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Abstract

We present an approximate analysis of a queue with dynamically changing input rates
that are based on implicit or explicit feedback. This is motivated by recent proposals for
adaptive congestion control algorithms [RaJa 88, Jac 88], where the sender’s window size
at the transport level is adjusted based on perceived congestion level of a bottleneck node.
We develop an analysis methodology for a simplified system; yet it is powerful enough to
answer the important questions regarding stability, convergence (or oscillations), fairness
and the significant effect that delayed feedback plays on performance. Specifically, we find
that, in the absence of feedback delay, the linear increase/exponential decrease algorithm
of Jacobson and Ramakrishnan-Jain [Jac 88. RaJa 88] is provaebly stable and fair. Delayed
feedback, on the other hand, introduces oscillations for every individual user as well as
unfairness across those competing for the same resource. While the simulation study of
Zhang [Zha 89] and the fluid-approximation study of Bolot and Shankar [BoSh 90] have
observed the oscillations in cumulative queue length and measurements by Jacobson [Jac
88] have revealed some of the unfairness properties, the reasons for these have not been
identified. We identify quantitatively the cause of the these effects, vis-a-vis the system
parameters and properties of the algorithm used.

The model presented is fairly general and can be applied to evaluate the performance
of a wide range of feedback control schemes. It is an extension of the classical Fokker-
Planck equation. Therefore, it addresses traffic varlablhty (to some extent) that fluid
appro*clmatlon techmques do not address. , ‘

1. Introductxon

We 1nvest1gate the performance of congestion control protocols that dynamxcally
change input rates based on feedback information received from the network. This is
motivated by proposals for adaptive congestion control algorithms [Jac 88, RaJa 88,90],
where the sender’s window size at the t1anspo1t layer is adjusted based on perceived con-
gestion level of a bottleneck node.

Demers et. al. [DeKeSh 89] report a simulation study that compares the J acobson and
Ramakrishnan-Jain algorithms [Jac 88, RaJa 88,90] vis-a-vis scheduling disciplines used in
intermediate gateways. Zhang [Zhang 89] compares the TCP protocol, which incorporates -
the Jacobson algorithm, to her Virtual Clock Protocol. In there, she reports some interest-
ing (albeit undesirable) oscillatory properties of the Jacobson algorithm. She also observes
that connections with larger number of hops receive a poorer share of an intermediate
resource than those with a smaller number of hops. Jacobson had also reported this in his
measurements [Jac 88]. Bolot and Shankar [BoSh 90] have recently studied the behavior of
the Ramakrishnan-Jain algorithm using a fluid approximation model and they too observe
the oscillatory characteristics. Recently, some interesting studies have been reported by
Mitra and Seery [MiSe 90, Mit 90] and Shenker [She 90]. Mitra and Seery have developed
a new feedback based dynamic window adjustment algorithm based on asymptotic analy-
sis of queueing networks, while Shenker has studied some intrinsic properties of feedback
based flow control. )

In this study, we develop, from first principles, a Fokker-Planck equation for the
evolution of the joint probability density function of queue length and arrival rate at
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the bottleneck node. This approximates the transient behavior of a queue subjected to
adaptive rate-control. We then seek answers to questions regarding stability (or oscillations)
and fairness of a particular adaptive algorithm. We also investigate the effect of delayed
feedback on performance.

We find that, in the absence of feedback delw;, senders using the J acobson-
Ramakrishnan-Jain (or JRJ) Algorithm [Jac 88, RaJa 88,90} (or rathe an equivalent
rate-based algorithm) converge to an equilibrium. Further, this algorith: .. is fair in that
all sources sharing a resource get an equal share of the resource if they use the same pa-
rameters for adjusting their rates. The exact share of the resource that different sources
get when they use different parameters is also determined. :

A delay in the feedback information introduces cyclic behavior. If dlfferent sources
get the feedback information after different amounts of delay, then the algorithm may also
be unfair, i.e., the sources may get unequal throughput. These results strengthen the
observations in previous studies and also identify the underlying reasons. For instance, if
the adaptive algorithm is linear-increase/exponential-decrease, then the oscillations are due
to delayed feedback. However, if the adaptive algorithm is linear-increase/linear-decrease,
then the oscillations could be due to both the algorithm itself and the delay in the feedback
path. Also unfairness is partly due to the larger (feedback) delay suffered by the longer
connections as compared to the shorter ones.

The rest of the paper is organized as follows. Sect. 'n 2 presents the model. Section
3 motivates the analysis methodology. In Section 4, a Fokker-Planck approximation for
the time dependent queue behavior is derived. Section 5 discusses the properties of the
JRJ-algorithm when only one source is using the resource. Section 6 investigates the
properties of the system with multiple sources. Section 7 re-investigates these propertles
in the presence of delayed feedback. Section 8 presents our concluslons

2. Model

The model we have chosen is motivated by the Jacobson-Ramalkrishnan-Jain Algo-
rithm for window adjustment. In the JRJ algorithm, when congestion is detected (by
implicit or explicit feedback), the window size is decreased multiplicatively. However, when
there is no congestion, it is increased linearly — to probe for more bandwidth, i.e.,

. { w/d: ff congested,; (1)
w + a; if not congested. )
While this makes good intuitive sense, it is far from clear as to what values the

parameters a and d should take. Further. it is not provably clear if the algorithm is fair or

stable! and if so, under what circumstances.
To understand the behavior of dynamic congestion control algorithms, we study a

(ueueing system with a time varying input rate. The latter is adjusted periodically based

! An algorithm is fair if everybody gets a ‘fair" share of the resource (Fair share and equal

share are synonymous if all the demands are equal). Stability, on the other hand, implies that the
algorithm converges to a particular value.

o




on some feedback that the end-point receives about the state of the queue. We are inter-
ested in the time evolution of the queue length density function.

Let us assume that we are changing the arrival rate, A(t), based on the current queue
length, Q(t), at some bottleneck node. An example adaptive control algorithm could be

B[+ Hanz

dt — | -CiA. ifQ(t)>q

where § is some target queue length. Cy and C) are positive constants.
Equation 2 models a linear increase in A for @Q(t) < ¢ and an ezponential decrease

in it for Q(¢) > §. It is therefore the rate-analogue of the dynamic window adjustment

algorithm given by Equation 1. For purposes of generality however, we shall denote

,(D‘( )
dt

=g(-) e (3)

¢(-) can be viewed as a generic rate-control algorithm.
In the following section, we motivate the methodology chosen. The method adopted
can not only lead to a better theoretical understanding of a key problem but also be useful
in solving other problems that might involve some form of feedback.

3. Methodology

To analyze t;he effect of Equatxon (2). Bolot and Shankaz [BoSh 90] have used t
separate differential equations, one for the queue length Q(t) and another for the arri
rate A(t). Q(t) depends on A(t) as follows: ~

dQ(t) s 7
dt At —d) -

where 4 is the mean service rate. d\(t)/d#t is given by Equation 2. These are then coupled
together, i.e., A(t) drives the differential equation for Q(t) and vice-versa. Then model
assumes that Q(¢) and A(t) are both deterministic. . ST L OV TR
Suppose, however that Q(t) were a random variable and one attempts to char acteuze '
the time evolution of this process. Consldﬂ the cla,ssmal FokLer-Pla,nck or dxﬁ‘uslon :
equation in one-dimension' ' ' |

8f
ot
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where f(t q) is the probability density function of the queue length at time ¢, (Mt q) — 1)
and 02(t,q) are the instantaneous mean and variance of the queue growth rate given the
queue length is ¢. Now, if this equation is to be extended for the congestion-control problem
at hand, how should the equation for \ be expressed so that the control part is properly
1‘eﬁected? It turns out that one cannot use a coupled set of equations (one for the density
and one for the control) at all. »




> lime

t
Figure 1: Queue length trajectory as a function of time.

To see this, suppose that Q(t) were a random variable and say, we were observing
the process {(Q(t),A())} as time progressed (see Figure 1). Given some initial values
(Q(0), M(0)), let the queue length at time t he Q(t) = ¢, for some ¢. At this point, the
value of A\(¢) is dependent on not just the current value of ¢, but also on the sample path
of Q(s),0 < s < t. Intermediate values of the queue length affects A because of Equation
2 and since the sample path of Q is random. \(¢) itself is a random variable. One cannot
therefore couple the two equations.

We hence choose an alternate route. Let p be the average service rate of the queue
and let v(t) = (A(t) — u) be the instantaneous queue growth rate (with the convention that
v(t) = 01if Q(t) = 0 and A(t) < u). We define f(¢,q,v) to be the joint probability density
function of (Q(t),v(t)). Our goal is to understand the time dependent behavior of f(-)
based on ¢(-) and the variabilities of Q(¢) and 1(t). We address this in the next section.

4. Fokker-Planck approximation for queue with feedback control

Suppose that at time ¢, the queue length and queue growth rate are given by Q(t) = ¢
and v(t) = ©. We want to express the density function f(¢t + 7,¢,v) in terms of f(t,§,7).
We assume that variability in v is caused only by the random sample path of ) and there
is no ‘intrinsic’ variability in v. Then. given Q(¢ + 7) = ¢, and some small T,

vt + 1) =0+ g(-)r. (4)

Let h(t + 7,q,v|t,§,7) be the conditional probability of the transition between (§, )
and (¢,v) in time time (¢,¢t + 7). Then by the law of total probability,

ft+r,q,v) = / /f(f. qg.7)h(t + 7,q,v|t,4,0)d§ di (5)
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The integral over ¥ in Equation 5 is essentially a delta function which 1s zero for all values
of ¥ except that satisfying Equation 4. We then have

dv ,
ft+rqv)= /f(tfi-ff) h(t+1,q,v|t,§, D) 3% dg (6)

with the understanding that  and v are related by Equation 4.
Now, let us further assume that the central limit theorem (approximately) holds for
the conditional density function h(-). i.e..

h(t+T.qvlt.d.0) =0 (q ;;’ﬁ"l) (7)

where o2 is the variance of Q. Validity of this assumption is key to the Fokker-Planck
approximation that follows.?
Combining Equations 6 and 7 gives

flt+7,q,0) = /.f(f—f]-f/)n( ;3;.”)-3—';% )

To derive the differential equation of f(-) with respect to time, we subtract f(t,¢,v) from
both s1cles divide by 7 and let T —=0. Umng (lu/clu = 1 - 9T from Equatlon 4, we then
get3 o . , ,

Ty

ft = hm /{f(t g, 0)(1 — Ju f-— f(t, ¢ v)}n(-)d§

= imd [ 1700,0) = (b = [ 9,010,000l +of7)
=l£%?/{f(t,cz,m~ Flt.q N} 01 = gu()(t.0,0) + o) (9)
Let
T—}g_l});/{f q.0) — f(t q,V)}n dq : (10)

L\ddmg (and subtractlng) f(t,q,0) to (and fmm) the right hand side of this equatlon, we

- lim 2 / {f(t q,u> Fta o)) n(dd + L / (F(tq.9) — fltg )} n()dd (11)

The first integral in Equatlon 11 is similar to expressions arising in the derivation of the
standard Fokker-Planck equation [New 68. New 71, Kle 76]:

. . 1 .
“'qu(t-([- i) + '_')'Uquq(ta Q7V)

higher order moments may be needed to express more burstiness in h.

3 notation: fy = df/0t, fg = 8f/q. fqq = O f/q* ete.

-
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As 7 — 0,7 — v, (see Equation 4). so this becomes

1,
“qu(ts(]-l’)+3U'qu(ta‘ZaV) (12)

The second integral is equal to
.1 :
}_I_I__T%); {f(tvq, Vo g()T) - f(fq V)}

= lim } (Ut g v) — g( ) fult, g v) — F(t g, 0)] + o(7)}
= —g()fu(t,q,v) (13)

Combining Equations 9, 10, 11, 12 and 13. and noting that ¢, f + ¢f, = (¢f)., we have

. 1
fetviy+(9f) = 50% foq (14)
Equation 14 describes the basic equation of motion for the density function f(-).

5. Properties of Algorithm 2

We now investigate the properties of Algorithm 2 in conjunction with Equation 14.
For the purposes of an intuitive discussion. we suppress the ¢° term in Equation 14 and
study a reduced system. We therefore have a hyperbolic partia. differential equation whose

properties can be explored by studying its characteristics. We will address the effects of
o? being positive at the end of this section. The characteristics are the family of curves
satisfying

dq
=z 1 and
dt

dv
t -7

This is equivalent to
dg _ .
=A-p and — =
Consider the ¢ — v diagram of Figure 2. The z-axis represents the queue length, @,
and the y-axis represents the instantaneous queue growth rate, v. Two lines corresponding
to @ = @ and v = 0, shown by dotted lines, divide the ¢ — v plane into four quadrants.
The behavior of Equation 14 is best described by considering each quadrant separately.
First consider Quadrant I in Figure 2. This corresponds to v > 0 (i.e., A > p ) and
Q < q. Since A > pu, the instantaneous queue length at any point in this quadrant is
increasing. The instantaneous v is also increasing because dA/dt = Cy > 0. The resultant
direction of instantaneous motion (i.e.. the characteristic) is increasing in both @ and v
as shown in the figure. Notice that Equation 14 confirms this intuition: the coefficient of
fq which represents the Q-drift is v and this is positive in Quadrant I; the coefficient of f,
which represents the v-drift is g(-) = +C which is positive as well. The characteristic is
the resultant of these two drifts.
Next, consider Quadrant II. Here Q > ¢ and v.> 0 (i.e., A > ). From Equation 14,
the @-drift is again positive since 1» > 0. However, the v-drift is now negative because
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Figure 3: Covergent Spiral

-1



d)\/dt is —Cy1A for @ > §. The characteristic, which is the resultant of these two drifts, is
increasing in ¢ but decreasing in v as shown in Figure 2.

We can similarly check that in Quadrant III, both the Q-drift and the v-drift are
negative while in Quadrant IV, the @-drift is negative but the v-drift is positive. The
directions of individual drifts and the characteristics are shown in the figure.

Now, suppose we were to trace the path of a "particle’ tha: n»beys both Equation 14 and
Equation 2. This path will follow the characteristic. Therefo: -, from the above argument,
it is clear that the trajectory would either be a cycle or a spiral; the latter could be one
that converges inwards or diverges outward. Further, a convergent spiral could home in to
either a limit point or a limit cycle. Theorem 1 below says that the path of any particle
obeying Equations 2 and 14 (ignoring the o2 term) is a convergent cycle with the limit
point Q = @ and v = 0. Notice that this is exactly the desired point of operation of the
adaptive algorithm. ~

Theorem 1:
If * = 0 in Equation 14, then Algorithm 2 converges in the limit. The limit point is

¢=q,A=p.

Proof:
We have
dq
o= A—p (15)
and
d/\ . ) +C"O~ if q S q,
dt—wxm“{—CM,ﬁq>@ (16)

Since u, the average service rate, is not changing with time,

d?q

aé=gﬂﬂ)=mN+dWﬂ4)
_f+Ce, ifg<g, ,
_{—Qx if g > q. (17)

Now, suppose that at time ¢t = 0. \ is some value A¢g which is less than y and ¢ is ¢
(see Figure 3). From Equation 17. we have

g _ .
a2~ 0
Its solution is
1 . .
q= ;Cofz + (Ao — )t +¢ (18)

After a certain time, say t;, the characteristic hits ¢ = g line again. Let A be A\; now. For
the moment, let us assume that the characteristic did not hit the ¢ = 0 boundary, so that
Equation 18 is valid all the way up to t = #;.

9




The two roots of Equation 18 with ¢ = q are t = 0 and ¢ = 2( — Ag)/Co. The first
one corresponds to the initial point. Therefore,

ty = - e — : : (19):

Also, since A = p + dg/dt, we have, from Equation 18 and 19,
AL = JU Coty + (Ao — ,LL)
=21 — Ay (20)
Notice that A\y — p is equal to u — Ao which says that the overshoot above p is ezactly
equal to p — Mg, irrespective of the value of Cy. This is therefore an inherent property of

the linear increase component of Algorithm 2.
Let us next evaluate the characteristic when ¢ is greater than §. We have -

dq 5
dt =A-p (21)
and 2
=3 = 90p) = ~Cilp+ da/ )
> d?q clq .
- +tCi—; = 22
pTE +C1dt +Clﬂ (22)

Since at t = t1,q = § and dg/dt = \; — jt. its solution is

A
q=—p(t—t)+ "C—IT (1 - e“Cl(‘“‘1)> +q (23)

Let the characteristic again hit the ¢ = ¢ line at some later time ¢, and let A now be
A2. Then from Equation 23, we have at time #,.

’\1 *Cl(to—tl)
—-[,L(t'?"'tl C1 (1'—-6 b )-—0

Putting a = Cy(t2 —t1), we get
e = A(1 —e ). (74)
Since dg/dt is equal to /\ — i, /\o can be obtained by differentiating Equatlon 23. We get:

Ao = /\16~C'1(t-2-—~t1_)

= A\e " (25)
Substituting the value of A\; from Equation 20, we have
/\2 = (2/1 — /\0 )G-a (26)
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Therefore
Ao

5 H —a
— =(2—-1)e 27
Ao ( Ao ) (27)
The question then is whether \;/\o is greater than 1, less than 1 or equal to 1. From
Figure 3, we see that if A\a/\o were greater than 1. we would have a converging spiral. W
verify next that this is indeed the case.

Let v = p/) in Equation 24. Then. using Equation 20, we have

=2o = @9

Substituting into Equation 27, we get

A2 [ 2 —a
'/'\'(')‘ = 5 ; T 1] €
2 —a
=5 1" 1] e
1 e 4
S L P 9
=[5~ 1] ] (29)
From Equation 24, v is given by
L 1 —-¢@
i a
Therefore,
2(1 —¢e™" 2—a—2ae"®
gy 1=z g Zzaiae (30)
a @
and from 29 and 30,
Aa ae ¢
— = 31
N 2—a -20e™* (31)
Let us next define a function. 2(«a). such that
hla)=(2—a —2e"%) — ae™® (32)

If h(a) is less than 0, then from Equation 31. \2/Xq is greater than 1. Notice that h(0) is
0 and o

Ma)==14¢""+ae™ .
So,
n'(0) = 0.
Differentiating once again,
h'(a) = —ae™ <0 for a>0

11




Therefore,

hMa) = /‘0' h'"(a) < 0
Jo

Similarly,
hMa) = / h'(a) <0 (33)
Jo

From Equations 31, 32 and 33, we have
251 | o (34)

which implies that the spzml 18 convergent.

So far, we have assumed that the characteristic starting at (g, )\g) never hlts the q= 0
boundary. In this case, we have established that we have a convergent spiral. To complete
the proof, let us next consider the case when a characteristic hits the left boundary, q=0.

Notice that this characteristic cannot hit the boundary for A > yu, because the q-drift
which is positive for A > p, will pull it to the right. Therefore, if it hits the ¢ = 0 boundary
then A < p. Suppose that for some initial (g, Xo), the characteristic barely touches the
boundary. This point is (¢ = 0, A = u), as shown by arc ‘@’ in Figure 4. Since Equations
18, 19 'and 20 hold for this characteristic. it will converge by the earlier argument. Any

point' corresponding to g ‘< Xo first hits the ¢ = 0 boundary (as shown by arc e), then o

goes vertically up until A = g, (arc f), and then follows the characteristic corresponding -

to Xo, (arcs b, ¢, d). This too, therefore. conver ges "The partlal dlﬂ'erentlal equatlon 14 1s

however, not quite valid in this range. &
This cornpletes the ploof of Theorem 1. g

Corollary 1: If both the increase and the decrease components are lzneur then the system
will never converge.

Proof:

We saw from Equation 20 that the amount of overshoot exactly equals the amount
of undershoot during the linear increase phase irrespective of the value of Cy. The same is
true in the reverse direction for a linear decrease algorithm. Hence, the system moves in a
non-convergent cycle. g , 8

We now address the changes that occur due to ¢ being nonzero and small. To do thxs,
consider an initial state that is zero except for a small rectangle in which the function f
is constant. Assume that this rectangle is ro the left of the line ¢ = §. Let the rectangle
be given by 1 < ¢ < q2 < ¢ and v; < v < v3. The main mass of the solution will proceed
as it would under the influence of the characteristics, but with the additional change due
to diffusion in the ¢ direction. According to our analysis there is no diffusion in the v
direction. Thus the solution to the left of ¢ = § will be sharply limited between the two
lines v; + Cot and v, + Cot. As the solution encounters the line ¢ = g, it will change the
direction of motion, and there will be a spreading of the solution in the v direction because
of the different times that the different parts encounter the line ¢ = §. The main mass of
the solution will follow the path given by the characteristics for small times.

12



For longer times, the convergence of the characteristics to the limit point, suggests
that the probability distribution will converge to a limiting distribution. Most likely the
limiting solution will be independent of the initial conditions. More study is required
to resolve this speculation. This limiting distribution will be a smooth function, except
perhaps at the line ¢ = § where ¢ changes sign. due to the diffusion in ¢ and the spreading
in v. Note that the steady-state equation

[

qu + ({jf) - zqu

[EV]

is locally of parabolic type (with v being the time-like variable and ¢ being the space-like
variable) and thus has infinitely differentiable solutions. The analysis of this equatxon is
nontrivial since the coefficient of the time-like direction changes sxgn with ¢. ,
6. Multxple Sources Lt
We have assumed so far that there is only a single source transmlttmg through a
particular node. We next investigate the properties of the system with multiple sources.
Specifically, we are interested in the convergence and fairness properties when multiple
sources compete for a resource. There are two ‘feedback schemes’ that we consider; one
where all the sources receive the (same) cumulative queue length information [RaJa 88,
Jac 88] and another, where each source receives its own queue length information only.*
In the latter case, fairness is guaranteed by the scheduler; the analysis of the previous
sections then apply directly to each source: if there are n sources, we change p to u /n and
apply Equations 2 and 12. The conclusion is that the system is both convergent and,f@yx}g
Next, let us consider the case when all sources receive the common queue length
mformatmn All of them adjust their rates according to Algorithm 2. If there aren sources,
let (A1(t), A2 (), -, Au(t)) denote their transmission rates at time t. Let A(t) = 3.2, Ai i(t)
e the cumnulative transmission rate and let Q(#) be the cumulative queue length 'xt time

t. Then
+nCy. if Q(t) ¢
A = Z il {_cu SOt = -Cid). QW >T (35)

This is the equivalent version of Equation 2 for multiple sources. Equatmns 12 and 35
completely specify the behavior of the system. From Theorem 1, this system of multiple
sources converges. Notice that the increase rate is proportional to n, but the decrease rate
is unchanged. Therefore, the length of the spiral trajectory (the path to convergence) 1s
the same, but the time to traverse it is shortened (see Equations 18 and 19).

We next investigate if Algorithm 35 is feir. If it is, then the Ajs mus: be equal to each
other in the limit.

Theorem 2:
Algorithm 35 is faer.

* Possible with a Fair-Queue-like scheduling algorithm at the resource.
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Proof:

For the purposes of this proof, let us assume that the different sources use different
increase and decrease parameters. > Suppose there are n sources and let source ¢ use an
increase parameter Cy ; and a decrease parameter Cy.:. Let A1, Az,- -+, A denote their re-
spective transmission rates in the limit (notice that convergence is guaranteed by Theorem
1). Then

A=A+ M+ FAa=p (36)

Suppose A3, A3, ---, A% are the transmission rates at some time such that

A A+ A =

but let ¢ be greater than g (see Figure 4). Let At;, Aty and At; be as shown in the
figure. These are three disjoint segments of the time to complete one complete cycle.® Let
AL AL, -, AL be the new values of the Ajs at the end of the cycle. Then, the equation for
M is given by

/\} - ()\(1)6~(?1.1A11 + Co’lAtg)e_Cl’lAtB

Other A\!’s are similar. We then get.

NEY: A9 <€—~(-r‘1.1<m1+m3) 1

Atsy Aty

+ Co e~ 118t (37)

Let v = (At + Ats)/Aty. Then passing Equation 37 to the limit as Ata — 0 which will
occur as the processes tend to equilibrium. we get B

dh

— = —Ci17 M + Coa (38)
(lfg
Similarly,
(//\i , .
= —C.i7Ai + Co, (39)
(lf'_)_ ‘
In the limit, when convergence occurs.
dX;
i =
so c
A= -——9“-‘—- » (40)
RASAN:
Since, Y_; \i = pu, we have

% this is therefore, a more general proof.

5 i.e., when the process hits A = p and ¢ > 7 again.
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Therefore

(0127 ICIJ

Thus, if the Cy i’s and the Cy ;’s are equal. then A; = p/n, which implies complete fairness.
]

In real systems, this may be violated hecause the sources get the feedback information
after different amounts of delay and due to finite queue capacity.

7. Effect of feedback delay

We next investigate the effect of feedback delay on the control algorithm. Figure 6
shows the mechanics of the system; r is the delay in obtaining the feedback information
from the queue to the control point; d is the inertia in the forward direction in that it
takes the control algorithm this much time to take effect after A is changed. Let us, for
the moment, assume that d is 0. -

The control algorithm can now be precisely stated as:

d +C. if Q(t —r) < g,
th( ) = {—C'V\(f). FQt—1r)>q (42)

The queueing system with delay in the feedback path is harder to analyze If we ignore the’*f;“ o

o?-component, the resulting reduced system is readily tractable. The study of the Fokker-

Planck equation with delay is the subject of on-going investigation; we shall address the = 5

issues involved at the end of this sub-section.

With the o2-component deleted. the model is similar to the Bolot and Shankar model
[BoSh 90]. It is encouraging that the results obtained are similar. The main difference is
that their model assumes § = 0. If § is greater than 0, some interesting properties of g(-)
are revealed, regarding convergence and fairness.

With feedback delay, Algorithm 42 does not converge to a point. To see this, suppose
that at time #o, the process is at the target cquilibrium point Q(to) = g and A(¢p) = p. We
shall show that it cannot remain here for any significant amount of time.

We need to consider two cases. First. let us say that the process arrived at this point
from the left, i.e., Q(to — r) < . Then '

dA\(t)/dt = Cy. t € (to,to + 1) (43)
Therefore
AMto+r)=Atg) +rCo=p+rCy > pu (44)
and 1
Qto +r) =G+ j.)'COT2 >q (45)

Figure 7 shows this pictorially (see Quacdrant II). The process overshoots the equilibrium
point because r > 0.
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Figure 6: Delayed feedback.
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Figure 7: Consequence of delayed feedback.
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Next, let us consider the case when the process arrives at (g, ) from the right, i.e..

Q(to —r) > G. Then

(l/\(t)/([t = "C‘1 /\(f). t e (to,to + 7‘) (46)
Therefore ’
AMto+7) = AMto)e™“1" = pe=C1" < (47)
and ,
Qlto +1) = — Zﬁ" (rCi —1+eC17) < g (48)
‘A

Figure 7 shows this case too (Quadrant IV). The process, here, undershoots the equilib-
rium. N -

Notice that the overshoot and the undershoot are going to be larger than what is
shown above because when Q(t¢) = ¢, the value of A will either be greater than x or less
than u (depending on whether the process came from left or right respectively). Clearly
the system cannot stabilize at (g, ). Further, at any other point in the ¢ — A space, the
process is forced to be in motion. Therefore the system oscillates.

These oscillations cannot however. hecome unbounded. To see this, suppose the pro-
cess is currently at (Ao, §) and Ao is large. ¢() is Co. r time units later the control algorithm
switches to the exponential decay phase. After some time, say At;, the process hits the
¢ = ¢ line again. ;Another 7 time units later it switches to the linear increase phase. Let
this point be (Xy,q;1). Then. :

: Ay = (/-\0 + C’or')yc"'é"ly(‘stl'”) Z’ 0

During the linear increase phase, the process once again hits ¢ = § line (say, after time
Aty). Let the value of A now be As. Then

Ay = Ay + C()A'tg

Notice that Aty is bounded because A; > 0 and ¢; > 0. Hence, /\'_)‘ is bounded from above.
This means that if )\ is large, the diameter of the oscillation has to shrink in the next
cycle. This, together with the fact that there can be no stable point, proves the following
theorem. :

Theorem 3:

Feedback delay, as expressed by Equation 42, introduces oscillations. These oscilla-
tions converge to a limit cycle. g

“While we believe that this limit cycle is unique, we do not have a proof for it.

'The diameter of the oscillatory cycle increases with the delay, r. If different sources
experience different delays, they have different oscillatory cycles. This could lead to un-
fairness in resource usage.

Equations 44, 45, 47 and 48 point to an important difficulty with choosing parameters
Co and C1. The oscillations are larger with higher values of of these parameters. Thus,
while larger values of Cy and C; help to converge faster in the absence of delay (see
Equation 18 for example), they cause larger oscillations in the presence of delay.

18



Next, let us consider the effect of the inertia d. We still have

d,. . [+Co.  iQUE-T)<4, ’
N = { _CNt). HQUE-T) >4 (49)

However, d*Q/dt? is now given by

o _d T, iHQE-r—d) <3,
ar ) = A =4 = { SOA®), HQt—r—d)>7 (50)

i.e., the queue length now lags r+d time units while X still lags r time units. The oscillatory
effect is now more severe, but qualitatively similar to the previous case, i.e., larger values.
of Cy and C; cause larger oscillations. 7 ' -

The Fokker-Pla.xick equation on delayed feedback looks like:

_a{ . 5‘2 + 5 (Blg(QUt =g, If) =

o] -

5z @Y

The difference is in the appearance of the term E[g(Q(f — r)|g,v)] instead of g(g,v). The
former is the expected value of g() at time f—r given that Q(¢) = ¢ and v(t) = v, whilethe
latter is the value of g() at the current time itself. Computing the value of E[g(-)] turns
out to be non-trivial and is the subject of ongoing investigation. One goal is to find a:way - .
to do so. A second goal is to find ways to ensure that E[g(+)] maintz ns desirable properties
of convergence. For example, if one were in Quadrant II in Figure 2, (i.e., Q(t) > ¢ and
A(t) > p), a desirable property of E[g(-)] would be for it to be negative and proportional
to A — w. While this may in fact turn out to be a formidable problem, it is interesting to
see that if the system were deterministic. it can easily be ensured. P g

In the presence of delayed feedback. one may separate random fluctuations into two
* categories — those that are short term and those that are medium term. B short-
term fluctuations, we mean those which have a time constant smaller than the ro .dtrip
delay (or as it turns out two round-trip delays); the feedback mechanism is not useful
for tracking this phenomenon. Feedback may however be used to track medium term
Auctuations — those that have a larger time constant. To filter out short-term fluctuations,
Ramakrishnan-Jain have used averaging of the feedback information over a period of time.
Exponential averaging is another method that is often employed.

‘8. Summary and conclusions

We presented an approximate analysis of a queue with dynamically changing input
rates based on implicit or explicit feedback. This was motivated by recent proposa.: for
adaptive congestion control algorithms [RaJa 88. 90, Jac 88], where the sender’s window
size at the transport level was adjusted based on perceived congestion level of a bottleneck
node. We developed an analysis methodolagy for a simplified system; yet it was powerful
enough to answer the important questions regarding stability, convergence (or oscillations),
fairness and the significant effect that delayed feedback plays on performance. Specifically,
we found that, in the absence of feedback delay, the linear increase/exponential decrease

19




