
Required Information Release

Stephen Chong

TR-04-10

Computer Science Group
Harvard University

Cambridge, Massachusetts

Required Information Release

Stephen Chong
School of Engineering and Applied Sciences

Harvard University
chong@seas.harvard.edu

Abstract
Many computer systems have a functional requirement to release
information. Such requirements are an important part of a sys-
tem’s information security requirements. Current information-flow
control techniques are able to reason about permitted information
flows, but not required information flows.

In this paper, we introduce and explore the specification and
enforcement of required information release in a language-based
setting. We define semantic security conditions that express both
what information a program is required to release, and how an
observer is able to learn this information. We also consider the
relationship between permitted and required information release,
and define bounded release, which provides upper- and lower-
bounds on the information a program releases. We show that both
required information release and bounded release can be enforced
using a security-type system.

1. Introduction
Information-flow control holds the promise of strong, end-to-end,
application-specific information security [Sabelfeld and Myers,
2003]. To date, most research on information-flow control has fo-
cused on what flows are permitted or prohibited in a system. For
example, noninterference [Goguen and Meseguer, 1982] prohibits
confidential inputs flowing to public outputs.

Many computer systems release (or declassify) confidential in-
formation as part of their intended functionality, and as such, vi-
olate noninterference. Much work in recent years has considered
weakening noninterference to permit some flow of confidential in-
puts to public outputs (e.g., Li and Zdancewic [2005]; Chong and
Myers [2004]; Clark et al. [2005]; Sabelfeld and Sands [2005];
van der Meyden [2007]; Swamy and Hicks [2008]; Banerjee et al.
[2008]).

However, many systems have more than just permission to re-
lease information; they have an obligation to release information.
In this work, we introduce and explore the specification and en-
forcement of required information release, or simply, required re-
lease.

Examples abound of systems with an obligation to release infor-
mation. The Sarbanes-Oxley Act of 2002 is a United States federal
law that was enacted after a series of corporate accounting scan-
dals, and requires publicly held companies to report details of their
finances to a government agency. Thus, financial systems of such
companies are required to release sensitive financial information to
the government agency. Pharmaceutical companies in many coun-
tries are required to report all results of clinical trials of new drugs

This technical report is the extended version of the paper “Required Infor-
mation Release,” by Stephen Chong, which appears in the Proceeedings of
the 23rd IEEE Computer Security Foundations Symposium, IEEE Computer
Society, 2010.

to a government agency (such as the Food and Drug Administra-
tion) to receive approval. Computer systems that support the con-
duct of clinical trials must release all trial results, and not withhold
negative results. In general, transparency of organizations and pro-
cesses requires the release of sensitive information. Other systems
that are required to release information include the following.
• Sealed bid auctions: at the end of the auction, the winning

bid (and, depending on the auction, the winner’s identity) is
required to be released.
• Information purchase: once a customer has paid for informa-

tion (such as electronic media), the information is required to
be available for download.
• Games: legal game-play often requires release of a player’s

secret information, such as the cards in a player’s hand, or the
location of battleships on a player’s board.
• Course management system: when a professor indicates that

exam results are available, the system is required to allow
students view their grades.
• Credit card sales: the receipt for a credit card purchase is

required to show the final four digits of the customer’s credit
card number.
In the examples above, the required release of information is

an important aspect of each system’s information security. To gain
assurance in the systems’ correct implementation, it is necessary
both to specify the required release (and other information security
requirements) and to verify that the implementation satisfies the
specification.

However, the specification of required release is subtle. What
does it mean for a program to satisfy the required release of infor-
mation? How do we know if a program is successfully and correctly
releasing information? It does not suffice for the output of a pro-
gram to simply depend upon, or be influenced by, the information
required for release. Surprisingly, even if the output contains the
information required for release, the program may not satisfy the
required release of information. We use epistemic logic, and algo-
rithmic knowledge [Halpern et al., 1994] in particular, to guide our
definition of required information release. Required information re-
lease must specify not just what information is to be released, but
also how that information is to be learned by its intended recipient.

Required release is a functional requirement on a system: the
output of a program must allow an observer to learn certain infor-
mation. Required release makes explicit what information the ob-
server learns, and how the observer obtains this knowledge. Nonin-
terference [Goguen and Meseguer, 1982] and most other informa-
tion flow security conditions are not functional requirements.

However, required release is an information flow security con-
dition; it describes a mandatory flow of information to an observer.
By contrast, most existing work in information flow considers per-
mitted flows of information. In terms of dependence, permitted in-
formation flow conditions restrict how the output is permitted to

1 2010/4/28

depend on the inputs. For example, noninterference requires that
public outputs do not depend on private inputs—if a private input
changes, the public output should not change. Required informa-
tion release mandates that outputs must depend on inputs in a way
that allows an observer to learn certain information—if an input
changes, the output must change to allow an observer to learn the
specified information.

Required release interacts with permitted information flows in
more interesting ways than other functional requirements: if a sys-
tem is required to release information, then the system must also
be permitted to release it. Indeed, required information release and
permitted information release can be combined to specify both up-
per and lower bounds on the information that a system releases. We
do so by defining bounded release, a security condition that com-
bines required release and delimited release [Sabelfeld and Myers,
2004], and thus specifies both what information a program is re-
quired to release, and what information it is allowed to release.

For some systems, bounds on information release should be
tight. For example, a company producing reports in accordance
with the Sarbanes-Oxley Act typically wishes to release no more
information than is required by law; thus, the information that their
financial system is permitted to release should be identical to the
information it is required to release. In other systems, the bounds
are not tight, such as in a poker game where some players are
permitted, but not required, to reveal their cards at the end of a
hand.

The remainder of the paper is structured as follows. Section 2
uses the example of a simple credit card sales system to examine
what it means for a system to satisfy required information release.
Section 3 presents an interactive imperative language that we use
in Section 4 to formally define required release. We also define
bounded release, a security condition that specifies what informa-
tion a program is required and permitted to release. We show in
Section 5 that required release and bounded release can be soundly
enforced in an interactive language by a type system. Section 6 dis-
cusses related work, and Section 7 concludes.

2. What is required release?
Consider, as a running example, a (grossly simplified) credit card
sales system that takes a credit card number as input from high
confidentiality channel H , and is required to release the last four
digits to low confidentiality channel L (representing, for example,
the printer, or an audit log). What does it mean for this system to
satisfy the required release of the last four digits?

Noninterference [Goguen and Meseguer, 1982] is a strong in-
formation security condition that requires that public outputs reveal
no information about confidential inputs. Any system that releases
confidential information violates noninterference; the credit card
sales system, which must release the last four digits of the confi-
dential credit card number to a publicly observable printer, violates
noninterference. However, just because a system violates noninter-
ference does not mean it satisfies the required information release.

Consider the following attempt to implement the credit card
sales system.

P1 : input cc fromH;
if (ccmod 10, 000) < 5, 000 then

output 0 to L
else

output 1 to L

The program inputs the credit card number from channel H , and
then outputs either 0 or 1 to channel L. The output observed on
channel L is influenced by the last four digits of the confidential
input, and thus the program does not satisfy noninterference. How-

ever, the program fails to satisfy the required information release,
as an observer of channel L does not learn the credit card number’s
last four digits.

Surprisingly, even if a system outputs the information required
for release, it may fail to satisfy the required information release.
This is demonstrated in the following program, which is another
attempt to implement the credit card sales system.

P2 : input cc fromH;
i := 0;
while i < (ccmod 10, 000) do

output i to L;
i := i+ 1;

output (ccmod 10, 000) to L;
i := i+ 1;
while i < 10, 000 do

output i to L;
i := i+ 1

The command output (ccmod 10, 000) to L in program P2 above
explicitly outputs the credit card’s last four digits. However, every
execution of the program outputs all integers from 0 to 9,999 in
order. An observer of channel L always sees the same output,
regardless of the credit card’s last four digits, and so the observer
learns nothing.

These examples show that it is insufficient for observable output
to be merely correlated with the information required for release,
or even for the output to contain that information. The key insight
is that to satisfy required release, the output must allow an observer
to know what information was required for release.

In models of knowledge based on possible world seman-
tics [Hintikka, 1962; Fagin et al., 1995], an agent has implicit
knowledge (or, simply, knowledge) of fact φ if in all possible worlds
consistent with the agent’s observations, φ is satisfied. In the credit
card system, an observer of channel L knows the last four digits
of the credit card if all credit cards that could have produced the
observed output end in the same four digits. Programs P1 and P2

do not allow an observer of channel L to know the last four digits.
Standard logical approaches to knowledge suffer from the prob-

lem of logical omniscience: an agent knows all logical conse-
quences of its knowledge. The following attempt to implement
the credit card system demonstrates this problem. The program
chooses two large primes, outputs their product, and the result of
XOR-ing the smaller prime with the last four digits of the credit
card number (padded with random bits to be the same length as the
prime).

P3 : input cc fromH;
p := generateLargePrime();
q := generateLargePrime();
output p× q to L;
if p < q then t := p else t := q;
output t xor pad(ccmod 10, 000) to L

A logically omniscient observer of the program’s output knows
what the last four digits of the credit card number are. However,
determining this requires factoring a large number, which is beyond
the abilities of humans and current computer systems to perform in
reasonable time.

Algorithmic knowledge [Halpern et al., 1994] was introduced
to address the problem of logical omniscience, and we can use al-
gorithmic knowledge to reason whether a system satisfies required
release.

An agent has algorithmic knowledge, or explicit knowledge, of
fact φ if the agent has an algorithm that responds “Yes” when
given input φ and the agent’s observations. The agent’s knowledge
algorithm is sound if whenever it responds “Yes” then the agent has

2 2010/4/28

implicit knowledge of φ, and if the knowledge algorithm responds
“No” then the agent does not have implicit knowledge of φ.

Rich classes of knowledge algorithms have been studied that
can conservatively overestimate the computational ability of agents
without giving the agents logical omniscience (e.g., Ramanujam
[1999]; Pucella [2006]). However, we are interested in simple al-
gorithms. Such algorithms may be described in user manuals, spec-
ified by a government agency or auditor, or may be inferred from
self-explanatory output. In all cases, the aim is to make it easy for
an observer to learn the released information. In this setting, the
observer is not the adversary, and it is acceptable (even desirable)
to underestimate the observer’s computational abilities, much as
an instruction manual aims to be usable by as wide an audience
as possible. For some programs (such as P3), there may be sound
knowledge algorithms that are beyond the ability of any observer
to execute in reasonable time; such programs do not allow the ob-
server to easily learn the released information, and are thus of no
interest to us. For required release, we are concerned with the exis-
tence of sufficiently simple sound knowledge algorithms.

The following program does release the last four digits of the
credit card number to channel L.

P4 : input cc fromH;
output “Last 4 credit card digits: ” to L;
output (ccmod 10, 000) to L

Moreover, there is a simple sound knowledge algorithm to pro-
vide explicit knowledge for an observer of channel L: given fact
φ ≡ (ccmod10, 000) = n, respond “Yes” if and only if the second
output is n. Because there is a simple sound algorithm, an observer
can gain explicit (and implicit) knowledge of the last four credit
card digits, and so the program satisfies the required information
release.

To specify required release, we must specify not only what
information is to be released, but also how that information is
to be learned. We formalize this intuition by defining required
information release in terms of a simple interactive programming
language.

3. Language
In this section we present a simple interactive imperative program-
ming language due to O’Neill et al. [2006]. We use an interactive
language as it is more general than the batch model traditionally
used to reason about language-based information flow, and it can
more accurately model real world programs that interact with their
external environment, such as server processes, and programs with
user interfaces.

We assume set L of security levels, ordered by a reflexive
transitive relation v that indicates the relative restrictiveness of
the levels. In this paper, our examples use the two element set
L = {L,H} where L v H . Security level L represents low
confidentiality, and security level H represents high confidential-
ity. More expressive security levels are possible (e.g., Myers and
Liskov [1998]; Chen and Chong [2004]). Metavariable ` ranges
over security levels.

3.1 Users, channels, and strategies
Users interact with executing programs. We assume that security
levels characterize users: the security level of a user indicates the
most restrictive level of information the user is permitted to read.
We assume that users with the same security level can freely col-
laborate, and so, without loss of generality, assume only a single
user at each level.

Users communicate with executing programs via channels. We
assume input on channels is blocking, and output is non-blocking.
We assume that there is a single channel for each user, which, given

the assumption of a single user for each security level, implies a
single channel for each security level. We thus identify channels
with security levels. An event is the transmission of an input or
output on a channel. Event in(`, v) denotes the input of value v
on channel `, and event out(`, v) denotes the output of value v on
channel `. For simplicity we restrict values to integers.

We use Evin and Evout to denote, respectively, the set of all
input and output events. We use Ev(`) to denote the set of all events
that could occur on channel `, and Ev to denote the set of all events.

Evin ,
⋃

`∈L,v∈Z{in(`, v)}

Evout ,
⋃

`∈L,v∈Z{out(`, v)}

Ev(`) ,
⋃

v∈Z{in(`, v), out(`, v)}

Ev ,
⋃

`∈L Ev(`)

Given E ⊆ Ev, an event trace on E is a finite or infinite
sequence t = 〈α0, α1, . . .〉 such that αi ∈ E for all i such that
0 ≤ i < |t|, where |t| is the length of t. For infinite traces t, we
define |t| =∞. The ith element of event trace t is denoted t(i), for
i such that 0 ≤ i < |t|. The empty trace is denoted 〈〉. We write
tˆt′ for the concatenation of finite trace t and trace t′. For traces t
and t′, we say that t extends t′, written t � t′, when t′ is a prefix
of t. Note that if t is an infinite trace, then t is the only trace that
extends it. The set of all traces on E is denoted Tr(E).

The restriction of trace t toE, written t�E, is the trace obtained
by removing from t all events not contained in E. We write t � ` as
shorthand for t�Ev(`).

User strategies express the behavior of users by describing how
users interact with a program. Given trace t, a user of a channel
with security level ` observes the event trace t � Ev(`); a user’s
observations may influence their subsequent interaction with the
program. Formally, a user strategy for a channel with security level
` is a function of type Tr(Ev(`))→ Z, and expresses what input a
user will provide given their previous observations.

Let UserStrat be the set of all user strategies. A joint strategy
is a collection of user strategies, one for each channel. Formally,
a joint strategy ω is a function of type L → UserStrat, that is, a
function from security levels to user strategies. Let Strat be the set
of all joint strategies.

User strategies are sensitive information. In general, we want to
ensure that lower security users do not learn about strategies em-
ployed by higher security users: user ` should not learn anything
about the strategy of user `′, where `′ 6v `. However, informa-
tion release will violate this, revealing some information about the
strategies of higher security users. In Section 4 we will discuss se-
curity requirements, and formally define semantic security condi-
tions.

3.2 Syntax and semantics
We use a simple imperative language, extended with input, output,
and declassification commands. The syntax of this language is:

(expressions) e ::= n | x | e0 ⊕ e1
(commands) c ::= skip | x := e | c0; c1 |

if e then c0 else c1 |
while e do c |
input x from ` |
output e to ` |
x := declassify(e to `)

Metavariable x ranges over Var, the set of all program variables.
Variables take integer values, and literal values n also range over
integers. Metavariable⊕ ranges over total binary operations on the
integers. A state σ maps variables to values, and so is a function
of type Var → Z. A configuration is a 4-tuple (c, σ, t, ω)

3 2010/4/28

OS-ASSIGN

(x := e, σ, t, ω) −→ (skip, σ[x 7→ σ(e)], t, ω)

OS-SEQ-1

(skip; c, σ, t, ω) −→ (c, σ, t, ω)

OS-SEQ-2
(c0, σ, t, ω) −→ (c′0, σ

′, t′, ω)

(c0; c1, σ, t, ω) −→ (c′0; c1, σ
′, t′, ω)

OS-IN

ω(`)(t�`) = v

(input x from `, σ, t, ω) −→ (skip, σ[x 7→ v], tˆ〈in(`, v)〉, ω)

OS-OUT

σ(e) = v

(output e to `, σ, t, ω) −→ (skip, σ, tˆ〈out(`, v)〉, ω)

OS-IF-1
σ(e) 6= 0

(if e then c0 else c1, σ, t, ω) −→ (c0, σ, t, ω)

OS-IF-2
σ(e) = 0

(if e then c0 else c1, σ, t, ω) −→ (c1, σ, t, ω)

OS-WHILE

(while e do c, σ, t, ω) −→ (if e then (c;while e do c) else skip, σ, t, ω)

OS-DECLASSIFY

(x := declassify(e to `), σ, t, ω) −→ (skip, σ[x 7→ σ(e)], t, ω)

Figure 1. Operational semantics

representing a system about to execute c with state σ and joint
strategy ω. Finite trace t is the history of events produced by the
system so far. Terminal configurations have the form (skip, σ, t, ω).
Metavariable m ranges over configurations.

We define a small-step operational semantics for our language,
using the relation −→ over configurations. If (c, σ, t, ω) −→
(c′, σ′, t′, ω) then execution of command c can take a single step
to command c′, while updating the state from σ to σ′. Trace t′

extends t with any events that were produced during the step. Joint
strategy ω is unchanged when a configuration takes a step, and is
included in configurations to simplify notation and presentation.

Figure 1 presents inference rules for the operational seman-
tics. We use σ(e) to denote the evaluation of expression e where
each variable x is replaced with the integer σ(x). Input command
input x from ` takes the next input value v as defined by the user
strategy for `, assigns it to variable x, and updates the trace with in-
put event in(`, v). Similarly, output command output e to ` eval-
uates e to v, and updates the trace with output event out(`, v). De-
classification x := declassify(e to `) is semantically equivalent to
assignment x := e; the declassify annotation and security level `
are used in the type system, described in Section 5.

We use −→∗ to denote the reflexive transitive closure of −→.
For finite trace t, we say configuration m emits t, written m
t, if there is some configuration (c, σ, t, ω) such that m −→∗
(c, σ, t, ω). For infinite trace t, m emits t if m emits all finite
prefixes of t. Note that emitted events may include both input and
output events.

4. Security definitions
In this section we define the security conditions weak required re-
lease and strong required release, which formally express what it
means for a program to satisfy the required release of information.
We also present the security conditions noninterference [Goguen
and Meseguer, 1982] and delimited release [Sabelfeld and Myers,
2004]. Noninterference requires that a program does not release
any confidential information. Delimited release weakens noninter-
ference by specifying what confidential information a program is

allowed to release. We combine delimited release and required re-
lease to define bounds on what a program is permitted and required
to release.

4.1 Required release
To formally define required release, we must be able to express
what information is to be released, and how that information is to be
learned by an observer. We introduce input expressions and output
expressions to express each of these respectively. Input expressions
are expressions over input values supplied on channels; output
expressions are expressions over values output on a single channel.

The syntax for input and output expressions is:

(input expressions) f ::= n | f0 ⊕ f1 | in`[i]
(output expressions) g ::= n | g0 ⊕ g1 | out[i]

Input expression in`[i] refers to the ith input event on channel `,
for i ∈ N. Input expressions may also contain integer constants and
binary operations. Input expressions are evaluated against a trace.
The judgment t �in f ⇓ v means that with trace t, input expression
f evaluates to value v. Evaluation rules for input expressions are
given in Figure 2. If t does not have an ith input event on channel `,
then in`[i] evaluates to ⊥, that is, t �in in`[i] ⇓ ⊥. We assume that
any binary operator ⊕ defined is total over Z⊥ and strict, meaning
that for all m,n ∈ Z⊥, m⊕ n is defined, and if m or n is ⊥, then
m⊕ n = ⊥.

Output expressions are also evaluated against a trace. The judg-
ment t �`out g ⇓ v means that output expression g evaluates to
value v using trace t restricted to channel ` events. Output expres-
sion out[i] refers to the ith output event on channel `, for i ∈ N.
Figure 2 also presents the evaluation rules for output expressions.
Similar to input expressions, if there is no ith output event on chan-
nel `, then out[i] evaluates to ⊥.

Intuitively, user ` learns input expression f from command c
using output expression g, if in every execution that g evaluates to
an integer value (using the output provided to `), then f evaluates
to the same integer. Thus, input expression f indicates what infor-
mation the user is to learn, and output expression g indicates how

4 2010/4/28

t �in n ⇓ n

t �in f0 ⇓ v0
t �in f1 ⇓ v1

t �in f0 ⊕ f1 ⇓ v
v = v0 ⊕ v1

t′ = t�(Ev(`) ∩ Evin)

t′(i) = in(`, v)

t �in in`[i] ⇓ v

t′ = t�(Ev(`) ∩ Evin)

¬(0 ≤ i < |t′|)
t �in in`[i] ⇓ ⊥

t �`out n ⇓ n

t �`out g0 ⇓ v0
t �`out g1 ⇓ v1

t �`out g0 ⊕ g1 ⇓ v
v = v0 ⊕ v1

t′ = t�(Ev(`) ∩ Evout)

t′(i) = out(`, v)

t �`out out[i] ⇓ v

t′ = t�(Ev(`) ∩ Evout)

¬(0 ≤ i < |t′|)
t �`out out[i] ⇓ ⊥

Figure 2. Evaluation rules for input and output expressions

the user learns it—g provides a sound knowledge algorithm. This
leads us to our first definition of required release.

Command c satisfies weak required release of input expression
f to user ` using output expression g if for any trace t that can be
emitted by executing c, if t provides enough output to ` to evaluate
g, then f and g evaluate to the same value.

Definition 1 (Weak required release). Command c satisfies weak
required release of input expression f to user ` using output ex-
pression g exactly when:

For all configurations m = (c, σ, 〈〉, ω)
and for all traces t such that m t,

if t �`out g ⇓ v and v 6= ⊥ then t �in f ⇓ v.

ProgramP4 satisfies weak required release of inH [0]mod10, 000
to L using out[1]: the second output to L is the last four digits of
the firstH input (the credit card number). By contrast, programs P1

and P2 do not satisfy weak required release of inH [0] mod 10, 000
to L for any output expression.

Weak required release is “weak” in that there is no requirement
that command c provide sufficient output to ` for g to evaluate to
an integer value. For example, the program skip satisfies weak re-
quired release of any input expression to L using output expression
out[0], since no output is ever given to L, and output expression
out[0] never evaluates to an integer value.

We can strengthen weak required release to ensure that com-
mand c always eventually provides sufficient output to ` for g to
evaluate to an integer value. Command c satisfies strong required
release of input expression f to user ` using output expression g if
for any trace t that can be emitted by executing c, there is a trace
t′ that extends t, can be emitted by executing c, and provides suf-
ficient output to ` to evaluate g, and f and g evaluate to the same
value.1

Definition 2 (Strong required release). Command c satisfies strong
required release of input expression f to user ` using output expres-
sion g exactly when:

For all configurations m = (c, σ, 〈〉, ω)
and for all traces t such that m t,

there exists trace t′ such that t′ � t, m t′, and
t′ �`out g ⇓ v and t′ �in f ⇓ v for some v 6= ⊥.

Strong required release is strictly stronger than weak required
release: if command c satisfies strong required release of f to `
using g, then it satisfies weak required release of f to ` using
g. Indeed, weak required release is a form of partial correctness,
whereas strong required release is a total correctness condition. The
following program satisfies weak required release, but not strong

1 Since the language is deterministic, this definition suffices to ensure that
enough output is always eventually produced; the definition would need to
be modified for non-deterministic and probabilistic languages.

required release of inH [0] mod 10, 000 to L using out[1], because
in some cases it will never produce sufficient output to L. (For
presentation purposes, we assume that constant strings, such as
“Last 4 credit card digits: ” can be converted to appropriate constant
integer values, and output to channels.)

P5 : input cc fromH;
output “Last 4 credit card digits: ” to L;
if ccmod 10 = 0 then (while 1 do skip) else skip;
output (ccmod 10, 000) to L

Program P4 satisfies strong required release of inH [0]mod 10, 000
to L using out[1], because it always produces appropriate output to
channel L.

Connection to explicit knowledge If a program satisfies (weak or
strong) required release of input expression f to user ` using output
expression g, then output expression g provides a sound knowledge
algorithm for ` to learn the value of f . The knowledge algorithm
takes as input a formula φ and the sequence of events that ` has
observed. The knowledge algorithm is straightforward:

If φ ≡ f = n and t �`out g ⇓ n then respond “Yes”.
Otherwise, respond “?”.

Note that the algorithm never responds “No”, and if the algo-
rithm responds “Yes”, then, because the program satisfies required
release of f to ` using g, t �`out g ⇓ n implies f = n. Thus, the
knowledge algorithm is sound.

Strong and weak required release are both parameterized by out-
put expression g. As discussed in Section 2, the output expression g
may be specified by the consumer of the output (such as an auditor
or government agency), an instruction manual, or may be described
by the program’s output (as in Program P4, where the text “Last 4
credit card digits” is output just before the last four credit card dig-
its). In practice, there may be additional requirements on the form
of the output function, such as a limit on the number of steps re-
quired to evaluate it (analagous to requiring that the instructions
for a task be no more than two pages).

Integrity, availability, and properties Although required infor-
mation release is primarily concerned with the confidentiality of
information, it is also related to the integrity and availability of in-
formation. Weak information release is an integrity requirement: if
the output expression evaluates to an integer value, it must equal the
evaluation of the input expression. Strong information release con-
tains an availability requirement: the output expression must even-
tually evaluate to an integer value. Information security require-
ments are not always easily separable into confidentiality, integrity,
and availability requirements.

Weak and strong required release can be defined as properties:
predicates over single execution traces. Weak required release is
a safety property, and strong required release is neither safety nor

5 2010/4/28

liveness [Alpern and Schneider, 1985]. Recent work by Clarkson
and Schneider [2008] expresses some information-flow conditions
as hyperproperties: predicates of sets of traces. They note that all
information-flow conditions they considered were hyperproperties
and not properties. Although weak and strong required release are
properties, they are clearly constitute part of a systems information
flow requirements, so some information-flow conditions of interest
are properties. Indeed, in Section 4.3 below, we discuss the relation-
ship between required release and delimited release, an information
flow security condition for permitted information release that is a
hyperproperty and not a property.

4.2 Noninterference
Noninterference [Goguen and Meseguer, 1982] is a well-known se-
mantic security condition that requires that public observations re-
veal no secrets. Applied to the interactive setting used here, nonin-
terference ensures that user ` does not gain any knowledge about
the strategy employed by any user `′ such that `′ 6v `. That is,
the strategy of any such user `′ does not interfere with the trace
observed by user `.

More precisely, a program satisfies noninterference if, for all
security levels `, and all configurations m and m′ that agree on the
user strategies of all users `′ such that `′ v `, the traces emitted
by m and m′ are indistinguishable to user `. Two traces t and t′

are indistinguishable to user `, written t ≈` t′ if t � ` extends
t′ � `, or vice-versa. This notion of trace indistinguishability is
suitable given the observational model, which does not allow a
user to directly distinguish a terminated program from a program
in a non-terminating loop, or from a program that may eventually
produce additional output.

Definition 3 (Noninterference). A command c satisfies noninter-
ference exactly when for all levels ` ∈ L:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)
such that ω(`′) = ω′(`′) for all `′ v `,

and for all traces t, t′ such that m t and m′ t′,
we have t ≈` t

′.

Note that both weak and strong required release of f to `
violate noninterference if the input expression f contains an input
expression in`′ [i] such that `′ 6v ` (and the evaluation of f depends
nontrivially on in`′ [i]). For example, any program that satisfies
(weak or strong) required release of inH [0]mod 10, 000 to L (such
as program P4) must violate noninterference, since H 6v L, and L
learns something about the strategy ofH , to wit, the last four digits
of the credit card number that H entered.

4.3 Delimited and bounded release
Noninterference is a very restrictive security condition. Many real-
world programs must violate noninterference in order to satisfy
functional requirements that require or allow the release of infor-
mation.

The security condition delimited release [Sabelfeld and Myers,
2004] weakens noninterference by specifying what information a
program is permitted to release.

An escape hatch is a pair (f, `) of input expression f , and
security level `. Intuitively, given escape hatch (f, `), a program is
permitted to release information f to security level `.2 Thus, given
escape hatches (f0, `0), . . . , (fk, `k), user ` is permitted to learn
the evaluation of fi for any escape hatch (fi, `i) such that `i v `,
in addition to the user strategies of any user `′ such that `′ v `.

2 Sabelfeld and Myers [2004] specify escape hatches as declassification
expressions declassify(e to `), and expressions in escape hatches refer to
initial values of variables.

A program satisfies delimited release by escape hatches (f0, `0),
. . . , (fk, `k) if, for any security level ` and configurations m and
m′ that have the same user strategy for any user `′ such that `′ v `,
if m and m′ respectively emit traces t and t′ that agree on the eval-
uation of all escape hatches that may release information to level `,
then the traces emitted by m and m′ are indistinguishable to user
`. Formally, we say that traces t and t′ agree up to ` on escape
hatches (f0, `0), . . . , (fk, `k) if for all i ∈ 0..k such that `i v `,
we have t �in fi ⇓ vi and t′ �in fi ⇓ vi for some vi 6= ⊥.

Definition 4 (Delimited release). Command c satisfies delimited
release by escape hatches (f0, `0), . . . , (fk, `k) exactly when for
all levels ` ∈ L:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)
such that ω(`′) = ω′(`′) for all `′ v `,

and for all traces t, t′ such that m t and m′ t′,
if t and t′ agree up to ` on

escape hatches (f0, `0), . . . , (fk, `k),
then t ≈` t

′.

Delimited release generalizes noninterference: if command c
satisfies delimited release by an empty set of escape hatches, then
c satisfies noninterference.

Both delimited release and required release are concerned with
information flow, and with the knowledge an observer acquires. Re-
quired release specifies what information, at a minimum, a program
must release. It specifies what an observer must be able to (explic-
itly) know, and can be viewed as specifying “lower bounds” on
what information a program releases. By contrast, delimited release
specifies what an observer is permitted to (implicitly) know, and
can be seen as specifying “upper bounds”, the maximum informa-
tion a program is permitted to release. We can combine the security
conditions of delimited release and required release to obtain both
upper and lower bounds on a program’s information release.

By analogy with escape hatches (which can be defined as open-
ings in the roof of a building, and specify the upper bounds on infor-
mation release), we use escape chutes (passages down which things
may pass) to define the lower bounds of information release. An es-
cape chute is a tuple (f, `, g) of input expression f , security level `,
and output expression g. We define bounded release by combining
delimited release by escape hatches, and required release by escape
chutes.

Definition 5 (Bounded release). Command c satisfies weak (strong)
bounded release by escape chutes

(f0, `0, g0), . . . , (fk, `k, gk)

and escape hatches

(f ′0, `
′
0), . . . , (f ′n, `

′
n)

exactly when
1. for all i ∈ 0..k, c satisfies weak (strong) required release of fi

to `i using gi; and
2. c satisfies delimited release by escape hatches (f ′0, `

′
0), . . . ,

(f ′n, `
′
n)

Program P4 satisfies strong bounded release by escape chute
(inH [0]mod10, 000, L, out[1]) and escape hatch (inH [0]mod10, 000,
L). Thus, bounded release tells us not only that P4 releases the in-
put expression inH [0] mod 10, 000, but also that this is the only
information released by P4.

The following program has different upper and lower bounds. It
satisfies strong bounded release by escape chute (inH [0]mod10, 000,
L, out[1]) and escape hatches (inH [0] mod 10, 000, L) and
(inH [0] div 1015, L). It always releases the last four digits of the
credit card number (via output expression out[1]) and it may in

6 2010/4/28

addition release information about the first digit of the (16 digit)
credit card number.

P6 : input cc fromH;
x := declassify(ccmod 10, 000 to L);
output “Last 4 credit card digits: ” to L;
output x to L;
y := declassify(cc div 1015 to L);
if y = 4 then output “Visa” to L else skip

There is a consistency property between the escape hatches
and escape chutes. Since escape chutes are the “lower bounds” of
information release, they must contain no more information than
the escape hatches, the “upper bounds” of information release.
More precisely, if t and t′ are traces that can be produced by a
command satisfying bounded release, and t and t′ agree on all input
and output events on all channels up to some level `, and agree on
the value of all escape hatches that declassify to ` or below, then for
each escape chute at level ` or below, either t and t′ agree on the
value of the escape chute, or t and t′ do not have sufficient input
events to evaluate the escape chute. We say that traces t and t′ agree
on escape chute (fi, `i, gi) if t �in fi ⇓ vi and t′ �in fi ⇓ vi for
some vi 6= ⊥.

Property 1 (Consistency). If command c satisfies (weak or strong)
bounded release by escape chutes (f0, `0, g0), . . . , (fk, `k, gk) and
escape hatches (f ′0, `

′
0), . . . , (f ′n, `

′
n) then

for all ` ∈ L, and for all configurations m = (c, σ, 〈〉, ω)
and m′ = (c, σ, 〈〉, ω′), and for all traces t, t′ such that
m t and m′ t′,

if t and t′ agree up to ` on
escape hatches (f ′0, `

′
0), . . . , (f ′n, `

′
n), and

for all `′ v ` we have t�`′ = t′ �`′

then for all i ∈ 0..k such that `i v `,
either t �in fi ⇓ ⊥, or t′ �in fi ⇓ ⊥, or
t and t′ agree on escape chute (fi, `i, gi).

Proof. (Sketch) Given ` and t and t′ such that t and t′ agree up to
` on escape hatches (f ′0, `

′
0), . . . , (f ′n, `

′
n), and t � `′ = t′ � `′ for

all `′ v `, then we can construct joint user strategies ω and ω′ such
that m t and m′ t′, and ω(`′) = ω′(`′) for all `′ v `.

For any escape chute (fi, `i, gi) such that `i v `, suppose
t0 �

`i
out gi ⇓ vi and t′0 �

`i
out gi ⇓ v′i for some vi, v′i 6= ⊥. By

delimited release, t ≈`i t
′, and so, t and t′ agree on the values of

all output expressions required to evaluate gi to an integer value.
Therefore, vi = v′i. By bounded release, the evaluation of fi in
t and t′ also equal vi, and so and t and t′ agree on escape chute
(fi, `i, gi). ut

5. Enforcement
In this section we show that weak bounded release can be soundly
enforced with a security type system. Weak bounded release is
the conjunction of weak required release, and delimited release.
Since weak required release is a safety property, clearly other
enforcement mechanisms could also be used to enforce it, including
dynamic mechanisms such as execution monitors. However, due to
the similarity of escape chutes and escape hatches, a type system
to enforce delimited release can easily be adapted to enforce weak
bounded release as well.

Our type system conservatively tracks both the security level of
information as it flows through a program, and what input expres-
sions have been output and declassified. This allows us to ensure
that (i) confidential information is never output to non-confidential
channels; (ii) only appropriate escape hatches are declassified; and
(iii) appropriate escape chutes are output to the correct channel in
the correct order.

For command c, type judgments have the form

pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′

where entities to the left of the turnstile (`) indicate the context
before the execution of c, and primed versions on the right hand
side of the judgment indicate how the contexts change as a result
of the execution of c.

Security level typing context Γ maps variables to security lev-
els, and indicates an upper bound on the information stored in each
variable. Program counter level pc is an upper bound on the in-
formation that may cause command c to be executed, and is used
to track implicit information flows [Denning and Denning, 1977].
Typing context Γ and program counter level pc are standard in se-
curity type systems. Our type system is flow-sensitive, as it allows
command c to modify Γ, and is based on the flow-sensitive security
type system of Hunt and Sands [2006].

The remaining entities in the context (C, ∆, E, andH) are used
to track what input expressions have been output and declassified.
Specifically, we conservatively track how many input and output
events have been produced on each channel, what input expression
(if any) is stored in each variable, what input expressions (if any)
have been output, and what input expressions have been declassi-
fied.
• C : L → Z⊥×Z⊥ counts the input and output events that have

occurred on each channel. If C(`) = (i, j), then the program
has received i input events from channel `, and produced j
output events to channel `. If i = ⊥, then an unknown number
of input events have been received on channel `, and similarly,
if j = ⊥, an unknown number of output events have been
produced.
• ∆ : Var → InputExp⊥ indicates what input expression is

stored in each variable. For any variable x, if ∆(x) = f then
the value stored in x is equivalent to input expression f . If
∆(x) = ⊥ then nothing is known about the value stored in
x.
• E : L × Z → InputExp⊥ indicates which input expressions

have been output to channels.3 If E(`, i) = f then the ith
value output on channel ` was equal to the evaluation of input
expression f . If E(`, i) = ⊥ then either the ith output to
channel ` has not yet been produced, or nothing is known about
the ith output to channel `.
• H : ℘(InputExp×L) is a set of escape hatches that may have

been declassified.
Figure 3 presents inference rules for the typing judgment. Given

a function h, we write h[a 7→ b] for the function that evaluates to b
on input a, and otherwise behaves like h. We use Γ(e) to denote an
upper bound of all levels Γ(x) for variables x occurring in e; if L
is a join semi-lattice, then this is the join of all Γ(x) for x in e. We
extend function ∆ to a homomorphism on program expressions,
and write ∆(e) for the result of applying the homomorphism to
expression e.

In the typing rules, security level context Γ and program counter
level pc do not interact with other parts of the context, and by them-
selves form a standard flow-sensitive information-flow security-
type system, similar to that of Hunt and Sands [2006]. In the fol-
lowing discussion of the typing rules, we focus on the type system’s
novel aspects.

For assignment x := e, T-ASSIGN updates input expression
context ∆ for x to ∆(e), which is either ⊥ or an input expression
equal to e at this program point. The typing rule T-DECLASSIFY for
declassification x := declassify(e to `) is similar to assignment,
but escape hatch (∆(e), `) is added to declassification effect H .
Note that the rule implicitly requires ∆(e) 6= ⊥ since H must

3 “E” is the uppercase “ε”, the Greek letter epsilon.

7 2010/4/28

T-ASSIGN
pc v ` Γ(e) v `

Γ′ = Γ[x 7→ `] ∆′ = ∆[x 7→ ∆(e)]

pc,Γ;C,∆,E, H ` x := e . Γ′;C,∆′,E, H

T-SEQ
pc,Γ;C,∆,E, H ` c0 . Γ′;C′,∆′,E′, H ′

pc,Γ′;C′,∆′,E′, H ′ ` c1 . Γ′′;C′′,∆′′,E′′, H ′′

pc,Γ;C,∆,E, H ` c0; c1 . Γ′′;C′′,∆′′,E′′, H ′′

T-IN
pc v ` Γ′ = Γ[x 7→ `]

C′ = incin(C, `) ∆′ = recordInput(∆, x, C, `)

pc,Γ;C,∆,E, H ` input x from ` . Γ′;C′,∆′,E, H

T-OUT
pc v ` Γ(e) v ` C′ = incout(C, `)

E′ = recordOutput(E, C, `,∆(e))

pc,Γ;C,∆,E, H ` output e to ` . Γ;C′,∆,E′, H

T-IF
pc v pc′ Γ(e) v pc′ i = 0, 1

pc′,Γ;C,∆,E, H ` ci . Γ′;C′,∆′,E′, H ′

pc,Γ;C,∆,E, H ` if e then c0 else c1 . Γ′;C′,∆′,E′, H ′

T-WHILE
pc v pc′ Γ(e) v pc′

pc′,Γ;C,∆,E, H ` c . Γ;C,∆,E, H

pc,Γ;C,∆,E, H ` while e do c . Γ;C,∆,E, H

T-DECLASSIFY

pc v `′ ` v `′ Γ′ = Γ[x 7→ `′]

∆′ = ∆[x 7→ ∆(e)] H ′ = H ∪ {(∆(e), `)}
pc,Γ;C,∆,E, H ` x := declassify(e to `) . Γ′;C,∆′,E, H ′

T-SUB
Γ0 v Γ1 Γ′1 v Γ′0 pc0 v pc1

C0 � C1 C′1 � C′0 ∆0 � ∆1 ∆′1 � ∆′0
E0 � E1 E′1 � E′0 H0 ⊆ H1 H ′1 ⊆ H ′0

pc1,Γ1;C1,∆1,E1, H1 ` c . Γ′1;C′1,∆
′
1,E
′
1, H

′
1

pc0,Γ0;C0,∆0,E0, H0 ` c . Γ′0;C′0,∆
′
0,E
′
0, H

′
0

T-SKIP

pc,Γ;C,∆,E, H ` skip . Γ;C,∆,E, H recordInput(∆, x, C, `) =

{
∆[x 7→ ⊥] if C(`) = (⊥, j)
∆[x 7→ in`[i]] if C(`) = (i, j), i 6= ⊥

recordOutput(E, C, `, f) =

{
E if C(`) = (i,⊥)

E[(`, j) 7→ f] if C(`) = (i, j), j 6= ⊥

incin(C, `) =

{
C if C(`) = (⊥, j)
C[` 7→ (i+ 1, j)] if C(`) = (i, j), i 6= ⊥

incout(C, `) =

{
C if C(`) = (i,⊥)

C[` 7→ (i, j + 1)] if C(`) = (i, j), j 6= ⊥

Figure 3. Typing rules

contain escape hatches. Rule T-SEQ simply threads the context
through a sequence of commands. A skip command has no effect
on the context, shown in rule T-SKIP.

Command input x from ` assigns the next input from channel `
to variable x. Rule T-IN updates input expression context ∆ using
helper function recordInput(∆, x, C, `), which updates ∆(x) ei-
ther to ⊥ if the number of input events on channel ` is not known,
or to input expression in`[i], where i is the number of input events
received on channel `. If known, the number of input events on
channel ` is incremented using the helper function incin(C, `).

Command output e to ` outputs expression e to channel `. Us-
ing helper function recordOutput(E, C, `, f), rule T-OUT records
that the jth output on channel ` is equal to input expression ∆(e),
where j is the number of output events produced on channel `,
and increments the number of output events produced on channel
` with helper function incout(C, `). If the number of output events
produced on channel ` is unknown (i.e., j = ⊥), then no update to
E or C is made.

The subsumption rule T-SUB allows the context to be weak-
ened, or made less precise. It uses the flat ordering�: for any lifted

set S⊥, and for any a, b ∈ S⊥, a � b iff a = b or b = ⊥. We ex-
tend the � relation in the obvious way to pairs, and to a pointwise
relation over functions. For example, ∆0 � ∆1 iff for all x ∈ Var,
∆0(x) � ∆1(x). Similarly, we extend the binary relation v over
L to a pointwise relation over functions with codomain L.

The rules for if and while commands (T-IF and T-WHILE re-
spectively) type check their sub-commands with a program counter
level bounded below by pc and Γ(e), since e controls the execution
of the sub-commands. Rule T-WHILE requires that context is un-
changed by the execution of the while command; for any channel `,
this means either that the loop body performs no input or output on
`, or that the context cannot precisely track the number on inputs or
outputs received on channel `, i.e., C(`) = (i, j) and ⊥ ∈ {i, j}.
Similarly for an if command, the context will lose track of the num-
ber on inputs or outputs received on channel ` unless both branches
always perform the same number of inputs and outputs on `.

The type system can easily be converted into an algorithmic
type system, using the same technique as Hunt and Sands [2006]. If
the security levels L and binary relationv form a join-semi lattice,

8 2010/4/28

substOutExp(E, `, n) = n
substOutExp(E, `, g0 ⊕ g1) = substOutExp(E, `, g0) ⊕

substOutExp(E, `, g1)
substOutExp(E, `, out[i]) = E(`, i)

Figure 4. substOutExp(E, `, g)

then type checking and type inference with the algorithmic type
system is decidable in time polynomial in the size of the program.

If command c is well-typed, then it satisfies both weak required
release, and delimited release. Theorem 1 below states this claim
formally. To state Theorem 1 concisely, we first introduce a helper
function and additional notation.

Helper function substOutExp(E, `, g) takes output context E,
security level `, and output expression g, and substitutes any occur-
rence of out[i] with input expression E(`, i), that is, the input ex-
pression that E claims was the ith output on channel `. For example,
if E((L, 2)) = inH [1], then substOutExp(E, L, 42 + out[2]) =
42+ inH [1]. Rules for substOutExp(E, `, g) are given in Figure 4.

We assume there is a notion of equivalence between input ex-
pressions, denoted by ≡. We require that if f0 ≡ f1, then for all
traces t and v ∈ Z⊥, t �in f0 ⇓ v iff t �in f1 ⇓ v. The equiva-
lence relation could be syntactic identity, or syntactic identity up to
commutativity and associativity of operators, or, (depending on the
operators in the language) a deeper semantic equivalence.

Finally, for any set S and v ∈ S, we use v as shorthand for
a constant function that always returns v. For example, (0, 0) is a
function that always returns the pair (0, 0).

Theorem 1. If pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H for
some Γ0 and pc, then

1. c satisfies weak required release of input expression f to user
` using output expression g if substOutExp(E, `, g) ≡ f .

2. c satisfies delimited release by escape hatches (f0, `0), . . . ,
(fk, `k) if for all (f, `) ∈ H there exists i ∈ 0..k such that
f ≡ fi and `i v `.

A proof of Theorem 1 appears in Appendix A.
If command c is well-typed, then because it satisfies both weak

required release, and delimited release, it satisfies weak bounded
release.

Corollary 1. Command c satisfies weak bounded release by escape
chutes (f0, `0, g0), . . . , (fk, `k, gk) and escape hatches (f ′0, `

′
0),

. . . , (f ′n, `
′
n) if

pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H

for some Γ0 and pc, and substOutExp(E, `, gi) ≡ fi for all
i ∈ 0..k and for all (f, `) ∈ H there exists i ∈ 0..n such that
f ≡ f ′i and `′i v `.

Proof. Immediate from Theorem 1. ut

Although program P4 satisfies bounded release, it does not
type-check: it attempts to release information fromH to L but does
not have any declassify annotations. Program P6 does type-check.
The judgment

L,L; (0, 0),⊥,⊥, ∅ ` P6 . Γ;C,∆,E, H

holds for

Γ = L[cc 7→ H,x 7→ L, y 7→ L]

C = (0, 0)[H 7→ (1, 0), L 7→ (0,⊥)]

∆ = ⊥[cc 7→ inH [0], x 7→ inH [0] mod 10, 000,

y 7→ inH [0] div 1015]

E = ⊥[(L, 0) 7→ “...”, (L, 1) 7→ inH [0] mod 10, 000]

H = {(inH [0] mod 10, 000, L), (inH [0] div 1015, L)}.

Thus, by Corollary 1, P6 satisfies weak bounded release by
escape chute (inH [0] mod 10, 000, L, out[1]) and escape hatches
(inH [0] mod 10, 000, L) and (inH [0] div 1015, L).

A more sophisticated static analysis (or a more restrictive lan-
guage) could enforce strong required release, by reasoning about
the termination of loops, and the eventual production of outputs.

6. Related work
Much recent work has considered information release. Sabelfeld
and Sands [2005] present a survey of work on (permitted) infor-
mation release, and introduce four aspects of declassification: who,
what, where and when. These aspects are also relevant to required
information release. This work is primarily concerned with what
information is required for release, expressed using input expres-
sions. Strong required release relates to the when aspect: it man-
dates that information is eventually released, whereas weak re-
quired release places no requirements on when (if ever) information
is released.

Sabelfeld and Sands [2005] also introduce several prudent prin-
ciples of declassification. Of these principles, semantic consistency
is directly applicable to required release, and is satisfied by weak
and strong required release, and bounded release: semantically
equivalent programs satisfy the same security conditions. The other
principles do not seem directly applicable to required release.

Previous work on specification and enforcement of information
release focuses on permitted information release. To the best of our
knowledge, this work is the first to address required information
release. Appropriate extensions to the policies and enforcement
mechanisms of previous work may allow them to reason about
required release. The automata for information release of Swamy
and Hicks [2008], and the flowspecs used by Banerjee et al. [2008]
seem particularly suitable for extending for required release.

Askarov and Sabelfeld [2007b] introduce localized delimited
release, which refines delimited release by restricting not only
what information may be released, but where it may be released
(at an appropriate declassify command). The type system used
by Sabelfeld and Myers [2004] to enforce delimited release also
enforces localized delimited release, so we speculate that the type
system used in this paper to enforce bounded release would also
enforce an appropriately defined localized bounded release.

Askarov and Sabelfeld [2007a] define the semantic security
condition gradual release in terms of attacker knowledge: an at-
tacker’s knowledge of secrets may become more precise only at
specified declassification events. Gradual release restricts permitted
information release, and as such it suffices to use implicit knowl-
edge; since we are concerned with required release, we use algo-
rithmic knowledge to ensure that knowledge can be obtained with
reasonable resources. The use of algorithmic knowledge leads us to
specify how an observer learns released information, in addition to
what information they learn.

Askarov and Sabelfeld [2009] present semantic security con-
ditions that generalize localized delimited release and gradual re-
lease, and consider their enforcement using a combination of static
and dynamic techniques in an interactive language. Since weak re-
quired release is a safety property, it could be enforced using dy-
namic techniques, such as execution monitors [Schneider, 2000].

9 2010/4/28

O’Neill [2006] presents many information flow conditions in an
epistemic framework, but doesn’t consider algorithmic knowledge
or required information release.

As discussed in Section 4.1, required information release is con-
cerned with the integrity and availability of information, in addition
to its confidentiality. Zheng and Myers [2005] study the end-to-end
enforcement of availability policies, and present a policy frame-
work for specifying confidentiality, integrity, and availability poli-
cies. Their policies are based on the decentralized label model [My-
ers and Liskov, 2000], and specify who may affect the confidential-
ity, integrity, and availability of information. By contrast, this work
focuses on what aspects of availability and integrity: what informa-
tion must be available, and what it must be equal to.

7. Conclusion
As part of their correct functionality, many systems are required
(not just permitted) to release information. This paper introduces
the problem of required information release: specifying, reasoning
about, and enforcing, the information security of systems that must
release information.

We have defined semantic conditions for required information
release. Inspired by work on algorithmic knowledge, the semantic
conditions must specify both what information is to be released,
and how that information is to be learned by an observer. Input
expressions specify what information is to be released, and output
expressions specify how an observer learns the information. A
program satisfies weak required release of input expression f to
user ` using output expression g if whenever user ` is able to
evaluate g, then f evaluates to the same value. A program satisfies
strong required release if it satisfies weak required release, and
eventually produces sufficient output for user ` to evaluate g.

We investigated the relationship between a system’s required
and permitted information release, and defined bounded release,
which combines required release with delimited release. Bounded
release specifies upper and lower bounds on the information a
system releases. For many systems, these bounds should be tight:
the system should release all and only information it is required
to release. We have shown that (weak) bounded release can be
conservatively enforced by a type system.

Both weak and strong required release are properties: predicates
over single execution traces. Noninterference, delimited release,
and many other information security requirements, are hyperprop-
erties, but not properties. One may thus be concerned whether re-
quired information release is an information security requirement.
We believe that required information release, while a property, is
clearly concerned with the flow of information in a system: it re-
quires that, at a minimum, certain information flows to an observer.
We have shown a connection between required information release
and delimited release: whereas required information release speci-
fies the minimum information flow from high security inputs to low
security outputs that a system must satisfy, delimited release spec-
ifies maximum information flow. Thus, we believe that required
information release is part of a system’s information security re-
quirements.

There is still much left to understand with respect to required
information release. There are systems with information release
requirements that cannot be expressed using the policies presented
in this paper. For example, financial reports of a company should be
released to all shareholders, not a subset; if Alice and Bob are the
shareholders, the system must release reports to Alice if and only if
it releases that information to Bob. In terms of enforcing required
information release, it may be impractical to explicitly specify the
knowledge algorithm by which an observer may learn the released
information; static analyses may allow the automatic discovery of

the knowledge algorithm, thus reducing the burden of proving a
system satisfies required information release.

To build trustworthy computer systems, it is important to under-
stand and provably enforce a system’s information security require-
ments. By introducing the concept of required information release,
and providing mechanisms to specify and enforce these require-
ments, this work brings us closer to the goal of strong, end-to-end,
application-specific information security.

Acknowledgments
We thank Andrew Myers for very useful discussions and feedback
about this work. We also thank Michael Clarkson, Allan Friedman,
Tyler Moore, Kevin O’Neill, Fred Schneider, and Jeff Vaughan for
interesting and helpful discussions related to this work, and the
anonymous reviewers for their useful comments.

References
B. Alpern and F. B. Schneider. Defining liveness. Information

Processing Letters, 21(4):181–185, Oct. 1985.

A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi-
fication, encryption and key release policies. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 207–221.
IEEE Computer Society, 2007a.

A. Askarov and A. Sabelfeld. Localized delimited release: combin-
ing the what and where dimensions of information release. In
Proceedings of the 2007 Workshop on Programming Languages
and Analysis for Security, pages 53–60. ACM Press, 2007b.

A. Askarov and A. Sabelfeld. Tight enforcement of information-
release policies for dynamic languages. In Proceedings of the
22nd IEEE Computer Security Foundations Symposium, 2009.

A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive de-
classification policies and modular static enforcement. In Pro-
ceedings of the IEEE Symposium on Security and Privacy. IEEE
Computer Society, May 2008.

H. Chen and S. Chong. Owned policies for information security.
In Proceedings of the 17th IEEE Computer Security Foundations
Workshop. IEEE Computer Society, June 2004.

S. Chong and A. C. Myers. Security policies for downgrading.
In Proceedings of the 11th ACM Conference on Computer and
Communications Security. ACM Press, Oct. 2004.

D. Clark, S. Hunt, and P. Malacaria. Quantified interference for
a while language. Electronic Notes in Theoretical Computer
Science, 112:149–166, Jan. 2005.

M. R. Clarkson and F. B. Schneider. Hyperproperties. In Proceed-
ings of the 21st IEEE Computer Security Foundations Sympo-
sium, July 2008.

D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):
504–513, July 1977.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge, MA, 1995.

J. A. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 11–20. IEEE Computer Society, Apr. 1982.

J. Y. Halpern, Y. Moses, and M. Y. Vardi. Algorithmic knowledge.
In Proceedings of the 5th Conference on Theoretical Aspects of
Reasoning about Knowledge, pages 255–266, Mar. 1994.

J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

10 2010/4/28

S. Hunt and D. Sands. On flow-sensitive security types. In Con-
ference Record of the Thirty-Third Annual ACM Symposium
on Principles of Programming Languages, pages 79–90. ACM
Press, Jan. 2006.

P. Li and S. Zdancewic. Downgrading policies and relaxed nonin-
terference. In Conference Record of the Thirty-Second Annual
ACM Symposium on Principles of Programming Languages.
ACM Press, Jan. 2005.

A. C. Myers and B. Liskov. Complete, safe information flow with
decentralized labels. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 186–197. IEEE Computer Society,
May 1998.

A. C. Myers and B. Liskov. Protecting privacy using the decentral-
ized label model. ACM Transactions on Software Engineering
and Methodology, 9(4):410–442, Oct. 2000.

K. R. O’Neill. Security and Anonymity in Interactive Systems. PhD
thesis, Cornell University, Aug. 2006.

K. R. O’Neill, M. R. Clarkson, and S. Chong. Information-flow se-
curity for interactive programs. In Proceedings of the 19th IEEE
Computer Security Foundations Workshop. IEEE Computer So-
ciety, June 2006.

F. Pottier and V. Simonet. Information flow inference for ML. In
Conference Record of the Twenty-Ninth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 319–330,
2002.

R. Pucella. Deductive algorithmic knowledge. Journal of Logic
and Computation, 16(2):287–309, 2006.

R. Ramanujam. View-based explicit knowledge. Annals of Pure
and Applied Logic, 96:343–368, 1999.

A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, Jan. 2003.

A. Sabelfeld and A. C. Myers. A model for delimited release. In
Proceedings of the 2003 International Symposium on Software
Security, number 3233 in Lecture Notes in Computer Science,
pages 174–191. Springer-Verlag, 2004.

A. Sabelfeld and D. Sands. Dimensions and principles of declas-
sification. In Proceedings of the 18th IEEE Computer Security
Foundations Workshop, pages 255–269, June 2005.

F. B. Schneider. Enforceable security policies. ACM Transactions
on Information and System Security, 3(1):30–50, 2000.

N. Swamy and M. Hicks. Verified enforcement of automaton-
based information release policies. In Proceedings of the 2008
Workshop on Programming Languages and Analysis for Secu-
rity. ACM Press, June 2008.

R. van der Meyden. What, indeed, is intransitive noninterference?
In Proceedings of the 12th European Symposium On Research In
Computer Security, volume 4734 of Lecture Notes in Computer
Science, pages 235–250. Springer, Sept. 2007.

L. Zheng and A. C. Myers. End-to-end availability policies and
noninterference. In Proceedings of the Proceedings of the 18th
IEEE Computer Security Foundations Workshop, pages 272–
286, June 2005.

11 2010/4/28

A. Proof of Theorem 1
In this appendix we prove Theorem 1. Section A.1 shows that a well-typed program satisfies required release, and Section A.2 shows that a
well-typed program satisfies delimited release. We first introduce and prove some useful lemmas and theorems about the type system.

We say that a configuration (c, σ, t, ω) satisfies context C,∆,E if the context C,∆,E accurately reflects the configuration. That is, the
entity C records how many input and output events have been received and sent on each channel, and must agree trace t. Similarly, ∆ records
input expressions that are equivalent to values stored in the state, and the state σ and trace t must agree on these values. Finally, E records
input expressions that are equivalent to output values, and t must satisfy these relationships.

Definition 6. We say that configuration (c, σ, t, ω) satisfies context C,∆,E, written C,∆,E,� (c, σ, t, ω) if all of the following conditions
hold.

1. For all ` ∈ L, let C(`) = (i, j).
(a) Either i = ⊥ or |t�(Evin ∩ Ev(`))| = i; and
(b) Either j = ⊥ or |t�(Evout ∩ Ev(`))| = j.

2. For all x ∈ Var, either ∆(x) = ⊥ or t �in ∆(x) ⇓ σ(x).
3. For all ` ∈ L and i ∈ N, either E(`, i) = ⊥ or t �in E(`, i) ⇓ v where (t�(Ev(`) ∩ Evout))(i) = out(`, v).

If a configuration satisfies context C,∆,E, then it also satisfies a weaker, or less precise, context C′,∆′,E′.

Lemma 1. If C,∆,E,� (c, σ, t, ω) and C � C′ and ∆ � ∆′ and E � E′ then C′,∆′,E′,� (c, σ, t, ω).

Proof. For any `, let C′(`) = (i′, j′) and C(`) = (i, j). If i′ 6= i then i′ = ⊥, and similarly if j′ 6= j then j′ = ⊥. Therefore condition 1 is
satisfied.

Similarly, if ∆(x) 6= ∆′(x), then ∆′(x) = ⊥, and so condition 2 is satisfied.
Finally, for all ` and i, if E(`, i) 6= E′(`, i) then E′(`, i) = ⊥ and so condition 3 is satisfied. ut

The operational semantics preserve typings.

Lemma 2 (Type preservation). If

C,∆,E,� (c, σ, t, ω)

and

pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′

and

(c, σ, t, ω) −→ (c′, σ′, t′, ω),

then there exists C′′, ∆′′, E′′, H ′′, Γ′′ and pc′′ such that

pc′′,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′

and

C′′,∆′′,E′′,� (c′, σ′, t′, ω).

Proof. By induction on the typing judgment pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′.

• T-SKIP
Trivial, as there is no (c′, σ′, t′, ω) such that (skip, σ, t, ω) −→ (c′, σ′, t′, ω).

• T-ASSIGN
In this case, c = x := e, c′ = skip, σ′ = σ[x 7→ σ(e)], t′ = t, C′ = C, ∆′ = ∆[x 7→ ∆(e)], E′ = E, H ′ = H , Γ′ = Γ[x 7→ `].
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′ as required.
Since C,∆,E,� (c, σ, t, ω) we have for all y ∈ Var such that y 6= x either ∆′′(y) = ⊥ or t �in ∆′′(y) ⇓ σ(y). We have
∆′′(x) = ∆(e), and if ∆(e) 6= ⊥ then, since σ′′(x) = σ(x), we can show by induction on the structure of e that t �in ∆′′(x) ⇓ σ(x).
Moreover, since C′′ = C and E′′ = E and t′ = t we have C′′,∆′′,E′′,� (c′, σ′, t′, ω) as required.

• T-SEQ
In this case, c = c0; c1. If c0 6= skip then the result follows trivially from the inductive hypothesis. If c0 = skip then c′ = c1, and σ′ = σ
and t′ = t. The result follows easily from pc,Γ;C,∆,E, H ` c′ . Γ′;C′,∆′,E′, H ′.

• T-IN
In this case, c = input ` from x, c′ = skip, σ′ = σ[x 7→ v], t′ = tˆ〈in(`, v)〉, C′ = incin(C, `), ∆′ = recordInput(∆, x, C, `),
E′ = E, H ′ = H , Γ′ = Γ[x 7→ `].
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′ as required.
If C′′ 6= C then C′′(`) = (i, j) for some i, j and C(`) = (i−1, j). Since |t�(Evin ∩Ev(`))| = i−1, we have |t′ �(Evin ∩Ev(`))| = i.
Also, either j = ⊥ or |t′ �(Evout ∩ Ev(`))| = j.
If ∆′′(x) 6= ⊥ then i 6= ⊥ and ∆′′(x) = in`[i]. Since σ′(x) = v and (t′ �(Ev(`) ∩ Evin))(i) = in(`, v) we have t′ �in ∆(x) ⇓ σ′(x).
Thus we have C′′,∆′′,E′′,� (c′, σ′, t′, ω) as required.

12 2010/4/28

• T-OUT
In this case, c = output e to `, c′ = skip, σ′ = σ, t′ = tˆ〈out(`, σ(e))〉,C′ = incout(C, `), ∆′ = ∆, E′ = recordOutput(E, C, `,∆(e)),
H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′ as required.
IfC′′ 6= C thenC′′(`) = (i, j) for some i, j andC(`) = (i, j−1). Since |t�(Evout∩Ev(`))| = j−1, we have |t′ �(Evout∩Ev(`))| = j.
Also, either i = ⊥ or |t′ �(Evin ∩ Ev(`))| = i.
If E′′ 6= E then j 6= ⊥ and E′′(`, j) = ∆(e). If ∆(e) 6= ⊥ then since (t′ � (Ev(`) ∩ Evout))(j) = out(`, σ(e)) we can show by
induction on the structure of e that t �in ∆(e) ⇓ σ(e).
Thus we have C′′,∆′′,E′′,� (c′, σ′, t′, ω) as required.

• T-IF
In this case, c = if e then c0 else c1, c′ = ci, σ′ = σ, t′ = t, C′ = C, ∆′ = ∆, E′ = E, H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′ and C′,∆′,E′,� (c′, σ, t, ω) as required.

• T-WHILE
In this case, c = while e do c0, c′ = if e then (c;while e do c) else skip, σ′ = σ, t′ = t, C′ = C, ∆′ = ∆, E′ = E, H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
We can easily construct a judgment pc,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′, and moreover C′,∆′,E′,� (c′, σ, t, ω) as
required.

• T-DECLASSIFY
In this case, c = x := declassify(e to `), c′ = skip, σ′ = σ[x 7→ σ(e)], t′ = t, C′ = C, ∆′ = ∆[x 7→ ∆(e)], E′ = E,
H ′ = H ∪ {(∆(e), `)}, Γ′ = Γ[x 7→ `].
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ ` c′ . Γ′;C′,∆′,E′, H ′ as required.
Since C,∆,E,� (c, σ, t, ω) we have for all y ∈ Var such that y 6= x either ∆′′(y) = ⊥ or t �in ∆′′(y) ⇓ σ(y). We have
∆′′(x) = ∆(e), and if ∆(e) 6= ⊥ then, since σ′′(x) = σ(x), we can show by induction on the structure of e that t �in ∆′′(x) ⇓ σ(x).
Moreover, since C′′ = C and E′′ = E and t′ = t we have C′′,∆′′,E′′,� (c′, σ′, t′, ω) as required.

• T-SUB
In this case, we have pc1,Γ1;C1,∆1,E1, H1 ` c . Γ′1;C′1,∆

′
1,E
′
1, H

′
1 where Γ v Γ1, Γ′1 v Γ′, pc v pc1, C � C1, C′1 � C′,

∆ � ∆1, ∆′1 � ∆′, E � E1, E′1 � E′, H ⊆ H1, and H ′1 ⊆ H ′.
By the inductive hypothesis, and Lemma 1 we have pc1,Γ

′′
1 ;C′′1 ,∆

′′
1 ,E

′′
1 , H

′′
1 ` c′ . Γ′1;C′1,∆

′
1,E
′
1, H

′
1 where C′′1 ,∆′′1 ,E′′1 ,�

(c′, σ′, t′, ω).
By T-SUB we have pc′′1 ,Γ

′′
1 ;C′′1 ,∆

′′
1 ,E

′′
1 , H

′′
1 ` c′ . Γ′;C′,∆′,E′, H ′ as required.

ut

The type system ensures that the count of input and output events on each channel can only increase, or lose precision.

Lemma 3. Given pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′ and ` ∈ L, let C(`) = (i, j) and C′(`) = (i′, j′). Either i 6= ⊥ and i′ 6= ⊥
and i < i′ or i′ = ⊥. Also, either j 6= ⊥ and j′ 6= ⊥ and j < j′ or j′ = ⊥.

Proof. Proof by induction on pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′.

• T-SKIP, T-ASSIGN, T-WHILE, T-DECLASSIFY
Trivial, as C′ = C.

• T-SEQ, T-IF
Follows easily from the inductive hypothesis.

• T-SUB
Follows easily from the inductive hypothesis, and ordering �.

• T-IN
Here C′ is identical to C with one possible exception for some `′, in which case C′(`′) = (i+ 1, j) where C(`′) = (i, j).

• T-OUT
Here C′ is identical to C with one possible exception for some `′, in which case C′(`′) = (i, j + 1) where C(`′) = (i, j).

ut

Similarly, the type system ensures that for typing context E (which records input expressions that are equivalent to output values), the
post-context may be less precise than the pre-context, but otherwise agrees with it. That is, once the type system has recorded that a given
input expression is equivalent to a given output value, the type system can not change it to a different input expression.

Lemma 4. Given pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′ and ` ∈ L, let C(`) = (i, j). If j = ⊥ then for all k ∈ N, we have
E(`, k) � E′(`, k). If j ∈ N then for all 0 ≤ k < j, we have E(`, k) � E′(`, k).

Proof. By induction on the typing judgment pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′.

• T-SKIP, T-ASSIGN, T-IN, T-WHILE, T-DECLASSIFY Trivial, as E′ = E.

13 2010/4/28

• T-SEQ
Here c = c0; c1 and pc,Γ;C,∆,E, H ` c0 . Γ′′;C′′,∆′′,E′′, H ′′ and pc′′,Γ′′;C′′,∆′′,E′′, H ′′ ` c1 . Γ′;C′,∆′,E′, H ′.
If j = ⊥ then by the inductive hypothesis, we have for all k ∈ N, we have E(`, k) � E′′(`, k). Moreover, by Lemma 3, C′′(`) = (i′′,⊥)
for some i′′. Thus, by another application of the inductive hypothesis, we have for all k ∈ N, we have E′′(`, k) � E′(`, k), and so for all
k ∈ N, we have E(`, k) � E′(`, k) as required.
If j ∈ N then by the inductive hypothesis, for all 0 ≤ k < j, we have E(`, k) � E′′(`, k). By Lemma 3, C′′(`) = (i′, j′) and either
j′ > j or j′ = ⊥. Either way, by another application of the inductive hypothesis for all 0 ≤ k < j, we have E′′(`, k) � E′(`, k), and so
for all 0 ≤ k < j, we have E(`, k) � E′(`, k) as required.

• T-SUB
Here we have pc1,Γ1;C1,∆1,E1, H1 ` c . Γ′1;C′1,∆

′
1,E
′
1, H

′
1 where E � E1 and E′1 � E′.

If j = ⊥ then E1(`) = (i1,⊥) for some i1, and by the inductive hypothesis, for all k ∈ N we have E1(`, k) � E′1(`, k), and since
E′1 � E′, we have for all k ∈ N we have E(`, k) � E′(`, k) as required.
If j 6= ⊥ then E1(`) = (i1, j1) for some i1, j1 where either j1 = j or j1 = ⊥. Either way, by the inductive hypothesis, for all 0 ≤ k < j,
we have E1(`, k) � E′1(`, k), and since E′1 � E′, we have for all k ∈ N we have E(`, k) � E′(`, k) as required.

• T-IF
Trivial, by inductive hypothesis.

• T-OUT
Here, E′ = recordOutput(E, C, `′, f) for some `′ and f . If ` 6= `′, then E(`, k) = E′(`, k) for all k ∈ N. If ` = `′ and j = ⊥, then
E = E′. If ` = `′ and j 6= ⊥, then E(`, k) = E′(`, k) for all 0 ≤ k < j. In all cases, the required result holds.

ut

The substitution function substOutExp(E, `, g) is correct, in that if output expression g evaluates to a value v, then replacing all out[i]
subexpressions with appropriate input expressions stored in E will result in an input expression that also evaluates to v.

Lemma 5. If C,∆,E,� (c, σ, t, ω) and t �`out g ⇓ v and E(`, i) 6= ⊥ for all i such that out[i] appears in g (that may affect the evaluation
of g), then t �in substOutExp(E, `, g) ⇓ v

Proof. By induction on substOutExp(E, `, g). The only interesting case is g = out[i] (where out[i] may affect the evaluation of the whole
output expression). In that case, substOutExp(E, `, g) = E(`, i) 6= ⊥. We have (t � (Evout ∩ Ev(`)))[i] = out(`, v), and so, since
C,∆,E,� (c, σ, t, ω), we have t �in E(`, i) ⇓ v. ut

Another useful lemma is that the program counter level pc is a lower bound on the side effects of a command.

Lemma 6. If
pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′

and
(c, σ, t, ω) −→ (c′, σ′, t′, ω),

then for all ` such that pc 6v `, we have

• t�` = t′ �` and
• if Γ′(x) = ` then σ(x) = σ′(x).

Proof. By induction on pc,Γ;C,∆,E, H ` c .Γ′;C′,∆′,E′, H ′. The interesting cases are T-ASSIGN, T-DECLASSIFY, T-IN, and T-OUT.
In each of these cases pc is a lower bound on the side effect. ut

A.1 Required release
Having shown several useful lemmas, we are now ready to prove that well-typed programs satisfy required release.

Lemma 7. If
pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H

for some Γ0 and pc, and substOutExp(E, `, g) ≡ f , then c satisfies weak required release of input expression f to user ` using output
expression g.

Proof. Assume pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H for some Γ0 and pc, and substOutExp(E, `, g) ≡ f . Let m = (c, σ, 〈〉, ω) for
some σ and ω. Suppose that m −→∗ (c′, σ′, t, ω) and t �`out g ⇓ v for some v 6= ⊥. We need to show that t �in f ⇓ v.

By repeated application of Lemma 2, there exists C′, ∆′, E′, H ′, Γ′ and pc′ such that pc′,Γ′;C′,∆′,E′, H ′ ` c′ . Γ;C,∆,E, H and
C′,∆′,E′,� (c′, σ′, t, ω). Since t �`out g ⇓ v for v 6= ⊥, there have been sufficient output events to channel ` to evaluate g to a non-⊥ value.
Since C′,∆′,E′,� (c′, σ′, t, ω), we have C′(`) = (i, j) and either j = ⊥ or j = |t � (Evout ∩ Ev(`))|. Either way, by Lemma 4, we have
substOutExp(E′, `, g) = substOutExp(E, `, g). Since substOutExp(E′, `, g) ≡ f , then E′(`, i) 6= ⊥ for all i such that out(`, i) appears
in g (that may affect the evaluation of g). By Lemma 5, t �in substOutExp(E′, `, g) ⇓ v. From the definition of ≡, we have t �in f ⇓ v as
required. ut

A.2 Delimited release
We prove that the type system enforces delimited release user a proof technique based on the technique of Pottier and Simonet [2002]
for showing noninterference in the ML programming language. We define a new language, IMPI2, that can represent two executions of a
program. We show that type preservation in IMPI2 implies that the program satisfies delimited release. (For convenience, we use IMPI to
refer to the interactive imperative language presented in Section 3.)

14 2010/4/28

A.2.1 Syntax and semantics
The language IMPI2 extends the interactive language with pair constructs for commands L c1 | c2 M, integers L v1 | v2 M, and events Lα1 |α2 M.
The pair constructs represent different commands, integers, and events that may arise in two different executions of a program. A command
pair cannot be nested inside another command pair, but can otherwise appear nested at arbitrary depth. Integer pairs are used to represent
different input values that may be provided by different user strategies, and to track how states differ in different executions of a program:
user strategies in IMPI2 are functions from (IMPI) traces to integers and integer pairs, and stores in IMPI2 are functions from variables to
integers and integer pairs. We introduce the special event void, and allow elements of event pairs to range over events and void. The constant
void is used to indicate that an event occurred in only one of the two executions. We also allow input and output values to range over integer
pairs and integers.

(expressions) e ::= . . . | L v1 | v2 M
(commands) c ::= . . . | L c1 | c2 M

For an extended command c, let the projections bcc1 and bcc2 represent the two commands that c encodes. The projection functions satisfy
bL c1 | c2 Mci = ci, and are homomorphisms on other commands. Similarly for integer pairs, bL v1 | v2 Mci = vi. The projection functions are
extended to states, so that

bσci(x) =

{
v if σ(x) = n

vi if σ(x) = L v1 | v2 M

The evaluation of expressions are also extended, so that binary operations ⊕ are homomorphic on integer pairs. Thus, σ(e), the evaluation
of expression e using state σ, may be either an integer n or an integer pair L v1 | v2 M.

We extend projection to event pairs (bLα1 |α2 Mci = αi) and define projection homomorphically on events. We define projection on
traces inductively, as follows.

b〈〉ci = 〈〉

b〈α0, α1, . . .〉ci =

{
b〈α1, . . .〉ci if bα0ci = void

〈bα0ci〉ˆb〈α1, . . .〉ci otherwise

Finally, we extend projection to joint strategies, so that for any ` and t, bωci(`)(t) = bω(`)(t)ci.
We indicate IMPI2 configurations with a bullet (•) subscript: (c, σ, t, ω)•. A IMPI2 configuration represents a pair of IMPI configurations.
The complete operational semantics of IMPI2 are given in Figure 5. Note that rules OS2-ASSIGN, OS2-SEQ-1, OS2-SEQ-2, OS2-IN,

OS2-OUT, OS2-IF-1, OS2-IF-2, OS2-DECLASSIFY, and OS2-WHILE are similar to their counterparts in the language IMPI. Rules OS2-
IF-1 and OS2-DECLASSIFY have been modified to be restricted to apply only to integer results of evaluating expression e.

The rule OS2-PAIR-LIFT evaluates one of the two subcommands of a pair command L c1 | c2 M. The memory and trace are update to
indicate that only one of the two executions represented by the configuration made progress. Thus, bσcj = bσ′cj and btcj = bt′cj , where
j ∈ {1, 2} is the execution that did not make progress. Note that the small step relation used in the premise is small step relation of language
IMPI.

The rule OS2-PAIR-SKIP applies when the two commands represented by a command pair have both finished executing. This rule
removes the command pair.

The rule OS2-PAIR-IF applies when the evaluation of a conditional expression differs in the two executions represented by the IMPI2

configuration. This rule introduces a command pair, representing the different branches that may be taken by the two executions. This is the
only rule that introduces command pairs.

The rule OS2-PAIR-DECLASSIFY applies when an expression is declassified in both executions represented by the execution, and the
evaluation of the expression is the same in both executions.

A.2.2 Adequacy
The language IMPI2 is adequate to express the execution of two IMPI programs. We show that the execution of a IMPI2 program is sound (a
step taken by a IMPI2 program corresponds to one or zero steps taken by its projections) and complete (given two IMPI executions, there is
a IMPI2 execution whose projection agrees with at least one of them). We write −→= for the reflexive closure of −→.

Lemma 8 (Soundness). If (c, σ, t, ω)• −→ (c′, σ′, t′, ω)•, then (bcci, bσci, btci, bωci) −→= (bc′ci, bσ′ci, bt′ci, bωci) for i ∈ {1, 2}.

Proof. By induction on the derivation (c, σ, t, ω)• −→ (c′, σ′, t′, ω)•. The interesting cases are the new rules introduced for IMPI2: OS2-
PAIR-LIFT, OS2-PAIR-SKIP, OS2-PAIR-IF, and OS2-PAIR-DECLASSIFY. For a reduction using OS2-PAIR-LIFT, clearly one of the two
projections takes a step, while the other projection remains unchanged. For OS2-PAIR-SKIP, both projections remain unchanged. For both
OS2-PAIR-IF, and OS2-PAIR-DECLASSIFY, both projections take a step. ut

If an IMPI2 configuration is stuck, it is because one of the two projections is stuck.

Lemma 9 (Stuck configurations). If (c, σ, t, ω)• is stuck (i.e., cannot be reduced and c 6= skip), then (bcci, bσci, btci, bωci) is stuck for
some i ∈ {1, 2}.

Proof. By structural induction on command c. ut

Given two IMPI evaluations, there is an IMPI2 evaluation that represents the same IMPI evaluation for at least one of the two evaluation.

Lemma 10 (Completeness). If (bcci, bσci, btci, bωci) −→∗ (c′i, σ
′
i, t
′
i, bωci) for i ∈ {1, 2}, then there exists a IMPI2 configuration

(c′, σ′, t′, ω)• such that (c, σ, t, ω)• −→∗ (c′, σ′, t′, ω)• and (bc′ci, bσ′ci, bt′ci, bωci) = (c′i, σ
′
i, t
′
i, bωci) for some i ∈ {1, 2}.

15 2010/4/28

OS2-ASSIGN

(x := e, σ, t, ω)• −→ (skip, σ[x 7→ σ(e)], t, ω)•

OS2-SEQ-1

(skip; c, σ, t, ω)• −→ (c, σ, t, ω)•

OS2-SEQ-2
(c0, σ, t, ω)• −→ (c′0, σ

′, t′, ω)•

(c0; c1, σ, t, ω)• −→ (c′0; c1, σ
′, t′, ω)•

OS2-IN

ω(`)(t�`) = v

(input x from `, σ, t, ω)• −→ (skip, σ[x 7→ v], tˆ〈in(`, v)〉, ω)•

OS2-OUT

σ(e) = v

(output e to `, σ, t, ω)• −→ (skip, σ, tˆ〈out(`, v)〉, ω)•

OS2-IF-1
σ(e) 6= 0 σ(e) ∈ Z

(if e then c0 else c1, σ, t, ω)• −→ (c0, σ, t, ω)•

OS2-IF-2
σ(e) = 0

(if e then c0 else c1, σ, t, ω)• −→ (c1, σ, t, ω)•

OS2-DECLASSIFY

σ(e) 6= L v | v M
(x := declassify(e to `), σ, t, ω)• −→ (skip, σ[x 7→ σ(e)], t, ω)•

OS2-WHILE

(while e do c, σ, t, ω)• −→ (if e then (c;while e do c) else skip, σ, t, ω)•

OS2-PAIR-SKIP

(L skip | skip M, σ, t, ω)• −→ (skip, σ, t, ω)•

OS2-PAIR-LIFT
{i, j} = {1, 2} (ci, bσci, btci, bωci) −→ (c′i, σ

′
i, t
′
i, bωci) c′j = cj

σ′ = λx.

{
Lσ′1(x) |σ′2(x) M if bσci(x) 6= σ′i(x)

σ(x) otherwise

t′ =

{
t if btci = t′i
tˆ〈Lα0 |α1 M〉 if btci 6= t′i

αi = t′i(|t′i| − 1) αj = void

(L c1 | c2 M, σ, t, ω)• −→ (L c′1 | c′2 M, σ′, t′, ω)•

OS2-PAIR-IF

σ(e) = L v1 | v2 M c′i =

{
c0 if vi 6= 0

c1 if vi = 0

(if e then c0 else c1, σ, t, ω)• −→ (L c′1 | c′2 M, σ, t, ω)•

OS2-PAIR-DECLASSIFY

σ(e) = L v | v M
(x := declassify(e to `), σ, t, ω)• −→ (skip, σ[x 7→ v], t, ω)•

Figure 5. Operational semantics of IMPI2

Proof. Let τi = (bcci, bσci, btci, bωci) . . . (c′i, σ′i, t′i, bωci) be the sequence of configurations that witnesses (bcci, bσci, btci, bωci) −→∗
(c′i, σ

′
i, t
′
i, bωci).

Let ni be the length of τi. For a sequence IMPI2 configurations τ = (c, σ, t, ω)• . . . (c
′, σ′, t′, ω)• that witnesses (c, σ, t, ω)• −→∗

(c′, σ′, t′, ω)•, let fi(τ) be ni minus the number of reduction steps in τ that reduce the ith projection. Note that fi(τ) is non-negative.
Consider g(τ) = min(f1(τ), f2(τ)). If g(τ) = 0, then τ is a sequence that satisfies the conditions.

Suppose g(τ) > 0. Consider the function

h(τ) = (g(τ), |f1(τ)− f2(τ)|, numPairs(τ [|τ | − 1]))

where τ [|τ | − 1] refers to the last configuration in the sequence τ , and numPairs((c, σ, t, ω)•) returns the number of pair commands in c.
Note that all elements of the triple returned by h(τ) are non-negative. If we can extend τ by one step to a sequence τ ′ such that h(τ ′) < h(τ)
under lexicographic ordering, then, by repeated applications, eventually we will produce a sequence τ ′′ such that g(τ ′′) = 0.

We now show how to extend sequence τ to a sequence τ ′ such that h(τ ′) < h(τ). By assumption, g(τ) > 0, so neither last configuration
of τ1 or τ2 is stuck. By Lemma 9, we can extend τ by one more step, producing trace τ ′. By Lemma 8, either fi(τ ′) = fi(τ)− 1 for some
i ∈ {1, 2}, or fi(τ ′) = fi(τ) for all i ∈ {1, 2}. If the former, then h(τ ′) < h(τ). If the latter, then the rule OS2-PAIR-SKIP was used in the
reduction, and the last configuration of τ ′ has one fewer pair commands than the last configuration of τ , and so h(τ ′) < h(τ). ut

16 2010/4/28

A.2.3 Type preservation
We extend the type system to IMPI2 commands and configurations. Typing judgments are now of the form

pc,Γ;C,∆,E, H `` c . Γ′;C′,∆′,E′, H ′

where ` ∈ L. Intuitively, if IMPI2 command c is well-typed with typing parameter `, then c represents the two IMPI commands that are
indistinguishable from the point of view of any user `′ such that `′ v `.

Because our type system is flow-dependent, we need to extend the typing context entities Γ, ∆, and E so that they range over pairs. This
allows the expression of different typing contexts for the two IMPI commands represented by a single IMPI2 command. Thus, Γ ranges over
security levels L and pairs of security levels (written L `1 | `2 M. Similarly, ∆ and E range over elements of InputExp⊥ and pairs of elements
of InputExp⊥. We also extend the entity C so that its range is (Z⊥ ∪ (Z⊥ × Z⊥)) × (Z⊥ ∪ (Z⊥ × Z⊥)). That is, for any ` ∈ L, we
have C(`)(i, j), where i is either an integer (indicating the number of inputs received on channel `), ⊥ (indicating an unknown number of
inputs received on channel `), or a pair (i1, i2), where i1 indicates inputs received on channel ` in the first execution, and i2 indicates inputs
received on channel ` in the second execution. Similarly, j describes the outputs sent on channel ` in both executions. We define projection
operations b·c1 and b·c2 for all the extended entities. We extend relations v and � such that

` v L `1 | `2 M ⇐⇒ ` v `1 and ` v `2
L `1 | `2 M v ` ⇐⇒ `1 v ` and `2 v `

L `1 | `2 M v L `′1 | `′2 M ⇐⇒ `1 v `′1 and `2 v `′2
v � L v1 | v2 M ⇐⇒ v � v1 and v � v2
L v1 | v2 M � v ⇐⇒ v1 � v and v2 � v

L v1 | v2 M � L v′1 | v′2 M ⇐⇒ v1 � v′1 and v2 � v′2

Typing rules for IMPI (given in Figure 3) are made into typing rules for IMPI2 by adding the typing parameter ` to every rule. In addition,
we severely restrict when the typing context entities may differ for the two different IMPI commands represented by a single IMPI2 command.
We require for judgment pc,Γ;C,∆,E, H `` c . Γ′;C′,∆′,E′, H ′ that (a) the image of C′, ∆′, E′ and Γ′ do not contain any pairs (i.e.,
they are suitable IMPI entities); and (b) if c does not contain a command pair, then C, ∆, E and Γ do not contain any pairs. We use the
predicate noPairs(Γ, C,∆,E) to indicate that the image of C, ∆, E and Γ do not contain any pairs.

All typing rules for IMPI2 are presented in Figure 6. The typing rule for the new pair command, T2-PAIR, requires that both projections
type check using IMPI typing rules, for a program counter level pc′ that is at least as restrictive as typing parameter `. Intuitively, this will
ensure that any side-effects of a command pair will not be observable at level ` or below. Note that the premise of T2-PAIR uses the typing
judgment for IMPI, i.e., without the typing parameter `. This is because well-formed commands do not have nested command pairs. All
typing rules other than T2-PAIR correspond closely to their IMPI counterpart.

We define a notion of satisfaction for IMPI2 configurations. Intuitively, an IMPI2 configuration satisfies context C,∆,E,Γ for ` if the
two IMPI configurations represented by the IMPI2 configuration are identical at all levels `′ such that `′ v `, and each IMPI configuration
satisfies the appropriate IMPI context. We also require that no command pair appears as a subcommand of an if or while command.

Definition 7. We say that configuration (c, σ, t, ω)• satisfies context C,∆,E,Γ for `, written Γ, C,∆,E �` (c, σ, t, ω)• if all of the
following conditions hold.

1. For all x ∈ Var, if σ(x) is a pair value then Γ(x) 6v `.
2. For all i such that 0 ≤ i < |t|, if value(t(i)) is a pair value, then level(t(i)) 6v `, where

value(Lα1 |α2 M) = L 0 | 0 M
value(in(`, v)) = v

value(out(`, v)) = v

level(L void |α M) = level(α)

level(Lα | void M) = level(α)

level(in(`, v)) = `

level(out(`, v)) = `

3. For all `′, t′, if ω(`′)(t′) is a pair value, then `′ 6v `.
4. bCci, b∆ci, bEci,� (bcci, bσci, btci, bωci) for i ∈ {1, 2}.
5. No command pair appears as a subcommand of an if or while command of c.

If a configuration satisfies context C,∆,E,Γ for `, then it also satisfies a weaker, or less precise, context C′,∆′,E′,Γ′.

Lemma 11. If Γ, C,∆,E �` (c, σ, t, ω)• and C � C′ and ∆ � ∆′ and E � E′ and Γ v Γ′ then Γ′, C′,∆′,E′ �` (c, σ, t, ω)•.

Proof. If Γ(x) is a pair value, then Γ(x) 6v `, and Γ(x) v Γ′(x). If Γ′(x) v `, then Γ(x) v `, a contradiction.
We have bC′ci, b∆′ci, bE′ci,� (bcci, bσci, btci, bωci) for i ∈ {1, 2} from Lemma 1.
The remaining requirements do not depend on the typing context. ut

If IMPI2 command c is well-typed, then both projections of c are well-typed (in the IMPI type system).

17 2010/4/28

T2-ASSIGN

pc v `′ Γ(e) v `′ noPairs(Γ, C,∆,E)

Γ′ = Γ[x 7→ `′] ∆′ = ∆[x 7→ ∆(e)]

pc,Γ;C,∆,E, H `` x := e . Γ′;C,∆′,E, H

T2-SEQ
pc,Γ;C,∆,E, H `` c0 . Γ′;C′,∆′,E′, H ′

pc,Γ′;C′,∆′,E′, H ′ `` c1 . Γ′′;C′′,∆′′,E′′, H ′′

noPairs(Γ′, C′,∆′,E′) noPairs(Γ′′, C′′,∆′′,E′′)

if c0 does not contain any command pairs then noPairs(Γ, C,∆,E)

pc,Γ;C,∆,E, H `` c0; c1 . Γ′′;C′′,∆′′,E′′, H ′′

T2-IN
pc v `′ Γ′ = Γ[x 7→ `′] noPairs(Γ, C,∆,E)

C′ = incin(C, `′) ∆′ = recordInput(∆, x, C, `′)

pc,Γ;C,∆,E, H `` input x from `′ . Γ′;C′,∆′,E, H

T2-OUT
pc v `′ Γ(e) v `′ noPairs(Γ, C,∆,E)

C′ = incout(C, `
′) E′ = recordOutput(E, C, `′,∆(e))

pc,Γ;C,∆,E, H `` output e to `′ . Γ;C′,∆,E′, H

T2-IF
pc v pc′ Γ(e) v pc′ i = 0, 1 noPairs(Γ′, C′,∆′,E′)

pc′,Γ;C,∆,E, H `` ci . Γ′;C′,∆′,E′, H ′

if ci does not contain command pairs then noPairs(Γ, C,∆,E)

pc,Γ;C,∆,E, H `` if e then c0 else c1 . Γ′;C′,∆′,E′, H ′

T2-WHILE

pc v pc′ Γ(e) v pc′ noPairs(Γ, C,∆,E)

pc′,Γ;C,∆,E, H `` c . Γ;C,∆,E, H

pc,Γ;C,∆,E, H `` while e do c . Γ;C,∆,E, H

T2-DECLASSIFY
pc v `′′ `′ v `′′ Γ′ = Γ[x 7→ `′′] noPairs(Γ, C,∆,E)

∆′ = ∆[x 7→ ∆(e)] H ′ = H ∪ {(∆(e), `′)}
pc,Γ;C,∆,E, H `` x := declassify(e to `′) . Γ′;C,∆′,E, H ′

T2-SKIP

noPairs(Γ, C,∆,E)

pc,Γ;C,∆,E, H `` skip . Γ;C,∆,E, H

T2-SUB
Γ0 v Γ1 Γ′1 v Γ′0 pc0 v pc1 noPairs(Γ′0, C

′
0,∆

′
0,E
′
0)

C0 � C1 C′1 � C′0 ∆0 � ∆1 ∆′1 � ∆′0
E0 � E1 E′1 � E′0 H0 ⊆ H1 H ′1 ⊆ H ′0

pc1,Γ1;C1,∆1,E1, H1 `` c . Γ′1;C′1,∆
′
1,E
′
1, H

′
1

if c does not contain any command pairs then noPairs(Γ0, C0,∆0,E0)

pc0,Γ0;C0,∆0,E0, H0 `` c . Γ′0;C′0,∆
′
0,E
′
0, H

′
0

T2-PAIR
pc v pc′ pc′ 6v ` noPairs(Γ′, C′,∆′,E′) i = 1, 2

pc′, bΓci; bCci, b∆ci, bEci, H ` ci . Γ′;C′,∆′,E′, H ′

pc,Γ;C,∆,E, H `` L c1 | c2 M . Γ′;C′,∆′,E′, H ′

Figure 6. Typing rules

Lemma 12. If

pc,Γ;C,∆,E, H `` c . Γ′;C′,∆′,E′, H ′

then for i ∈ {1, 2} we have

pc, bΓci; bCci, b∆ci, bEci, H ` bcci . Γ′;C′,∆′,E′, H ′

Proof. By induction on the judgment pc,Γ;C,∆,E, H `` c .Γ′;C′,∆′,E′, H ′, and the fact thatIMPI2 typing rules are at least as restrictive
as their IMPI counterparts. ut

The execution of a IMPI2 program preserves typings. The following type-preservation theorem is key to showing that well-typed IMPI
programs satisfy delimited release.

Theorem 2 (Type preservation). Let c be an IMPI2 command such that

pc,Γ;C,∆,E, H `` c . Γ′;C′,∆′,E′, H ′,

and let (c, σ, t, ω)• be an IMPI2 configuration such that

Γ, C,∆,E �` (c, σ, t, ω)•

If

(c, σ, t, ω)• −→ (c′, σ′, t′, ω)•

18 2010/4/28

and bt′c1 and bt′c2 agree up to ` on escape hatches H ′ then there exists C′′, ∆′′, E′′, H ′′, Γ′′, and pc′′ such that

pc′′,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′

and
Γ′′, C′′,∆′′,E′′ �` (c′, σ′, t′, ω)•.

Proof. By induction on the typing judgment pc,Γ;C,∆,E, H `` c . Γ′;C′,∆′,E′, H ′.
First, note that

bC′′ci, b∆′′ci, bE′′ci,� (bc′ci, bσ′ci, bt′ci, bω′ci)
for i ∈ {1, 2} by Lemmas 12 and 2 (since the witnesses chosen in the proof of Lemma 2 are the same as the witnesses chosen in this proof).

• T2-SKIP
Trivial, as there is no (c′, σ′, t′, ω)• such that (skip, σ, t, ω)• −→ (c′, σ′, t′, ω)•.

• T2-ASSIGN
In this case, c = x := e, c′ = skip, σ′ = σ[x 7→ σ(e)], t′ = t, C′ = C, ∆′ = ∆[x 7→ ∆(e)], E′ = E, H ′ = H , Γ′ = Γ[x 7→ `].
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′ as required.
Since Γ, C,∆,E �` (c, σ, t, ω)• we have for all y ∈ Var such that y 6= x, if σ(y) is an integer pair, then Γ′(y) = Γ(y) 6v `. Also, if
σ(x) is an integer pair, then σ(e) is an integer pair, and so there is some variable z ∈ Var such that Γ(z) 6v `. By T2-ASSIGN, we have
Γ(z) v Γ′(x), and so Γ′(x) 6v `.
Moreover, since C′′ = C and E′′ = E and t′ = t we have Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• as required.

• T2-SEQ
In this case, c = c0; c1. If c0 6= skip then the result follows trivially from the inductive hypothesis. If c0 = skip then c′ = c1, and σ′ = σ
and t′ = t, and the result follows easily.

• T2-IN
In this case, c = input `′ from x, c′ = skip, σ′ = σ[x 7→ v], t′ = tˆ〈in(`′, v)〉, C′ = incin(C, `′), ∆′ = recordInput(∆, x, C, `′),
E′ = E, H ′ = H , Γ′ = Γ[x 7→ `′].
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′ as required.
If σ′(x) is a pair value, then v is a pair value, and so, by Γ, C,∆,E �` (c, σ, t, ω)•, we must have `′ 6v `. Similarly, if value(in(`′, v))
is a pair value, then `′ 6v `. Thus, we have Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• as required.

• T2-OUT
In this case, c = output e to `′, c′ = skip, σ′ = σ, t′ = tˆ〈out(`′, σ(e))〉,C′ = incout(C, `

′), ∆′ = ∆, E′ = recordOutput(E, C, `′,∆(e)),
H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′ as required.
If value(out(`′, σ(e))) is a pair value, then σ(e) is a pair value, and so, there is some variable y ∈ Var that appears in e such
that σ(y) is a pair value. By Γ, C,∆,E �` (c, σ, t, ω)•, this means that Γ(y) 6v `, and so, by T2-OUT, `′ 6v `. Thus, we have
Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• as required.

• T2-IF
In this case, c = if e then c0 else c1. Suppose that σ(e) is not a pair value, i.e., σ(e) ∈ Z. Then c′ = ci, σ′ = σ, t′ = t, C′ = C, ∆′ = ∆,
E′ = E, H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′ and Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• as required.
Otherwise, suppose that σ(e) is a pair value. Then c′ = L c′1 | c′2 M, σ′ = σ, t′ = t, C′ = C, ∆′ = ∆, E′ = E, H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
By Lemma 12 and T2-IF we have

pc′, bΓci; bCci, b∆ci, bEci, H ` ci . Γ′;C′,∆′,E′, H ′

for i ∈ {1, 2} and some pc′ such that Γ(e) v pc′. Since σ(e) is a pair value, there is some variable y ∈ Var that appears in e
such that σ(y) is a pair value. By Γ, C,∆,E �` (c, σ, t, ω)•, this means that Γ(y) 6v `, and so Γ(e) 6v ` and pc′ 6v `. Also by
Γ, C,∆,E �` (c, σ, t, ω)•, neither c0 or c1 contain a command pair. Thus we have Γ′′, C′′,∆′′,E′′ �` (c′, σ′, t′, ω)• as required.

• T2-WHILE
In this case, c = while e do c0, c′ = if e then (c;while e do c) else skip, σ′ = σ, t′ = t, C′ = C, ∆′ = ∆, E′ = E, H ′ = H , Γ′ = Γ.
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
We can easily construct a judgment pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′, and moreover Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)•
as required.

• T2-DECLASSIFY
In this case, c = x := declassify(e to `′), c′ = skip, t′ = t, C′ = C, ∆′ = ∆[x 7→ ∆(e)], E′ = E, H ′ = H ∪ {(∆(e), `′)},
Γ′ = Γ[x 7→ `′]. If σ(e) = L v | v M then σ′ = σ[x 7→ v], otherwise σ′ = σ[x 7→ σ(e)].
Let C′′ = C′, ∆′′ = ∆′, E′′ = E′, H ′′ = H ′, Γ′′ = Γ′.
Then pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ . Γ′;C′,∆′,E′, H ′ as required.
Note that by noPairs(Γ, C,∆,E), ∆(e) is not a pair of input expressions. By assumption, bt′c1 and bt′c2 agree up to ` on escape hatches
H ′. If `′ v `, since {(∆(e), `′)} ∈ H ′ then bt′c1 �in ∆(e) ⇓ v and bt′c2 �in ∆(e) ⇓ v for some integer v. SinceC,∆,E,� (c, σ, t, ω),
we have σ(e) = v, and so σ′(x) = v.

19 2010/4/28

If σ′(x) is a pair value, then σ(e) = L v1 | v2 M where v1 6= v2, and so we must have `′ 6v `. Thus, Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• as
required.

• T2-SUB
In this case, we have pc1,Γ1;C1,∆1,E1, H1 `` c . Γ′1;C′1,∆

′
1,E
′
1, H

′
1 where Γ v Γ1, Γ′1 v Γ′, pc v pc1, C � C1, C′1 � C′,

∆ � ∆1, ∆′1 � ∆′, E � E1, E′1 � E′, H ⊆ H1, and H ′1 ⊆ H ′.
By the inductive hypothesis, and Lemma 11, we have pc′′1 ,Γ

′′
1 ;C′′1 ,∆

′′
1 ,E

′′
1 , H

′′
1 `` c′ . Γ′1;C′1,∆

′
1,E
′
1, H

′
1 where Γ′′1 , C

′′
1 ,∆

′′
1 ,E

′′
1 �`

(c′, σ′, t′, ω)•.
By T2-SUB we have pc′′1 ,Γ

′′
1 ;C′′1 ,∆

′′
1 ,E

′′
1 , H

′′
1 `` c′ . Γ′;C′,∆′,E′, H ′ as required.

• T2-PAIR
In this case, c = L c1 | c2 M. If c1 = c2 = skip, then c′ = skip, σ′ = σ, t′ = t, C � C′, ∆ � ∆′, � E′, H ⊇ H ′, Γ v Γ′. Let C′′ = C′,
∆′′ = ∆′, E′′ = E′,H ′′ = H ′, Γ′′ = Γ′. Then pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ .Γ′;C′,∆′,E′, H ′ and Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)•
as required.
Otherwise, if c1 6= skip or c2 6= skip, then c′ = L c′1 | c′2 M, and for i ∈ {1, 2}, we have pc′, bΓci; bCci, b∆ci, bEci, H `
ci . Γ′;C′,∆′,E′, H ′ for some pc′ such that pc′ 6v `. Suppose without loss of generality that it is c1 that makes progress,
that is, (c1, bσc1, btc1, bωc1) −→ (c′1, σ

′
1, t
′
1, bωc1)1 and c′2 = c2. By Lemma 2, there are C1, ∆1, E1, and Γ1 such that

pc′,Γ1;C1,∆1,E1, H ` c1 . Γ′;C′,∆′,E′, H ′.
We now construct C′′, ∆′′, E′′, and Γ′′ such that bC′′c1 = C1, b∆′′c1 = ∆1, bE′′c1 = E1, bΓ′′c1 = Γ1, and bC′′c2 = bCc2,
b∆c2 = b∆c2, bEc2 = bEc2, bΓc2 = bΓc2.
Let ∆′′(x) = ∆1(x) if ∆1(x) = b∆c2(x) and L ∆1(x) | b∆c2(x) M otherwise. The other entities are defined similarly, using pairs only
if the two entities disagree.
Thus, for i ∈ {1, 2}, we have

pc′,Γ′′i ;C′′i ,∆
′′
i ,E

′′
i , H ` ci . Γ′;C′,∆′,E′, H ′,

where C′′i = bC′′ci, ∆′′i = b∆′′ci, E′′i = bE′′ci, and Γ′′i = bΓ′′ci. and so by T2-PAIR, pc,Γ′′;C′′,∆′′,E′′, H ′′ `` c′ .
Γ′;C′,∆′,E′, H ′ as required. Moreover, by Lemma 6, we have Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• as required.

ut

Before proving that the IMPI type system enforces delimited release, we first prove some useful lemmas about the IMPI2 type system.
The judgment Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• ensures that the two traces represented by IMPI2 trace t are identical to user `. More

precisely, all input and output on any channel bounded above by typing parameter ` is the same in both executions.

Lemma 13. If Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• then btc1 �`′ = btc2 �`′ for any `′ ∈ L such that `′ v `.

Proof. By induction on the length of t. The base case, t = 〈〉, is trivial. Consider αˆt, and assume that btc1 �`′ = btc2 �`′. If level(α) 6= `′,
then bαˆtci �`′ = btci �`′ for i ∈ {1, 2}, and the result holds. If level(α) v `′ then by Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• we have value(α) is
not a pair value. Thus, bαc1 = bαc2, and bαˆtc1 �`′ = bαˆtc2 �`′ as required. ut

If an IMPI command is well-typed in the IMPI type system, then it is well-typed in the IMPI2 type system.

Lemma 14. If c is an IMPI command (i.e., does not contain any command pairs), and

pc,Γ;C,∆,E, H ` c . Γ′;C′,∆′,E′, H ′

then for all ` we have
pc,Γ;C,∆,E, H `` c . Γ′;C′,∆′,E′, H ′

.

Proof. Every IMPI typing rule is made into an IMPI2 typing rule by adding the typing parameter `. ut

A.2.4 Proof of delimited release
Using the type preservation of IMPI2, and the lemmas above, we can now show that a well-typed IMPI program satisfies delimited release.

Lemma 15. If

pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H

for some Γ0 and pc, and for all (f, `) ∈ H there exists i ∈ 0..k such that f ≡ fi and `i v `, then c satisfies delimited release by escape
hatches (f0, `0), . . . , (fk, `k).

Proof. Assume pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H for some Γ0 and pc. Let escape hatches (f0, `0), . . . , (fk, `k) be fixed, and
assume that for all (f, `) ∈ H there exists i ∈ 0..k such that f ≡ fi and `i v `.

Let ` ∈ L. Let ω1 and ω2 be joint strategies such that ω1(`′) = ω2(`′) for all `′ v `. Let σ be an initial state, and t1 and t2 be traces such
that t1 and t2 agree up to ` on escape hatches (f0, `0), . . . , (fk, `k), and (c, σ, 〈〉, ω1) t1 and (c, σ, 〈〉, ω2) t2.

By Lemma 14, pc,Γ0; (0, 0),⊥,⊥, ∅ `` c . Γ;C,∆,E, H . Since for all (f, `′) ∈ H there exists i ∈ 0..k such that f ≡ fi and `i v `′,
and so traces t1 and t2 agree up to ` on escape hatches H .

Let σ be a state that contains no pair values. Let ω be a IMPI2 joint strategy such that bωci = ωi, and for any `′ and t′, if `′ v ` then
ω(`′)(t′) is not a pair value. Note that ⊥,Γ0, (0, 0),⊥ �` (c, σ, 〈〉, ω)•.

Suppose that both t1 and t2 are finite traces. Then by Lemma 10 and Lemma 8, there is an IMPI2 configuration (c′, σ′, t, ω)• such that
(c, σ, 〈〉, ω)• −→∗ (c′, σ′, t, ω)• and btci = ti and tj � btcj for some i and j such that {i, j} = {1, 2}. By repeated applications of

20 2010/4/28

Theorem 2, we have Γ′, C′,∆′,E′ �` (c′, σ′, t, ω)• for some C′, ∆′, E′, and Γ′. Thus, by Lemma 13, we have btci � ` = btcj � `, and so
tj �` � ti �` and thus t1 ≈` t2 as required.

Let one or both of t1 or t2 be an infinite trace. Suppose that it is not the case that either t1 � ` � t2 � ` or t2 � ` � t1 � `.
Therefore there is some index n such that (t1 � `)(n) 6= (t2 � `)(n). Consider finite traces t′1 and t′2 such that t1 � t′1 and t2 � t′2,
and |t′1 � `| = |t′2 � `| = n + 1. Note that (c, σ, 〈〉, ω1) t′1 and (c, σ, 〈〉, ω2) t′2. By a similar argument above, we derive that t′1 ≈` t

′
2.

But this implies that (t′1 � `)(n) = (t′2 � `)(n), a contradiction! Therefore, either t1 � ` � t2 � ` or t2 � ` � t1 � `, and so t1 ≈` t2 as
required. ut

A.3 Bounded release
The proof of Theorem 1 follows immediately from Lemmas 7 and 15.

21 2010/4/28

	1 Introduction
	2 What is required release?
	3 Language
	3.1 Users, channels, and strategies
	3.2 Syntax and semantics

	4 Security definitions
	4.1 Required release
	4.2 Noninterference
	4.3 Delimited and bounded release

	5 Enforcement
	6 Related work
	7 Conclusion
	A Proof of Theorem 1
	A.1 Required release
	A.2 Delimited release
	A.2.1 Syntax and semantics
	A.2.2 Adequacy
	A.2.3 Type preservation
	A.2.4 Proof of delimited release

	A.3 Bounded release

