implies
that for any C, w with C(w) = 1 the proofs produced by the prover and the simulator are
indistinguishable.

Why does extraction zero-knowledge indeed imply non-malleability? (We only give an intu-
itive argument here as formally we will directly use the property of extraction zero-knowledge in
our proofs.) Assume that from a proof proof 1 for the satisfiability of C1, some algorithm M can
produce a proof proof 2 for the satisfiability of C2 where the satisfiability of C2 follows from that
of C1 (in the sense that a witness w1 for C1 can be converted into a witness w2 for C2). Then
an adversary A could break the extraction zero-knowledge property roughly as follows: First,
it outputs C1, w1 and gets a proof proof 1 (this might be a fake proof). It applies M to proof 1

and gets a proof proof 2 for C2. Since proof 2 6= proof 1, the adversary may give proof 2 to the
extraction oracle. In case (a), the extraction oracle will output a witness w2. In case (b), however,
the proof proof 1 has been produced without exploiting the witness w1, and so has proof 2. If
the extraction oracle could produce a witness given proof 2, this would mean that the extraction
oracle (together with the M and the simulator) has produced a witness for the satisfiability of
C2 (which we can assume to be hard). Since the extraction oracle, M , and the simulator are
all polynomial-time, this happens with negligible probability. Hence in case (b) the extraction
oracle fails to produce a witness for proof 2. Thus the adversary can distinguish the two cases,
contradicting the extraction zero-knowledge property.

Unpredictability. We need an additional property for soundly implementing symbolic zero-
knowledge proofs. If a proof using the same witness and the same public part is produced by
two different agents in the symbolic model, it will always lead to two different terms because the
two terms will have different randomness. A proof system with the properties described in this
section, however, does not necessarily ensure that two proofs produced with the same witness
and circuit will always be different (with overwhelming probability). Indeed, it is possible to
construct proofs that are deterministic for at least some inputs. We hence additionally require
that any two independently produced proofs are different, or equivalently:

• Unpredictability. Let a polynomial-time adversary A output C, w, proof ′ with C(w) = 1.
Let proof be produced by P . Then with overwhelming probability, proof 6= proof ′.

Unpredictability is an easily achievable property, e.g., by letting the prover include some ran-
domness in the proof.

Length-regularity. To get computational soundness, we additionally need that the length of a
zero-knowledge proof is independent of its public part (although it may depend on the length of its
public part). Consider a protocol which chooses a nonce N and then sends {ZKR

true(; ; N)}Rek(a).
That is, the protocol produces a trivial proof and includes the nonce N in the public part.
Then it encrypts that proof. Abstractly, this should preserve the secrecy of N . If, however, in
the computational model the length of ZKR

true(; ; N) could depend on the first bit of N , then
{ZKR

true(; ; N)}R
ek(a) might leak the length of ZKR

true(; ; N) and thus the first bit of N .3 This
example can easily be extended to leak all bits of N and thus break the secrecy of N . Note that
the requirement of length-regularity is not particular to zero-knowledge; even the encoding of
pairs needs to be length-regular.

3Remember that encryption schemes cannot hide the length of their plaintexts.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 8

Symbolically-sound zero-knowledge. Finally, we further require that the verifier V and
the extraction algorithm E are deterministic. This is not strictly necessary but it will simplify
the proof of soundness, and we are not aware of a non-interactive zero-knowledge proof system
where this condition is not fulfilled. The full name of a zero-knowledge scheme satisfying all
the above properties would be unpredictable non-interactive multi-theorem adaptive extraction
zero-knowledge argument of knowledge with deterministic verification and extraction. Since this
is somewhat unwieldy, we coin the term symbolically-sound zero-knowledge proof system. The
following definition formally defined the properties we informally discussed above.

Definition 1 (Symbolically-sound zero-knowledge proof system). A symbolically-sound zero-
knowledge proof system is a tuple of polynomial-time algorithms (K, P, V, S, E) with the following
properties (all probabilities are taken over the coin tosses of all algorithms and adversaries):

• Completeness: Let a nonuniform polynomial-time adversary A be given. Let
(crs , simtd , extd) ← K(1η). Let (C, w) ← A(1η, crs). Let proof ← P (C, w, crs). Then
with overwhelming probability in η, C(w) = 0 or V (C, proof , crs) = 1.

• Extractability: Let a nonuniform polynomial-time adversary A be given. Let
(crs , simtd , extd) ← K(1η). Let (C, proof) ← A(1η, crs). Let w ← E(C, proof , extd).
Then with overwhelming probability, if V (C, proof , crs) = 1 then C(w) = 1.

• Unpredictability: Let a nonuniform polynomial-time adversary A be given. Let
(crs , simtd , extd) ← K(1η). Let (C, w, proof ′) ← A(1η, crs , simtd , extd). Then with over-
whelming probability, we have proof ′ 6= P (C, w, crs).

• Extraction Zero-Knowledge: Let a nonuniform polynomial-time adversary A be given. Con-
sider the following experiment parametrized by a bit b: Let (crs , simtd , extd)← K(1η). Let
(C, w, state) ← AE(·,·,extd)(1η, crs , simtd). Then let proof ← P (C, w, crs) if b = 0 and
proof ← S(C, crs , simtd) if b = 1. Let guess = AE(·,·,extd)(1η, crs, simtd , state, proof). Let
Pb(η) denote the following probability:

Pb(η) := Pr
[

guess = 1 and C(w) = 1 and

(C, proof) has not been queried from E(·, ·, extd)
]

.

Then |P0(η)− P1(η)| is negligible.

• Length-regularity. Let two circuits C, C′ and witnesses w, w′ with C(w) = C′(w′) = 1
be given such that |C| = |C′| and |w| = |w′|. Let (crs , simtd , extd) ← K(1η). Then let
proof ← P (C, w, crs) and proof ′ ← P (C′, w′, crs). Then |proof | = |proof ′| holds with
probability 1.4

• Deterministic verification and extraction. The algorithms V and E are deterministic.

We stress that protocols already exist that satisfy this notion, e.g., the one proposed in
[GO07, Sect. 4] under the assumption that enhanced trapdoor permutations [Gol04, Def. C.1.1]
exist.5 The latter exist, e.g., under the assumption that factoring is hard. (The length-regularity
property can be ensured by a suitable padding.)

We have formulated symbolically-sound zero-knowledge proof systems against nonuniform
adversaries. We believe that our results easily carry over to the uniform case.

4We could relax this property to require that this equality holds only with overwhelming probability, or even to
only require the distributions of |proof | and |proof ′| to be indistinguishable. We opt for this simpler formulation
because we are not aware of examples that need the more lenient formulations.

5[GO07] has a slightly different definition of extraction zero-knowledge where the extraction algorithm E is not
given the circuit C (only the proof proof). However, their scheme can be easily modified such that valid proofs
proof have to contain the circuit C, and then our and their definition coincide.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 9

3 The Symbolic Model

In the following we define the symbolic model in which the execution of a symbolic protocol
involving zero-knowledge proofs takes place. The basic ideas follow the framework presented in
[CKKW06b]. However, to incorporate zero-knowledge proofs, we have to make various nontrivial
modifications to the symbolic model. In the following sections, we try to highlight and explain
the design choices made in our modeling.

ZK-proofs and messages. First, we fix several countably infinite sets. By A we denote the
set of agent identifiers, by Nonce the set of nonces. We use elements from Garbage to represent ill-
formed messages (corresponding to unparseable bitstrings in the computational model). Finally,
elements of Rand denote symbolic randomness used in the construction of ciphertexts and zero-
knowledge proofs. We assume that Nonce is partitioned into infinite sets Nonceag and Nonceadv ,
representing the nonces of honest agents and the nonces of the adversary. Similarly, Rand is
partitioned into infinite sets Randag and Randadv .

We proceed by defining the syntax of messages that can be sent in a protocol execution. Since
such messages can contain zero-knowledge proofs, and these are parametrized over a statement
that is to be proven, we first have to define the syntax of these formulas. Let the set ZKTerm of
ZK-terms be defined by the following grammar:

ZKTerm = ek(βi) | vk(βi) | αi | βi | 〈ZKTerm, ZKTerm〉 | {ZKTerm}ρi

ek(βj)

where i, j = 1, 2, On the intuitive level, ek(a) denotes a public encryption key of agent a,
〈·, ·〉 a pair, and {t}Rek(a) an encryption of t with the public key of a using randomness R. The
symbol βi is a reference to the i-th component of the public part, and the symbols αi and ρi are
references to the witness of the zero-knowledge proof.

Note that we do not include signatures in the syntax of ZK-terms. This is because we explicitly
deal with signatures using the Verify-ZK-atoms below.

A ZK-atom is a term of the form ZKTerm = ZKTerm or Decrypt(ZKTerm, αi, ek(βj)) =
ZKTerm or Verify(ZKTerm, ZKTerm, vk(βj)). On an intuitive level, Decrypt(c, k, ek(a)) = p means
that k is the decryption key dk(a) corresponding to ek(a) and that c decrypts to p using k.
We include the encryption key ek(a) in such a ZK-atom to allow the verifier to check that
the decryption is indeed performed using the right decryption key. A ZK-atom of the form
Verify(s, m, vk(a)) means that s is a valid signature of m using the verification key vk(a).

A ZK-formula F is a Boolean formula over ZK-atoms satisfying the following conditions: If
ρi occurs in F , then ρ1, . . . , ρi occur all in F .6 Each ρi appears at most once.7 We denote the
set of ZK-formulas with Formula. The α-arity of a ZK-formula F is the largest index of an αi

occurring in F . The ρ-arity and the β-arity are defined analogously.
The intuitive interpretation of a ZK-formula is that it is a term with free variables ρ, α, and

β. The ρ will be substituted with randomness, the α and β with messages. A zero-knowledge

proof ZKR
F (r; a; b) then represents a proof that when substituting r, a, b for ρ, α, β, the resulting

expression F
{

r,a,b

ρ,α,β

}

is a true statement. (By F
{

r,a,b

ρ,α,β

}

we denote the result of substituting ri

for ρi, ai for αi, and bi for βi.) The randomness r and the messages a will be considered secret,
while the messages b will be contained in the proof in clear (one can think of the formula as being
parametrized in the values b).

Note the following interesting asymmetry: We allow ek(βi) and vk(βi) to appear in a formula,
but not ek(αi) or vk(αi). This is due to the fact that a proof with a formula containing ek(αi) or
vk(αi) would not be easily realizable computationally: In order to perform the zero-knowledge
proof, we need to build a circuit accepting only satisfying values a for the α. To build such a
circuit for a formula with ek(αi) or vk(αi), one would have to encode a list of all public keys in

6This is a purely technical condition that simplifies the proof at one place. We include it because it does not
seem to be a strong restriction.

7This excludes proofs that two different ciphertexts are produced using the same randomness. However, honest
agents never produce two different ciphertexts with the same randomness anyway.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 10

this circuit. On the other hand, in the case of ek(βi), the value bi substituted for βi is known
while constructing the circuit, thus we can directly hard-code ek(bi) into the circuit.

Note further that we have introduced two different ways to formulate proofs about the
content of an encryption: To show that c is an encryption of m, we can either show that
there is some randomness R such that {m}Rek(a) = c (so the corresponding zero-knowledge

proof would be ZKR′

F (R; ; m, c, a) with F = ({β1}
ρ1

ek(β3)
= β2)) or we can show that decrypt-

ing c yields m (the corresponding zero-knowledge proof would be ZKR′

F (; dk(a); m, c, ek(a)) with
F = (Decrypt(β2, α1, β3) = β1)). However, the first type of proof can only be constructed by
the agent that produced c, and the second can only be constructed by the agent that knows the
decryption key for c. Hence, to cover all relevant cases, we need to enable both constructions.

Given the syntax for ZK-formulas, we can define the set M of messages as

M = A | Nonce | ek(A) | ek(Garbage) | dk(A) | 〈M, M〉

| vk(A) | vk(Garbage) | sk(A)

| {M}Rand
ek(A) | {Garbage}Rand

ek(Garbage) | Garbage

| [M]Rand
sk(A) | [M]Rand

sk(Garbage) | ZKRand
Formula(Rand∗; M∗; M∗).

with the following additional condition: For each subterm ZKRand
F (r; a; b), we have that |r|, |a|, |b|

are the ρ-arity, α-arity, and β-arity of F , respectively. In a message ek(a), dk(a), vk(a), and
sk(a) represent encryption, decryption, verification, and signing keys for the agent a, 〈·, ·〉 means
pairing, {t}R

ek(a) is the encryption of message t under the key ek(a) with randomness R, and

ZKR
F (r; a; b) denotes a zero-knowledge proof for the formula F produced using the randomness R

where the (secret) witness consists of the randomness r and the messages a, and the public part
consists of the messages b.

Since both the honest agents and the adversary should only send ZK-proofs that actually cor-
respond to true statements, we will need the following definition that characterizes the messages
that do not contain wrong proofs.

Definition 2 (True ZK-Proofs). Let a message of the form Z := ZKR
F (r; a; b) be given.

We say Z is valid if for every subterm ek(βi) or vk(βi) of Z, we have that bi ∈ A.

Then F = B(t) where all ti are ZK-atoms and B is a Boolean formula. Let gi := ti
{

r,a,b

ρ,α,β

}

.

(By t
{

r,a,b

ρ,α,β

}

we denote the result of substituting ri for ρi, ai for αi, and bi for βi.)

We say gi is true if it is of the form m1 = m1 or Decrypt({m1}
r1

ek(a1)
, dk(a1), ek(a1)) = m1

or Verify([m1]
r1

sk(a1)
, m1, vk(a1)) with m1 ∈ M, a1 ∈ A, and r1 ∈ Rand. Let hi := True if gi is

true, and hi := False otherwise.
We say Z is a true proof if it is valid and B(h) = True.
We say a message M contains true proofs if every subterm of M of the form ZKRand

Formula(. . .)
is a true proof.

Note that if Z is valid, every gi has the form M = M or Decrypt(M, M, M) = M or
Verify(M, M, M) (we produce no terms that are not messages).

Deduction rules. In order to restrict the actions the adversary may perform during a protocol
execution, we have to introduce a deduction relation ⊢ which is given by the rules in Figure 1.
The rules for the deduction are standard, only the rules concerning zero-knowledge proofs merit
additional comment. The rule ϕ ⊢ ZKr

F (r; a; b) =⇒ ϕ ⊢ b (ZKPub) corresponds to the zero-
knowledge property; from a zero-knowledge proof ZKr

F (r; a; b), all that can be extracted is the
public part b, but not the witness r, a.8

8Formally, of course, the zero-knowledge property does not correspond to any given rule, but to the absence
of rules allowing to deduce more than b from ZKr

F (r; a; b).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 11

m ∈ ϕ

ϕ ⊢ m
Assm

g, g′ ∈ Garbage r ∈ Randadv ϕ ⊢ m

ϕ ⊢ g ϕ ⊢ ek(g) ϕ ⊢ {g′}rek(g) ϕ ⊢ [m]rsk(g)

Garbage

b ∈ A

ϕ ⊢ ek(b) ϕ ⊢ vk(b) ϕ ⊢ b
PubKey

ϕ ⊢ m1 ϕ ⊢ m2

ϕ ⊢ 〈m1, m2〉
Pair

ϕ ⊢ 〈m1, m2〉

ϕ ⊢ m1 ϕ ⊢ m2
Unpair

b ∈ A ϕ ⊢ m r ∈ Randadv

ϕ ⊢ {m}rek(b)
Enc

ϕ ⊢ {m}rek(b) ϕ ⊢ dk(b)

ϕ ⊢ m
Dec

ϕ ⊢ [m]rsk(a)

ϕ ⊢ m
SigPub

ϕ ⊢ sk(a) ϕ ⊢ m r ∈ Randadv

ϕ ⊢ [m]rsk(a)

Sig

ϕ ⊢ ZKr
F (r; a; b)

ϕ ⊢ b
ZKPub

ϕ ⊢ a ϕ ⊢ b F ∈ Formula r ∈ Randadv

F
{

r,a,b

ρ,α,β

}

is a true proof ϕ ⊢r r

ϕ ⊢ ZKr
F (r; a; b)

ZKTrue

r ∈ Randadv

ϕ ⊢r r
RandAdv

ϕ ⊢ {t}rek(a) ϕ ⊢ dk(a)

ϕ ⊢r r
RandDec

Figure 1: Deduction rules for the adversary.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 12

More interesting and involved is the rule ZKTrue. This rule states under which conditions
the adversary may construct a zero-knowledge proof ZKr

F (r; a; b). First, of course, the resulting

proof must be a proof of a true statement. This is represented by the condition that F
{

r,a,b

ρ,α,β

}

is a true proof (as in Definition 2). Furthermore, we have to require that the adversary actually
knows the witness r, a and the public part b, corresponding to the fact that we model proofs
of knowledge. For a and b this condition is modeled by requiring ϕ ⊢ a and ϕ ⊢ b. For the
randomness r, however, the condition is more involved. The adversary may know some symbolic
randomness ri in two cases. First, if it is its own randomness ri ∈ Randadv . Second, it may be
able to extract that randomness from an encryption produced by some honest party. Namely,
the condition that a cryptosystem is IND-CCA secure does not imply that one cannot retrieve
the randomness used in an encryption provided one can decrypt that message. For example, in
the popular RSA-OAEP cryptosystem [BR95, FOPS04], the randomness used for encrypting a
message is actually computed during an honest decryption. Thus we have to allow the adversary
to use randomness ri from messages it was able to decrypt. We capture these two possibilities of
extracting randomness in the definition of the relation 0r (Figure 1). As an example why allowing
the adversary to extract randomness from ciphertexts (rule RandDec) is actually needed for
computational soundness, consider the following simple protocol. Agent a sends c := {m}R

ek(b)

and if it receives a proof matching ZKF (; ; b, m, c) with F := (β3 = {β2}
ρ1

ek(β1)
), the protocol fails

(here the symbol matches everything). If we would only allow the adversary to use ri ∈ Randadv

in the witness, the protocol would be secure abstractly, even if the adversary knows the secret
decryption key dk(b). Yet a computational adversary could possibly (depending on the encryption
scheme) extract the randomness from c and produce such a proof.9

Patterns. In order to conveniently define the notion of a protocol, we need a way to succinctly
describe how messages are parsed and constructed by honest agents. To this aim, we define the
concept of a pattern.10

Let X.a, X.n, X.p, X.c, X.s, X.z be countably infinite sets (variables of sort agent, nonce,
pair, ciphertext, signature, and ZK-proof, respectively). Let X := X.a|X.n|X.p|X.c|X.s|X.z. In
the following, when considering substitutions mapping variables X to messages M, we will always
assume that a variable is mapped to a message of corresponding type. We then define the set
Pat of patterns as

Pat = X | ek(X.a) | vk(X.a) | 〈Pat, Pat〉 | {Pat}
Randag

ek(X.a) | {Pat}ek(X.a) |

ZK
Randag

Formula(Rand∗ag ; (Pat|dk(X.a))∗; Pat∗) | ZKFormula(
∗; ∗; Pat∗) |

[Pat]sk(X.a) | [Pat]
Randag

sk(X.a)

with the following additional conditions: For each subterm ZK
Randag

F (r; a; b) or ZKF (r; a; b), we
have that |r|, |a|, |b| are the ρ-arity, α-arity, and β-arity of F , respectively. This condition is
needed to ensure that a pattern (containing no) becomes a valid message when the variables
are instantiated.

9After these explanations, the reader might wonder why similar adjustments are not necessary for, e.g., the
rule for deducing ciphertexts {m}r

ek(b)
since a computational adversary could use extracted randomness also in

this case. The rough reason why this is not necessary is that if the computational randomness r is used to encrypt
another message or under another key, we can consider it to be another symbolic randomness. Only if the same

m is encrypted under the same ek(b), we will have to consider the computational randomness to be the same.
However, in this case the resulting ciphertext will be also be the same, thus the adversary has just produced a
message it already knew.

Furthermore, the reader may wonder why the adversary can only extract randomness from ciphertexts, but not
from signatures or zero-knowledge proofs. The intuitive reason is that even if the adversary could extract the
randomness used in the construction of a signature or a zero-knowledge proof, this randomness would be useless in
the witness of a zero-knowledge proof, as that randomness is only used for proving statements about encryptions.

10Note that one could be tempted to define a pattern just as a message with variables in it. However, this
definition would leave several points open, e.g., variables of what type might occur in which position, etc. Thus
we give an explicit grammar and use this opportunity to reduce the set of patterns to such that make sense in
protocols (e.g., a protocol may not explicitly send Garbage).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 13

The symbol is supposed to match anything. More exactly, we say a message m ∈ M matches
a pattern p ∈ Pat if there is a substitution θ : X→ M such that pθ equals m up to occurrences of
in pθ (where distinct occurrences of may correspond to different subterms in m). We call θ the

matcher of m and p. Thus intuitively in a pattern corresponds to a value we do not care about
and that we do not intend to (and cannot) extract, e.g., the randomness used in a ciphertext11

or the witness of a zero-knowledge proof.
Note that patterns do not contain explicit nonces, agent identifiers, or garbage. We omit

garbage because we do not want the protocol to explicitly construct ill-formed messages. Nonces
and agents are not needed since the protocol execution (see below) will provide pre-initialized
variables for the nonces used by an agent and for the ids of the communication partners in a
given protocol session. We disallow patterns containing dk(·) (except in the witnesses of zero-
knowledge proofs) or sk(·) since we do not allow protocols to explicitly use their private keys
(except for decrypting or signing). This is to ensure that no key cycles occur; it is known that
the IND-CCA property does not guarantee security in the presence of key cycles.

Roles and protocols. We are now ready to define what a protocol is. At this point, we give
an informal description and postpone the exact definitions to Section 3.1. A k-party protocol
Π is a mapping that assigns each i ∈ [k] a role Π(i). In our setting, a role is modeled as an
ordered edge-labeled finite tree. The nodes of the role tree correspond to states of an agent
executing that role, and the edges correspond to transitions caused by incoming messages. We
assume only insecure channels between agents, therefore all messages are sent to the adversary
and received from the adversary. What messages a role sends, and the state the role enters
upon receipt of a given message is specified by the labels on the edges of the role tree. More
precisely, an edge is labeled with a pair (l, r) of patterns. Here l represents the pattern for
matching incoming messages (parse-pattern), and r the pattern for constructing the answers to
these messages (construct-pattern). The complete state of a role consists of a node in its tree,
and a partial mapping σ : X→ M representing (fragments of) messages parsed so far. Given an
incoming message m, a state σ, and an edge (l, r), the following steps take place:12

• First, in the pattern l, the variables that have already been assigned are instantiated.
Formally, the pattern lσ is computed.

• Then m is matched against lσ. If this succeeds, let θ be the matcher. Otherwise, the
transition corresponding to the edge (l, r) will not be taken.

• Now all variables in the outgoing pattern r are instantiated, either with variables previously
assigned in σ, or assigned in the previous step (θ). More formally, the message m′ := rσθ
is computed. If m′ does not contain true proofs (Definition 2), the transition will not be
taken. Otherwise follow the edge, send message m′ and let the new state be σ ∪ θ.

A node may have several outgoing (ordered) edges, in this case the first one will be chosen that
matches and results in a message m′ containing true proofs. If no such edge is found, the role will
ignore the message m (i.e., the state is unmodified). A role may access the agent id of the i-th
communication partners in its session via the pre-initialized variable Ai ∈ X.a, and accesses its
own nonces via the pre-initialized variables Xj

N ∈ X.n (accessing the nonces via variables enables
us to model that each session has different nonces).

This model of a role is very similar to that presented in [CKKW06b] with the exception of the
additional check whether the outgoing message m′ contains true proofs. This check is necessary,
since we have no syntactic condition that guarantees that a role can only generate true proofs.
In particular, if a role produces proofs that depend on incoming messages, and if these messages

11On the preceding page we said that it is possible to extract randomness from ciphertexts. However, at that
point we were talking about the adversary and had to assume the worst case. When defining protocols, we
may only include capabilities that may be implemented with any encryption scheme. E.g., in the Cramer-Shoup
cryptosystem [CS98], extracting the randomness implies breaking the discrete logarithm problem, even when given
the private key.

12Actually, this is not part of the definition of a role, but of the protocol execution. However, we describe it
here so that the intended behavior of a role becomes clear.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 14

happen to be modified by the adversary, it may happen that the proofs are instantiated with
the wrong values. Thus we have to make a design choice. We can restrict the patterns such
that no matter how the variables are instantiated, no incorrect proofs can be produced. Or
we can impose a static condition on the roles that guarantees that for no sequence of incoming
messages, an incorrect proof can be produced. Or we can perform a runtime check to avoid
incorrect proofs. The first method seems very restrictive, the second might make the definition
of a role unnecessarily complicated, thus we have opted for the third variant. Note that not all
current tools for protocol verification are able to handle such runtime checks and might need to
be extended.

Of course, not all trees with edges labeled by patterns represent valid protocol roles. Instead,
we have to impose a variety of sanity conditions, e.g., we have to require that the pattern r (for
constructing messages) does not contain free variables, or that the matching an incoming message
with the pattern l does not imply decrypting with someone else’s secret key. Most conditions
are of this kind and just guarantee that the symbolic protocol can indeed be implemented as a
computational protocol. Complete details are given in Definition 4 in Section 3.1 below. At this
point, we only mention two conditions that are of particular importance.

First, as already discussed on the previous page, a pattern cannot explicitly contain secret
keys (except for decryption keys in the witness of a zero-knowledge proof). Thus a role cannot
sent these keys over the network. (Note that the adversary can, however, get access to secret
keys by corrupting parties and then can send them.) This condition does not newly arise for
zero-knowledge proofs; it is also present, e.g., in [CW05, CKKW06b].

Since both encryption and zero-knowledge proofs are probabilistic, we have to ensure that
each randomness is used only once. In a model without zero-knowledge proofs (as, e.g., [CW05,
CKKW06b]) this can be done by requiring that for any randomness R, there is at most one
subterm containing R (but the same subterm may occur several times to allow for sending
several copies of a single ciphertext). In the presence of zero-knowledge proofs, however, such a
rule would be too restrictive. For example, an agent might want to send a ciphertext c := {t}R

ek(a)

and then prove that t satisfies some property P (t), i.e., it sends z := ZKR′

F (R; t; c, a) with F :=
(β1 = {α1}

ρ1

ek(β2)
∧ P (α1)). Since both c and z contain R, such an agent would be disallowed.

To relax this restriction, we have to allow the use of a given randomness R in the (ρ-part of
the) witness of a zero-knowledge proof. However, allowing completely unrestricted use of R in
the witness could also lead to problems. For example, consider an agent creating and sending a
ciphertext c using a given randomness R, and then trying to produce a zero-knowledge proof z
proving a statement about another ciphertext c′ using the same randomness R. In this case, the
adversary learns the ciphertext c and whether the proof z is true (since the further actions of
the agent depends on whether it succeeded in constructing the proof or not). It is not clear that
the information whether the proof z is true might not already leak up to one bit of information
about c. We therefore have to ensure that a given randomness R occurs only in a single subterm
t plus additionally in the witness of zero-knowledge proofs as long as it is used in the formula to
produce the same term t. To capture this more formally, we introduce the notion of an effective
R-subpattern. Roughly, an effective R-subpattern of a pattern P is either a subterm of P , or
a subterm that results from substituting the arguments of a zero-knowledge proof in P into its
formula. Formally, we get the following definition:

Definition 3 (True and effective subpatterns). For a given R ∈ Rand, we call P an R-pattern
if it is of the form {Pat}RPat or [Pat]RPat or ZKR

Formula(Rand∗; Pat∗; Pat∗).
Let P be a pattern. We say that a pattern S is an effective subpattern of P if

• S is a subterm of P , or

• there is a subterm ZKR
F (r; a; b) of P , and a ZK-term z in the ZK-formula F , such that S

is a subpattern of z
{

r,a,b

ρ,α,β

}

.

We call S an effective R-subpattern of P if it is an effective subpattern of P and an R-pattern.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 15

We can now formulate the condition that randomness may not be reused: For any randomness
R, there is at most one effective R-subpattern in the role tree Π(k) (but that subpattern may
occur in several places).

Protocol execution. The definition of the execution of a symbolic protocol Π closely resembles
the one in [CKKW06b]. A symbolic trace for a k-party protocol Π is a sequence of global states
with some restrictions on the possible transitions (detailed below). A global state is a triple
(Sid, f, ϕ) where ϕ is the set of messages the adversary learned so far (the adversary knowledge,
initially set to Nonceadv), the set Sid contains the ids of all sessions currently running, and the
function f maps every session id sid in Sid to the local state of that session. A session contains
exactly one agent a executing one role. However, since the intended protocol execution always
involves k parties, a session additionally specifies what other agents the agent a is (supposedly)
communicating with. The local state of a given session is a tuple (i, σ, p, (a1, . . . , ak)). Here i is
the number of the role the agent a executes in this session. The tuple (a1, . . . , ak) specifies the
indented communication partners for that session, in particular, a = ai is the agent executing
this session. The state of the agent a is given by the current node p of the role tree Π(i) and
the mapping σ that maps variables to (fragments of) messages received by the agent a in that
session. See the discussion of the role tree on page 13.

We allow three kinds of transitions between global states, namely corrupt(a1, . . . , al),
new(i, a1, . . . , ak), and send(sid , m). In a corrupt(a1, . . . , al) transition, the adversary specifies
an list of agents a1, . . . , al whom it wants to corrupt. In consequence, the adversary’s knowledge
ϕ in the next global state will be extended by {dk(a1), . . . , dk(al), sk(a1), . . . , sk(al)}, i.e., the
adversary learns all secrets of the corrupted parties. Only the first transition is allowed to be of
this type, i.e., we consider static corruptions. In a new(i, a1, . . . , ak) transition, a new session id
sid is allocated and added to Sid. The local state of sid is initialized as (i, σ, ε, (a1, . . . , ak)) where
ε is the root of the role tree Π(i) and σ maps the variables Aj to aj and the variables Xj

N to
fresh nonces. In other words, a new session is initialized in which agent ai runs role Π(i) and sup-
posedly interacts with agents a1, . . . , ak. The most important transition is send(sid , m). Here,
the agent a executing sid is given the message m and its answer m′ is added to the adversaries
knowledge ϕ. Assume that agent a has the local state (i, σ, p, (a1, . . . , ak)). Then to compute
the answer m′, the first outgoing edge from p is searched such that its label (l, r) matches m and
produces an answer m′ that contains true proofs. Details on how this is done have already been
given in the discussion of roles on page 13. If no such edge is found, both the local state as well
as the knowledge of the adversary are unmodified. A send(sid , m) transition can only be taken
if the adversary knows m, i.e., if ϕ ⊢ m. Note that the only change with respect to the modeling
in [CKKW06b] is that we have introduced the additional condition for taking an edge that the
answer should contain true proofs.

We call sequences of global states satisfying these rules symbolic traces or Dolev-Yao traces .
The set of Dolev-Yao traces for Π is denoted Execs(Π). The full definition is given in the next
section.

3.1 Postponed definitions

In the following, let Ai ∈ X.a be pairwise distinct agent variables (for i ∈ N), and let Xj
N ∈ X.n

be pairwise distinct nonce variables (for j ∈ N). Assume that X.a \ {Ai : i ∈ N} and X.n \ {Xj
N :

j ∈ N} are infinite.
By na,j,s ∈ Nonceag with a ∈ A and j, s ∈ N we denote distinct nonces. By ra,j,s ∈ Randag

with a ∈ A, j ∈ Randag , s ∈ N we denote distinct symbolic randomnesses. By γa,s we denote a
mapping that maps every R ∈ Randag to ra,R,s.

For the following definition, we use the following notation: For an edge p
l,r
−→ q in a labeled

tree, the free variables of (l, r) are the variables that occur in l or r but are not in the label of
any edge on the path from the root to p nor are in {Aj : j ∈ [k]}∪ {Xj

N : j ∈ N} (where k is the
number of parties).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 16

Definition 4 (Role). A role tree RT is an ordered edge-labeled finite tree where each edge is
labeled by an agent rule (l, r) where l, r ∈ Pat. The patterns l are called parse-patterns and the
patterns r are called construct-patterns.

A role for agent i in a k-party protocol is a role tree RT satisfying the following conditions
for each node p of RT:

1. For every R ∈ Randag , there is at most one effective R-subpattern in the labels of the path
to p (but that effective R-subpattern may occur several times).

2. For any subterm of l of the form {t}t′ it holds that t′ = ek(Ai).

3. For any subterm of l of the form {t}Rand
t′ it holds that t and t′ do not contain free variables

nor .

4. For any subterm of l of the form ZKRand
Formula(Rand∗; a; b) it holds that a and b do not contain

free variables nor .

5. r does not contain nor free variables that are not free in l.

6. For any subterm of l or r of the form ZKR
F (. . . ; . . . ; b) we have that if ek(βi) or vk(βi) is a

subterm of F , then bi ∈ X.a.

7. For any subterm of l of the form [t]Rand
t′ it holds that t′ = sk(Ai) and that t does not contain

free variables nor .

8. For any subterm of r of the form [t]Rand
t′ it holds that t′ = sk(Ai).

9. For any subterm of l or r of the form dk(t) it holds that t = Ai.

Note that the syntax of Pat (page 12) imposes additional constraints that are not explicit in
Definition 4.

Definition 5 (Symbolic protocol execution). Let a k-party protocol Π be given.
A global state is a triple (Sid, f, ϕ) where ϕ is a set of messages (the adversary knowledge),

Sid is a finite set of session ids, and the function f maps every session id sid in Sid to the current
state of the session sid . This state is called the local state and is of the form (i, σ, p, (a1, . . . , ak))
where i ∈ [k] is the index of the role executed in this session, the partial function σ : X→ M is a
substitution mapping variables to messages, p is a node in the role tree Π(i), and aj ∈ A is the
agent identifier assigned to role j in this session (thus ai is the agent carrying out this session).

The initial state is qI = (∅, ∅, Nonceadv).
We allow three kinds of transitions between global states.

• Corruption. The adversary corrupts a subset of the parties involved in the protocol and
learns their private keys. This transition can only be applied in the beginning.

qI
corrupt(a1,...,al)
−−−−−−−−−−−→ (∅, ∅, Nonceadv ∪ {dk(aj), sk(aj) : j ∈ [l]}).

• Session initialization. The adversary can initialize new sessions.

(Sid, f, ϕ)
new(i,a1,...,ak)
−−−−−−−−−−→ (Sid′, f ′, ϕ).

Here sid := |Sid|+1 is the identifier of the new session and Sid′ := Sid∪{sid}. The function
f ′ is defined as f ′(sid ′) := f(sid ′) for sid ′ ∈ Sid and f ′(sid) := (i, σ, ε, (a1, . . . , ak)). Here
ε is the root of the role tree Π(i) and the substitution σ is defined by σ(Aj) := aj for all

j ∈ [k] and σ(Xj
N) := nai,j,sid for every Xj

N occurring in Π(i).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 17

• Sending of messages. The adversary can send messages to agents.

(Sid, f, ϕ)
send(sid ,m)
−−−−−−−−→ (Sid, f ′, ϕ′).

Here we require sid ∈ Sid, m ∈ M, ϕ ⊢ m, and ϕ′ and f ′ are defined as follows. We define
f ′(sid ′) := f(sid ′) for every sid ′ 6= sid. Let (i, σ, p, (a1, . . . , ak)) := f(sid). Then let (l, r)
be the label of the first outgoing edge from p such that the following holds:

– The message m matches the pattern lγai,sidσ. Let θ denote the matcher.

– Let m̃ := rγai,sidσθ. Then m̃ contains true proofs.

If no such edge exists, let f ′(sid) := f(sid) and ϕ′ = ϕ. Otherwise, let f ′(sid) := (i, σ ∪
θ, p′, (a1, . . . , ak)) where p′ is the successor of p along that edge, and let ϕ′ := ϕ ∪ {m̃}.

A finite sequence of global states starting with qI with the above transitions is called a symbolic
trace or Dolev-Yao trace for Π. The set of Dolev-Yao traces for Π is denoted Execs(Π).

4 The Computational Model

Cryptographic assumptions. At this point, we list all the properties that the encryption
scheme, the signature scheme, and the zero-knowledge proof system used in the computational
model need to fulfill.

We assume that ZK is a symbolically-sound zero-knowledge proof system (Definition 1).
We assume that the encryption scheme AE has the following properties:

• Valid encryption/decryption key pairs. It is well-defined which is the decryption key be-
longing to a given encryption key. Formally, there is a function f such that (a) given ek
and sk , it can be verified in deterministic polynomial time whether sk = f(ek) and (b) with
probability 1, the key generation algorithm produces a key pair (ek , sk) with sk = f(ek).
We call (ek , sk) with sk = f(ek) a valid encryption/decryption key pair.

• Perfect correctness. If (ek , sk) is a valid encryption/decryption key pair, then for any
message m, we have that encrypting m under ek and then decrypting the ciphertext using
sk succeeds yields m with probability 1.

• Deterministic decryption. The decryption algorithm is deterministic.

• IND-CCA. The encryption scheme satisfies the IND-CCA security notion. Roughly, IND-
CCA security means that the adversary that has access to an encryption oracle and a
decryption oracle cannot distinguish between the case that the encryption oracle encrypts
the message m it gets from the adversary, or the case where the encryption oracle encrypts
a random message m′ with |m| = |m′|. (Assuming that the adversary never queries the
decryption oracle with any ciphertext produced by the encryption oracle.)13 See [Gol04]
for details (there IND-CCA is called indistinguishability of encryptions under a posteriori
chosen ciphertext attacks).

We assume that the signature scheme SIG has the following properties:

• Deterministic verification. The verification algorithm is deterministic.

• Perfect correctness. For any message m and a verification/signing key pair (vk , sk) returned
by the key generation algorithm, signing m using sk and then verifying the resulting signa-
ture using vk succeeds with probability 1.

13This notion is similar in structure to the extraction zero-knowledge property presented on page 6.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 18

• Unpredictability. The signature scheme SIG is unpredictable (in the sense that for a fixed
signature key and a fixed message, two honestly generated messages are equal only with
negligible probability). This implies that SIG has to be probabilistic. Alternatively, one
could have required SIG to be deterministic and removed the symbolic randomness in the
symbolic model. Then, however, we would have to exclude probabilistic signature schemes.

• Length-regularity. The signature scheme SIG is length regular in the following sense: Given
an honestly generated signing key sk and two messages m1, m2 of the same length, the
signatures for m1 and m2 will have the same length, too. See the discussion on length-
regularity on page 7.

• Strong existential unforgeability. The signature is strongly existentially unforgeable.
Roughly, strong existential unforgeability means that no adversary with access to a signing
oracle can produce a valid message/signature pair (m, σ) unless that pair was output by
the signing oracle. (I.e., the adversary is not even allowed to produce a signature σ′ for m
if he received a signature σ 6= σ′ for m from the signing oracle.)14 See [Gol04] for details
(there strongly existentially unforgeable signatures are called super-secure signatures).

Note that for the encryption scheme AE , we also need the unpredictability and the length-
regularity properties. In the case of encryption schemes, however, they follow directly from the
IND-CCA property, so we do not need to require them explicitly.

We assume all security properties to hold against nonuniform polynomial-time adversaries.

Computational execution. We now proceed to define the computational execution of a pro-
tocol Π. We use the same formalization of protocols Π as in the symbolic model in the preceding
section, but the messages exchanged over the network now are bitstrings, and the patterns (l, r)
on the edges of the role tree specify how to parse or construct these bitstrings, respectively.

We first give a short overview over the computational execution model, stressing the design
issues particular to the include of zero-knowledge proofs. We give the detailed definitions in
Section 4.1.

Fix a security parameter η ∈ N. A computational trace is a sequence of computational
global states of the form (Sid, g, C) where Sid is the set of session ids, g maps sessions ids to
computational local states and C is the list of corrupted agents. A computational local state is of
the form (i, τ, p, (a1, . . . , ak)). As with the symbolic state, i is the role executed by ai, the node
p indicates which point of the role tree the agent ai has reached so far, and (a1, . . . , ak) list the
communication partners. The mapping τ maps variables to bitstrings (instead of terms) that
result from parsing incoming messages. The transitions between the global states are invoked by
a probabilistic polynomial-time adversary A. The adversary may invoke a corrupt(a1, . . . , al)
transition (only in the first step) and will then learn the secret keys of the agents a1, . . . , al.
Further the ids a1, . . . , al are stored in the set C in the global state. The adversary may invoke
a new(i, a1, . . . , ak) transition. In this case a new session id sid with computational local state
(i, τ, p, (a1, . . . , ak)) is allocated where in the mapping τ the variables Aj and Xj

N are preinitialized
to aj and fresh nonces, respectively. Finally, the adversary may invoke a send(sid , m) transition
where m is a bitstring. In this case, for each edge leaving the current node p, the following
is tried: Let (l, r) be the label of that edge. Then the bitstring m is parsed according to the
pattern l using the variable substitution τ (see below). This results in a new substitution τ ′

where the variables that were free in l are now assigned bitstrings. Then the pattern r is used
with the variable assignments τ ′ to construct a new bitstring m′ (see below). If both parsing and
constructing succeed, this edge is taken, τ ′ becomes part of the new local state of the session sid ,
and the adversary gets m as input. If no edge matches, no action is taken.

14We require strong existential unforgeability instead of existential unforgeability. The latter notion does not
exclude that the adversary may modify the randomness of existing honestly generated signatures. As the symbolic
adversary cannot do this (because no corresponding rule exists in Figure 1), we need to use strong existential
unforgeability. (Alternatively, we could also have given the adversary additional power in Figure 1 as was done
in [CW05].)

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 19

It is left to explain how a pattern is used to parse or construct a bitstring. For constructing
bitstrings, we first randomly choose a family of random values tapea,sid : Randag → {0, 1}η

parametrized over the agent a, the session sid .15 Then we define a function construct(r, τ) taking
a pattern r and a partial mapping τ : X → {0, 1}∗. If, e.g., r is an encryption r = {r′}R

ek(b), the

function construct(r, τ) recursively invokes m′ := construct(r′, τ) and then encrypts m′ using the
public key of agent b and using randomness tapea,sid (R) for the encryption algorithm (here a
denotes the agent that invokes construct). Pairs and zero-knowledge proofs are handled similarly.
If r ∈ X, then construct(r, τ) just returns the stored value τ(r). We give the details of the function
construct in Definition 7 in Section 4.1 below. At this point, we would only like to comment
on the operation of construct(ZKR

F (r; a; b), τ), i.e., on the construction of zero-knowledge proofs,
since it contains several relevant points.

To produce a zero-knowledge proof for witness r1, . . . , rs; a1, . . . , an and public part b1, . . . , bm

(where we assume that r, a, b have already been assigned bitstrings using recursive calls to
construct), we first have to construct a circuit C whose satisfiability we will prove in zero-

knowledge (such a circuit we call a ZK-circuit). For this, let li := |ai|. Then by C := C
s,n,l

F,b

we denote the circuit that expects arguments a′
1, . . . , a

′
n of lengths l1, . . . , ln and arguments

r′1, . . . , r
′
s all of length η, and then performs the operations described by the ZK-formula F

where ρi is instantiated with the input r′i, αi with input a′
i, and occurrences of βi are replaced

with the hardcoded value bi. Details are given in Definition 6 in Section 4.1 below. Then the
prover of the zero-knowledge scheme is invoked for the circuit C and for the witness r, a (as bit-
strings) using randomness tapea,sid (R). Call the resulting proof z. Then the bitstring returned
by construct(ZKR

F (r; a; b), τ) is the tuple (z, F, s, n, l, b) with appropriate tagging to mark it as a
zero-knowledge proof. Note that this construction does not completely hide all information on
the witness since it leaks the length of the individual components. This is comparable to the situ-
ation with encryption schemes which also cannot completely hide the length of the plaintext.16 If
the zero-knowledge proof fails (because r; a is not a witness for C) the function construct aborts

(and the next edge in the role tree is tried). Note that the circuit C = C
s,n,l

F,b can be constructed
given only F, s, n, l, b; this is important since for verifying a proof, we need to construct C first.

For parsing bitstrings, we define a function parse(m, l, τ) taking a bitstring m, a pattern l, and
a partial mapping τ : X→ {0, 1}∗. Then if, e.g., l is an encryption pattern of the form {l′}

ek(Ai)
where i is the role executed by agent a in the current session, the bitstring m is decrypted
with the secret key of agent a resulting in the plaintext m′, and then function parse(m′, l′, τ)
is invoked. Pairs, signatures, and zero-knowledge proofs are handled analogously. When l is
a free variable (i.e., unassigned in τ), it is checked whether m is of the right type and then
assigned to τ(l) (resulting in an extended mapping τ). If l is a bound variable (assigned in τ),
it is checked whether m = τ(l). If l is of the form {·}R· , [·]R· , or ZKR

· (. . .) (i.e., contains explicit
randomness), the message m is not parsed further but compared to construct(l, τ) (this enables
matching against encryptions or ciphertexts an agent has produced itself). Finally, if all checks
succeeded, the (now possibly extended) mapping τ is returned. We give a detailed definition of
the function parse in Definition 8 in Section 4.1.

We assume explicit type information on each bitstring. We achieve this by requiring that every
bitstring carries a type tag distinguishing between agents, nonces, pairs, ciphertexts, signatures,
and zero-knowledge proofs. Furthermore, we require that a bitstring tagged as a zero-knowledge
proof is only considered to be of type zero-knowledge proof if it additionally passes the verification.
This is necessary since otherwise a bitstring could be assigned to a variable X.z that later will
not pass verification, in contrast to the symbolic case where only true proofs can be assigned to
X.z. For analogous reasons, only verified signatures are of type signature.

Thus for any adversary A and any security parameter η, we get a distribution on compu-
tational traces which we denote by Execc

Π,A(η). A detailed description of the computational

15For notational simplicity, we assume that any operation, be it encrypting or performing zero-knowledge
proofs, needs at most η bits of randomness. This can be easily achieved by using a pseudorandom generator if
the operation needs more randomness.

16Note however that in the case of zero-knowledge proofs, this is not a principal impossibility. For example,
[BG02] present so-called universal arguments that can be transformed into length-hiding zero-knowledge proofs.
These schemes however are very complex and far from being practically usable.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 20

execution is given in the next section.

4.1 Postponed definitions

For the following definitions, we assume that tapea,sid (R) ∈ {0, 1}η are uniformly and indepen-
dently chosen for each a ∈ A, sid ∈ N, and R ∈ Randag . In an implementation, these values
would, of course, be sampled upon first use. Similarly, we assume that crs is chosen according
to the CRS-generation algorithm K of ZK.

For convenience, we identify the set A of agent identifiers with the set {0, 1}∗ of all bitstrings.
This implies, that in the computational setting, any bitstring is a valid agent identifier.

Tags and types. To be able to recognize whether a given bitstring is a ciphertext, signature,
agent-id, zero-knowledge proof, etc., we use tagging. For this, we assume functions tagx which
intuitively take a tuple of bitstrings and returns a bitstring tagged with x. Formally, we assume
that tagx is efficiently computable, injective, and efficiently invertible, and that the ranges of
tagx and tagy for x 6= y are disjoint. We also assume that tagx is length-regular in the sense
that the length of tagx (a, b, c, . . .) depends only on the lengths of the bitstrings a, b, c, (See
also the discussion on length-regularity on page 7.)

We will use the tags sig, enc, zk , pair ,nonce, agent , dk , ek , vk , sk for signatures, ciphertexts,
zero-knowledge proofs, pairs, nonces, agent ids, decryption keys, encryption keys, verification
keys, and signing keys, respectively.

Based on the tags, we can define types of bitstrings:

• If m = tagsig (s, m′, vk) and s is a valid signature for m′ with respect to the verification key
vk , we say m has type signature.

• If m = tagzk (z, F, s, n, l, b) and the circuit C := C
s,n,l

F,b is defined and the verification
algorithm of ZK accepts the proof z for the circuit C, then we say m has type zero-
knowledge.17

• If m = tagenc(m
′, ek), we say m has type ciphertext.

• If m = tagpair (m1, m2), we say m has type pair.

• If m = tagnonce(n), we say m has type nonce.

• If m = tagagent(a), we say m has type agent.

• If m = tagdk (k), m = tagek (k), m = tagvk (k), or m = tagsk (k) we say m has type
decryption key, encryption key, verification key, or signing key, respectively.

Note that the types signature and zero-knowledge check more than the tagging and the arity,
they additionally ensure that the signature or the zero-knowledge proof are successfully verified.

Constructing bitstrings. We now present the definitions that are used in the process of
constructing bitstrings from terms.

Definition 6 (ZK-circuits). Fix a security parameter η. Let a ZK-formula F of ρ-arity s, α-arity
n and β-arity m be given, as well as bitstrings b1, . . . , bm ∈ {0, 1}∗. Let l1, . . . , ln ∈ N.

ZK-terms: For a ZK-term T , the circuit C = C
s,n,l

T,b is recursively defined as follows:

• It expects inputs r1, . . . , rs of length η, and inputs a1, . . . , an of lengths l1, . . . , ln, respec-
tively. (We assume that these inputs are concatenated to form a single bitstring w of length
sη +

∑

li.)

• If (T = ek(βi) or T = vk(βi) or T = {·}·ek(βi)
) and bi does not have type agent, then C is

undefined.

17We assume a single, globally available CRS that is used by the verifier of ZK, cf. Definition 9.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 21

• If T = αi, then C computes ai (i.e., C is a projection).

• If T = βi, then C returns bi (i.e., C computes a constant function).18

• If T = ek(βi) and bi has type agent, then let tagagent(b
′
i) := bi and C returns tagek(ek)

where ek is the encryption key of agent b′i (i.e., C computes a constant function).

• If T = vk(βi) and bi has type agent, then let tagagent (b
′
i) := bi and C returns tagvk(vk)

where vk is the verification key of agent b′i (i.e., C computes a constant function).

• If T = 〈T1, T2〉, then C(w) computes m1 := C
s,n,l

T1,b (w) and m2 := C
s,n,l

T2,b (w), and then

returns the bitstring tagpair (m1, m2).

• If T = {T ′}ρi

ek(βj)
and bj has type agent, then let tagagent(b

′
j) := bj and C(w) computes

m′ := C
s,n,l

T ′,b (w) and then computes the encryption c of m′ under the encryption key ek of

b′j using randomness ri. It returns the bitstring tagenc(c, ek).

ZK-atoms: For a ZK-atom T , the circuit C = C
s,n,l

T,b is defined as follows:

• It expects inputs r1, . . . , rs of length η, and inputs a1, . . . , an of lengths l1, . . . , ln, respec-
tively.

• If T is of the form T1 = T2 where T1 and T2 are ZK-terms, then C computes mi :=
C

s,n,l
Ti,b

(r, a) for i = 1, 2 and returns the bit 0 if m1 6= m2 and the bit 1 if m1 = m2.

• If T is of the form Decrypt(T1, T2, T3) = T4 then C computes mi := C
s,n,l

Ti,b
(r, a) for i =

1, . . . , 4. Then C checks whether m1 is of type ciphertext, m2 of type decryption key, and m3

of type encryption key. C assigns tagenc(c, ek
′) := m1, tagdk (dk) := m2, tagek (ek) := m3.

Then C checks whether ek ′ = ek and (ek , dk) is a valid encryption/decryption key pair and
whether decrypting c using the decryption key dk succeeds and yields the plaintext m4. If
all checks succeed, C returns 1. Otherwise, C returns 0.

• If T is of the form Verify(T1, T2, T3) then C computes mi := C
s,n,l

Ti,b
(r, a) for i = 1, . . . , 3.

Then C checks whether m1 is of type signature and m3 of type verification key. C assigns
tagsig (s, m′, vk) := m1 and tagvk (vk ′) := m3. Then C checks whether m′ = m2 and whether

vk = vk ′. If all checks succeed, C returns 1. Otherwise, C returns 0.19

ZK-formulas:

For a ZK-formula F = B(T1, . . . , Tq) where B is a Boolean formula and T are ZK-atoms, the

circuit C
s,n,l

F,b is defined as follows:

• It expects inputs r1, . . . , rs of length η, and inputs a1, . . . , an of lengths l1, . . . , ln, respec-
tively.

• If s is not the ρ-arity of F , or n is not the α-arity of F , or |l| 6= n, or |b| is not the β-arity
of F , then C is undefined.

• C computes ti := C
s,n,l

Ti,b
for i ∈ [q] and returns B(t). (If one of the circuits constructed

recursively in the process is undefined, then C is undefined, too.)

Note that by construction, C
s,n,l

F,b is length-regular in the bitstrings b. I.e., if b and b′ satisfy

|bi| = |b′i| for all i, then C
s,n,l

F,b = C
s,n,l

F,b′
. This property is important for the computational

soundness result, see the discussion on length-regularity on page 7. It is important that the
length-regularity of the construction is also present in an implementation. In particular, when

18Here it is important that for different values bi of the same length, the corresponding circuits have the same
size. See the discussion on length-regularity on page 7.

19Note that the type check of m1 already implies an invocation of the verification algorithm.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 22

performing some optimization of the circuit C
s,n,l

F,b at runtime (e.g., identifying and merging

subcircuits that appear more than once, or removing dead “code”), it is important that the size
of the overall circuit does not depend on the actual values of the b.

Without loss of generality, we also assume an encoding of C
s,n,l

F,b that uniquely determines
F, s, n, l, b.

Note also the close relation between the validity of a formula (as in Definition 2) and the

definedness of C
s,n,l

F,b : For any ZK-formula F and any r ∈ Rand, a, b ∈ M, the term F
{

r,a,b

ρ,α,β

}

is valid if and only if for each subterm ek(βi) or vk(βi) of F , we have that bi ∈ A. And for

any ZK-formula F and b ∈ {0, 1}∗, the circuit C
s,n,l

F,b is defined if and only if for each subterm

ek(βi) or vk(βi) of F the bitstring bi is of type agent and s, n, |b| is the ρ-, α-, and β-arity of F ,
respectively, and |l| = n.

Definition 7 (Constructing bitstrings). Let a session id sid, an agent a ∈ A, a pattern r, and
a mapping τ from variables to bitstrings be given. We define constructa,sid (r, τ) recursively as
follows:

Case r = x ∈ X: If τ(x) is defined, return τ(x). Otherwise, abort.
Case r = ek(x): If τ(x) is not defined, abort. Let tagagent (a

′) := τ(x). Retrieve the encryption
key ek belonging to agent id a′. (Note that since A = {0, 1}∗, a′ is always a valid agent id.)
Return tagek (ek).

Case r = vk(x): If τ(x) is not defined, abort. Let tagagent(a
′) := τ(x). Retrieve the verifica-

tion key vk belonging to agent id a′. (Note that since A = {0, 1}∗, a′ is always a valid agent id.)
Return tagvk (vk).

Case r = dk(x): If τ(x) is not defined, abort. Let tagagent (a
′) := τ(x). If a 6= a′, abort.

Retrieve the decryption key dk belonging to agent id a′. If no such decryption key exists, abort.
Otherwise return tagdk (dk).20

Case r = 〈r1, r2〉: Set mi := constructa,sid(ri, τ) for i = 1, 2. Return tagpair (m1, m2).

Case r = {r′}Rek(x): Let R̃ := tapea,sid (R), If τ(x) is not defined, abort. Let tagagent(a
′) :=

τ(x) and let ek be the encryption key of agent a′. If a′ is undefined, abort. Otherwise invoke
m′ := constructa,sid (r′, τ). Compute the encryption m of m′ under encryption key ek using the
randomness R̃. Return tagenc(m, ek).

Case r = [r′]R
sk(x): Let R̃ := tapea,sid (R). If τ(x) is not defined, abort. Let tagagent(a

′) := τ(x)

and let sk and vk be the signing and the verification key of agent a′. If a 6= a′, abort. Otherwise
invoke m′ := constructa,sid (r′, τ). Compute the signature m of m′ using the signing key sk and
randomness R̃. Return tagsig (m, m′, vk).

Case r = ZKR
F (R1, . . . , Rs; a1, . . . , an; b1, . . . , bm): For each subterm T of each ZK-term of

F , compute constructa,sid (T
{

r,a,b

ρ,α,β

}

, τ) and discard the result.21 Let R̃ := tapea,sid (R) and

R̃i := tapea,sid (Ri) for i ∈ [s]. For all i ∈ [n], compute ãi := constructa,sid (ai, τ), and for all

i ∈ [m], compute b̃i := constructa,sid (bi, τ). Set li := |ãi| for all i ∈ [n], and let C := C
s,n,l

F,b̃
. Set

w := R̃1‖ . . . ‖R̃s‖ã1‖ . . . ‖ãn. If C is undefined or C(w) 6= 1, abort. Use the prover P of ZK
to produce a proof z for circuit C and witness w where the prover uses the randomness R̃.22 If
z is not a valid proof for z (as determined by the verifier of ZK), we say a ZK-failure occurred.
Otherwise return tagzk (z, F, s, n, l, b̃).

20 We do not need a corresponding rule for signing keys because the syntax of patterns forbids the use of
signing keys except as part of a signature (and in the case of signatures, constructa,sid ([·]·

sk(a)
, τ) does not perform

a recursive invocation of constructa,sid (sk(a), τ)). In contrast, decryption keys can be used in the witness of a
zero-knowledge proof.

21This computation has no effect (except for that constructa,sid(r, τ) might fail because an invocation

constructa,sid (T
˘ r,a,b

ρ,α,β

¯

, τ) fails), but it ensures that any bitstring occurring in the computation of C(w) be-

low will already have been computed by constructa,sid . This will allow for the construction of a function c̄ later
in the proof of the main theorem. When parsing bitstrings, this function performs a lookup in the list of values
computed by constructa,sid , so we need that list to contain all relevant bitstrings.

22We assume a single, globally available CRS that is used by the prover, cf. Definition 9.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 23

In any other case, abort (and if any of the recursive invocations of constructa,sid aborts, abort,
too).

Parsing bitstrings. The next definitions specifies how incoming messages are parsed according
to a pattern.

Definition 8 (Parsing bitstrings). Let a bitstring m, a pattern l, and a mapping τ from variables
to bitstrings be given. We define parsea,sid (m, l, τ) recursively as follows:

Case l = x ∈ X: If the type of m does not match the sort of x,23 abort. If τ(x) = m, then
return τ . If τ(x) is defined, but τ(x) 6= m, abort. Otherwise return τ [x := m].

Case l = ek(x) ∈ ek(X.a): If m is not of type encryption key, abort. Otherwise, let
tagek(ek) := m. If there is an agent id b such that ek is the encryption key of b and τ(x)
is not defined or equals tagagent (b), return τ [x := tagagent(b)]. Otherwise abort.

Case l = vk(x) ∈ vk(X.a): If m is not of type encryption key, abort. Otherwise, let
tagvk(vk) := m. If there is an agent id b such that vk is the verification key of b and τ(x)
is not defined or equals tagagent (b), return τ [x := tagagent(b)]. Otherwise abort.

Case l = 〈l1, l2〉: If m is not of type pair, abort. Otherwise let tagpair (m1, m2) := m and let

τ ′ := parsea,sid (m1, l1, τ) and τ ′′ := parsea,sid(m2, l2, τ). If τ ′ and τ ′′ are not compatible, abort.
Otherwise return τ ′ ∪ τ ′′.

Case l ∈ {Pat}
Randag

ek(X.a) or l ∈ [Pat]
Randag

sk(X.a) or l ∈ ZK
Randag

Formula(Rand∗ag ; (Pat|dk(X.a))∗; Pat∗): Invoke

m′ := constructa,sid (l, τ). If m 6= m′, abort. Otherwise, return τ .
Case l = {l′}

ek(Aj)
with j ∈ [k]: If m is not of type ciphertext, abort. Otherwise, let

tagenc(c, ek) := m. If ek is not the encryption key belonging to the agent id τ(Aj), abort.
Otherwise decrypt c with the secret key belonging to agent a and let m′ be the corresponding
ciphertext.24 If this fails, abort. Otherwise let τ ′ := parsea,sid (m′, l′, τ) and return τ ′.

Case l = [l′]
sk(x) with x ∈ X.a: If m is not of type signature, abort. Otherwise, let

tagsig(s, m′, vk) := m. Let τ ′ := parsea,sid (tagvk(vk), vk(x), τ) and τ ′′ := parsea,sid (m′, l′, τ).
If τ ′ and τ ′′ are not compatible, abort. Otherwise, return τ ′ ∪ τ ′′.

Case l = ZKF (∗; ∗; t1, . . . , tn): If m is not of type zero-knowledge proof, abort.25 Otherwise,
let tagzk (z, F ′, s, n′, l, b) := m. If F 6= F ′ or n 6= n′, abort. Otherwise for i = 1, . . . , n run
the following: τi := parsea,sid (bi, ti, τ). If the τi are not pairwise compatible, abort. Otherwise
return

⋃

i τi.
In any other case, abort (and if any of the recursive invocations of parsea,sid or constructa,sid

aborts, abort, too).

Definition 9 (Computational execution model). A computational global state is a triple
(Sid, g, C) where Sid is a finite set of session ids, and g is a function mapping every sid ∈ Sid to
a computational local state, and C is the set of corrupted parties.

A computational local state is of the form (i, τ, p, (a1, . . . , ak)) where i ∈ [k] is the index of
the role executed in this session, the partial function τ : X → {0, 1}∗ is a substitution mapping
variables to bitstrings, p is a node in Π(i), and aj ∈ A is the agent identifier assigned to role j
in this session.

Let a probabilistic interactive Turing machine A be given. The computational trace
Execc

Π,A(η) for security parameter η is a (distribution over) sequences of global states given by
the following algorithm.

• Initially, pick (crs , simtd , extd) using the key generation algorithm K from ZK. Discard
simtd and extd. The CRS crs is made available to the adversary A. Proofs and ZK-
verifications performed by constructa,sid and parsea,sid use this CRS.

• Whenever an encryption, decryption, signing, or verification key of some agent a ∈ A is
used for the first time, the corresponding key pair is generated using the key generation

23If x ∈ X.z or x ∈ X.s, this implies invoking the verification algorithm of ZK or SIG.
24Note that due to Definition 4, condition 2, we always have τ(Aj) = tagagent(a) here.
25By our definition of the type zero-knowledge proof, this implies invoking the verification algorithm of ZK.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 24

algorithm of AE or SIG, respectively. We further give A access to the encryption and veri-
fication keys of all agents. We also give A and all agents the possibility to perform a reverse
lookup: Given an encryption or verification key, it is possible to lookup the corresponding
agent id.

• The initial global state is (∅, ∅, ∅). In the first step, A is invoked with input 1η.

• When A outputs corrupt(a1, . . . , al) with a1, . . . , al ∈ A in its first activation, the adver-
sary is given the decryption and signing keys of a1, . . . , al as input. The next global state
is (∅, ∅, {a1, . . . , al}).

• When A outputs new(i, a1, . . . , ak) in global state (Sid, g, C) where i ∈ [k] and a1, . . . , ak ∈
A, the next global state is (Sid′, g′, C).

Here sid := |Sid|+1 is the identifier of the new session and Sid′ := Sid∪{sid}. The function
g′ is defined as g′(sid ′) = g(sid ′) for sid ′ ∈ Sid and g′(sid) = (i, τ, ε, (a1, . . . , ak)). Here ε
is the root of the role tree Π(i) and the substitution τ is defined by τ(Aj) := tagagent (aj)

for all j ∈ [k] and τ(Xj
N) := tagnonce(nj) for every Xj

N occurring in Π(i) where the nj are
independently uniformly chosen nj ∈ {0, 1}η. The adversary is given empty input.

• When A outputs send(sid , m) in global state (Sid, g, C) where sid ∈ Sid, the next global
state is (Sid, g′, C).

Here g′(sid ′) := g(sid ′) for all sid 6= sid ′, g′(sid) := (i, τ ′, p′, (a1, . . . , ak)) is computed from
(i, τ, p, (a1, . . . , ak)) := g(sid) as follows:

For each edge p
l,r
−→ p′′ starting in p (in their natural order, remember that the role

tree Π(i) has ordered edges), first invoke τ ′′ := parseai,sid (m, l, τ). Then invoke m′ :=
constructai,sid (r, τ ′′). If parseai,sid or constructai,sid aborts, continue with the next edge.
Otherwise set τ ′ := τ ′′ and p′ := p′′, let the next input of A be m′, and do not proceed with
the next edges.

If no edge lead to a definition of τ ′, p′ and an output for A, set τ ′ := τ and p′ := p and let
the next input of A be the empty string.

• When the adversary outputs anything else, the execution terminates and the computational
trace ends at this point.

5 Computational Soundness

In the preceding two sections, we have described the symbolic and the computational execution
model involving zero-knowledge proofs and encryptions. To be able to state our main compu-
tational soundness result, we have to formalize the statement that a given computational trace
tc corresponds to a given symbolic trace ts. Here we follow [MW04, CW05, CKKW06b] and
require that there exists a mapping c that maps every message from ts to a bitstring of tc in
a consistent fashion. The exact definition is almost identical to the one of [CKKW06b], except
that we add the requirement that the adversary corrupts the same agents in the symbolic and
the computational trace.

Definition 10 (Computational instantiations). Let ts = (Sids
1, f1, ϕ1), . . . , (Sids

m, fm, ϕm) be a
symbolic trace and tc = (Sidc

1, g1, C1), . . . , (Sidc
n, gn, Cn) a computational trace.

We say that the trace tc is a computational instantiation of ts with partial mapping c :
M → {0, 1}∗ (written ts �c tc) if m = n and for every ℓ ∈ [n] it holds that Sids

ℓ = Sidc
ℓ, and

Cℓ = {a : dk(a) ∈ ϕℓ}, and for every sid ∈ Sids
ℓ the following holds:

For (σ, i, p, (a1, . . . , ak)) := fℓ(sid) and (τ, j, q, (b1, . . . , bk)) := gℓ(sid) we have that τ = c ◦ σ,
and i = j, and p = q, and (a1, . . . , ak) = (b1, . . . , bk).

We say that tc is a computational instantiation of ts (written ts � tc) if there exists a partial
injective function c : M→ {0, 1}∗ such that ts �c tc.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 25

Equipped with this definition, we can formulate our soundness result. Namely, with over-
whelming probability, a computational trace is a computational instantiation of some symbolic
Dolev-Yao trace.

Theorem 1 (Computational soundness of zero-knowledge proofs). Assume that the encryption
scheme AE, the signature scheme SIG, and the zero-knowledge proof system ZK satisfy the
requirements listed on page 17.

Let Π be a k-party protocol. Let A be a nonuniform polynomial-time adversary. Then the
following probability is overwhelming in η:

Pr
[

Execc
Π,A(η) ∈ {tc : ∃ts∈Execs(Π) such that ts� tc}

]

.

We first give a proof sketch of the theorem that covers the main ideas. The full proof is then
given in Section 6.

Proof sketch. To establish the theorem, it is sufficient to find an injective mapping c̄ that maps
bitstrings to terms such that a computational trace tc (chosen according to Execc

Π,A(η)) will be

mapped to a Dolev-Yao trace c̄(tc). Then the inverse c̄−1 satisfies c̄(tc) �c̄−1

tc, which proves
the theorem. The mapping c̄ is defined in the canonical way, namely by parsing every bitstring
m to a term. To this aim, we use the decryption keys to parse encryptions, and the extraction
trapdoor E of ZK to recover the witnesses of zero-knowledge proofs. Unparseable bitstrings
are mapped to distinct terms in Garbage. A small difficulty occurs when trying to extract the
randomness used for encryptions or zero-knowledge proofs. In general, an encryption scheme
may not allow to extract the randomness used when decrypting, even given knowledge of the
secret key.26 Moreover, some of the randomness might even be information-theoretically lost, so
it is impossible to recover the randomness that is actually used. Thus for adversary-generated
bitstrings m, we do not aim to extract the randomness but instead consider the full bitstring m
as its own randomness.

We have to show that c̄(tc) constitutes a Dolev-Yao trace with overwhelming probability.
Assume that c̄(tc) is not a Dolev-Yao trace. This can be because c̄(tc) does not fulfill the
syntactic conditions of a trace (e.g., the knowledge of the adversary changes in an unexpected
way, or the local state of some machine does not correspond to the messages received), or because
the adversary sends a message that cannot be deduced from the messages that were output by
the honest agents. In this proof sketch, we will only consider the latter case. We will therefore
assume that with non-negligible probability, in step ℓ, a message m is sent such that

Nonceadv ∪ {dk(a), sk(a) : a ∈ C} ∪ {c̄(m̃) : m̃ ∈ Sℓ} 0 c̄(m) (1)

holds, where C denotes the set of corrupted agents. From this we will derive a contradiction to
the cryptographic assumptions used in the theorem by transforming the computational execution
in several steps into an adversary that guesses some bitstrings of high entropy or that fakes a
signature.

Simulating the zero-knowledge proofs. As a first step towards a contradiction, we will
replace all zero-knowledge proofs by fake proofs produced by the simulator. For this, we first
introduce two oracles into our execution: A proof oracle Proof and an extraction oracle Extract .
Whenever an honest agent wants to produce a zero-knowledge proof of some statement x with
witness w, it invokes Proof (x, w); when the implementation of c̄ extracts the witness of some
zero-knowledge proof z, it invokes Extract(z). Note that for this, it must be guaranteed that
each zero-knowledge proof produced by honest agents uses a different randomness R,27 and that
this randomness is only used for the zero-knowledge proof. By the definition of valid roles, we
have that for any randomness R, there is at most one effective R-subpattern in any path of the
role tree of any agent. If this effective R-subpattern is a term of the form ZKR

F (. . .), then R

26E.g., the Cramer-Shoup cryptosystem, cf. footnote 11.
27Here and in the following, when we reason about a randomness R ∈ Randag in the computational model, we

mean the symbolic value R that is used to select the corresponding bitstring from the random tape using the
function tape .

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 26

does not appear in the witness of any zero-knowledge proof since terms of the form ZKR
F (. . .)

may not appear in ZK-formulas. Thus any randomness R that is used for some ZK-proof is used
only for that proof (if the proof is performed several times with the same witness, statement and
randomness, the Proof oracle will not be invoked again but the old result will be reused). Note
the following facts:

• The oracle Extract is never invoked with a proof z that has previously been output by
Proof . This holds since c̄ by definition only extracts proofs that have not been generated
by an honest agent, and only honest agents use Proof .

• The oracle Proof is never invoked with (x, w) such that w is not a witness of x. This holds
since honest agents check whether w is a witness before constructing a proof.

Hence, since both the execution of the computational trace, as well as the application of the
mapping c̄ run in polynomial-time, we can exploit that ZK has the extraction zero-knowledge
property, and hence replace the Proof oracle by a simulation oracle Simulate using the simu-
lation trapdoor of the CRS such that c̄(tc) (which is the output of an efficient function c̄) is
computationally indistinguishable in both cases.28 Whether a given symbolic trace is a Dolev-
Yao trace can be checked in polynomial-time. Thus from the computational indistinguishability
of the symbolic traces in both cases, it follows that the probability that the symbolic trace is a
Dolev-Yao trace changes only by a negligible amount when replacing Proof by Simulate. Thus
(1) still holds with non-negligible probability. Moreover, in contrast to Proof , the oracle Simulate
only expects the statement x as input, but no witness.

Using fake encryptions. The next step towards deriving a contradiction is to replace the
encryptions created by honest agents by fake encryptions. Since this step is very similar to the
introduction of the oracles Simulate and Extract , we only give a rough idea. All encryptions
and decryptions performed by honest agents (with respect to public keys of uncorrupted agents)
are replaced by calls to an encryption or decryption oracle. By performing a lookup in the list
of all encryptions produced so far, we can ensure that the decryption oracle is only invoked for
ciphertexts not produced by the encryption oracle. Then the IND-CCA property guarantees that
we can replace the encryption oracle by an oracle FakeEncrypt that encrypts random messages
(and thus does not use its input). Some care has to be taken concerning the randomness: We do
not guarantee that the randomness used by the encryption oracle is used exactly once, but instead
may also use it in the witnesses of zero-knowledge proofs. However, exploiting that Simulate
does not need a witness, one can show that the replacement of the encryption by FakeEncrypt
leads to an indistinguishable trace. We refer to the full proof for details.

Identifying a underivable subterm. In order to derive a contradiction from (1), we have to
identify a subterm of c̄(m) whose “fault” it is that c̄(m) cannot be derived. We will then use
this term to get a contradiction. For this, we need the following characterization of underivable
messages:

Lemma 1. Let C be the set of corrupted agents, let M := c̄(m), let S be the set of messages
output by honest agents up to step ℓ, and let S′ := S ∪ {dk(a), sk(a) : a ∈ C} ∪ Nonceadv (the
knowledge of the adversary after that step). Assume that S′

0 M (this follows from (1)).
Then there exists a term T ∈ M and a context D such that M = D[T] and all terms on the

path from M = D[T] to T (not including T) are of the form

〈·, ·〉 or {·}Randadv

ek(·) or ZKRandadv

Formula (. . .) or [·]·sk(·)

Furthermore, we have that S′
0 T and that T satisfies one of the following conditions:

(a) T ∈ Nonceag , or

28Note that here it is important that ZK has the extraction zero-knowledge property and not only the zero-
knowledge property and the extractability individually, as we replace Proof by Simulate in the presence of calls
to an extraction oracle.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 27

(b) T = {·}
Randag

ek(a) , or

(c) T = ZK
Randag

Formula(. . .), or

(d) T = ZKRandadv

Formula (r; a; b) and for some i, S′
0r ri.

(e) T = [·]Randadv

sk(a) where a /∈ C ∪ Garbage.

(f) T = [·]
Randag

sk(a) .

(g) T = sk(a) or T = dk(a) for some a ∈ A \ C.

Thus by (1) such a subterm T of M = c̄(m) exists. We have to show that each of the seven cases
leads to a contradiction.

TTT is a nonce. In case (a) we have T ∈ Nonceag . Since S′
0 T , for any message m sent to

the adversary, the nonce T occurs in c̄(m) only inside an encryption (with a public key ek(a)
with a /∈ C) or inside the witness of a zero-knowledge proof. Since honest agents construct such
encryptions and zero-knowledge proofs using the oracles Simulate and FakeEncrypt , the message
m is computed without using the bitstring corresponding to T ; thus it is not possible to extract
that bitstring from m. On the other hand, from the message m sent by the adversary, we can
retrieve the nonce as follows. In M = c̄(m), the nonce T is protected only by terms of the form
〈·, ·〉, {·}Randadv

ek(·) , ZKRandadv

Formula (. . .), or [·]·
sk(·). The pair and the signature can directly be parsed (since

we assume that signatures are always tagged with the signed message), in the case of {·}Randadv

ek(·)

or ZKRandadv

Formula (. . .), we can call the oracles Decrypt and Extract , respectively. Since these oracles
are also used by the function c̄ (at least for terms where c̄ assigns randomness Randadv and not
Randag), these oracles will answer consistently with the parsing M = c̄(m) of m. Thus we can
guess the nonce T , leading to a contradiction. Cases (b), (c), (f), (e), and (g) of Lemma 1 are
taken care of similarly: In the first three cases, the adversary guesses some randomized message m
that is never actually used; this contradicts the unpredictability of AE , ZK, or SIG, respectively.
In case (e) the adversary produces a signature m that was never produced by the signing oracle;
this contradicts the strong existential unforgeability of SIG. In case (g) the adversary guesses
some secret key m.

TTT is an adversary-generated zero-knowledge proof. In case (d), we have that T =
ZKRandadv

Formula (r; a; b) and that S′
0r ri. In this case the argumentation used for case (a) cannot

be used because T does not correspond to a bitstring generated by an honest agent. However,
as in the preceding argument, the adversary can extract the bitstring corresponding to T , and
using the oracle Extract it can extract the computational randomness corresponding to ri. By
definition of the function c̄, this randomness will be the randomness used in an encryption with
respect to some encryption key ek(a) performed by an honest agent (otherwise the function c̄
would have assigned a randomness ri ∈ Randadv implying S′ ⊢r ri). We distinguish two cases:
a /∈ C and a ∈ C. If a /∈ C, then the encryption has been generated using the encryption
oracle Encrypt . Being able to retrieve the randomness used in that encryption contradicts the
IND-CCA property of AE . If a ∈ C, then the randomness has been used to generate the bitstring

corresponding to a term c = {t}
Randag

ri with a ∈ C. Since ri is not known, we have that S′
0 c.

With an analogous argument as above, we can see that all bitstrings sent by honest agents can
be computed without actually computing the bitstring corresponding to c. But in this case, that
fact that the adversary is able to guess the randomness used to produce c is a contradiction.

6 Proof of the Main Theorem

Proof of Theorem 1. In the following, let a k-party protocol Π and a polynomial-time adversary
A be fixed. We have to show that

Pr
[

Execc
Π,A(η) ∈ {tc : ∃ts∈Execs(Π) such that ts� tc}

]

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 28

is overwhelming in η.
For this, we will give a construction of an injective mapping c̄ : {0, 1}∗ → M that may depend

on η as well as of some of the values occurring in Execc
Π,A(η) such as the CRS, its extraction

trapdoor, the private keys of the parties, or their random tapes. We extend this mapping to
computational traces as follows: A computational trace tc = (Sid1, g1, C1), . . . , (Sidn, gn, Cn)
is mapped to a symbolic trace c̄(tc) := (Sid1, f1, ϕ1), . . . , (Sidn, fn, ϕn) as follows. We let
fℓ(sid) = (i, c̄ ◦ τ, p, (a1, . . . , ak)) where (i, τ, p, (a1, . . . , ak)) := gℓ(sid), and we define the ad-
versary’s knowledge ϕℓ as follows: We set ϕ1 := Nonceadv . For ϕℓ+1 we distinguish three cases.
If the ℓ-th transition was a new-transition, we set ϕℓ+1 := ϕℓ. If the ℓ-th transition was a
corrupt(a1, . . . , al)-transition, we set ϕℓ+1 := ϕℓ ∪ {dk(aj), sk(aj) : j ∈ [l]}. If the ℓ-th transi-
tion was a send(sid , m)-transition, let m̃ be the answer given to the adversary after taking that
transition, and set ϕℓ+1 := ϕℓ ∪ {c̄(m̃)} (or ϕℓ+1 := ϕℓ if the adversary gets an empty answer).

We will then show that if tc is chosen according to the distribution Execc
Π,A(η), with some

overwhelming probability 1− µ(η) we have that c̄(ts) is a Dolev-Yao trace.
Since c̄ is injective, we have that c := c̄−1 is an injective partial function, and if c̄(tc) is a

Dolev-Yao trace, by construction of c̄(tc) we have that c̄(tc) �c tc. (Here, we use that c̄(tc) is a
Dolev-Yao trace to ensure that no dk(aj) or sk(aj) occurs in ϕℓ unless aj was corrupted in the
first step.) Thus, assuming that c̄(ts) is a Dolev-Yao trace with probability 1− µ, we have

Pr
[

Execc
Π,A(η) ∈ {tc : ∃ts∈Execs(Π) such that ts� tc}

]

≥ 1− µ(η).

Note that the construction of c̄ actually depends on the particular execution of Π. For example,
the construction of c̄ may depend on the secret keys, or other random choices made during the
execution. Hence also c will depend on these random choices. However, since Definition 10 only
requires the existence of c, not that it can efficiently be computed from the information contained
in tc, such a randomness-dependent construction of c is sufficient.

Thus in the remainder of this proof, let tc be distributed according to Execc
Π,A(η). We will

construct c̄ and show that c̄(tc) is a Dolev-Yao trace with overwhelming probability. This then
establishes the theorem.

The mapping c̄̄c̄c. The mapping c̄ works by parsing any message m ∈ {0, 1}∗ in a manner
similar to the parse function from Definition 8. However, in contrast to parse, the mapping c̄ has
to parse any bitstring and not only terms matching some pattern. In particular, c̄ has to extract
the witnesses of the zero-knowledge proofs and to decrypt all ciphertexts. Moreover, c̄ will have
to assign symbolic randomness from Rand to any ciphertext or zero-knowledge proof.

Decrypting the ciphertexts is easy, since we allow c̄ to access the secret keys of all agents.
This allows to decrypt all ciphertexts that use a public key corresponding to an existent agent.
All other ciphertexts may be safely considered as invalid, since no honest party will ever be able
to decrypt them.

To extract the witnesses from the zero-knowledge proofs, we use the extractability property
of ZK. Using the extraction trapdoor for the CRS, c̄ can recover the witness for the proof and
use it for further parsing.

However, extracting the randomness is non-trivial. In general, an encryption scheme may
not allow to extract the randomness used when decrypting, even given knowledge of the secret
key.29 Moreover, some of the randomness might even be information-theoretically lost, so even
an inefficient mapping would not be able to recover that randomness. Similar reasoning applies
to zero-knowledge proofs. Fortunately, it turns out not to be necessary that c̄ identifies the
actual randomness, but only some value such that different encryptions or proofs of the data will
result in different terms. Thus, instead of trying to extract the randomness from a message m
generated by the adversary, we interpret the whole message m as its randomness and map m to
a symbolic randomness Rm

adv (in the case that m was generated by the adversary).
Furthermore, we will define c̄ in a way so that it can be efficiently evaluated without decrypting

the ciphertexts generated by honest agents or extracting from zero-knowledge proofs generated

29E.g., the Cramer-Shoup cryptosystem, cf. footnote 11.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 29

by honest agents. This can be done because if an honest agent explicitly computed the bitstring,
we simply store the inputs of that operation.

For the actual definition of c̄, we fix arbitrary (but efficient) injective mappings, Radv :
{0, 1}∗ → Randadv , Badv : {0, 1}∗ → Nonceadv , and G : {0, 1}∗ ∪ {⊥} → Garbage and write
their arguments as superscripts. Intuitively, Rm

adv denotes the randomness used by the adversary
to construct the message m. Similarly, Bm

adv denotes the nonce m when m is generated by the
adversary. And finally, Gm will be used to abstractly represent unparsable bitstrings.

The term c̄(m) ∈ M is then recursively defined as follows:

Case “m is of type agent”. Let tagagent(a) := m and return a.

Case “m is of type encryption key”. Let tagek (ek) := m. Find a ∈ A such that ek is the
encryption key for a. If no such a exists, return ek(Gm). Otherwise return ek(a).

Case “m is of type verification key”. Analogous to the case of encryption keys.

Case “m is of type decryption key”. Let tagdk (dk) := m. Find a ∈ A such that dk is the
decryption key for a. If no such a exists, return Gm. Otherwise return dk(a).

Case “m is of type signing key”. Analogous to the case of decryption keys.

Case “m is of type pair”. Let tagpair (m1, m2) := m. Return 〈c̄(m1), c̄(m2)〉.

Case “m is of type nonce”. First check whether m was generated as the value of some vari-
able Xj

N by some honest agent a in some session sid . More exactly, check whether a global
state (Sid, g, C) occurs in the trace where g(sid) = (i, τ, ·, (a1, . . . , an)) for some i, τ , and
a, and τ(Xj

N) = m for some j. If so, return nai,j,sid . (Remember that nai,j,sid is the nonce

that is assigned in the symbolic model to the nonce variable Xj
N in session sid run by agent

ai.) Otherwise, return Bm
adv .

Case “m is of type ciphertext and m has been generated by an honest agent”. I.e., m was
the result of a call constructa,sid ({t}R

ek(x), τ) by agent a in session sid for some R ∈ Randag ,

x ∈ X.a, and some mapping τ from variables to bitstrings. Let t′ := tγa,sid (c̄ ◦ τ).30 Then

return {t′}r
a,R,sid

ek(c̄(τ(x))). (Remember that ra,R,sid is the randomness that is actually used in

the symbolic model when agent a instantiates a pattern with randomness R in session sid .)

Case “m is of type ciphertext and m has not been generated by an honest agent”. Let

tagenc(c, ek) := m. Let k := c̄(tagek (ek)). If k /∈ ek(M), return {G⊥}
Rm

adv

ek(Gek)
. Otherwise let

ek(a) := k. If a ∈ Garbage, return {G⊥}
Rm

adv

ek(a). Otherwise, let dk be the secret key of agent

a and decrypt c using dk and call the result m′. If this fails, return {G⊥}
Rm

adv

ek(a). Otherwise,

return {c̄(m′)}
Rm

adv

ek(a).

Case “m is of type signature and m has been generated by an honest agent”. I.e., m was the
result of an invocation of constructa,sid ([t]R

sk(x), τ) by agent a in session sid for some

R ∈ Randag , x ∈ X.a, and some mapping τ . Let tagsig (s, m′, vk) := m. Let vk(a) :=

c̄(tagvk (vk)). Return [c̄(m′)]r
a,R,sid

sk(a) .

Case “m is of type signature and m has not been generated by an honest agent”. Let

tagsig (s, m′, vk) := m. Let vk(a) := c̄(vk). Return [c̄(m′)]
Rm

adv

sk(a).

30tγa,sid (c̄ ◦ τ) denotes the application of the substitution c̄ ◦ τ to the term tγa,sid , i.e., the variable x in tγa,sid

is replaced by c̄(τ(x)).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 30

Case “m is of type zero-knowledge proof and m has been generated by an honest agent”.
I.e., m was the result of a call constructa,sid (ZKR

F (R1, . . . , Rl; a1, . . . , an; b1, . . . , bs), τ) by
agent a in session sid for some R, Ri ∈ Randag , ai, bi ∈ M, and some mapping τ from
variables to bitstrings. Let a′

i := aiγ
a,sid(c̄ ◦ τ) and b′i := biγ

a,sid (c̄ ◦ τ). Then return

ZKra,R,sid

F (ra,R1,sid , . . . , ra,Rl,sid ; a′; b′). (Remember that ra,Ri,sid is the randomness that is
actually used in the symbolic model when agent a instantiates a pattern with randomness
Ri in session sid .)

Case “m is of type zero-knowledge proof and m has not been generated by an honest agent”.
Let tagzk (z, F, s, n, l, b) := m. Compute the circuit C := C

s,n,l

F,b . Apply the ZK extraction

algorithm to z and the extraction trapdoor of ZK (cf. Definition 1) to extract a bitstring
w with C(w) = 1. If the extraction algorithm fails or C(w) 6= 1, return Gm. In this case,
we say a ZK-break occurred. (We will later see that this happens only with negligible
probability.) Parse w as r1‖ . . . ‖rl‖a1‖ . . . ‖an with |ri| = η and |ai| = li. Let b′i := c̄(bi)
and a′

i := c̄(ai) for all i. For each i ∈ [s], compute the symbolic randomness r′i as follows:

Let e be the unique subterm of F of the form e = {t′}ρi

t . Let e′ := C
s,n,l
e,b (w) (this gives

the bitstring that corresponds to e in an evaluation of C). Then e′ will be a bitstring of
type ciphertext. Let e′′ := c̄(e′). Then e′′ will have the form {. . . }R

′

... . Set r′i := R′. Finally,

return ZK
Rm

adv

F (r′, a′, b′).

Case “m does not match any of the above cases”. Return Gm.

Later in the proof, we will also need the following function c∗ that will turn out to be the inverse
of c̄:
• c∗(a) := tagagent(a) for a ∈ A.
• c∗(ek(a)) := tagek(eka) for a ∈ A where eka is the encryption key of agent a and analogously

for dk, vk, and sk.
• c∗(〈t1, t2〉) := tagpair (c

∗(t1), c
∗(t2)).

• c∗(nai,j,sid) := τ(Xj
N) if there is a global state (Sid, g, C) with g(sid) = (i, τ, ·, (a1, . . . , ak)).

• c∗(t) := m for t ∈ {Gm, ek(Gm), vk(Gm), Bm
adv , {·}

Rm
adv

· , [·]
Rm

adv
· , ZKRm

adv
· (. . .)}.

• t = {t′}r
a,R,sid

ek(a) for R ∈ Randag and a ∈ A. Then the bitstring c∗(t) is produced like in a

computation of constructa,sid ({r̃}Rek(a), τ) for some r̃ and τ with τ(x) = tagagent(a), except

that instead of computing the recursive m′ := constructa,sid (r̃, τ) (which is then encrypted
to give m), we use m′ := c∗(t′γa,sid(c̄ ◦ τ)) instead. (Note that this does not depend on
the pattern r̃ and the mapping τ , since constructa,sid ({r̃}R

ek(a), τ) uses r̃ and τ only as the

argument to constructa,sid (r̃, τ).)

• t = [t′]r
a,R,sid

sk(a) for R ∈ Randag and a ∈ A. Then the bitstring c∗(t) is produced like in a

computation of constructa,sid ([r̃]R
sk(x), τ) for some r̃ and τ with τ(x) = tagagent(a), except

that instead of computing the recursive m′ := constructa,sid (r̃, τ) (which is then signed),
we use m′ := c∗(t′γa,sid(c̄ ◦ τ)) instead.

• t = ZKra,R,sid

F (r; a; b) for R ∈ Randag and a ∈ A. Then the bitstring c∗(t) is produced like

in a computation of ZKra,R,sid

F (r; â; b̂) for some âi, b̂i, except that instead of computing the

recursive ãi := constructa,sid (âi, τ) and b̃i := constructa,sid (b̂i, τ) (which are then used for
constructing witness and circuit), we use ãi := c∗(aiγ

a,sid (c̄◦τ)) and b̃i := c∗(biγ
a,sid (c̄◦τ))

instead.

Properties of c̄. Note that c̄ is injective: Fix some term t = c̄(m). We need to see that t has
only one preimage. If t is a pair or an agent id this is obvious. If t is of the form Bm′

adv , Gm′

, Rm′

adv ,

ek(Gm′

), vk(Gm′

), sk(Gm′

), dk(Gm′

), {·}R
m′

adv
... , [·]R

m′

adv
... , ZKRm′

adv
... (. . .), the preimage is determined by

m′.
If t = ek(a) for a ∈ A, then the preimage of t must be tagagent (a). Analogously for dk(a),

vk(a), and sk(a).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 31

For t = {·}r
a,R,sid

... we have that the preimage m was the result of a call
constructa,sid ({. . . }R..., τ). In the session sid , any two calls constructa,sid ({·}R..., τ) and
constructa,sid ({·}R..., τ

′) with the same R will satisfy that τ ⊆ τ ′ or τ ′ ⊆ τ (i.e., one of the
two substitutions is an extension of the other) because in any path of a role tree Π(i) associated
with the session sid , there can be at most one pattern of the form {·}R... for a given R (uniqueness
of effective R-subpatterns, Definition 4). Since constructa,sid ({·}R..., τ) and constructa,sid ({·}R..., τ

′)
will return the same bitstring if one of τ and τ ′ is an extension of the other (as long as both
invocations succeed), it follows that m is uniquely defined.

Analogous reasoning applies for the cases t = [·]r
a,R,sid

... and t = ZKra,R,sid

... (. . .). Hence c̄ is
injective.

Furthermore, we see that ZK-breaks occur only with negligible probability: A ZK-break
implies that a witness w is extracted from a zero-knowledge proof z such that w is not a witness
for z, although the proof has been successfully verified. Since all machines involved in the
execution, as well as the construction of c̄ are polynomial-time, this is a contradiction to the
extractability property of ZK.

The following lemmas guarantee that the various definitions given so far are compatible. For
example, when computing m := constructa,sid (r, τ) and then parsing m using c̄, we get back r
(up to the substitution of the variables occuring in r).

Lemma 2. Whenever a circuit C
s,n,l

F,b̃
is constructed (through a call to constructa,sid (r, τ)), we

have that C
s,n,l

F,b̃
is defined.

Lemma 3. Whenever a circuit C
s,n,l

F,b̃
is constructed and C

s,n,l

F,b̃
(w) is evaluated with some w =

R̃1‖ . . . ‖R̃l‖ã1‖ . . . ‖ãn (indirectly through a call to constructa,sid (r, τ) with r = ZKR
F (R; a; b)), we

have for every ZK-term T which is a subterm of F that C
s,n,l

T,b̃
(w) = constructa,sid (T

{

r,a,b

ρ,α,β

}

, τ).

Lemma 4. Assume that in a computational execution, no two honestly generated nonces, encryp-
tion keys, verification keys, ciphertexts, signatures, or zero-knowledge proofs are equal. Assume
that no ZK-failure occurs.

Then for any invocation of constructa,sid (r, τ) that is performed during the execution, we
have that constructa,sid (r, τ) succeeds iff rγa,sid (c̄ ◦ τ) contains true proofs and that in this case
c̄(constructa,sid (r, τ)) = rγa,sid (c̄ ◦ τ).

Lemma 5. Assume that in a computational execution, no two honestly generated nonces, encryp-
tion keys, verification keys, ciphertexts, signatures, or zero-knowledge proofs are equal. Assume
that no ZK-failure occurs.

Whenever c̄(m′) is computed for some m′, c̄(m′) contains true proofs.

Lemma 6. Assume that in a computational execution, no two honestly generated nonces, encryp-
tion keys, verification keys, ciphertexts, signatures, or zero-knowledge proofs are equal. Assume
that no ZK-failure or ZK-break occurs.

Then for any invocation of parsea,sid (m, l, τ) that is performed during the execution, we have
that parsea,sid succeeds iff c̄(m) matches lγa,sid(c̄ ◦ τ) (let θ be the matcher) and that in this case
c̄ ◦ parsea,sid (m, l, τ) = (c̄ ◦ τ) ∪ θ.

Lemma 7. Assume that in a computational execution, no two honestly generated nonces, encryp-
tion keys, verification keys, ciphertexts, signatures, or zero-knowledge proofs are equal. Assume
that no ZK-failure occurs.

For all m ∈ {0, 1}∗, c∗(c̄(m)) = m.

The proofs of these lemmas are very lengthy inductions and consist mainly of case distinc-
tions in which it is verified that two differently computed terms are indeed equal. Since these
proofs essentially only check that we did not make mistakes in writing down the definitions of
constructa,sid , parsea,sid , c̄, and c∗, but do not involve actual cryptographic arguments, we defer
the proofs to Appendix A.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 32

Note that the assumptions of these lemmas are fulfilled with overwhelming probability:
Nonces are pairwise different with overwhelming probability because of their high entropy. If
encryption keys and verification keys were not pairwise different with overwhelming probability,
by honestly executing the key generation algorithm, there would be a non-negligible probability
of producing the secret key for a public key that is already being used, thus breaking the IND-
CCA or the strong existential unforgeability property, respectively. Encryptions of the same
message are pairwise different with overwhelming probability because otherwise one could dis-
tinguish between the encryption of a given message m and of a random string by reencrypting
m, thus breaking the IND-CCA property. Signatures and zero-knowledge proofs are pairwise
different because of the unpredictability property. The probability than a ZK-failure occurs is
negligible because of the completeness of ZK. As discussed before, ZK-breaks also occur only
with negligible probability.

The trace c̄(tc)c̄(tc)c̄(tc) is a pre-DY trace. In the following, by a pre-DY trace we denote a symbolic
trace that satisfies Definition 5 with the (possible) exception of the condition that in the transition

(Sid, f, ϕ)
send(sid ,m)
−−−−−−−−→ (Sid, f ′, ϕ′),

we have ϕ ⊢ m. That is, in a pre-DY trace we allow the symbolic adversary to send messages it
cannot derive.

To see that c̄(tc) is a pre-DY trace with overwhelming probability, we have to check that for
any ℓ, the ℓ-th transition in c̄(tc) is a valid transition. If ℓ = 1 and the ℓ-th transition of tc is of
the form

(∅, ∅, ∅)
corrupt(a1,...,al)
−−−−−−−−−−−→ (∅, ∅, {a1, . . . , al}),

then c̄ maps that transition to (∅, ∅, Nonceadv)
corrupt(a1,...,al)
−−−−−−−−−−−→ (∅, ∅, Nonceadv∪{dk(aj), sk(aj) :

j ∈ [l]}) which is a valid symbolic transition.
If the ℓ-th transition of tc is of the form

(Sid, g, C)
new(i,a1,...,ak)
−−−−−−−−−−→ (Sid′, g′, C)

then c̄ maps that transition to (Sid, f, ϕ)
new(i,a1,...,ak)
−−−−−−−−−−→ (Sid′, f ′, ϕ) for some ϕ and with f(sid) =

(i, c̄◦τ, p, a) where (i, τ, p, a) := g(sid) and f ′ analogously. As g and g′ only differ in sid ′ := |Sid|+
1, so do f and f ′. Furthermore, g′(sid ′) = (i, τ, ε, (a1, . . . , ak)) where ε is the root of Π(i) and
τ(Xj

N) = tagnonce(nj) and τ(Aj) = tagagent(aj). Then, by definition of c̄, c̄ ◦ τ(Xj
N) = nai,j,sid

′

and c̄ ◦ τ(Aj) = aj . Hence (Sid, f, ϕ)
new(i,a1,...,ak)
−−−−−−−−−−→ (Sid′, f ′, ϕ) is a valid symbolic transition.

If the ℓ-th transition of tc is of the form

(Sid, g, C)
send(sid ,m)
−−−−−−−−→ (Sid, g′, C),

(where the adversary gets answer m̃) then c̄ maps that transition to

(Sid, f, ϕ)
send(sid ,c̄(m))
−−−−−−−−−−→ (Sid, f ′, ϕ′)

for some ϕ where ϕ′ = ϕ ∪ {c̄(m̃)} and f(sid) = (i, c̄ ◦ τ, p, a) where (i, τ, p, a) := g(sid) and f ′

analogously. Furthermore, from the definition of the computational trace, we have that g′(sid) =
(i, τ ′, p′, (a1, . . . , ak)) where p′ is the node reached through the first edge (l, r) leaving p such that
τ ′′ := parseai,sid (m, l, τ) and m′ := constructai,sid(r, τ ′′) succeed, and in that case τ ′ := τ ′′ and
m̃ := m′. (If no such edge exists, τ ′ = τ and p′ = p.)

When the assumptions of Lemmas 6 and 4 are fulfilled (and this happens with overwhelming
probability as discussed above), by Lemmas 6 and 4, p′ is also the node reached through the first
edge leaving p such that c̄(m) matches lγai,sid (c̄ ◦ τ) (with matcher θ) and rγai,sid ((c̄ ◦ τ) ∪ θ) =
rγai,sid (c̄ ◦ τ)θ contains true proofs (or no such edge exists). In this case (still by the same
lemmas), we have that c̄◦ τ ′ = (c̄◦ τ)∪θ and c̄(m̃) = rγai,sid((c̄◦ τ)∪θ) = rγai,sid (c̄◦ τ)θ. Hence

(Sid, f, ϕ)
send(sid ,c̄(m))
−−−−−−−−−−→ (Sid, f ′, ϕ′)

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 33

is a valid symbolic transition in a pre-DY trace (cf. Definition 5; remember that for pre-DY
traces, we do not need ϕ ⊢ c̄(m)).

The initial state (∅, ∅, ∅) of tc is mapped to the valid initial state (∅, ∅, Nonceadv) of c̄(tc).
Thus with overwhelming probability, c̄(tc) is a pre-DY trace. Furthermore, by construction of

c̄ (as extended to traces) we have that ϕℓ = Nonceadv ∪ {dk(a), sk(a) : a ∈ C} ∪ {c̄(m) : m ∈ Sℓ}
where ϕℓ is the adversary knowledge in the ℓ-th step of c̄(tc), C denotes the corrupted agents and
Sℓ are the messages given to the adversary in the send transitions in the computational model
up to the transition leading to ϕℓ.

The trace c̄(tc)c̄(tc)c̄(tc) is a Dolev-Yao trace. We will now proceed to show that c̄(tc) is a Dolev-Yao
trace with overwhelming probability. Since we already know that c̄(tc) is a pre-DY trace, and
that the adversary’s knowledge ϕℓ in the ℓ-th step of c̄(tc) is ϕℓ = Nonceadv ∪ {dk(a), sk(a) : a ∈
C} ∪ {c̄(m̃) : m̃ ∈ Sℓ} (where C denotes the corrupted agents and Sℓ the messages given to the
adversary), it will be enough to show that in every send(sid , m) transition in the computational
model, we have that

Nonceadv ∪ {dk(a), sk(a) : a ∈ C} ∪ {c̄(m̃) : m̃ ∈ Sℓ} ⊢ c̄(m)

(with overwhelming probability).
In order to prove this, we will assume that this is not the case, i.e., that with non-negligible

probability, in step ℓ, a message m is sent such that

Nonceadv ∪ {dk(a), sk(a) : a ∈ C} ∪ {c̄(m̃) : m̃ ∈ Sℓ} 0 c̄(m) (2)

From this we will derive a contradiction by transforming the computational execution in several
steps using the security properties of ZK, SIG, and AE .

Emulating constructa,sid and parsea,sid . We will now redefine constructa,sid and parsea,sid

in such a way that they still compute the same functions but are more amenable to certain
modifications later on.

By Lemma 4, c̄(constructa,sid (r, τ)) = rγa,sid (c̄ ◦ τ) where constructa,sid (r, τ) succeeds iff
rγa,sid (c̄ ◦ τ) contains true proofs. Thus we can redefine constructa,sid (r, τ) := c∗(rγa,sid (c̄ ◦ τ))
(or constructa,sid (r, τ) := ⊥ if rγa,sid (c̄ ◦ τ) does not contain true proofs).

Note also that whenever m := constructa,sid (r, τ) is computed and sent, we have that c̄(m) =
rγa,sid (c̄ ◦ τ) and m = constructa,sid (r, τ) = c∗(rγa,sid (c̄ ◦ τ)) = c∗(c̄(m)). Hence, whenever a
message m is sent by the protocol, we have that m was the result of an invocation c∗(t) where
t = c̄(m) (although t was not necessarily computed as c̄(m), it just happens to coincide with
c̄(m)).

By Lemma 6, c̄◦parsea,sid (m, l, τ) = (c̄◦τ)∪θ where θ is the matcher of c̄(m) and lγa,sid(c̄◦τ)
(or c̄ ◦ parsea,sid (m, l, τ) = ⊥ if there is no match).

Note that the redefined constructa,sid only uses τ̃ := c̄ ◦ τ , but never τ directly. And we can
also compute c̄ ◦ parsea,sid (m, l, τ) directly from c̄ ◦ τ . Hence instead of computing and storing
τ in the computational trace, we can instead directly store τ̃ := c̄ ◦ τ in the trace and use the
following modified functions constructa,sid (r, τ̃) := c∗(rγa,sid τ̃) (or constructa,sid (r, τ̃) := ⊥ if
rγa,sid (c̄ ◦ τ) does not contain true proofs) and parsea,sid (m, l, τ̃) := τ̃ ∪ θ where θ is the matcher
of c̄(m) and lγa,sid(c̄ ◦ τ) (or parsea,sid (m, l, τ̃) := ⊥ if there is no match).

Note that the changed constructa,sid and parsea,sid do not directly access any secrets any
more, all accesses and cryptographic operations are performed through c̄ and c∗.

Simulating the zero-knowledge proofs. As a first step towards a contradiction, we will
replace all zero-knowledge proofs by fake proofs produced by the simulator. For this, we first
introduce two oracles into our execution: A proof oracle Proof and an extraction oracle Extract .
A query to the Proof takes a circuit and a witness as argument and outputs a zero-knowledge
proof (honestly generated using the publicly available CRS). A query to the Extract oracle takes

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 34

a zero-knowledge proof and applies the extraction algorithm to it (using the extraction trapdoor
that was generated together with the CRS).

We now modify c∗ and c̄ as follows: Whenever c∗(t) with t = ZKRandag

· (. . .) would produce
a zero-knowledge proof for the circuit C and the witness w, it queries the Proof -oracle instead
(with C and w as arguments). Furthermore, we change c∗(t) not to query the Proof -oracle twice
for the same term t. Instead, the result of the last query is cached. And when c̄ would use the
extraction algorithm for extracting a witness w from a zero-knowledge proof z (in the case of not
honestly generated zero-knowledge proofs), then c̄ queries the Extract-oracle instead.

Obviously, this modification changes the computational trace only if c∗ uses some randomness
for some ZK-proof, and the same randomness is used for a later ZK-proof or for a different
operation (i.e., encryption or signing). However, Definition 4, condition 1 guarantees that the
original constructa,sid , if it uses some randomness tapea,sid (R) to construct some zero-knowledge
proof, it uses that randomness only for producing the same proof again. Hence also c∗ does not
reuse randomness used for producing ZK-proofs. Hence replacing the proof and the extraction
algorithm does not change the probability of (2).

We introduce yet another oracle Simulate: A query to Simulate consists of a circuit C and
a witness w, and Simulate runs the simulation algorithm on the circuit C using the simulation
trapdoor that was produced together with the CRS (and the witness w is ignored).

Lemma 8. No polynomial-time machine M can distinguish between O := Proof and O :=
Simulate (with more than negligible probability), even when given access to the Extract-oracle,
as long as M obeys the following rules: M never queries the Extract-oracle with C, z where z
was the output of a query to O with input C, w, and M never invokes O with C, w such that
C(w) 6= 1.

Proof. Assume a polynomial-time machine M that distinguishes with non-negligible probability
between Proof and Simulate given access to the Extract-oracle (and that obeys the rules stated
in the lemma). We define an oracle Hi that behaves like Proof for the first i-proofs and like
Simulate afterwards. Let q be a polynomial upper bound on the number of queries performed by
M . Since M distinguishes between Proof and Simulate, we have that M also distinguishes with
non-negligible probability between Hi and Hi+1 for some i (that may depend on the security
parameter). We now construct an adversary A that has access to an oracle O and to Extract ,
and that expects as input the CRS and the corresponding simulation trapdoor. This adversary
then simulates M . All queries of M sent to the Extract -oracle are forwarded to that oracle. The
first i queries that M sends to O, A answers by invoking the prover P of ZK. The (i + 1)-st
query A forwards to the oracle O that was given to A. All further queries A answers by invoking
the simulator S of ZK (note that A knows the simulation trapdoor, thus he can execute the
simulator). When M terminates with some output, then A terminates with that output. By
construction, A with access to Simulate simulates an execution of M with access to Hi. And A
with access to Proof simulates an execution of M with access to Hi+1. Since M distinguishes Hi

andHi+1 with non-negligible probability,A distinguishes betweenO := Proof andO := Simulate
with non-negligible probability, and A performs only a single query to that oracle. Furthermore,
since M obeys the rules given in the lemma, A never queries (C, proof) from Extract where
C is the circuit send to O and proof the answer of O. And A only sends (C, w) to O with
C(w) = 1. Thus A is an adversary that contradicts the extraction zero-knowledge property
(Definition 1).

We show that c̄ queries the Extract-oracle with arguments (C, z) only if z was not the output
of a query to Proof with arguments (C, w): The only case where c̄ invokes the Extract is when
given m = tagzk (z, F, s, n, l, b) where m was not produced by constructa,sid . Hence, if z was the
output of the Proof -oracle, then it was produced by constructa,sid as part of a message m′ =
tagzk (z, F ′, s′, n′, l′, b′) with (F ′, s′, n′, l′, b′) 6= (F, s, n, l, b). Since C

s,n,l

F,b̃
determines F, s, n, l, b,

we have that z was produced by a query to the Proof -oracle with a circuit C
s′,n′,l′

F ′,b̃′
6= C

s,n,l

F,b̃
=: C.

Hence z was not the output of a query to Proof with arguments (C, w) for any w.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 35

Furthermore, we have that c∗ never queries the Proof -oracle on (C, w) with C(w) 6= 1 since
c∗ checks whether C(w) 6= 1 and aborts otherwise (this check is inherited from the original
construction of constructa,sid).

Thus, by virtue of Lemma 8, we can replace all queries to the Proof -oracle by queries to the
Simulate-oracle, and the probability of (2) changes by at most a negligible amount. Thus, in a
computational execution using the Simulate-oracle, (2) holds with non-negligible probability.

Reducing direct access to the random tape and private keys. The functions c̄ and c∗

access the random tape tapea,sid and the decryption and signing keys of uncorrupted agents in
various places:

• c̄ uses the decryption keys for decrypting.

• c∗ uses the signing keys for signing.

• c̄ uses the decryption when parsing a bitstring m = tagdk (dk) that is tagged as a decryption
key. In this case, however, it is sufficient that c̄ can compare dk to all decryption/signing
keys of honest agents. Analogously for the signing keys.

• c∗ uses the random tape to get the randomness for encrypting and signing. (The random-
ness for zero-knowledge proofs is not taken from the random tape but produced by the
Simulate-oracle directly.)

• c∗ uses the random tape and the decryption keys to produce witnesses w for the zero-
knowledge proofs. More precisely, c∗ uses w to check whether C

s,n,l

F,b̃
(w) = 1, and to

compute the length of w that is given to the Simulate-oracle.

In order to relate (2) to the security of ZK, AE , and SIG, we have to minimize the direct
accesses that c∗ and c̄ perform to secret data, and instead ensure that c∗ and c̄ only access this
data through well-defined oracles.

First, we get rid of the computation of the witnesses through c∗(t) with t = ZKR
F (r; a; b).

Observe that the length of w can be computed given only t because all our primitives are
length regular (and the lengths of nonces are fixed). Furthermore, c∗(t) accesses the wit-

ness w to check whether C
s,n,l

F,b̃
(w) = 1 holds for the circuit C

s,n,l

F,b̃
. However, since c∗(t) is

only executed by the modified constructa,sid (r, τ) if t contains true proofs, in which case a
call to the original constructa,sid (r, τ) with t = rτ would succeed (Lemma 4), we have that

c∗(t) = constructa,sid (r, τ) succeeds. Since c∗(t) = constructa,sid (r, τ) would fail if C
s,n,l

F,b̃
(w) 6= 1,

we know that when c∗(t) is invoked by the modified constructa,sid , we always have C
s,n,l

F,b̃
(w) = 1.

Since c∗(t) is only invoked by constructa,sid , we can hence remove the check C
s,n,l

F,b̃
(w) = 1 from

c∗. Thus c∗ does not compute the witness any more. This removes all access to the random tape
and the decryption keys during to the computation of the witness by constructa,sid .

In order to get rid of the remaining access to the random tape, we introduce two more oracles,
an encryption, a decryption, and a signing oracle.

The encryption oracle Encrypt supports the following queries: Generate key pair: This pro-
duces a new encryption/decryption key pair and returns the encryption key. Encrypt: This takes
a message m and a previously generated encryption key ek and returns the encryption of m under
ek . Check key: This takes a decryption key dk and returns if this decryption key was produced
in a call to generate key pair, and if so, what the corresponding encryption key was. Decrypt:
This takes a previously generated encryption key ek and a ciphertext c. Then it looks up the
decryption key dk corresponding to ek and decrypts c using dk and returns the plaintext. Get
decryption key: This takes a previously generated encryption key and returns the corresponding
decryption key.

The signing oracle Sign supports the following queries: Generate key pair: This produces
a new verification/signing key pair and returns the verification key. Check key: This takes a

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 36

signing key sk and returns whether this signing key was produced in a call to generate key pair,
and if so, what the corresponding verification key was. Sign: This takes a previously generated
verification key vk and a message m. Then it looks up the signing key sk corresponding to vk and
signs m using sk and returns the resulting signature. Get signing key: This takes a previously
generated verification key and returns the corresponding signing key.

We now change c̄ and c∗ to use these oracles instead of decrypting and signing directly.
Furthermore, we change c∗ not to query the encryption or signing oracle twice for the same
term t. Instead, the result of the last query is cached. Furthermore, when c̄ parses a bitstring
tagged as a decryption or signing key, it uses the check key query of Encrypt and Sign.

Hence, with the modified definitions of c̄ and c∗, (2) still holds, and the decryption and signing
keys of uncorrupted agents are only accessed through the encryption and signing oracles, and
the random tapes are never accessed.

Using fake encryptions. We now introduce a new oracle FakeEncrypt . This oracle behaves
like Encrypt with the following difference: Upon encrypt query with encryption key ek and
message m, if no get decryption key query has earlier been performed for ek , the oracle encrypts
the plaintext 0|m| using ek (instead of encrypting m). If a get decryption key query has earlier
been performed, the message m is encrypted (as in the oracle Encrypt).

Lemma 9. No polynomial-time machine M can distinguish between Encrypt and FakeEncrypt
(with more than negligible probability), as long as M obeys the following rules: No get decryption
key query for some encryption key ek may be preceded by an encrypt call with respect to the same
query. No decrypt query may be given a ciphertext c that was the result of an encrypt query
with respect to the same key.

Proof. Assume a polynomial-time machine M that distinguishes with non-negligible probability
between Encrypt and FakeEncrypt (and that obeys the rules stated in the lemma). We de-
fine an oracle Hi that behaves like Encrypt with respect to the first i encryption keys and like
FakeEncrypt afterwards. Let q be a polynomial upper bound on the number of queries performed
by M . Since M distinguishes between Encrypt and FakeEncrypt , we have that M also distin-
guishes with non-negligible probability between Hi and Hi+1 for some i (that may depend on
the security parameter). We now construct an adversary B that has access to an oracle O. This
adversary then simulates M . All oracle queries by M with respect to the first i encryption keys
are answered by B. For this, B picks his own encryption/decryption key pair and then simulates
the oracle Encrypt . The queries with respect to the (i+1)-st encryption key are forwarded to the
oracle O that is given to B. Queries with respect to all following encryption keys are answered by
B by simulating the oracle FakeEncrypt (again picking his own key pair). Check key queries are
answered by B as follows: Let dk be the argument of the check key query. For each encryption
key ek (including those chosen by B and the one chosen by the oracle O given to B), B picks a
random message m, encrypts m with ek , and decrypts the resulting ciphertext with dk . If this
returns m again, then B returns ek as answer to the query. If this fails for all ek , B returns “no”
as answer to the query.

Then B with access to O := Encrypt is a faithful simulation (up to a negligible error) of M
with access to Hi+1. (For this, note that encrypting a message with ek and decrypting with dk
will succeed (except for a negligible probability) only given the right decryption key.) And B
with access to O := FakeEncrypt is a faithful simulation (up to a negligible error) of M with
access to Hi. Since M distinguishes between Hi and Hi+1 with non-negligible probability, B
distinguishes between O := Encrypt and O := FakeEncrypt with non-negligible probability.

Furthermore, since M obeys the rules stated in the lemma, B queries O only with respect to
a single encryption key, does not perform check key queries, never performs a decrypt query on
a ciphertext that was returned by an encrypt query, and it only performs encrypt queries if no
get decryption key query was performed before.

From B we construct another adversary A′ that also has access to an oracle O. A′ chooses
a random bit b, and then simulates B and forwards B’s oracle queries to O. If b = 0 and B
performs a get decryption key query, A′ aborts with no output. If b = 1 and B does not perform

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 37

a get decryption key query, A′ aborts with no output. Since b is independent of the actions
of B, A′ aborts with probability 1

2 , and the distribution of the output of A′ conditioned on a
non-abort is equal to the distribution of B. Hence A′ also distinguishes between O := Encrypt
and O := FakeEncrypt with non-negligible probability.

Now we construct an adversary A from A′. If b = 1, A simulates an instance of Encrypt for
A′ (and ignores the oracle O it gets as input). If b = 0, A forwards all queries of A′ to the oracle
O that is given to A. Given access to O := Encrypt , the distributions of the outputs of A and
A′ are equal by construction. Given O := FakeEncrypt , A and A′ behave slightly differently: If
b = 1, A simulates Encrypt , while A′ has access to FakeEncrypt . However, in the case b = 1, no
encrypt queries are performed by A′ (since it performs a get decryption key query). Thus, since
Encrypt and FakeEncrypt differ only in their handling of encrypt queries, also given access to
O := Encrypt , the distributions of the outputs of A and A′ are equal. Hence A distinguishes
between O := Encrypt and O := FakeEncrypt with non-negligible probability.

The adversary A only performs one generate key pair query, no check key or get decryption
queries, and never performs a decrypt query on a ciphertext it received from an encrypt query.
Thus the adversary A is a valid adversary against the IND-CCA property that succeeds with
non-negligible probability.31 Thus we have a contradiction against the IND-CCA property of AE
which shows that no machine M with the properties stated in the lemma exists.

Since in the computational execution, get decryption key queries are only performed at the
very beginning of the execution, no encrypt query precedes a get decryption key query. Fur-
thermore, both c∗ and c̄ only perform decryption queries for messages that were not generated
honestly, hence no decrypt query is given a ciphertext c that was the result of an encrypt query
with respect to the same key.

Thus we can replace the Encrypt -oracle by the FakeEncrypt -oracle, and by Lemma 9, the
probability that (2) holds changes only by a negligible amount. Hence (2) holds with non-
negligible probability in the modified execution that uses the FakeEncrypt -oracle.

Reducing direct access to the random tape and private keys (even more). Since the
FakeEncrypt -oracle does not use the plaintext it is given (only its length) in an encrypt query
with respect to an encryption key of some agent a /∈ C, we can modify c∗ as follows: Instead of
performing an encrypt query with arguments ek and m′ = c∗(t′) for some t′, it uses the arguments
ek and m̄ := 0|m

′|. Furthermore, the length of m′ can be computed given only t′ because all our
primitives are length regular (and the lengths of nonces are fixed). Hence we can modify c∗ such
that m̄ can be computed without invoking c∗(t′). Summarizing, using the modified construction,
c∗({t′}R

ek(a)) with R ∈ Randadv will not invoke c∗(t′) any more for a ∈ A \ C.

Identifying an underivable subterm. In order to derive a contradiction from (2), we have
to identify a subterm of c̄(m) whose “fault” it is that c̄(m) cannot be derived. We will then use
this term to construct an attack against the IND-CCA property of AE or the strong existential
unforgeability of SIG. For this, we need the following characterization of underivable messages:

Lemma 10. Fix C ⊆ A, S ⊆ M and M ∈ M and set S′ := S ∪{dk(a), sk(a) : a ∈ C}∪Nonceadv .
Assume S′

0 M . Assume further that M contains true proofs.
Then there exists a term T ∈ M and a context D such that M = D[T] and all terms on the

path from M = D[T] to T (not including T) are of the form

〈·, ·〉 or {·}Randadv

ek(·) or ZKRandadv

Formula (. . .) or [·]·sk(·)

Furthermore, we have that S′
0 T and that T satisfies one of the following conditions:

(a) T ∈ Nonceag .

31We assume the definition of IND-CCA where the adversary is allowed to perform an arbitrary number of
encryption queries. One also commonly defines IND-CCA with respect to adversaries that perform only a single
encryption query; however, the two variants of IND-CCA are well-known to be equivalent.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 38

(b) T = {·}
Randag

ek(a) .

(c) T = ZK
Randag

Formula(. . .).

(d) T = ZKRandadv

Formula (r; a; b) and for some i, S′
0r ri.

(e) T = [·]Randadv

sk(a) where a /∈ C ∪ Garbage.

(f) T = [·]
Randag

sk(a) .

(g) T = sk(a) or T = dk(a) for some a ∈ A \ C.

Proof. We prove the lemma by structural induction on M . We distinguish the following cases:

Case 1: “M is an agent identifier, an encryption or a verification key, or garbage”.
In this case, we have S′ ⊢M , so the premises of the lemma do not hold and there is nothing
to show.

Case 2: “M is a nonce”.
If M ∈ Nonceadv , S′ ⊢ M holds and there is nothing to show. If M ∈ Nonceag , the
conclusion of the lemma is fulfilled with T := M .

Case 3: “M = sk(a) or M = dk(a)”.
If a ∈ C, S′ ⊢M holds and there is nothing to show. If a /∈ C, the conclusion of the lemma
is fulfilled with T := M .

Case 4: “M = 〈M1, M2〉”.
Since S′

0 M , we have S′
0 Mi for some i ∈ {1, 2}. Hence there exists a subterm T of Mi

satisfying the conclusion of the lemma for Mi instead of M , and this T is also a subterm
of M satisfying the conclusion for M .

Case 5: “M = {·}
Randag

ek(a) or M = ZK
Randag

Formula(. . .) or M = [·]
Randag

sk(a) or M = [·]Randadv

sk(b) with

b /∈ C ∪ Garbage”.
In these cases T := M fulfills the conclusion of the lemma.

Case 6: “M = {M ′}Randadv

ek(a) ”.

In this case, since S 0 M , by the rules from Figure 1 we have that S 0 M ′. Hence there
exists a subterm T of M ′ satisfying the conclusion of the lemma for M ′, and this T is also
a subterm of M satisfying the conclusion for M .

Case 7: “M = [M ′]Randadv

sk(a) with a ∈ C ∪ Garbage”.

In this case, since S 0 M , by the rules from Figure 1 we have that S 0 M ′. Hence there
exists a subterm T of M ′ satisfying the conclusion of the lemma for M ′, and this T is also
a subterm of M satisfying the conclusion for M .

Case 8: “M = ZKRandadv

Formula (r; a; b) and S′ ⊢r r”.
Since S′ ⊢r r, if we had S′ ⊢ a, b we would also have S′ ⊢ M . Thus for some M ′ ∈ {a, b}
we have S′

0 M ′. Hence there exists a subterm T of M ′ satisfying the conclusion of the
lemma for M ′, and this T is also a subterm of M satisfying the conclusion for M .

Case 9: “M = ZKRandadv

Formula (r; a; b) and for some i, S′
0r ri”.

Then T := M fulfills the conclusion of the lemma.

In a trace satisfying (2), we can apply this lemma with C being the set of corrupted agents
and S := {c̄(m̃) : m̃ ∈ Sℓ} being the messages received by the adversary up to the ℓ-th step, and
M := c̄(m) being the message in the ℓ-th step. By Lemma 5, M contains true proofs. Thus,

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 39

since (2) holds with non-negligible probability, we have that with non-negligible probability, a
subterm T of M with the properties specified in Lemma 10 exists.

So the term T satisfies one of the properties (a–g) with non-negligible probability. In the
following, we will examine each of these conditions separately and in each case derive a contra-
diction.

TTT is a nonce (Case (a)). In Case (a) we have T ∈ Nonceag , so T is of the form T = na,j,sid .
As discussed on page 33, each message m′ sent by the protocol has been produced as c∗(t) where
t = c̄(m′). Hence all messages m′ ∈ Sℓ sent by the protocol were computed as m′ = c∗(t)
with t ∈ S = {c̄(m̃) : m̃ ∈ Sℓ}. Furthermore, since c∗ is only invoked to compute messages
that are to be sent, it follows that for every invocation of c∗(t) we have that t ∈ S and hence
{t} ∪ {dk(a), sk(a) : a ∈ C} ∪ Nonceadv 0 T . Hence T occurs in t only as a subterm of an
encryption {·}R

ek(a) with a /∈ C or as a subterm of the witness of ZK-proof ZKR
F (. . .) (because

otherwise the deduction rules would allow to derive T from {t}∪{dk(a), sk(a) : a ∈ C}∪Nonceadv).
Hence, by definition of c∗, in the computation of c∗(t), the recursive call c∗(T) = c∗(na,j,sid) will
never be performed (remember that we changed c∗ not to compute the witnesses of ZK-proofs
nor the plaintexts of encryptions). Hence c∗ will never read the bitstring τ(Xj

N) (where τ is the
substitution the from session sid). Furthermore, by construction, an invocation c̄ might read the
bitstring τ(Xj

N), but only for comparing it to another bitstring m′′. Note that the adversary

does not have access to τ(Xj
N). Hence the only operation performed on τ(Xj

N) before receiving
the message m from the adversary is a comparison to already computed strings (and only a
polynomial number of these comparisons are performed). Hence it is information-theoretically
impossible to guess τ(Xj

N) (except for a negligible probability).
On the other hand, by Lemma 10, c̄(m) = M = D[T] where all terms on the path from D[T]

to T are of the form 〈·, ·〉 or {·}Randadv

ek(·) or ZKRandadv

Formula (. . .) or [·]·
sk(·). By definition of c̄, c̄(m) = D[T]

then implies that there was a recursive invocation c̄(m̂) (indirectly through c̄(m)) such that
c̄(m̂) = T = na,j,sid . By definition of c̄, this implies that m̂ = τ(Xj

N). Thus τ(Xj
N) occurs

in the computation of c̄. This is a contradiction to the fact that it is information-theoretically
impossible to guess τ(Xj

N).

TTT is an honestly-generated encryption (Case (b)) Fully analogous as in the case of T
being a nonce (Case (a)), we have that the c∗(T) will never be computed during the execution,
and that c̄(m̂) is executed with c̄(m̂) = T . However, by definition of c̄, c̄(m̂) = T = {T ′}R

ek(a) with

R ∈ Randag implies that m̂ is the result of a prior invocation constructa,sid (r, τ̃) with r = {r′}R
′

ek(x)

and r′γa,sid τ̃ = T ′ and R = ra,R′,sid and τ̃ (x) = a. Hence rγa,sid τ̃ = T . Since we have defined
constructa,sid (r, τ̃) to compute c∗(rγa,sid τ̃) = c∗(T), this is a contradiction to the fact that c∗(T)
is never executed.

T is an honestly-generated signature or zero-knowledge proof (Cases (f) and (c)).
These cases are analogous to the case of T being an honestly-generated encryption.

T is an adversary-generated zero-knowledge proof (Case (d)). Then T = ZKR
F (r; a; b)

and R ∈ Randadv and S′
0r ri. Fully analogous to the case of T being a nonce (Case (a)), we

have that c̄(m̂) is executed with c̄(m̂) = T for some bitstring m̂. By definition of c̄, we have that
c̄(m̂) = T = ZKR

F (r; a; b) with R ∈ Randadv implies that

• The Extract-oracle returns a witness w on input (C
s,n,l

F,b̃
, z) where tagzk (z, F, s, n, l, b̃) := m̂.

• C
s,n,l

F,b̃
(w) = 1.

• Let R̃1‖ . . . ‖R̃l‖ã1‖ . . . ‖ãn := w. Then there is a subterm e = {e′}ρi

ek(βj)
of F such that

c̄(Ce(w)) = {t}ri

ek(a) =: g for some a ∈ A and t. (We abbreviate Ce := C
s,n,l

e,b̃
.)

Furthermore, since S′
0r ri, we have that ri ∈ Randag . Since c̄(Ce(w)) = g = {t}ri

ek(a) with ri ∈

Randag , by definition of c̄, we have that Ce(w) is the result of a prior invocation constructa,sid (r, τ̃)

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 40

with r = {r′}R
′

ek(x) and r′γa,sid τ̃ = t and ri = ra,R′,sid and τ̃(x) = a. Hence rγa,sid τ̃ = g. Since

we have defined constructa,sid (r, τ̃) to compute c∗(rγa,sid τ̃) = c∗(g), it follows that c∗(g) has
been computed at some point in time and that Ce(w) = c∗(g).

We distinguish the following cases:

Case 1: “a ∈ C”.
In this case, since S′

0r ri and S′ ⊢ dk(a), we have S′
0 {t}ri

ek(a). Hence (like in the case

of T being a nonce) we have that c∗(g) is never computed in contradiction to the fact that
c∗(g) was computed at some point.

Case 2: “a /∈ C”.
In this case, by definition of ZK-circuits, Ce(w) = c∗(g) implies that encrypting m′ :=
Ce′(w) using the encryption key of agent c̄(Cβj

(w)) = a and randomness r̃ := Cρi
(w)

results in the ciphertext Ce(w) = c∗(g). However, since a /∈ C, c∗(g) was produced by an
encrypt query to the FakeEncrypt -oracle with respect to a key for which no get decryption
key query has been performed. Hence we can guess the randomness used in an encryption
performed by the FakeEncrypt -oracle which can be easily seen to contradict the IND-CCA
property of AE .

T is an adversary-generated signature (Case (e)). Fully analogous to the case of T being
a nonce (Case (a)), we have that the c∗(T) will never be computed during the execution, and that
c̄(m̂) is executed with c̄(m̂) = T . Since c̄(m̂) = T = [T ′]R

sk(a) for some T ′, a, R with R ∈ Randadv

and a ∈ A \C, we have that m̂ = tagsig(m, s′, vk) where vk is the verification key of agent a and
s′ is a valid signature on m with respect to vk . Furthermore, m̂ was not computed by c∗ since

otherwise c̄(m̂) would have been [·]
Randag

· . Since only c∗ performs signing queries, this implies
that the signature s′ has not been produced by a call to the signing oracle with arguments m, vk .
Furthermore, since a /∈ C, no get signing key query has been made with argument vk . Thus a
pair (s′, m) has been produced where s′ is a valid signature on m with respect to vk although s′

has never been produced by the signing oracle with respect to that same key vk , and the secret
key has never been revealed. This is a direct contradiction to the strong existential unforgeability
of SIG.

T is a decryption or signing key (Case (g)). Fully analogous to the case of T being a
nonce (Case (a)), that c̄(m̂) is executed with c̄(m̂) = T . Assume first that T = dk(a) with
a ∈ A \ C. By definition of c̄, c̄(m̂) = dk(a) means that a check key query with argument m̂
succeeded and returned the encryption key vk of agent a (i.e., m̂ is the decryption key of agent
a). Furthermore, since a /∈ C, no get decryption key query has been performed with argument vk .
In other words, a decryption key has been guessed given only encryption and decryption queries;
this is a contradiction to the IND-CCA property of AE . In the case T = sk(a), we analogously
get a signing key is guessed using only signing queries; this contradicts the strong existential
unforgeability of SIG.

7 Conclusions

We have presented the first computational soundness theorem for (non-interactive) symbolic
zero-knowledge proofs. This allows to analyze protocols in a simple symbolic model supporting
encryptions, signatures, and zero-knowledge proofs; the computational soundness theorem then
guarantees that the trace properties shown in the symbolic model carry over to the computational
implementation.

Open questions and directions for further research include:

• Show analogous computational soundness results for zero-knowledge proofs in other frame-
works, e.g., the BPW model [BPW03a] or the CoSP-framework [BHU09]. We believe that
our techniques can easily be integrated into these frameworks under essentially the same se-
curity assumptions. In particular a proof of the computational soundness of zero-knowledge

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 41

proofs in the CoSP-framework would be worthwhile because computational soundness in
that framework automatically entails computational soundness for established symbolic
calculi like the applied π-calculus that can be analyzed with standard tools (e.g., ProVerif
[Bla01]).

• Give computational soundness results for zero-knowledge proofs under relaxed assumptions.
We require a property called extraction zero-knowledge which is a very strong requirement.
More efficient zero-knowledge schemes might be possible under weaker requirements such
as extractability alone. Of course, since this gives additional power to the computational
adversary, the deduction relation for the symbolic adversary needs to be adapted as well
to make the symbolic adversary stronger, too. First results in this direction have been
achieved in [Moh09].

• Extend our framework to handle interactive zero-knowledge proofs. These need a com-
pletely different symbolic modeling as it does not make sense to, say, sign or store an
interactive proof. Interactive zero-knowledge proofs exist under weaker assumptions and
are often more efficient, so a result for interactive zero-knowledge proofs can lead to more
efficient computational protocols.

• Give general criteria for the computational soundness of zero-knowledge proofs when inter-
acting with other cryptographic primitives. In this paper, we showed that zero-knowledge
proofs together with encryptions and signatures are computationally sound. If another
primitive is added, the proof needs to be redone. General criteria might allow to add more
primitives to the model without having to redo all proofs each time.

• Find a simpler proof. Currently, the largest part of our proof is devoted to checking that
various seemingly obvious conditions hold. Using a simpler (or at least more uniform)
symbolic and computational model might allow to strongly reduce the complexity of the
proof. Alternatively, an automated or semi-automated verification of these conditions might
be desirable.

Acknowledgements. We thank Esfandiar Mohammadi for valuable discussions and help in
writing the final version of this manuscript. We also thank the anonymous referees for valuable
suggestions on how to improve this manuscript. This work has been partially funded by the
German Research Foundation (DFG) through the Cluster of Excellence “Multimodal Computing
and Interaction” and the DFG grant 3194/1-1.

A Postponed proofs

Proof of Lemma 2. By Definition 6, C
s,n,l

F,b̃
is defined if the following two conditions are satisfied:

(a) For any subterm of the form ek(βi) or vk(βi) of F , we have that b̃i is of type agent.

(b) s is the ρ-arity of F , n is the α-arity of F , |l| = n, and |b̃| is the β-arity of F .

By definition of constructa,sid (r, τ), when C
s,n,l

F,b̃
is constructed, we have that r =

ZKR
F (R1, . . . , Rs; a1, . . . , an; b1, . . . , bm), b̃i = constructa,sid(bi, τ), |b̃| = m, and |l| = n. By

the definition of the syntax of patterns (page 12), we have that the ρ-, α-, and β-arity of F are
s, n, and m, respectively. Hence (b) is fulfilled.

By Definition 4, condition 6, for any subterm of the form ek(βi) or vk(βi) of F we have that
bi ∈ X.a. Hence τ(bi) has type agent. By Definition 7, we have that b̃i = constructa,sid (bi, τ) =
τ(bi). Thus b̃i has type agent and (a) is fulfilled.

Proof of Lemma 3. C
s,n,l

F,b̃
(w) is constructed and invoked by constructa,sid (r, τ) with w =

R̃1‖ . . . ‖R̃s‖ã1‖ . . . ‖ãn. By definition of constructa,sid (Definition 7), this only happens if r =

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 42

ZKR
F (R1, . . . , Rs; a1, . . . , an; b1, . . . , bm) with |l| = n and li = |ãi| and ãi = constructa,sid (ai, τ)

and b̃i = constructa,sid (bi, τ) and R̃i = tapea,sid (Ri). We perform an induction on the structure

of T . (And abbreviate CT := C
s,n,l

T,b̃
.)

Case 1: “T is a ZK-term of the form ek(βi)”.
By Definition 4, condition 6, bi ∈ X.a and thus b̃i = constructa,sid (bi, τ) = τ(bi) =
tagagent (b

′
i) for some b′i. Then by definition of constructa,sid (Definition 7) and of ZK-

circuits (Definition 6), we have constructa,sid(T
{

r,a,b

ρ,α,β

}

, τ) = constructa,sid (ek(bi), τ) =

tagek (ek b′
i
) = CT (w) where ekb′

i
is the encryption key of agent b′i.

Case 2: “T is a ZK-term of the form vk(βi)”.
Fully analogous to the previous case.

Case 3: “T is a ZK-term of the form αi”.
We have that CT (w) = ãi = constructa,sid(ai, τ) = constructa,sid (T

{

r,a,b

ρ,α,β

}

, τ).

Case 4: “T is a ZK-term of the form βi”.
We have that CT (w) = b̃i = constructa,sid (bi, τ) = constructa,sid (T

{

r,a,b

ρ,α,β

}

, τ).

Case 5: “T is a ZK-term of the form 〈T1, T2〉”.
By definition of constructa,sid (Definition 7) and of ZK-circuits (Definition 6), and
using the induction hypothesis, we have that CT (w) = tagpair (CT1(w), CT2 (w)) =

tagpair (constructa,sid (T1

{

r,a,b

ρ,α,β

}

, τ), constructa,sid (T2

{

r,a,b

ρ,α,β

}

, τ)) =

constructa,sid (〈T1

{

r,a,b

ρ,α,β

}

, T2

{

r,a,b

ρ,α,β

}

〉, τ) = constructa,sid (T
{

r,a,b

ρ,α,β

}

, τ).

Case 6: “T is a ZK-term of the form {T ′}ρi

ek(βj)
”.

By Definition 4, condition 6, bj ∈ X.a and thus b̃j = constructa,sid(bj , τ) =
τ(bj) = tagagent (b

′
j) for some b′j. Then by definition of constructa,sid , we have

constructa,sid (T
{

r,a,b

ρ,α,β

}

, τ) = constructa,sid ({T ′
{

r,a,b

ρ,α,β

}

}Ri

ek(bj)
, τ) = tagenc(m, ekb′

j
) where

ekb′
j

is the encryption key of agent b′j , and m is the result of encrypting m′ :=

construct(T ′
{

r,a,b

ρ,α,β

}

, τ) using the key ekb′
j

and the randomness tapea,sid (Ri) = R̃i. Fur-

thermore, by definition of ZK-circuits, CT (w) = tagenc(m̄, ekb′
j
) where m̄ is the result of

encrypting m̄′ := CT ′(w) using the key ekb′
j

and the randomness R̃i. By induction hypoth-

esis, m̄′ = m′, and hence m̄ = m and thus CT (w) = constructa,sid (T
{

r,a,b

ρ,α,β

}

, τ).

Proof (of Lemmas 4 and 5). In the following, we abbreviate γa,sid (c̄ ◦ τ) as △ and γa′,sid ′

(c̄ ◦ τ ′)
as △′.

We show the following three statements:

(a) For any invocation of constructa,sid (r, τ) that is performed during the execution, we
have that constructa,sid succeeds iff r△ contains true proofs and that in this case
c̄(constructa,sid (r, τ)) = r△.

(b) Whenever a circuit C
s,n,l

F,b̃
is constructed and C

s,n,l

F,b̃
(w) is evaluated

with some w = R̃1‖ . . . ‖R̃l‖ã1‖ . . . ‖ãn (indirectly through a call to

constructa,sid (r, τ) with r = ZKR
F (R; a; b)), we have that C

s,n,l

F,b̃
(w) = 1 iff

ZKra,R,sid

F (ra,R1,sid , . . . , ra,Rl,sid ; c̄(ã1), . . . , c̄(ãn); c̄(b̃1), . . . , c̄(b̃s)) is a true proof.

(c) Whenever c̄(m′) is computed for some m′, c̄(m′) contains true proofs.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 43

Lemmas 4 and 5 then follow from statements (a) and (c).
We prove the statements (a), (b), and (c) by induction on the point in time where the

computation is performed (more exactly, the point in time at which the computation finishes).
That is, when showing that (a) holds, we can assume that (a), (b), and (c) hold for all earlier
points in time; and similarly for (b) and (c).

Showing (a). We distinguish the following cases depending on r. (Note that r is a subterm of
a pattern; cf. page 12 for the syntax of patterns):

Case a-1: “r ∈ X”.
In this case r is a variable in a construct-pattern occurring in a role. By Definition 4,
condition 5, it is guaranteed that r is a free variable of a parse-pattern occurring earlier on
the same path in the role. Hence τ(r) will be defined in the invocation of constructa,sid (r, τ).
Then constructa,sid (r, τ) succeeds and returns τ(r). Thus c̄(constructa,sid (r, τ)) = c̄(τ(r)).
Furthermore r△ = r(c̄ ◦ τ) = c̄(τ(r)). Hence c̄(constructa,sid (r, τ)) = r△. Furthermore, by
induction hypothesis, (c) holds for m := τ(r), hence r△ = c̄(m) contains true proofs. Thus
constructa,sid (r, τ) succeeds iff r△ contains true proofs (namely always).

Case a-2: “r = ek(x) for some x ∈ X.a”.
As in the case r ∈ X, we have that τ(x) is defined. Furthermore, since x ∈ X.a we
have that τ(x) is of type agent. Thus τ(x) = tagagent (a

′) for some a′ ∈ A. Hence

c̄(constructa,sid (r, τ)) = c̄(tagek (eka′)) where eka′ is the encryption key of agent a′. Since
eka′ is the encryption key of an existing agent a′, c̄(tagek (eka′)) = ek(a′). Moreover r△ =
ek(x)(c̄◦τ) = ek(c̄(τ(x))) = ek(c̄(tagagent(a

′))) = ek(a′). Thus c̄(constructa,sid (r, τ)) = r△.
Furthermore, as ek(a′) does not contain any ZK-subterms, it always contains true proofs.

Case a-3: “r = vk(x) for some x ∈ X.a”.
Fully analogous to the previous case.

Case a-4: “r = dk(x) for some x ∈ X.a”.
Let i be such that the session sid executes the i-th role. By Definition 4, condition 9,
it follows that x = Ai, and hence τ(x) = tagagent (a). Hence c̄(constructa,sid (r, τ)) =
c̄(tagdk (dka)) where dka is the decryption key of agent a. Since dka is the decryption key
of an existing agent a, c̄(tagdk (dka)) = dk(a). Moreover r△ = dk(x)(c̄ ◦ τ) = dk(c̄(τ(x))) =
dk(c̄(tagagent (a))) = dk(a). Thus c̄(constructa,sid (r, τ)) = r△. Furthermore, as dk(a) does
not contain any ZK-subterms, it always contains true proofs.

Case a-5: “r = sk(x)”.
This case does not occur because a pattern can contain the subterm sk(x) only
within [. . .]...sk(x). However, a call constructa,sid ([. . .]...sk(x), . . .) does not invoke

constructa,sid (sk(x), . . .) but instead accesses the needed signing key directly. Hence no
call of the form constructa,sid (sk(x), . . .) will ever be performed.

Case a-6: “r = 〈r1, r2〉”.
By definition, constructa,sid (r, τ) = tagpair (constructa,sid (r1, τ), constructa,sid(r2, τ)).

Hence constructa,sid (r1, τ) is invoked before the completion of the computation of
constructa,sid (r, τ). And if constructa,sid (r1, τ) succeeds, constructa,sid (r2, τ) is invoked
before the completion of the computation of constructa,sid (r, τ).

Assume that constructa,sid (r1, τ) or constructa,sid (r2, τ) does not succeed. Then
constructa,sid (r, τ) does not succeed. And by induction hypothesis, r1△ or r2△ does not
contain true proofs. Hence r△ = 〈r1△, r2△〉 does not contain true proofs either. Thus in
this case, constructa,sid (r, τ) succeeds iff r△ contains true proofs (namely never).

Assume that both constructa,sid (r1, τ) and constructa,sid (r1, τ) succeed. Then
constructa,sid (r, τ) succeeds. And by the induction hypothesis, r1△ and
r2△ contain true proofs. Thus r△ = 〈r1△, r2△〉 contains true proofs.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 44

Thus in this case, constructa,sid (r, τ) succeeds iff r△ contains true proofs
(namely always). Furthermore, again using the induction hypothesis,
c̄(constructa,sid (r, τ)) = c̄(tagpair (constructa,sid (r1, τ), constructa,sid (r2, τ))) =

〈c̄(constructa,sid (r1, τ)), c̄(constructa,sid (r2, τ))〉 = 〈r1△, r2△〉 = r△.

Case a-7: “r = {r′}R
ek(x) with R ∈ Randag and x ∈ X.a”.

As in the case r = ek(x), we have that τ(x) is defined and τ(x) = tagagent(a
′) for some

a′ ∈ A. By definition, constructa,sid (r, τ) invokes constructa,sid (r′, τ) and succeeds iff
constructa,sid (r′, τ) succeeds. Hence constructa,sid (r′, τ) is invoked before the completion of
the computation of constructa,sid (r, τ). From the induction hypothesis, it then follows that
constructa,sid (r′, τ) succeeds iff r′△ contains true proofs. Since r′△ contains true proofs iff

r△ = {r′△}r
a,R,sid

ek(a′) contains true proofs, it follows that constructa,sid (r, τ) succeeds iff r△
contains true proofs.

In the case that constructa,sid (r, τ) succeeds, constructa,sid (r, τ) = constructa,sid ({r′}R
ek(x))

is of type ciphertext, and hence c̄(constructa,sid (r, τ)) = {r′△}r
a,R,sid

ek(c̄(τ(x))) (we are in the case
of the definition of c̄ where the argument of c̄ is of type ciphertext and has been generated

by a call to constructa,sid). Since r△ = {r′△}r△
ek(c̄(τ(xγa,sid)))

= {r′△}r
a,R,sid

ek(c̄(τ(x))), we have

that c̄(constructa,sid (r, τ)) = r△.

Case a-8: “r = [r′]R
sk(x) where R ∈ Randag and x ∈ X.a”.

Let i be such that the session sid executes the i-th role. By Definition 4, condition 8, we
have that x = Ai and hence we have that τ(x) is defined and τ(x) = tagagent(a). By defi-

nition, constructa,sid (r, τ) invokes constructa,sid (r′, τ) and succeeds iff constructa,sid (r′, τ)
succeeds. Hence constructa,sid (r′, τ) is invoked before the completion of the computation of
constructa,sid (r, τ). From the induction hypothesis, it then follows that constructa,sid (r′, τ)

succeeds iff r′△ contains true proofs. Since r′△ contains true proofs iff r△ = [r′△]r
a,R,sid

sk(a)

contains true proofs, it follows that constructa,sid (r, τ) succeeds iff r△ contains true proofs.

Let vka and ska be the verification and signing key of agent a. In the case
that constructa,sid (r, τ) succeeds, constructa,sid (r, τ) = constructa,sid ([r′]R

sk(x)) =

tagsig (s, m′, vka) where m′ = constructa,sid (r′, τ) and s is a signature of m′ using ska.

Then constructa,sid (r, τ) is of type signature and c̄(constructa,sid (r, τ)) = [c̄(m′)]r
a,R,sid

sk(a) (we
are in the case of the definition of c̄ where the argument of c̄ has been generated by a call
to constructa,sid). From the induction hypothesis, we have that c̄(m′) = r′△ and hence

r△ = [r′△]r
a,R,sid

sk(c̄(τ(x))) = [c̄(m′)]r
a,R,sid

sk(a) . Thus c̄(constructa,sid (r, τ)) = r△.

Case a-9: “r = {r′}
ek(x) or r = [r′]

sk(x) or r = ZKF (∗; ∗; r)”.
This case cannot occur, since r contains which is excluded by Definition 4, condition 5.

Case a-10: “r = ZKR
F (R1, . . . , Rs; a1, . . . , an; b1, . . . , bm) where R, R ∈ Randag”.

We begin by showing that constructa,sid (r, τ) succeeds iff r△ contains true proofs. To ease
formulations, we introduce abbreviations (i)–(viii) for the following statements:

(i) constructa,sid (r, τ) succeeds.

(ii) constructa,sid (T
{

r,a,b

ρ,α,β

}

, τ) succeeds for all subterms T of F .

(iii) For all t ∈ {a, b}, constructa,sid (t, τ) succeeds (we denote the return values as ã, b̃).

(iv) C := C
s,n,l

F,b̃
is defined and C(w) = 1 where w := R̃1‖ . . . ‖R̃s‖ã1‖ . . . ‖ãn and li := |ãi|

and R̃i := tapea,sid (Ri).

(v) T
{

r,a,b

ρ,α,β

}

△ contains true proofs for all subterms T of F .

(vi) For all t ∈ {a, b}, t△ contains true proofs.
(vii) r△ is a true proof.
(viii) r△ contains true proofs.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 45

By definition of constructa,sid , we have (i)⇔ (ii)∧(iii)∧(iv). (Note that constructa,sid (t, τ)
may also abort if a ZK-failure occurs, however, this is explicitly excluded by the assump-
tions of Lemma 4.) Since the calls to constructa,sid in statements (ii) and (iii) are performed
before the completion of the invocation constructa,sid (r, τ), we can apply the induction hy-
pothesis and get (ii) ∧ (iii) ⇔ (v) ∧ (vi). Hence (i) ⇔ (ii) ∧ (iii) ∧ (iv) ⇔ (v) ∧ (vi) ∧ (iv).
Moreover, by induction hypothesis we have c̄(ãi) = c̄(constructa,sid (ai, τ)) = ai△ and

analogously c̄(b̃i) = bi△. By Lemma 2 we have that C = C
s,n,l

F,b̃
is defined, hence (iv)

holds iff C(w) = 1. By the induction hypothesis, (b) holds for C(w), thus C(w) = 1

iff z := ZKra,R,sid

F (ra,R1,sid , . . . ; c̄(ã1), . . . ; c̄(b̃1), . . .) is a true proof. Since c̄(ãi) = ai△
and c̄(b̃i) = bi△, we have that z = r△. Thus C(w) = 1 iff r△ is a true proof,
hence (iv) ⇔ (vii). Hence (i) ⇔ (v) ∧ (vi) ∧ (iv) ⇔ (v) ∧ (vi) ∧ (vii). Since r△ =

ZKra,R,sid

F (ra,R1,sid , . . . ; a1△, . . . ; b1△, . . .) =: z contains true proofs iff z is a true proof and
all proper subterms of z contain true proofs, we have that (viii) ⇔ (vii) ∧ (vi). Hence
(i) ⇔ (v) ∧ (vi) ∧ (vii) ⇔ (v) ∧ (viii). Assume that (v) does not hold, i.e., for some sub-

term T of F , T
{

r,a,b

ρ,α,β

}

△ does not contain true proofs. Since F and hence T does not

contain a ZK-constructor itself, this implies that χ
{

r,a,b

ρ,α,β

}

△ does not contain true proofs

for some χ ∈ {α, β}. Since χ
{

r,a,b

ρ,α,β

}

△ = t△ for some t ∈ {a, b}, and t△ is a subterm

of r△, this implies that r△ does not contain true proofs, i.e., (viii) does not hold. Thus
by contraposition, (viii) ⇒ (v) and hence (i) ⇔ (v) ∧ (viii) ⇔ (viii). Hence we have that
constructa,sid (r, τ) succeeds iff r△ contains true proofs.

In the case that constructa,sid(r, τ) succeeds, constructa,sid (r, τ) returns a bitstring of type
zero-knowledge proof (unless a ZK-failure occurs which is excluded by the assumptions
of Lemma 4). Hence by definition of c̄ (in the case of honestly generated zero-knowledge

proofs), we have that c̄(constructa,sid (r, τ)) = ZKra,R,sid

F (ra,R1,sid , . . . ; a1△; b1△) = r△.

This covers all cases for r and thus shows (a) (assuming the induction hypothesis).

Showing (b). In case (b), C
s,n,l

F,b̃
(w) is constructed and invoked by constructa,sid (r, τ) with

w = R̃1‖ . . . ‖R̃s‖ã1‖ . . . ‖ãn and r = ZKR
F (R1, . . . , Rs; a1, . . . , an; b1, . . . , bm). By definition

of constructa,sid this implies |l̃| = n and li = |ãi| and ãi = constructa,sid (ai, τ) and b̃i =

constructa,sid (bi, τ) and R̃i = tapea,sid (Ri). In the following, we abbreviate CT := C
s,n,l

T,b̃
for

any subterm T of F . Note that from the induction hypothesis, for any subterm T of F we have

T
{

r,a,b

ρ,α,β

}

△
(a)
= c̄(constructa,sid (T

{

r,a,b

ρ,α,β

}

, τ))
L.3
= c̄(CT (w)). (3)

By definition of ZK-formulas, F can be written as B(T1, . . . , Tq) where B is a Boolean formula
and T1, . . . , Tq are ZK-atoms. We first show that for every i ∈ [q], we have that

Ti

{

r,a,b

ρ,α,β

}

△ true ⇐⇒ CTi
(w) = 1. (4)

Here “true” is used in the sense of Definition 2.
Note that whenever some ek(βj) or vk(βj) occurs in T , then by Definition 4, condition 6, it

follows that bj ∈ X.a, hence τ(bj) = tagagent (b
′) for some agent b′, and thus bj△ = c̄(τ(bj)) =

b′ ∈ A. Hence, in the following we will implicitly use the facts that if ek(βj) or vk(βj) occurs in
T , then bj△ ∈ A and bj△ = c̄(τ(bj)) and τ(bj) = tagagent (bj△).

We distinguish three cases for T := Ti:

Case b-1: “T = (t1 = t2) for ZK-terms t1, t2”.

By Definition 2, we have that T
{

r,a,b

ρ,α,β

}

△ is true iff t1
{

r,a,b

ρ,α,β

}

△ = t2
{

r,a,b

ρ,α,β

}

△. By (3),

this holds iff c̄(Ct1(w)) = c̄(Ct2(w)). By the injectivity of c̄, this holds iff Ct1(w) = Ct2(w).

And by the definition of ZK-circuits, this holds iff CT (w) = 1. Hence T
{

r,a,b

ρ,α,β

}

△ is true iff

CT (w) = 1.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 46

Case b-2: “T = (Decrypt(t1, αi, ek(βj)) = t2) for ZK-terms t1, t2”.
To facilitate notation, we introduce the abbreviations (i)–(x) for the following statements:

(i) T
{

r,a,b

ρ,α,β

}

△ is true.

(ii) t1
{

r,a,b

ρ,α,β

}

△ = {t2
{

r,a,b

ρ,α,β

}

△}R
′

ek(bj△) for some R′ ∈ Rand.

(iii) ai△ = dk(bj△).

(iv) Ct1(w) is of type ciphertext. In this case, let tagenc(c, ek
′) := Ct1(w).

(v) Cαi
(w) is of type decryption key. In this case, let tagdk (dk) := Cαi

(w).

(vi) Cek(βj)(w) is of type encryption key. In this case, let tagek (ek) := Cek(βj).

(vii) ek = ek ′.

(viii) (ek , dk) is a valid encryption/decryption key pair.

(ix) Decrypting c using the decryption key dk yields the plaintext Ct2(w).

(x) CT (w) = 1.

T
{

r,a,b

ρ,α,β

}

△ is equal to (Decrypt(t1
{

r,a,b

ρ,α,β

}

△, ai△, ek(bj△)) = t2
{

r,a,b

ρ,α,β

}

△). By Defini-

tion 2, T
{

r,a,b

ρ,α,β

}

△ is true iff it has the form Decrypt({m̄1}
r̄1

ek(ā1)
, dk(ā1), ek(ā1)) = m̄1 for

some terms r̄1, m̄1, ā1. Combining these two facts, we have that T
{

r,a,b

ρ,α,β

}

△ is true iff (ii)

and (iii) hold. Thus (i)⇔ (ii) ∧ (iii).

Furthermore, (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix)⇔ (x) by definition of ZK-circuits (Defi-
nition 6).

To show (ii) ∧ (iii) ⇔ (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix) and thus conclude the proof of
(i)⇔ (x), we need to distinguish two subcases:

Case b-2.1: “Ct1(w) equals the result of some earlier call constructa
′,sid′

({t′}R
′′

ek(x′), τ
′) for

some a′, sid ′, R′′, x′, t′, τ ′”.
Assume that (ii) and (iii) hold. Then x′ ∈ X.a and b′ := c̄(τ ′(x)) ∈ A. Then, by

definition of constructa
′,sid′

, it follows that Ct1(w) = tagenc(c, ek
′) where ek ′ is the

encryption key of agent b′, and c is the result of encrypting m := constructa′,sid ′

(t′, τ ′)
with encryption key ek ′. Hence (iv) holds. Moreover, we have

{t′△′}r
a′,R′′,sid′

ek(b′)

(a)
= c̄(constructa′,sid ′

({t′}R
′′

ek(x′), τ
′)) = c̄(Ct1 (w))

(3)
= t1

{

r,a,b

ρ,α,β

}

△
(ii)
= {t2

{

r,a,b

ρ,α,β

}

△}R
′

ek(bj△). (5)

From (5), we have that b′ = bj△. Then, by definition of ZK-circuits, Cek(βj)(w) =

tagek (ek ′) since ek ′ is the encryption key of agent b′. Thus (vi) and (vii) follow.

Let dk denote the decryption key of agent b′. Then

c̄(tagdk (dk)) = dk(b′) = dk(bj△)
(iii)
= ai△ = αi

{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Cαi

(w)).

Since c̄ is injective, we have Cαi
(w) = tagdk (dk). This shows (v) and (viii) (the latter

because we already know that Cek(βj)(w) = tagek (ek) where ek is the encryption key
of b′).

Then

c̄(m) = c̄(constructa
′,sid ′

(t′, τ ′))
(a)
= t′△′ (5)

= t2
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct2(w)).

Since c̄ is injective, we have that Ct2(w) = m. Furthermore, since c is the result of
encrypting m with encryption key ek ′, and since dk is the decryption key corresponding

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 47

to ek ′ = ek , we have that decrypting c using the decryption key dk yields the plaintext
m = Ct2(w). Thus (ix) holds.

Summarizing, we have that (ii) ∧ (iii)⇒ (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix).

Assume now that (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix) holds.

Let b′ := bj△. Then Cek(βj)(w) = tagek (ek) where ek is the encryption key of b′.
Furthermore, since (ek , dk) is a valid encryption/decryption key pair (by (viii)), and
since for every encryption key, there is at most one corresponding decryption key, we

have that dk is the decryption key of b′. Hence ai△ = αi

{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Cαi

(w))
(v)
=

c̄(tagdk (dk)) = dk(b′) = dk(bj△). Hence (iii) holds.

Since Ct1(w) = constructa′,sid ′

({t′}R
′′

ek(x′), τ
′), by definition of constructa′,sid ′

, we have

that Ct1 = tagenc(ĉ, êk) where êk is the encryption key of agent c̄(τ ′(x′)) and ĉ

is the result of encrypting m := constructa′,sid ′

(t′, τ ′) under êk . Since Ct1(w)
(iv)
=

tagenc(c, ek
′), it follows that ĉ = c and êk = ek ′ (vii)

= ek . Since dk and ek are the
decryption and encryption key of b′, decrypting c with dk then yields m. With (ix)
this implies m = Ct2(w).

Then using the induction hypothesis, c̄(Ct2 (w)) = c̄(m) = c̄(constructa
′,sid ′

(t′, τ ′))
(a)
=

t′△′. And by (3), c̄(Ct2(w)) = t2
{

r,a,b

ρ,α,β

}

△. Thus t′△′ = t2
{

r,a,b

ρ,α,β

}

△. And since êk =

ek is the encryption key of b′ = bj△ and of c̄(τ ′(x′)), we have that c̄(τ ′(x′)) = bj△.

Then with R′ := ra′,R′′,sid′

we get

t1
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct1 (w)) = c̄(constructa′,sid ′

({t′}R
′′

ek(x′), τ
′))

(a)
= {t′△′}R

′

ek(c̄(τ ′(x′))) = {t2
{

r,a,b

ρ,α,β

}

△}R
′

ek(bj△)

This proves (ii).

Thus we have that (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix)⇒ (ii) ∧ (iii).

So altogether, we have (iv)∧ (v)∧ (vi) ∧ (vii)∧ (viii) ∧ (ix)⇔ (ii) ∧ (iii) in Case b-2.1.

Case b-2.2: “Ct1(w) is not the result of some earlier call constructa
′,sid′

({t′}R
′′

ek(x′), τ
′)”.

Assume that (ii) and (iii) hold. Let b′ := bj△. By (3), we have c̄(Ct1 (w)) =

t1
{

r,a,b

ρ,α,β

}

△. Using (ii), this implies c̄(Ct1(w)) = {t2
{

r,a,b

ρ,α,β

}

△}R
′

ek(b′). Furthermore,

since G⊥ occurs in the range of c̄ only under {·}·· and G⊥ does not occur in t2, a, b,

we have t2
{

r,a,b

ρ,α,β

}

△ 6= G⊥. By definition of c̄ (the case of ciphertexts not generated

by an honest agent), c̄(Ct1(w)) = {t2
{

r,a,b

ρ,α,β

}

△}R
′

ek(b′) with t2
{

r,a,b

ρ,α,β

}

△ 6= G⊥ can only

happen if Ct1(w) = tagenc(c, ek
′) for some c and ek ′ where ek ′ is the encryption key of

agent b′ and decrypting c with the decryption key dk of agent b′ results in a plaintext
m′ such that c̄(m′) = t2

{

r,a,b

ρ,α,β

}

△. This shows (iv).

Then, by definition of ZK-circuits, Cek(βj) = tagek (ek ′) since ek ′ is the encryption key
of agent b′. Thus (vi) and (vii) follow.

Let dk denote the decryption key of agent b′. Then

c̄(tagdk (dk)) = dk(b′) = dk(bj△)
(iii)
= ai△ = αi

{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Cαi

(w))

Since c̄ is injective, we have Cαi
(w) = tagdk (dk). This shows (v) and (viii) (the latter

because we already know that Cek(βj)(w) = tagek (ek ′) where ek ′ is the encryption key
of b′).

Finally, as noted above, decrypting c with the decryption key dk results in a plaintext
m′ with c̄(m′) = t2

{

r,a,b

ρ,α,β

}

△. By (3), c̄(Ct2(w)) = t2
{

r,a,b

ρ,α,β

}

△. Thus c̄(m′) =

c̄(Ct2(w)), and using the injectivity of c̄ we have m′ = Ct2(w). This shows (ix).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 48

Thus we have that (ii) ∧ (iii)⇒ (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix).

Assume now that (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix) holds. As in Case b-2.1, (iii)
follows and ek ′ = ek is the encryption key of agent b′ := bj△ and dk is the decryption
key of agent b′. By (ix) and the definition of c̄ (the case of not honestly generated

ciphertexts) we have that c̄(Ct1 (w)) = {c̄(Ct2 (w))}R
′

ek(b′) with R′ := R
Ct1(w)
adv . Hence

t1
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct1(w)) = {c̄(Ct2 (w))}R

′

ek(b′)

(3)
= {t2

{

r,a,b

ρ,α,β

}

△}R
′

ek(bj△)

Hence (ii) follows.

Thus we have shown that (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix)⇒ (ii) ∧ (iii).

Thus altogether we have shown (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix)⇔ (ii) ∧ (iii).

Thus we have shown

(i)⇔ (ii) ∧ (iii)

⇔ (iv) ∧ (v) ∧ (vi) ∧ (vii) ∧ (viii) ∧ (ix)

⇔ (x),

so T
{

r,a,b

ρ,α,β

}

△ is true iff CT (w) = 1.

This concludes the proof of Case b-2.

Case b-3: “T = Verify(t1, t2, vk(βj)) for ZK-terms t1, t2”.
To facilitate notation, we introduce the abbreviations (i)–(vii) for the following statements:

(i) T
{

r,a,b

ρ,α,β

}

△ is true.

(ii) t1
{

r,a,b

ρ,α,β

}

△ = [t2
{

r,a,b

ρ,α,β

}

△]R
′

sk(bj△) for some R′ ∈ Rand.

(iii) Ct1(w) is of type signature. In this case, let tagsig(s, m′, vk) := Ct1(w).

(iv) Cvk(βj)(w) is of type verification key. In this case, let tagvk (vk ′) := Cvk(βj)(w).

(v) m′ = Ct2(w).

(vi) vk = vk ′.

(vii) CT (w) = 1.

Let b′ := bj△ = βj

{

r,a,b

ρ,α,β

}

△. By Definition 2, T
{

r,a,b

ρ,α,β

}

△ is true iff t1
{

r,a,b

ρ,α,β

}

△ is of the

form [t2
{

r,a,b

ρ,α,β

}

△]R
′

sk(βj

{

r,a,b

ρ,α,β

}

△)
. Since b′ = βj

{

r,a,b

ρ,α,β

}

△, this implies (i)⇔ (ii).

By definition of ZK-circuits (Definition 6), we have that (vii)⇔ (iii) ∧ (iv) ∧ (v) ∧ (vi).

To show (ii) ⇔ (iii) ∧ (iv) ∧ (v) ∧ (vi) and conclude the proof of (i) ⇔ (vii), we need to
distinguish two subcases:

Case b-3.1: “Ct1(w) equals the result of some earlier call constructa
′,sid ′

([t′]R
′′

sk(x′), τ
′) for

some a′, sid ′, R′′, x′, t′, τ ′”.
Assume that (ii) holds. By Definition 4, condition 6, we have that x′ ∈ X.a

and hence τ ′(x′) = tagagent(b
′) for some b′ ∈ A. Let b′′ := bj△. Since Ct1(w) =

constructa′,sid ′

([t′]R
′′

sk(x′), τ
′), by definition of constructa′,sid ′

, Ct1(w) = tagsig(s, m′, vk)

where m′ = constructa
′,sid′

(t′, τ ′) and vk and sk are the verification and signing key
of agent b′ and s is the signature resulting from signing m′ using sk . Hence Ct1(w)
is of type signature and (iii) holds. Furthermore Cvk(βj)(w) = tagvk(vk ′) where vk ′ is
the verification key of agent b′′. Hence (iv) holds.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 49

We have

[t′△′]r
a′,R′′,sid′

sk(b′)
(a)
= c̄(constructa′,sid′

([t′]R
′′

sk(x′), τ
′)) = c̄(Ct1(w))

(3)
= t1

{

r,a,b

ρ,α,β

}

△
(ii)
= [t2

{

r,a,b

ρ,α,β

}

△]R
′

sk(bj△) = [t2
{

r,a,b

ρ,α,β

}

△]R
′

sk(b′′) (6)

Hence b′ = b′′. Since vk and vk ′ are the verification keys of agent b′ and b′′, respectively,
we have vk = vk ′ and thus (vi) holds.

Moreover, we have

c̄(m′) = c̄(constructa′,sid ′

(t′, τ ′))
(a)
= t′△′ (6)

= t2
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct2(w))

Since c̄ is injective, this implies m′ = Ct2(w) and thus (v).

Thus (ii)⇒ (iii) ∧ (iv) ∧ (v) ∧ (vi) holds in Case b-3.1.

Assume now that we have (iii) ∧ (iv) ∧ (v) ∧ (vi). Since Ct1(w) =

constructa′,sid ′

([t′]R
′′

sk(x′), τ
′), by definition of constructa′,sid ′

, Ct1(w) = tagsig(ŝ, m̂′, v̂k)

where m̂′ = constructa′,sid ′

(t′, τ ′) and v̂k and ŝk are the verification and signing key of

the agent b̂′ with τ ′(x′) = tagagent (b̂
′) and ŝ is the signature resulting from signing m̂′

using ŝk . By (iii) we have s = ŝ, Ct2(w)
(v)
= m′ = m̂′ and vk ′ (vi)

= vk = v̂k . Furthermore,
by (iv) and definition of ZK-circuits, we have that vk ′ is the verification key of agent

b′ := bj△. Since vk ′ is also the verification key of agent b̂′, we have b′ = b̂′. We then
have

t2
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct2(w)) = c̄(m̂′) = c̄(constructa

′,sid ′

(t′, τ ′))
(a)
= t′ △′ . (7)

Then we have with R′ := ra′,R′′,sid ′

that

t1
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct1 (w))

= c̄(constructa′,sid ′

([t′]R
′′

sk(x′), τ
′))

(a)
= [t′△′]R

′

sk(b̂′)

(7)
= [t2

{

r,a,b

ρ,α,β

}

△]R
′

sk(b̂′)
= [t2

{

r,a,b

ρ,α,β

}

△]R
′

sk(bj△)

Hence (ii) holds. This shows (iii) ∧ (iv) ∧ (v) ∧ (vi)⇒ (ii) in Case b-3.1.

Hence we have that (ii)⇔ (iii) ∧ (iv) ∧ (v) ∧ (vi) in Case b-3.1.

Case b-3.2: “Ct1(w) does not equal the result of some earlier call
constructa′,sid ′

([t′]R
′′

sk(x′), τ
′)”.

Assume that (ii) holds. Then

c̄(Ct1(w))
(3)
= t1

{

r,a,b

ρ,α,β

}

△
(ii)
= [t2

{

r,a,b

ρ,α,β

}

△]R
′

sk(bj△).

By definition of c̄ this only happens if Ct1(w) is of type signature and Ct1(w) =

tagsig(s, m′, vk) for some s, m′, and vk where c̄(m′) = t2
{

r,a,b

ρ,α,β

}

△ and vk is the

verification key of agent b′ := bj△. Hence (iii) holds. Furthermore, by definition of ZK-

circuits, Cvk(βj)(w) = tagvk (vk ′) where vk ′ is the verification key of b′ = βj

{

r,a,b

ρ,α,β

}

△.

Hence (iv) holds. Furthermore, since vk ′ and vk are verification keys of the same

agent, vk = vk ′ and thus (vi) holds. Moreover we have c̄(m′) = t2
{

r,a,b

ρ,α,β

}

△
(3)
=

c̄(Ct2(w)). Since c̄ is injective, this implies m′ = Ct2(w), so (v) holds. This shows
(ii)⇒ (iii) ∧ (iv) ∧ (v) ∧ (vi) in Case b-3.2.

Assume now that we have (iii) ∧ (iv) ∧ (v) ∧ (vi). By definition of ZK-circuits and

from (iv) we have that vk ′ (vi)
= vk is the verification key of agent bj△. By (iii) and the

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 50

definition of c̄ (the case of not honestly generated signatures) we have that c̄(Ct1(w)) =

[c̄(m′)]R
′

sk(bj△) for R′ := R
Ct1(w)

adv . Hence

t1
{

r,a,b

ρ,α,β

}

△
(3)
= c̄(Ct1 (w)) = [c̄(m′)]R

′

sk(bj△)

(v)
= [c̄(Ct2(w))]R

′

sk(bj△)

(3)
= [t2

{

r,a,b

ρ,α,β

}

△]R
′

sk(bj△).

Thus (ii) holds. This shows (iii) ∧ (iv) ∧ (v) ∧ (vi)⇒ (ii) in Case b-3.2.

Hence we have that (ii)⇔ (iii) ∧ (iv) ∧ (v) ∧ (vi) in Case b-3.2.

Thus we have shown

(i)⇔ (ii)

⇔ (iii) ∧ (iv) ∧ (v) ∧ (vi)

⇔ (vii)

so T
{

r,a,b

ρ,α,β

}

△ is true iff CT (w) = 1.

This concludes the proof of Case b-3.

This covers all cases for T , hence for every i ∈ [q], we have shown that Ti

{

r,a,b

ρ,α,β

}

△ is true iff

CTi
(w) = 1.

Let gi := True if Ti

{

r,a,b

ρ,α,β

}

△ is true and gi := False otherwise. Then gi = CTi
(w). (We

associate True with 1 and False with 0.)

We proceed to show that ZKra,R,sid

F (ra,R1,sid , . . . ; a1△, . . . ; b1△, . . .) =: Z is true iff CF (w) = 1.
By Definition 4, condition 6, if a subterm ek(βi) or vk(βi) occurs in Z, then bi ∈ X.a. In this case,
bi△ = c̄(τ(x)) ∈ A, hence Z is valid in the sense of Definition 2. Thus Z is true iff B(g) = True.
Thus Z is true iff CF (w) = B(CT1(w), . . . , CTq

(w)) = B(g) = 1. This shows (b) (assuming the
induction hypothesis).

Showing (c). If c̄(m′) outputs a term that does not contain true proofs, then there is a recursive
invocation of c̄(m) for some m such that c̄(m) is of the form ZKR

F (r; a; b) and c̄(m) is not a true
proof. Hence we can assume that c̄(m) = ZKR

F (r; a; b), and to show (c), it is sufficient to show
that ZKR

F (r; a; b) is a true proof.
c̄(m) outputs a term of the form tz := ZKR

F (r; a; b) only if m is of type zero-knowledge proof. If
m was output by a call to constructa

′,sid ′

(r′, τ) for some a′, sid ′, r′, τ ′, by the induction hypothesis
(a), we have that r′△′ contains true proofs and that c̄(m) = c̄(constructa

′,sid ′

(r′, τ)) = r′△′.
Thus c̄(m) contains true proofs and hence c̄(m) = tz is a true proof. Hence we assume in the
following that m is not the output of a call to construct. In this case, by definition of c̄, if
c̄(m) = ZKR

F (r; a; b) the follow holds:

We have that m = tagzk (z, F, s, n, l, b̃) such that CF := C
s,n,l

F,b̃
is defined (this is implied by the

type zero-knowledge). There is a bitstring w with CF (w) = 1 and w = r̃1‖ . . . ‖r̃l‖ã1‖ . . . ‖ãn and
ai = c̄(ãi) and bi = c̄(b̃i) for all i. If T is a subterm of F of the form {·}ρi

· , then c̄(CT (w)) = {·}ri
·

where CT := C
s,n,l

T,b̃
.

Since CF is defined, it follows by definition of ZK-circuits that if there is a subterm ek(t) or
vk(t) in F , then t = βi for some i, and b̃i = tagagent (b

′) for some b′ ∈ A. Then bi = c̄(b̃i) = b′ ∈ A.
We first show that for all ZK-terms T that are subterms of F , we have that

c̄(CT (w)) = T
{

r,a,b

ρ,α,β

}

. (8)

We prove this by induction on the structure of T .

Case c-1: “T = αi”.
Then c̄(CT (w)) = c̄(ãi) = ai = T

{

r,a,b

ρ,α,β

}

.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 51

Case c-2: “T = βi”.
Then c̄(CT (w)) = c̄(b̃i) = bi = T

{

r,a,b

ρ,α,β

}

.

Case c-3: “T = 〈T1, T2〉”.
Then CT (w) = tagpair (CT1(w), CT2 (w)) and hence using the induction hypothesis (8),

c̄(CT (w)) = 〈c̄(CT1(w)), c̄(CT2(w))〉
(8)
= 〈T1

{

r,a,b

ρ,α,β

}

, T2

{

r,a,b

ρ,α,β

}

〉 = T
{

r,a,b

ρ,α,β

}

.

Case c-4: “T = ek(βi)”.
In this case CT (w) = ek where ek is the encryption key of agent b′ = bi. Then c̄(ek) =

ek(bi) = T
{

r,a,b

ρ,α,β

}

.

Case c-5: “T = vk(βi)”.
In this case CT (w) = vk where vk is the encryption key of agent b′ = bi. Then c̄(vk) =

vk(bi) = T
{

r,a,b

ρ,α,β

}

.

Case c-6: “T = {T1}
ρi

ek(βj)
”.

In this case, CT (w) is of type ciphertext. We distinguish two cases.

Case c-6.1: “CT (w) is the result of an earlier call constructa
′,sid′

(r′, τ ′) with r′ =
{t′}R

′

ek(x′)”.

Note that then x′ ∈ X.a and hence b∗ := c̄(τ ′(x′)) ∈ A. By the induction hy-

pothesis (a), c̄(CT (w)) = c̄(constructa
′,sid ′

(r′, τ ′))
(a)
= r′△′ = {t′△′}R

′△′

ek(b∗). Hence

ri = R′△′ (see the properties of ri mentioned before (8)). By definition of
constructa′,sid ′

, constructa
′,sid ′

(r′, τ ′) = tagenc(ekb∗ , m
′) where m′ is the result of en-

crypting constructa′,sid ′

(t′, τ ′) using the encryption key ek b∗ of agent b∗. And by def-
inition of ZK-circuits, CT (w) = tagenc(ekbj

, m′′) where m′′ is the result of encrypting

CT1(w) using the encryption key ek bj
of agent bj. Since CT (w) = constructa′,sid ′

(r′, τ ′)

this implies that CT1(w) = constructa′,sid ′

(t′, τ ′) and ekb∗ = ekbj
, and thus b∗ = bj . By

induction hypothesis (a), we also have c̄(CT1 (w)) = c̄(constructa
′,sid′

(t′, τ ′))
(a)
= t′△′.

And by induction hypothesis (8), c̄(CT1(w))
(8)
= T1

{

r,a,b

ρ,α,β

}

and thus t′△′ = T1

{

r,a,b

ρ,α,β

}

.

Thus c̄(CT (w)) = {t′△′}R
′△′

ek(b∗) = {T1

{

r,a,b

ρ,α,β

}

}ri

ek(bj)
= T

{

r,a,b

ρ,α,β

}

.

Case c-6.2: “CT (w) is not the result of an earlier call constructa
′,sid ′

(r′, τ ′) with r′ =
{t′}R

′

ek(x′)”.

By definition of ZK-circuits, CT (w) is the result of encrypting CT1(w) using using the
encryption key ek bj

of agent bj . Hence c̄(CT (w)) = {c̄(CT1(w))}R
′

ek(bj)
for some R′.

Hence ri = R′ (see the properties of ri mentioned before (8)). By induction hypothe-

sis (8), c̄(CT1(w)) = T1

{

r,a,b

ρ,α,β

}

. Thus c̄(CT (w)) = {T1

{

r,a,b

ρ,α,β

}

}ri

ek(bj)
= T

{

r,a,b

ρ,α,β

}

.

This shows (8).

By definition of ZK-formulas, F can be written as B(T1, . . . , Tq) where B is a Boolean formula

and T1, . . . , Tq are ZK-atoms. We claim that for every i ∈ [q], we have that Ti

{

r,a,b

ρ,α,β

}

is true (in

the sense of Definition 2) iff CTi
(w) = 1. The proof of this fact is identical to that of (4) (i.e.,

to Cases b-1–b-3), except that all occurrences of △ are removed (or equivalently, △ is defined as
the empty substitution), and (8) is used instead of (3). (Note that △′ is used unchanged, i.e.,
△′ = γa′,sid ′

(c̄ ◦ τ ′).)

Let gi := True iff Ti

{

r,a,b

ρ,α,β

}

is true and gi := False otherwise. Then gi = CTi
(w). (We associate

True with 1 and False with 0.) By assumption (see the discussion at the beginning of the proof
of (c)), CF (w) = 1. By definition of ZK-circuits, CF (w) = B(CT1(w), . . . , CTq

(w)) = B(g), so
we have that B(g) = True. Since we assumed that bi ∈ A for all occurrences of ek(βi) and vk(βi)

in F , we have that tz = ZKR
F (r; a; b) is valid in the sense of Definition 2. Hence by Definition 2,

tz is a true proof. This concludes the proof of (c).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 52

Summarizing, we have shown (a), (b) and (c). Since (a) implies Lemma 4 and (c) implies
Lemma 5, this concludes the proof.

Proof of Lemma 6. We prove the lemma by induction over the structure of the pattern l. We
distinguish the following cases for the pattern l:

Case 1: “l = x ∈ X and τ(x) = ⊥”.
By definition of c̄, we have that: c̄(m) ∈ A iff m is of type agent. c̄(m) ∈ Nonce iff m is
of type nonce. c̄(m) = 〈·, ·〉 iff m is of type pair. c̄(m) = {·}·· iff m is of type encryption.
c̄(m) = [·]·· iff m is of type signature. c̄(m) = ZK·

·(. . .) iff m is of type zero-knowledge (since
we assume that no ZK-break occurs).

We have that c̄(m) matches x iff c̄(m) is of the type corresponding to the sort of x. (E.g., if
x ∈ X.c, c̄(m) matches x iff c̄(m) = {·}··.) Since there are only variables of sorts agent, nonce,
pair, ciphertext, signature, and ZK-proof, it follows that c̄(m) matches x iff m is of the type
corresponding to the sort of x. Furthermore, by definition of parsea,sid , parsea,sid (m, l, τ)
succeeds iff the type of m matches the sort of l = x. Thus parsea,sid (m, l, τ) succeeds iff
c̄(m) matches lγa,sid(c̄ ◦ τ) = x.

In that case, the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) = x is θ = (x 7→ c̄(m)). And the
return value of parsea,sid (m, l, τ) is (x 7→ m) ∪ τ . Hence c̄ ◦ parsea,sid (m, l, τ) = (x 7→
c̄(m)) ∪ (c̄ ◦ τ) = θ ∪ (c̄ ◦ τ).

Case 2: “l = x ∈ X and τ(x) 6= ⊥”.
parsea,sid (m, l, τ) is defined iff τ(x) = m (note that in this case, the type of τ(x) already
matches the sort of x). And c̄(m) matches lγa,sid(c̄◦τ) = c̄(τ(x)) iff c̄(m) = c̄(τ(x)). Since c̄
is injective, this happens iff m = τ(x). Thus c̄(m) matches lγa,sid(c̄◦τ) iff parsea,sid (m, l, τ)
is defined.

In this case, the matcher is θ = ∅, and the return value of parsea,sid (m, l, τ) is τ . Hence
c̄ ◦ parsea,sid (m, l, τ) = c̄ ◦ τ = θ ∪ (c̄ ◦ τ).

Case 3: “l = ek(x) with x ∈ X.a and τ(x) = ⊥”.
parsea,sid (m, l, τ) succeeds iff m is the encryption key of some agent b. c̄(m) matches
lγa,sid(c̄◦ τ) = ek(x) iff c̄(m) = ek(b′) for some b′ ∈ A. This happens iff m is the encryption
key of some agent b′. Hence parsea,sid(m, l, τ) succeeds iff c̄(m) matches lγa,sid(c̄ ◦ τ).

In this case, the matcher is θ = (x 7→ b′), and the return value of parsea,sid (m, l, τ) is
τ [x := tagagent (b

′)] = (x 7→ tagagent (b
′))∪τ . Hence c̄◦parsea,sid (m, l, τ) = (x 7→ b′)∪ c̄◦τ =

θ ∪ (c̄ ◦ τ).

Case 4: “l = ek(x) with x ∈ X.a and τ(x) 6= ⊥”.
parsea,sid (m, l, τ) succeeds iff m is the encryption key of some agent b′ and τ(x) =
tagagent (b

′). c̄(m) matches lγa,sid(c̄◦τ) = ek(c̄(τ(x))) iff c̄(m) = ek(b′) for some b′ ∈ A with
c̄(τ(x)) = b′. This holds iff m is the encryption key of some agent b′ and τ(x) = tagagent(b

′).

Hence parsea,sid (m, l, τ) succeeds iff c̄(m) matches lγa,sid(c̄ ◦ τ).

In this case, the matcher is θ = ∅, and the return value of parsea,sid (m, l, τ) is τ [x :=
tagagent (b

′)] = τ . Hence c̄ ◦ parsea,sid (m, l, τ) = c̄ ◦ τ = θ ∪ (c̄ ◦ τ).

Case 5: “l = vk(x) with x ∈ X.a and τ(x) = ⊥”.
Analogous to the l = ek(x) case.

Case 6: “l = vk(x) with x ∈ X.a and τ(x) 6= ⊥”.
Analogous to the l = ek(x) case.

Case 7: “l = 〈l1, l2〉”.
parsea,sid (m, l, τ) succeeds iff m = tagpair (m1, m2) for some m1, m2 and τi :=

parsea,sid (mi, li, τ) succeeds for i = 1, 2 and τ1 and τ2 are compatible. By induction
hypothesis, τi := parsea,sid (mi, li, τ) succeeds iff c̄(mi) matches liγ

a,sid(c̄ ◦ τ) (let θi denote
the matcher). Furthermore, in this case c̄ ◦ τi = (c̄ ◦ τ) ∪ θi. Since liγ

a,sid (c̄ ◦ τ) does

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 53

not contain variables in the domain of c̄ ◦ τ , c̄ ◦ τ and θi have disjoint domains. Hence θ1

and θ2 are compatible iff (c̄ ◦ τ) ∪ θ1 and (c̄ ◦ τ) ∪ θ2 are compatible. Since c̄ is injective
and c̄ ◦ τi = (c̄ ◦ τ) ∪ θi, this holds iff τ1 and τ2 are compatible. Thus parsea,sid (m, l, τ)
succeeds iff m = tagpair (m1, m2) for some m1, m2 and c̄(mi) matches liγ

a,sid(c̄ ◦ τ) and
the resulting matchers θ1 and θ2 are compatible. By definition of c̄, this happens iff c̄(m)
matches lγa,sid(c̄ ◦ τ) = 〈l1γ

a,sid (c̄ ◦ τ), l2γ
a,sid (c̄ ◦ τ)〉.

In this case, parsea,sid (m, l, τ) = τ1 ∪ τ2 and the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) is θ :=
θ1∪θ2. By induction hypothesis, c̄◦τi = (c̄◦τ)∪θi for i = 1, 2, hence c̄◦parsea,sid (m, l, τ) =
c̄ ◦ τ1 ∪ c̄ ◦ τ2 = (c̄ ◦ τ) ∪ θ1 ∪ (c̄ ◦ τ) ∪ θ2 = (c̄ ◦ τ) ∪ θ.

Case 8: “l ∈ {Pat}
Randag

ek(X.a) or l ∈ [Pat]
Randag

sk(X.a) or l ∈ ZK
Randag

Formula(Rand∗ag ; (Pat|dk(X.a))∗; Pat∗)”.

In this case, parsea,sid (m, l, τ) succeeds iff ⊥ 6= constructa,sid (l, τ) = m. Note also that l
does not contain free variables (due to Definition 4, conditions 3, 4, and 7), hence l does not
contain variables outside the domain of τ and thus lγa,sid(c̄ ◦ τ) does not contain variables.

First consider the case that lγa,sid(c̄ ◦ τ) does not contain true proofs. Then by Lemma 4,
constructa,sid (l, τ) = ⊥ and hence parsea,sid (m, l, τ) fails. Furthermore, by Lemma 5, c̄(m)
contains true proofs, hence c̄(m) 6= lγa,sid(c̄ ◦ τ). Since lγa,sid(c̄ ◦ τ) does not contain
variables, this implies that c̄(m) does not match lγa,sid(c̄ ◦ τ). Thus in the case that
lγa,sid(c̄ ◦ τ) does not contain true proofs, we have that parsea,sid (m, l, τ) succeeds iff c̄(m)
matches lγa,sid(c̄ ◦ τ) (namely never).

Now consider the case that lγa,sid(c̄ ◦ τ) contains true proofs. In this case, by Lemma 4,
constructa,sid (l, τ) succeeds and c̄(constructa,sid (l, τ)) = lγa,sid(c̄ ◦ τ). We have that
parsea,sid (m, l, τ) succeeds iff constructa,sid (l, τ) = m. Since c̄ is injective, this holds
iff c̄(constructa,sid (l, τ)) = c̄(m). Since lγa,sid(c̄ ◦ τ) does not contain variables and
c̄(constructa,sid (l, τ)) = lγa,sid(c̄ ◦ τ), this holds iff c̄(m) matches lγa,sid(c̄ ◦ τ).

Hence in both cases, parsea,sid (m, l, τ) succeeds iff c̄(m) matches lγa,sid(c̄ ◦ τ).

In this case, parsea,sid (m, l, τ) = τ and the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) is θ = ∅.
Hence c̄ ◦ parsea,sid (m, l, τ) = c̄ ◦ τ = (c̄ ◦ τ) ∪ θ.

Case 9: “l = {l′}ek(x)”.

Let j ∈ [k] such that the session sid executes the j-th role. Then by Definition 4,
condition 2, x = Aj . Hence τ(x) = τ(Aj) = tagagent (a) and c̄(τ(x)) = a. Hence

parsea,sid (m, l, τ) succeeds iff m = tagenc(c, eka) where eka is the encryption key of agent
a and decrypting c with decryption key dka succeeds and results in a plaintext m′ such
that parsea,sid(m′, l′, τ) succeeds. In this case, parsea,sid (m, l, τ) = parsea,sid (m′, l′, τ). We
distinguish two cases for m:

Case 9.1: “m was the result of some call constructa
′,sid ′

({t}R
ek(y), τ

′)”.

In this case, by Lemma 4, c̄(m) = {tγa′,sid′

(c̄ ◦ τ ′)}R
′

ek(b′) with R′ := ra′,R,sid ′

and

b′ := c̄(τ(y)). So c̄(m) matches lγa,sid(c̄ ◦ τ) = {l′γa,sid(c̄ ◦ τ)}
ek(a) iff tγa′,sid ′

(c̄ ◦ τ ′)

matches l′γa,sid(c̄ ◦ τ) and b′ = a.

By definition of constructa
′,sid′

, we have that b′ = a iff m = tagenc(c, eka) for some
c where eka is the encryption key of agent a. And in that case, using the decryption
key ska of agent a, c decrypts to m′ := constructa′,sid ′

(t, τ ′). By Lemma 4, c̄(m′) =
tγa′,sid ′

(c̄ ◦ τ ′). Thus c̄(m) matches lγa,sid(c̄ ◦ τ) iff m = tagenc(c, eka) for some c
such that decrypting c using the decryption key ska results in a plaintext m′ such that
c̄(m′) matches l′γa,sid(c̄ ◦ τ). By induction hypothesis, c̄(m′) matches l′γa,sid (c̄ ◦ τ)
iff parsea,sid(m′, l′, τ) succeeds. Together with the observations at the beginning of
Case 9, it follows that c̄(m) matches lγa,sid(c̄ ◦ τ) iff parsea,sid (m, l, τ) succeeds.

In this case, parsea,sid (m, l, τ) = parsea,sid (m′, l′, τ). And the matcher θ of c̄(m) =
{tγa′,sid ′

(c̄ ◦ τ ′)}R
′

ek(a′) and lγa,sid(c̄ ◦ τ) = {l′γa,sid(c̄ ◦ τ)}
ek(a) and the matcher θ′

of c̄(m′) = tγa′,sid ′

(c̄ ◦ τ ′) and l′γa,sid(c̄ ◦ τ) are equal. By induction hypothesis,
c̄ ◦ parsea,sid (m′, l′, τ) = (c̄ ◦ τ) ∪ θ′. Hence c̄ ◦ parsea,sid (m, l, τ) = (c̄ ◦ τ) ∪ θ.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 54

Case 9.2: “m was not the result of some call constructa′,sid ′

({t}R
ek(y), τ

′)”.

Then c̄(m) matches lγa,sid(c̄ ◦ τ) = {l′γa,sid (c̄ ◦ τ)}
ek(a) iff m = tagenc(c, eka) where

eka is the encryption key of agent a and decrypting c with decryption key dka succeeds
and results in a plaintext m′ such that c̄(m′) matches l′γa,sid(c̄ ◦ τ). By induction
hypothesis, c̄(m′) matches l′γa,sid (c̄◦τ) iff parsea,sid (m′, l′, τ) succeeds. Together with
the observations at the beginning of Case 9, we have that c̄(m) matches lγa,sid(c̄ ◦ τ)
iff parsea,sid (m, l, τ) succeeds.

In this case, the unifier θ of c̄(m) and lγa,sid(c̄ ◦ τ) is the same as the unifier θ′ of
c̄(m′) and l′γa,sid (c̄ ◦ τ). Furthermore, parsea,sid (m, l, τ) = parsea,sid (m′, l′, τ) and by
induction hypothesis, c̄◦parsea,sid(m′, l′, τ) = (c̄◦τ)∪θ′. Hence c̄◦parsea,sid (m, l, τ) =
(c̄ ◦ τ) ∪ θ.

Case 10: “l = [l′]
sk(x) with x ∈ X.a”.

By definition of parsea,sid , we have that parsea,sid (m, l, τ) succeeds iff s is of type sig-
nature and m = tagsig(s, m′, vk), and τ1 := parsea,sid (tagvk (vk), vk(x), τ) and τ2 :=

parsea,sid (m′, l′, τ) succeed and τ1 and τ2 are compatible. We distinguish several cases:

Case 10.1: “m is not of type signature”.
Then parsea,sid (m, l, τ) fails. And c̄(m) is not of the form [·]··, hence c̄(m) does not
match lγa,sid(c̄ ◦ τ) = [l1γ

a,sid(c̄ ◦ τ)]
sk(xγa,sid (c̄◦τ)). Thus parsea,sid (m, l, τ) never suc-

ceeds and c̄(m) never matches lγa,sid(c̄ ◦ τ), so the lemma is vacuously true in this
case.

We can hence assume in the next cases that m is of type signature and that m =
tagsig(s, m′, vk) for some bitstrings s, m′, vk .

Case 10.2: “vk is not the verification key of some agent”.
Then parsea,sid (tagvk (vk), vk(x), τ) fails and hence parsea,sid (m, l, τ) fails. More-
over, in this case m was not generated by some call constructa′,sid ′

([t]R
sk(x), τ), and

m is not of the form tagsig(s, m′, vk) with vk being the verification key of some
agent. Hence, by definition of c̄, c̄(m) will not be of the form [·]·

vk(b′) for some

b′ ∈ A. Since xγa,sid (c̄ ◦ τ) ∈ X.a ∪ A, this implies that c̄(m) does not match
lγa,sid(c̄ ◦ τ) = [l1γ

a,sid (c̄ ◦ τ)]
sk(xγa,sid (c̄◦τ)). Thus parsea,sid (m, l, τ) never succeeds

and c̄(m) never matches lγa,sid(c̄ ◦ τ), so the lemma is vacuously true in this case.

We can hence assume in the next cases that vk is the verification key of some agent b.

Case 10.3: “τ(x) 6= ⊥ and τ(x) 6= tagagent(b)”.

Hence τ(x) = tagagent (b
′) for some b′ 6= b. Then parsea,sid (tagvk(vk), vk(x), τ) fails

and hence parsea,sid (m, l, τ) fails (since vk is the verification key of agent b). And c̄(m)
is of the form [·]·sk(b). Thus c̄(m) does not match lγa,sid(c̄ ◦ τ) = [l1γ

a,sid(c̄ ◦ τ)]sk(b′).
Thus the lemma is vacuously true in this case.

We can hence assume in the next cases that τ(x) = ⊥ or τ(x) = tagagent (b) and hence

x̄ := xγa,sid (c̄ ◦ τ) ∈ {x, b}. Moreover, since vk is the verification key of agent b, both
for τ(x) = ⊥ and τ(x) = tagagent(b), τ1 := parsea,sid (tagvk (vk), vk(x), τ) succeeds and
τ1 = τ [x := tagagent (b)].

Case 10.4: “m was the result of some call constructa
′,sid ′

([t]Rsk(y), τ
′)”.

By Lemma 4, c̄(m) = c̄(constructa
′,sid ′

([t]Rsk(y), τ
′)) = [tγa′,sid ′

(c̄ ◦ τ ′)]R
′

sk(b′) with R′ :=

ra′,R,sid′

and b′ := c̄(τ ′(y)). Hence c̄(m) matches lγa,sid(c̄ ◦ τ) = [l′γa,sid(c̄ ◦ τ)]sk(x̄)

iff tγa′,sid ′

(c̄ ◦ τ ′) matches l′γa,sid (c̄ ◦ τ) (with some matcher θ′) and θ′ is compatible
with θ′′ where θ′′ := (x 7→ b) if τ(x) = ⊥ and θ′′ := ∅ otherwise. Moreover, θ′ and θ′′

are compatible iff θ′ ∪ (c̄ ◦ τ) and (x 7→ b) are compatible.

By definition of constructa
′,sid ′

, and since constructa
′,sid′

([t]R
sk(y), τ

′) = m =

tagsig(s, m′, vk), we have that m′ = constructa
′,sid ′

(t, τ ′). Hence, by Lemma 4,

c̄(m′) = tγa′,sid ′

(c̄ ◦ τ ′).

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 55

Thus c̄(m) matches lγa,sid(c̄ ◦ τ) iff c̄(m′) matches l′γa,sid (c̄ ◦ τ) (with some matcher
θ′) and θ′ ∪ (c̄ ◦ τ) and (x 7→ b) are compatible.

By induction hypothesis, c̄(m′) matches l′γa,sid(c̄ ◦ τ) (with some matcher θ′) iff
parsea,sid (m′, l′, τ) succeeds and in this case, c̄ ◦ (parsea,sid (m′, l′, τ)) = (c̄ ◦ τ) ∪ θ′.

Thus c̄(m) matches lγa,sid(c̄ ◦ τ) iff τ2 := parsea,sid (m′, l′, τ) succeeds and c̄ ◦ τ2 and
(x 7→ b) are compatible.

Since we assume that m = tagsig(s, m′, vk) is of type signature, that τ1 :=

parsea,sid (tagvk (vk), vk(x), τ) succeeds, and that τ1 = τ [x := tagagent(b)], we have

that parsea,sid (m, l, τ) succeeds iff τ2 := parsea,sid (m′, l′, τ) succeeds and τ2 is com-
patible with the partial function (x 7→ tagagent(b)). (Note that τ2 = τ wherever τ
is defined.) Since c̄ is injective, τ2 and (x 7→ tagagent(b)) are compatible iff c̄ ◦ τ2

and (x 7→ b) = c̄ ◦ (x 7→ tagagent (b)) are. Thus parsea,sid(m, l, τ) succeeds iff

τ2 := parsea,sid (m′, l′, τ) succeeds and c̄ ◦ τ2 and (x 7→ b) are compatible, which
in turn holds iff c̄(m) matches lγa,sid(c̄ ◦ τ).

In this case, parsea,sid (m, l, τ) = τ1 ∪ τ2 = τ2 ∪ τ [x := tagagent(b)] = τ2 ∪ (x 7→

tagagent(b)). Moreover, the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) = [l′γa,sid (c̄ ◦ τ)]
sk(x̄)

is θ := θ′ ∪ θ′′. By induction hypothesis we have that c̄ ◦ τ2 = (c̄ ◦ τ) ∪ θ′. Hence
c̄ ◦ parsea,sid (m, l, r) = (c̄ ◦ τ2) ∪ (x 7→ b) = (c̄ ◦ τ) ∪ θ′ ∪ θ′′ = (c̄ ◦ τ) ∪ θ.

Case 10.5: “m was not the result of some call constructa
′,sid ′

([t]R
sk(y), τ)”.

Since we assume that m = tagsig (s, m′, vk) is of type signature and that vk is the

verification key of agent b, we have that c̄(m) = [c̄(m′)]R
′

sk(b) for some R′. Hence c̄(m)

matches lγa,sid(c̄ ◦ τ) = [l′γa,sid(c̄ ◦ τ)]
sk(x̄) iff c̄(m′) matches l′γa,sid(c̄ ◦ τ) (with some

matcher θ′) and θ′ and θ′′ are compatible where θ′′ := (x 7→ b) if τ(x) = ⊥ and
θ′′ := ∅ otherwise. Moreover, θ′ and θ′′ are compatible iff θ′ ∪ (c̄ ◦ τ) and (x 7→ b) are
compatible.

By induction hypothesis, c̄(m′) matches l′γa,sid (c̄ ◦ τ) iff τ2 := parsea,sid (l′, m′, τ)
succeeds, and in this case we have c̄ ◦ τ2 = (c̄ ◦ τ) ∪ θ′. From the injectivity of c̄
we have in this case that θ′ ∪ (c̄ ◦ τ) = c̄ ◦ τ2 and (x 7→ b) = c̄ ◦ (x 7→ tagagent (b))

are compatible iff τ2 and (x 7→ tagagent(b)) are. So c̄(m) matches lγa,sid(c̄ ◦ τ) iff

τ2 := parsea,sid (l′, m′, τ) succeeds and τ2 and (x 7→ tagagent(b)) are compatible.

Since we assume that m = tagsig(s, m′, vk) is of type signature, that τ1 :=

parsea,sid (tagvk (vk), vk(x), τ) succeeds, and that τ1 = τ [x := tagagent(b)], we have

that parsea,sid (m, l, τ) succeeds iff τ2 := parsea,sid (m′, l′, τ) succeeds and τ2 and
(x 7→ tagagent(b)) are compatible. Thus parsea,sid (m, l, τ) succeeds iff c̄(m) matches

lγa,sid(c̄ ◦ τ).

In this case, parsea,sid (m, l, τ) = τ1 ∪ τ2 = τ2 ∪ τ [x := tagagent(b)] = τ2 ∪ (x 7→

tagagent(b)). Moreover, the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) = [l′γa,sid (c̄ ◦ τ)]
sk(x̄)

is θ := θ′ ∪ θ′′. By induction hypothesis we have that c̄ ◦ τ2 = (c̄ ◦ τ) ∪ θ′. Hence
c̄ ◦ parsea,sid (m, l, r) = (c̄ ◦ τ2) ∪ (x 7→ b) = (c̄ ◦ τ) ∪ θ′ ∪ θ′′ = (c̄ ◦ τ) ∪ θ.

Case 11: “l = ZKF (∗; ∗; t1, . . . , tn)”.
Then parsea,sid (m, l, τ) succeeds iff m is of type zero-knowledge, m = tagzk (. . . , F ′, . . . , b̃)
with F ′ = F , τi := parsea,sid (b̃i, ti, τ) succeeds for all i ∈ [n], and all τi are compatible.
(The condition n = n′ from the definition of parsea,sid is automatically fulfilled if m is of

type zero-knowledge because the latter implies that the circuit C
s,n,l

F,b̃
is defined.) In this

case, parsea,sid (m, l, τ) =
⋃

i τi. We distinguish three cases for m:

Case 11.1: “m was the result of some call constructa
′,sid ′

(ZKR
F ′(R; a; b), τ ′)”.

Then by Lemma 4, c̄(m) = ZKR′

F ′(R′; a′; b′) for some R′, R′, a′ and b′i := biγ
a′,sid′

(c̄◦τ ′).
Hence c̄(m) matches lγa,sid(c̄ ◦ τ) = ZKF (∗; ∗; tγa,sid(c̄ ◦ τ)) iff F = F ′ and for all
i ∈ [n], b′i matches tiγ

a,sid(c̄ ◦ τ) (with some matcher θi) and all matchers θi are
compatible.

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 56

Moreover, by definition of construct, we have that m = tagzk (. . . , b̃) with b̃i =
constructa′,sid ′

(bi, τ
′). Thus by Lemma 4, c̄(b̃i) = b′i. Then by induction hypothe-

sis, b′i matches tiγ
a,sid(c̄ ◦ τ) iff τi := parsea,sid (b̃i, ti, τ) succeeds and in this case,

c̄ ◦ τi = (c̄ ◦ τ)∪ θi. Moreover, the matchers θi are compatible iff all c̄ ◦ τi = (c̄ ◦ τ)∪ θi

are compatible (because the domains of τ and θi are disjoint). Because of the injec-
tivity of c̄, this holds iff all τi are compatible. Thus c̄(m) matches lγa,sid(c̄ ◦ τ) iff
F = F ′, τi := parsea,sid (b̃i, ti, τ) succeeds for all i, and all τi are compatible. Thus
c̄(m) matches lγa,sid(c̄ ◦ τ) iff parsea,sid (m, l, τ) succeeds.

In this case, the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) is θ :=
⋃

i θi. And τ :=
parsea,sid (m, l, τ) =

⋃

i τi. By induction hypothesis, c̄ ◦ τi = (c̄ ◦ τ) ∪ θi. Hence
c̄ ◦ τ =

⋃

i

(

(c̄ ◦ τ) ∪ θi

)

= (c̄ ◦ τ) ∪
⋃

i θi = (c̄ ◦ τ) ∪ θ.

Case 11.2: “m is not of type zero-knowledge”.
Then parsea,sid (m, l, τ) fails and c̄(m) is not of the form ZK·

·(. . .) and hence does not
match lγa,sid(c̄ ◦ τ). Thus the lemma is vacuously true.

Case 11.3: “m is of type zero-knowledge but m was not the result of some call
constructa′,sid ′

(ZKR
F ′(R; a; b), τ ′)”.

Then m = tagzk (. . . , F ′, . . . , b̃) for some F ′ and b̃. And c̄(m) = ZKR′

F ′(R′; a′; b′) for
some R′, R′, a′ and b′i := c̄(b̃i). (The case c̄(m) = Gm does not occur because we
assume that no ZK-break occurs.)

Hence c̄(m) matches lγa,sid(c̄ ◦ τ) = ZKF (∗; ∗; tγa,sid(c̄ ◦ τ)) iff F = F ′ and for all
i ∈ [n], b′i matches tiγ

a,sid(c̄ ◦ τ) (with some matcher θi) and all matchers θi are
compatible.

By induction hypothesis, b′i matches tiγ
a,sid (c̄◦ τ) iff τi := parsea,sid (b̃i, ti, τ) succeeds

and in this case, c̄ ◦ τi = (c̄ ◦ τ) ∪ θi. Moreover, the matchers θi are compatible iff
all c̄ ◦ τi = (c̄ ◦ τ) ∪ θi are compatible (because the domains of τ and θi are disjoint).
Because of the injectivity of c̄, this holds iff all τi are compatible. Thus c̄(m) matches
lγa,sid(c̄ ◦ τ) iff F = F ′, τi := parsea,sid (b̃i, ti, τ) succeeds for all i and all τi are
compatible. Thus c̄(m) matches lγa,sid(c̄ ◦ τ) iff parsea,sid(m, l, τ) succeeds.

In this case, the matcher of c̄(m) and lγa,sid(c̄ ◦ τ) is θ :=
⋃

i θi. And τ :=
parsea,sid (m, l, τ) =

⋃

i τi. By induction hypothesis, c̄ ◦ τi = (c̄ ◦ τ) ∪ θi. Hence
c̄ ◦ τ =

⋃

i

(

(c̄ ◦ τ) ∪ θi

)

= (c̄ ◦ τ) ∪
⋃

i θi = (c̄ ◦ τ) ∪ θ.

Case 12: “All other values of l”.
According to the syntax of patterns (page 12), the only missing case is l = {l′}ek(x) with

x /∈ {A1, . . . , Ak}. But by Definition 4, condition 2, such a pattern l cannot occur in a role.
Hence parsea,sid (m, l, τ) will never be invoked.

Proof of Lemma 7. We prove the lemma by induction on the length of m. All cases except

c̄(m) = {t′}r
a,R,sid

ek(a) , c̄(m) = [t′]r
a,R,sid

sk(a) , c̄(m) = ZKra,R,sid

F (r; a; b) follow directly from the definition
of c̄.

In the case c̄(m) = {t′}r
a,R,sid

ek(a) , by definition of c̄, we have that m = constructa,sid ({r′}R
ek(x), τ)

where r′γa,sid (c̄ ◦ τ) = t′ and τ(x) = tagagent (a). By Lemma 4 we have c̄(constructa,sid (r′, τ)) =

r′γa,sid (c̄ ◦ τ) and thus by induction hypothesis, constructa,sid (r′, τ) = c∗(r′γa,sid(c̄ ◦ τ)). Hence

by construction of c∗, we have that c∗({t′}r
a,R,sid

ek(a)) = constructa,sid ({r′}R
ek(x), τ) = m. Hence

c∗(c̄(m)) = m.

The cases c̄(m) = [t′]r
a,R,sid

sk(a) , c̄(m) = ZKra,R,sid

F (r; a; b) are handled analogously.

References

[ABW06] Martin Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks and the
computational soundness of static equivalence. In Proc. 9th International Confer-

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 57

ence on Foundations of Software Science and Computation Structures (FOSSACS),
volume 3921 of Lecture Notes in Computer Science, pages 398–412. Springer, 2006.

[AF01] Mart́ı Abadi and Cédric Fournet. Mobile values, new names, and secure communica-
tion. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pages 104–115, New York, NY, USA,
2001. ACM Press.

[AF06] Pedro Adão and Cédric Fournet. Cryptographically sound implementations for
communicating processes. In Proc. 32nd International Confererence on Automata,
Languages and Programming (ICALP), pages 83–94, 2006.

[AJ01] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational inter-
pretation. In Proc. 4th International Symposium on Theoretical Aspects of Com-
puter Software (TACS), pages 82–94, 2001.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

[BBU08] Michael Backes, Matthias Berg, and Dominique Unruh. A formal language for
cryptographic pseudocode. In Proc. 15th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR), volume 5330 of Lec-
ture Notes in Computer Science, pages 353–376, 2008.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Proc. 11th ACM Conference on Computer and Communications Security, pages
132–145. ACM Press, 2004.

[BCJ+06] Frederik Butler, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Christo-
pher Walstad. Formal analysis of kerberos 5. Theoretical Computer Science,
367(1):57–87, 2006.

[BCK05] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound
implementations of equational theories against passive adversaries. In Proc. 32nd
International Colloquium on Automata, Languages and Programming (ICALP), vol-
ume 3580 of Lecture Notes in Computer Science, pages 652–663. Springer, 2005.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications.
In 17th Annual IEEE Conference on Computational Complexity, Proceedings of
CCC’02, pages 194–203. IEEE Computer Society, 2002. Online available at
http://www.cs.princeton.edu/~boaz/Papers/uargs.ps.

[BGJZ07] Gilles Barthe, Benjamin Gregoire, Romain Janvier, and Santiago Zanella Beguelin.
Formal certification of code-based cryptographic proofs. IACR ePrint Archive,
August 2007. Online available at http://eprint.iacr.org/2007/314.

[BHU09] Michael Backes, Dennis Hofheinz, and Dominique Unruh. A general framework for
computational soundness proofs - or - the computational soundness of the applied
pi-calculus. IACR ePrint Archive 2009/080, 2009.

[BL06] Michael Backes and Peeter Laud. Computationally sound secrecy proofs by mech-
anized flow analysis. In Proc. 13th ACM Conference on Computer and Communi-
cations Security, 2006.

[Bla01] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pages 82–96.
IEEE Computer Society Press, 2001.

http://www.cs.princeton.edu/~boaz/Papers/uargs.ps
http://eprint.iacr.org/2007/314

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 58

[Bla06] Bruno Blanchet. A computationally sound mechanized prover for security protocols.
In Proc. 27th IEEE Symposium on Security & Privacy, pages 140–154, 2006.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS. In Advances in Cryptology: CRYPTO ’98, volume
1462 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, 1998.

[BLMW07] Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan Warinschi. A
generalization of DDH with applications to protocol analysis and computational
soundness. In Advances in Cryptology - CRYPTO 2007, volume 4622 of LNCS,
pages 482–499. Springer, 2007.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct anonymous attestation
protocol. In IEEE Symposium on Security and Privacy 2008, pages 158–169, May
2008.

[BMV04] David Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A symbolic model
checker for security protocols. International Journal of Information Security, 2004.

[BP04] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable Dolev-
Yao style cryptographic library. In Proc. 17th IEEE Computer Security Foundations
Workshop (CSFW), pages 204–218, 2004.

[BP05] Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic se-
crecy. In Proc. 26th IEEE Symposium on Security & Privacy, pages 171–182, 2005.
Extended version in IACR Cryptology ePrint Archive 2004/300.

[BP06] Bruno Blanchet and David Pointcheval. Automated security proofs with sequences
of games. In Advances in Cryptology: CRYPTO 2006, volume 4117 of Lecture Notes
in Computer Science, pages 537–554. Springer, 2006.

[BPW03a] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryp-
tographic library with nested operations (extended abstract). In Proc. 10th
ACM Conference on Computer and Communications Security, pages 220–230,
2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003,
http://eprint.iacr.org/2003/015.

[BPW03b] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Symmetric authentica-
tion within a simulatable cryptographic library. In Proc. 8th European Symposium
on Research in Computer Security (ESORICS), volume 2808 of Lecture Notes in
Computer Science, pages 271–290. Springer, 2003.

[BPW05] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Reactively secure signa-
ture schemes. International Journal of Information Security, 4(4):242–252, 2005.

[BPW06] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the Reactive
Simulatability/UC of Dolev-Yao models with hashes. In Proc. 11th European Sym-
posium on Research in Computer Security (ESORICS), Lecture Notes in Computer
Science. Springer, 2006. Preliminary version in IACR Cryptology ePrint Archive
2006/068, Feb. 2006, http://eprint.iacr.org/.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulatabil-
ity (RSIM) framework for asynchronous systems. Information and Computation,
205(12):1685–1720, 2007.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption—how to
encrypt with RSA. In Alfredo de Santis, editor, Advances in Cryptology, Pro-
ceedings of EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Sci-
ence, pages 92–111. Springer-Verlag, 1995. Extended version online available at
http://www.cs.ucsd.edu/users/mihir/papers/oae.ps.

http://eprint.iacr.org/2003/015
http://eprint.iacr.org/
http://www.cs.ucsd.edu/users/mihir/papers/oae.ps

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 59

[BU08] Michael Backes and Dominique Unruh. Computational soundness of symbolic zero-
knowledge proofs against active attackers. In 21st IEEE Computer Security Foun-
dations Symposium, CSF 2008, 2008. To appear.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 136–145, 2001. Extended version in Cryptology ePrint Archive,
Report 2000/67, http://eprint.iacr.org/.

[Cd06] Ricardo Corin and Jerry den Hartog. A probabilistic hoare-style logic for game-
based cryptographic proofs. In Proc. 33rd International Colloquium on Automata,
Languages and Programming (ICALP), volume 4052 of Lecture Notes in Computer
Science, pages 252–263. Springer, 2006.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Proc. 3rd Theory of Cryp-
tography Conference (TCC), volume 3876 of Lecture Notes in Computer Science,
pages 380–403. Springer, 2006.

[CKKW06a] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. Compu-
tationally sound symbolic secrecy in the presence of hash functions. In Proc. 26th
International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 176–187, 2006.

[CKKW06b] Véronique Cortier, Steve Kremer, Ralf Kı̈¿1
2 sters, and Bogdan Warinschi. Computa-

tionally Sound Symbolic Secrecy in the Presence of Hash Functions. In Proceedings
of the 26th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2006), volume 4337 of Lecture Notes in Computer
Science, pages 176–187. Springer, 2006.

[CLC08] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of obser-
vational equivalence. In Proc. ACM Conference on Computer and Communications
Security, pages 109–118, 2008.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilis-
tic hash functions. In Proc. 30th Annual ACM Symposium on Theory of Computing
(STOC), pages 131–140, 1998.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Ad-
vances in Cryptology, Proceedings of CRYPTO ’98, volume 1462 of Lecture Notes
in Computer Science, pages 13–25. Springer-Verlag, 1998. Online available at
http://eprint.iacr.org/1998/006.

[CW05] Véronique Cortier and Bogdan Warinschi. Computationally sound, automated
proofs for security protocols. In Proc. 14th European Symposium on Programming
(ESOP), pages 157–171, 2005.

[DDM+05] Anupam Datta, Ante Derek, John Mitchell, Vitalij Shmatikov, and Matthieu Tu-
ruani. Probabilistic polynomial-time semantics for a protocol security logic. In
Proc. 32nd International Colloquium on Automata, Languages and Programming
(ICALP), volume 3580 of Lecture Notes in Computer Science, pages 16–29. Springer,
2005.

[DS81] Dorothy E. Denning and Giovanni M. Sacco. Timestamps in key distribution pro-
tocols. Communications of the ACM, 24(8):533–536, 1981.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

http://eprint.iacr.org/
http://eprint.iacr.org/1998/006

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 60

[EG83] Shimon Even and Oded Goldreich. On the security of multi-party ping-pong proto-
cols. In Proc. 24th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 34–39, 1983.

[Fis03] Dennis Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003.
(Flaw detected by Muhammad Faisal Rauf Danka).

[FOPS04] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-
OAEP is secure under the RSA assumption. Journal of Cryptology, 17(2):81–104,
2004. Online available at http://www.di.ens.fr/~pointche/Documents/Papers/
2004_joc.pdf.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–207, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38(3):690–728, 1991. Online available at http://www.wisdom.weizmann.
ac.il/~oded/X/gmw1j.pdf.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In
Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Sci-
ence, pages 323–341. Springer, 2007. Full version available at http://www.cs.ucla.
edu/~rafail/PUBLIC/85.pdf. The definition of extraction zero-knowledge is only
contained in the full version.

[Gol01] Oded Goldreich. Foundations of Cryptography – Volume 1 (Basic Tools). Cam-
bridge University Press, August 2001. Previous version online available at http:

//www.wisdom.weizmann.ac.il/~oded/frag.html.

[Gol04] Oded Goldreich. Foundations of Cryptography – Volume 2 (Basic Applications).
Cambridge University Press, May 2004. Previous version online available at http:
//www.wisdom.weizmann.ac.il/~oded/frag.html.

[GvR08] Flavio D. Garcia and Peter van Rossum. Sound and complete computational inter-
pretation of symbolic hashes in the standard model. Theor. Comput. Sci., 394(1-
2):112–133, 2008.

[HLM03] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key
registration. In Advances in Cryptology: CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 548–564. Springer, 2003.

[IK03] Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about crypto-
graphic constructions. In Proc. 44th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 372–381, 2003.

[JLM05] Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture:
Soundness of formal encryption in the presence of active adversaries. In Proc. 14th
European Symposium on Programming (ESOP), pages 172–185, 2005.

[JLM07] Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Computational soundness
of symbolic analysis for protocols using hash functions. Electronic Notes in Theo-
retical Computer Science, 186:121 – 139, 2007. Proceedings of the First Workshop
in Information and Computer Security (ICS 2006).

[KKW05] Detlef Kähler, Ralf Küsters, and Thomas Wilke. Deciding properties of contract-
signing protocols. In STACS 2005, 22nd Annual Symposium on Theoretical Aspects
of Computer Science, Proceedings, volume 3404 of Lecture Notes in Computer Sci-
ence, pages 158–169. Springer-Verlag, 2005.

http://www.di.ens.fr/~pointche/Documents/Papers/2004_joc.pdf
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf
http://www.cs.ucla.edu/~rafail/PUBLIC/85.pdf
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 61

[KM07] Steve Kremer and Laurent Mazaré. Adaptive soundness of static equivalence. In
Proc. 12th European Symposium On Research In Computer Security (ESORICS),
pages 610–625, 2007.

[KMM94] Richard Kemmerer, Catherine Meadows, and Jon Millen. Three systems for cryp-
tographic protocol analysis. Journal of Cryptology, 7(2):79–130, 1994.

[KR05] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Proc. 14th European Symposium on Programming (ESOP),
LNCS, pages 186–200. Springer-Verlag, 2005.

[KRW04] Detlef Kähler, Küsters Ralf, and Thomas Wilke. Deciding properties
of contract-signing protocols. Technical Report IFI 0409, CAU Kiel,
2004. Online available at http://www.ti.informatik.uni-kiel.de/~kuesters/
publications_html/KaehlerKuestersWilke-IFI-TR-0409-2004.pdf, short ver-
sion in [KKW05].

[Lau01] Peeter Laud. Semantics and program analysis of computationally secure informa-
tion flow. In Proc. 10th European Symposium on Programming (ESOP), pages
77–91, 2001.

[Lau04] Peeter Laud. Symmetric encryption in automatic analyses for confidentiality
against active adversaries. In Proc. 25th IEEE Symposium on Security & Privacy,
pages 71–85, 2004.

[Lau05] Peeter Laud. Secrecy types for a simulatable cryptographic library. In Proc. 12th
ACM Conference on Computer and Communications Security, pages 26–35, 2005.

[LMMS98] Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. A proba-
bilistic poly-time framework for protocol analysis. In Proc. 5th ACM Conference
on Computer and Communications Security, pages 112–121, 1998.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proc. 2nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 1055 of Lecture Notes in
Computer Science, pages 147–166. Springer, 1996.

[Mer83] Michael Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Tech-
nology, 1983.

[MMS98] John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization
of bounded oracle computation and probabilistic polynomial time. In Proc. 39th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 725–733,
1998.

[Moh09] Esfandiar Mohammadi. Computational soundness for symbolic zero-knowledge
proofs against active attackes under relaxed assumptions. Master’s thesis, Saar-
land University, Department of Computer Science, 2009.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in
the presence of active adversaries. In Proc. 1st Theory of Cryptography Conference
(TCC), volume 2951 of Lecture Notes in Computer Science, pages 133–151. Springer,
2004.

[nAG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. In Proc. 4th ACM Conference on Computer and Communications
Security, pages 36–47, 1997.

[Now07] David Nowak. A framework for game-based security proofs. IACR Cryptology
ePrint Archive 2007/199, 2007. http://eprint.iacr.org/.

http://www.ti.informatik.uni-kiel.de/~kuesters/publications_html/KaehlerKuestersWilke-IFI-TR-0409-2004.pdf
http://eprint.iacr.org/

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 62

[NS78] Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 12(21):993–999, 1978.

[Pau98] Lawrence Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Cryptology, 6(1):85–128, 1998.

[SBB+06] Christoph Sprenger, Michael Backes, David Basin, Birgit Pfitzmann, and Michael
Waidner. Cryptographically sound theorem proving. In Proc. 19th IEEE Computer
Security Foundations Workshop (CSFW), pages 153–166, 2006.

[Sch96] Steve Schneider. Security properties and CSP. In Proc. 17th IEEE Symposium on
Security & Privacy, pages 174–187, 1996.

[WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd
USENIX Workshop on Electronic Commerce, pages 29–40, 1996.

Index

adversary
nonuniform, 18

adversary knowledge, 15, 16
agent identifier, 9
arity

α-, 9
β-, 9
ρ-, 9

assumptions
cryptographic, 17

circuit
ZK-, 19, 20

common reference string, see CRS
completeness

of ZK proofs, 5, 8
computational trace, 19, 23
computational instantiation, 24
computational model, 17, 23
computational protocol execution, 18
computational soundness, 25
conclusions, 40
construct (function), 22
construct-pattern, 13, 16
constructing bitstrings, 19, 22
contains true proofs, 10
correctness

perfect, 17
corrupt transition

computational, 18, 24
symbolic, 15, 16

corrupted party, 23
CoSP-framework, 40
CRS, 5, 20
cryptographic assumptions, 17

decryption
deterministic, 17

deduction relation, 10
deduction rules, 10
deterministic extraction, 8
deterministic verification, 8
deterministic decryption, 17
deterministic verification, 17
Dolev-Yao trace, 15, 17

effective subpattern, 14
effective subpattern, 14
encryption scheme

properties of, 17
encryptions

fake, 26, 36
execution

computational protocol, 18
symbolic protocol, 15, 16

existential unforgeability
strong, 18

extractability, 6, 8
extraction

deterministic, 8
extraction trapdoor, 6
extraction zero-knowledge, 6, 8

fake encryptions, 26, 36

garbage, 9
global state

computational, 18
symbolic, 15, 16

IND-CCA, 17
indentifier

agent, 9
interactive zero-knowledge proof, 41

knowledge

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 63

adversary, 15, 16
proof of, 6

length-regularity, 18
of ZK proofs, 7, 8

local state
computational, 23
symbolic, 15, 16

main proof, 27
mapping c̄, 28
match, 13
matcher, 13
message, 10
model

computational, 17, 23
symbolic, 9

negligible, 4
new transition

computational, 18, 24
symbolic, 15, 16

non-negligible, 4
nonce, 9, 15

of honest agent, 9
of adversary, 9

nonuniform adversary, 18

overwhelming, 4

parse (function), 23
parse-pattern, 13, 16
parsing bitstrings, 19
party

corrupted, 23
pattern, 12

construct-, 13, 16
parse-, 13, 16

perfect correctness, 17
pre-DY trace, 32
proof

main, 27
true, 10
valid, 10

proof of knowledge, 6
protocol

k-party, 13
protocol execution

computational, 18
symbolic, 15, 16

ProVerif, 41
public part, 5

random tape, 19, 20
randomness

symbolic, 9, 15

role, 13, 15
role tree, 13, 16

send transition
computational, 18, 24
symbolic, 15, 17

session initialization, see new transition
session id, 16, 23
signature scheme

properties of, 17
simulating ZK proofs, 33
simulating ZK proofs, 25
simulation trapdoor, 5
soundness

computational, 25
of ZK proofs, 5

state
global, computational, 18
global, symbolic, 15, 16
local, computational, 23
local, symbolic, 15, 16

strong existential unforgeability, 18
subpattern

effective, 14
true, 14

symbolic trace, 15, 17
symbolic model, 9
symbolic protocol execution, 15, 16
symbolic randomness, 9, 15
symbolically-sound zero-knowledge, 8

tag
of bitstrings, 20

tape
random, 19, 20

trace
computational, 19, 23
Dolev-Yao, 15, 17
pre-DY, 32
symbolic, 15, 17

transition
corrupt, symbolic, 16
corrupt, computational, 18, 24
corrupt, symbolic, 15
new, symbolic, 16
new, computational, 18, 24
new, symbolic, 15
send, computational, 18, 24
send, symbolic, 15, 17

trapdoor
extraction, 6
simulation, 5

true proofs
contains, 10

true subpattern, 14

M. Backes, D. Unruh / Computational Soundness of Symbolic Zero-Knowledge Proofs 64

true proof, 10
true ZK-proof, 10
type

of bitstrings, 19, 20

underivable subterm, 26, 37
unforgeability

strong existential, 18
unpredictability, 18

of ZK proofs, 7, 8

valid encryption/decryption key pairs, 17
valid proof, 10
valid ZK-proof, 10
variable, 12, 15
verification

deterministic, 8, 17

witness, 5

zero-knowledge
(computational), 5
existence of, 8
symbolic, 4
symbolically-sound, 8

zero-knowledge proofs
interactive, 41

ZK, see zero-knowledge
ZK-atom, 9
ZK-circuit, 19, 20
ZK-formula, 9
ZK-proof

true, 10
valid, 10

ZK-term, 9

	1 Introduction
	2 Zero-Knowledge Proofs
	2.1 Symbolic Zero-Knowledge Proofs
	2.2 Computational Zero-Knowledge Proofs

	3 The Symbolic Model
	3.1 Postponed definitions

	4 The Computational Model
	4.1 Postponed definitions

	5 Computational Soundness
	6 Proof of the Main Theorem
	7 Conclusions
	Appendix
	A Postponed proofs
	References
	Index

