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Abstract: In this study we compare Cesàro and Euler weighted mean methods of summability of sequences of
fuzzy numbers with Abel and Borel power series methods of summability of sequences of fuzzy numbers. Also,
some results dealing with series of fuzzy numbers are obtained.

1 Introduction

It is well known that the facts that human being met in the natural world are generally complex and inexact.
Complexity and inexactness of real-world events often stems from uncertain nature of the parameters and from
vague status of the underlying objects. Realizing that uncertainty is ubiquitous and essential in complex systems,
researchers designed many uncertainty theories such as probability theory, evidence theory, fuzzy set theory to cope
with problems of vagueness. Considered as the recent one, fuzzy set theory was introduced by Zadeh [27] in 1965
and since then theory has advanced in many branches of science and engineering. In mathematics, different classes
of fuzzy numbers are introduced and various properties of these classes are investigated [11–14]. In particular,
classes of sequences of fuzzy numbers are presented and convergence properties of sequences and series of fuzzy
numbers are studied [1, 8–10, 16, 17, 23]. Besides, with the purpose of handling divergent sequences, summability
methods of sequences of fuzzy numbers are defined and Tauberian conditions which guarantee the convergence of
summable sequences are given [2,4,15,18,22]. Among them, Cesàro, Euler weighted mean methods of summability
and Abel, Borel power series methods of summability for sequences of fuzzy numbers have been studied recently
and corresponding Tauberian theorems have been proved [5, 6, 20, 21, 24–26].

The main goal of this paper is to compare Cesàro and Euler summability methods of sequences of fuzzy
numbers with Abel and Borel summability methods, respectively. To achive this goal, in Section 3 we give an
optimal bound for Cesàro summable sequences of fuzzy numbers and prove a comparison theorem between Cesàro
and Abel methods of summability of sequences of fuzzy numbers. A Mertens’ type result concerning multiplication
of series of fuzzy numbers is also obtained. In section 4 firstly we show that Euler summability method Ep

becomes stronger in summing up divergent sequences of fuzzy numbers as the order p increases and then prove
that Ep convergence of a sequence of fuzzy numbers implies Borel convergence. Finally in Section 5, as results
of comparisons made in Section 3-4, some Tauberian theorems for Abel and Borel methods of summability of
sequences of fuzzy numbers have been extended to Cesàro and Euler summability methods.
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Comparison theorems for summability methods of sequences of fuzzy numbers

2 Preliminaries

A fuzzy number is a fuzzy set on the real axis, i.e. u is normal, fuzzy convex, upper semi-continuous and suppu =
{t ∈ R : u(t) > 0} is compact [27]. We denote the space of fuzzy numbers by E1. α-level set [u]α of u ∈ E1 is
defined by

[u]α :=

{

{t ∈ R : u(t) ≥ α} , if 0 < α ≤ 1,

{t ∈ R : u(t) > α} , if α = 0.

Let u, v ∈ E1 and k ∈ R. The addition and scalar multiplication are defined by

[u+ v]α = [u−α + v−α , u
+
α + v+α ], [ku]α = k[u]α

where [u]α = [u−α , u
+
α ], for all α ∈ [0, 1].

Lemma 2.1. [3] The following statements hold:

(i) 0 ∈ E1 is neutral element with respect to +, i.e., u+ 0 = 0 + u = u for all u ∈ E1.

(ii) With respect to 0, none of u 6= r, r ∈ R has opposite in E1.

(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E1, we have (a + b)u = au + bu. For general

a, b ∈ R, the above property does not hold.

(iv) For any a ∈ R and any u, v ∈ E1, we have a(u+ v) = au+ av.

(v) For any a, b ∈ R and any u ∈ E1, we have a(bu) = (ab)u.

The metric D on E1 is defined as

D(u, v) := sup
α∈[0,1]

max{|u−α − v−α |, |u+α − v+α |}.

Proposition 2.2. [3] Let u, v, w, z ∈ E1 and k ∈ R. Then,

(i) (E1,D) is a complete metric space.

(ii) D(ku, kv) = |k|D(u, v).

(iii) D(u+ v,w + v) = D(u,w).

(iv) D(u+ v,w + z) ≤ D(u,w) +D(v, z).

(v) |D(u, 0)−D(v, 0)| ≤ D(u, v) ≤ D(u, 0) +D(v, 0).

A sequence (un) of fuzzy numbers is said to be convergent to µ ∈ E1 if for every ε > 0 there exists an
n0 = n0(ε) ∈ N such that D(un, µ) < ε for all n ≥ n0. We mean that sequence (un) converges to µ by un → µ.

Definition 2.3. [7] Let (uk) be a sequence of fuzzy numbers. Then the expression
∑

uk is called a series of fuzzy

numbers. Denote sn =
∑n

k=0 uk for all n ∈ N. If the sequence (sn) converges to a fuzzy number u, then we say

that the series
∑

uk of fuzzy numbers converges to u and write
∑

uk = u which implies as n → ∞ that

n
∑

k=0

u−k (α) → u−(α) and

n
∑

k=0

u+k (α) → u+(α)

uniformly in α ∈ [0, 1]. Conversely, if the series
∑

k u
−
k
(α) = u−(α) and

∑

k u
+
k
(α) = u+(α) converge uniformly

in α, then u = {(u−(α), u+(α)) : α ∈ [0, 1]} defines a fuzzy number such that u =
∑

uk. We say otherwise the

series of fuzzy numbers diverges.
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Remark 2.4. [26] Let (un) be a sequence of fuzzy numbers. If (xn) is a sequence of non-negative real numbers,

then

n
∑

k=0

xk

k
∑

m=0

um =

n
∑

m=0

um

n
∑

k=m

xk

holds by (iii) and (iv) of Lemma 2.1.

Theorem 2.5. [19] If
∑

un and
∑

vn converge, then D (
∑

un,
∑

vn) ≤
∑

D(un, vn).

Theorem 2.6. [19] If
∑

D(uk, 0̄) < ∞, then series
∑

uk is convergent.

Cesàro, Euler weighted mean methods of summability and Abel, Borel power series methods of summability
for sequences of fuzzy numbers have been defined recently as the following:

Definition 2.7. [18] Let (un) be a sequence of fuzzy numbers and let sequence of arithmetic means of (un) be

defined by σn = 1
n+1

∑n
k=0 uk. We say that sequence (un) is Cesàro summable to fuzzy number a µ if lim

n→∞
σn = µ.

Definition 2.8. [26] Let (un) be a sequence of fuzzy numbers. The Euler means of (un) is defined by

tpn =
1

(p+ 1)n

n
∑

k=0

(

n

k

)

pn−kuk (p > 0).

We say that (un) is Ep summable to a fuzzy number µ if lim
n→∞

t
p
n = µ.

Definition 2.9. [24] A sequence (un) of fuzzy numbers is said to be Abel summable to a fuzzy number µ if the

series
∑∞

n=0 unx
n converges for all x ∈ (0, 1) and

lim
x→1−

(1− x)

∞
∑

n=0

unx
n = µ.

Definition 2.10. [25] A sequence (un) of fuzzy numbers is said to be Borel summable to µ if the series
∑∞

n=0
xn

n! un
converges for all x ∈ (0,∞) and

lim
x→∞

e−x

∞
∑

n=0

xn

n!
un = µ.

3 Comparison between Cesàro and Abel methods of summability of sequences of

fuzzy numbers

In the following theorem we give an optimal bound for Cesàro summable sequences of fuzzy numbers.

Theorem 3.1. If sequence (un) of fuzzy numbers is Cesàro summable, then D(un, 0̄) = o(n) and this estimate is

best possible.

Proof. Let sequence (un) of fuzzy numbers be Cesàro summable to a fuzzy number µ. Then sequence of Cesàro
means σn = 1

n+1

∑n
k=0 uk converges to µ. From Proposition 2.2 we have

D(un, 0̄) = D

(

n
∑

k=0

uk,

n−1
∑

k=0

uk

)

= D((n+ 1)σn, nσn−1) ≤ nD(σn, σn−1) +D(σn, 0̄)

3
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and, by dividing both sides with n, we get

D(un, 0̄)

n
≤ D(σn, σn−1) +

D(σn, 0̄)

n
·

Since (σn) is a convergent sequence, by limiting both sides we conclude D(un, 0̄) = o(n).
Now we shall show that the estimate D(un, 0̄) = o(n) is best possible. We prove by contradiction. Let

estimate D(un, 0̄) = o
(

n
λn

)

be best possible for Cesàro summable sequences (un) of fuzzy numbers, where (λn)

is a sequence of real numbers with 0 < λn 6= O(1). Then there exists a subsequence (λnk
) of (λn) such that

nk+1 ≥ nk + 2 and λnk
↑ ∞. Then consider the sequence of fuzzy numbers (un) defined by:

unk
(t) =



















t− nk√
λnk

, nk√
λnk

≤ t ≤ nk√
λnk

+ 1

2− t+ nk√
λnk

, nk√
λnk

+ 1 ≤ t ≤ nk√
λnk

+ 2

0, otherwise,

unk+1(t) =



















t+ nk√
λnk

, − nk√
λnk

≤ t ≤ 1− nk√
λnk

2− t− nk√
λnk

, 1− nk√
λnk

≤ t ≤ 2− nk√
λnk

0, otherwise,

for n = nk, n = nk + 1 and

un(t) =











t, 0 ≤ t ≤ 1

2− t, 1 ≤ t ≤ 2

0, otherwise

for n 6= {nk, nk + 1}. Then α−level set of (un) is

[unk
]α =

[

α+
nk
√

λnk

, 2− α+
nk
√

λnk

]

, [unk+1]α =

[

α− nk
√

λnk

, 2− α− nk
√

λnk

]

for n = nk, n = nk + 1 and [un]α = [α, 2 − α] for n 6= {nk, nk + 1}. So α−level set of Cesàro means (σn) is

[σnk
]α =

[

α+
nk

(nk + 1)
√

λnk

, 2− α+
nk

(nk + 1)
√

λnk

]

for n = nk and [σn]α = [α, 2 − α] for n 6= nk. Thus we conclude that sequence (un) is Cesàro summable to fuzzy
number

µ(t) =











t, 0 ≤ t ≤ 1

2− t, 1 ≤ t ≤ 2

0, otherwise.

However we have

λnk

nk

D(unk
, 0̄) =

2λnk

nk

+
√

λnk
→ ∞

as k → ∞, which contradicts with the assumption D(un, 0̄) = o
(

n
λn

)

. The proof is completed.

Now we prove a theorem dealing with multiplication of infinite series of fuzzy numbers, which is analogous to
Mertens’ theorem that in classical analysis.
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Theorem 3.2. Let
∑∞

n=0 un be a convergent series of fuzzy numbers. If
∑∞

n=0 xn is a convergent series with

non-negative real terms, then

(

∞
∑

n=0

xn

)(

∞
∑

n=0

un

)

=

∞
∑

n=0

n
∑

k=0

ukxn−k.

Proof. Let
∑∞

n=0 un be a convergent series of fuzzy numbers and
∑∞

n=0 xn be a convergent series with non-
negative real terms. Then there exist U ∈ E1 and X ∈ R such that Un =

∑n
k=0 uk → U and Xn =

∑n
k=0 xk → X

are satisfied. Hence for given any ε > 0

(i) there exists n0 ∈ N such that D(Un, U) < ε
3(X+1) whenever n > n0,

(ii) there exists n1 ∈ N such that for n > n1 we have xn < ε

3

{

(n0+1) max
0≤k≤n0

{D(Uk,U)}+1

}

(iii) there exists n2 ∈ N such that for n > n2 we have
∑∞

k=n+1 xk < ε
3(D(U,0̄)+1)

·

On the other hand by Remark 2.4 we have

m
∑

n=0

n
∑

k=0

ukxn−k =

m
∑

n=0

n
∑

k=0

xkun−k =

m
∑

k=0

xk

m
∑

n=k

un−k =

m
∑

k=0

xk

m−k
∑

n=0

un =

m
∑

k=0

xkUm−k.

Since

D

( m
∑

n=0

n
∑

k=0

ukxn−k,XU

)

= D

(

m
∑

k=0

xkUm−k,

∞
∑

k=0

xkU

)

= D

(

m
∑

k=0

xkUm−k,

m
∑

k=0

xkU +

∞
∑

k=m+1

xkU

)

≤ D

(

m
∑

k=0

xkUm−k,

m
∑

k=0

xkU

)

+D

(

∞
∑

k=m+1

xkU, 0̄

)

≤
m−n0−1
∑

k=0

xkD(Um−k, U) +
m
∑

k=m−n0

xkD(Um−k, U) +D

(

∞
∑

k=m+1

xkU, 0̄

)

,

we get

D

(

m
∑

n=0

n
∑

k=0

ukxn−k,XU

)

< ε

whenever m > max{n0 + n1, n2}, and this completes the proof.

Theorem 3.3. If sequence (un) of fuzzy numbers is Cesàro summable to fuzzy number µ, then (un) is Abel

summable to µ.

Proof. Let (un) be Cesàro summable to a fuzzy number µ. We want to show that series
∑

unx
n of fuzzy numbers

is convergent for x ∈ (0, 1), and

lim
x→1−

(1− x)
∞
∑

n=0

unx
n = µ.

5
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From Theorem 3.1 we have D(un, 0̄) = o(n) and as result we get
∞
∑

n=0

D(unx
n, 0̄) ≤

∞
∑

n=0

D(un, 0̄)x
n ≤

∞
∑

n=0

nxn =
x

(1− x)2

where x ∈ (0, 1). So by Theorem 2.6, series
∑

unx
n of fuzzy numbers is convergent for x ∈ (0, 1). Besides, from

Theorem 3.2 we get

(1− x)
∞
∑

n=0

unx
n = (1− x)2

1

1− x

∞
∑

n=0

unx
n = (1− x)2

(

∞
∑

n=0

xn

)(

∞
∑

n=0

unx
n

)

= (1− x)2
∞
∑

n=0

snx
n = (1− x)2

∞
∑

n=0

(n + 1)σnx
n.

At this point we recall the power series method (J, p) introduced by Sefa and Çanak [15]. Since sequence (σn) of
Cesàro means converges to µ and summability method (J, n + 1) is regular we have

lim
x→1−

(1− x)2
∞
∑

n=0

(n+ 1)σnx
n = µ,

from which we conclude

lim
x→1−

(1− x)
∞
∑

n=0

unx
n = µ.

However Abel summable sequences of fuzzy number do not have to be Cesàro summable, which can be seen
by following example.

Example 3.4. Consider sequence u = (un) of fuzzy numbers such that

un(t) =



























2 n
√

t+ (−1)n+1n, if (−1)nn ≤ t ≤ (−1)nn+ 1
2n ,

1, if (−1)nn+ 1
2n ≤ t ≤ (−1)nn+ 2− 1

2n ,

2 n
√

(−1)nn+ 2− t, if (−1)nn+ 2− 1
2n ≤ t ≤ (−1)nn+ 2,

0, otherwise

for n ≥ 1 and u0 = 1̄. Since

∞
∑

n=0

u−n (α)x
n =

∞
∑

n=0

{

(−1)nn+
(α

2

)n}

xn =
−x

(1 + x)2
+

2

2− αx

∞
∑

n=0

u+n (α)x
n =

∞
∑

n=0

{

(−1)nn+ 2−
(α

2

)n}

xn =
−x

(1 + x)2
+

2

1− x
− 2

2− αx

converges uniformly in α where 0 < x < 1, series
∑

unx
n is convergent by Definition 2.3. Then considering the

fuzzy number µ, where [µ]α = [0, 2], we get

D
(

(1− x)
∑

unx
n, µ
)

= sup
α∈[0,1]

max

{
∣

∣

∣

∣

−(1− x)x

(1 + x)2
+

2(1 − x)

2− αx

∣

∣

∣

∣

,

∣

∣

∣

∣

−(1− x)x

(1 + x)2
+

2(1− x)

1− x
− 2(1− x)

2− αx
− 2

∣

∣

∣

∣

}

= sup
α∈[0,1]

∣

∣

∣

∣

−(1− x)x

(1 + x)2
− 2(1− x)

2− αx

∣

∣

∣

∣

=
(1− x)x

(1 + x)2
+

2(1 − x)

2− αx

6
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and so limx→1−(1− x)
∑

unx
n = µ. Hence sequence (un) of fuzzy numbers is Abel summable to fuzzy number

µ(t) =

{

1, 0 ≤ t ≤ 2

0, otherwise,

but is not Cesàro summable to any fuzzy number.

4 Comparison between Euler and Borel methods of summability of sequences of

fuzzy numbers

Theorem 4.1. Let (un) be a sequence of fuzzy numbers. Then q-th order Euler means of p-th order Euler means

of (un) is (p+ q + pq)-th order Euler means of (un).

Proof. Let (un) be a sequence of fuzzy numbers and (tpn) be the sequence of p-th order Euler means of (un). Then
sequence of q-th order Euler means of (tpn) is

tqn(t
p
n) =

1

(q + 1)n

n
∑

k=0

(

n

k

)

qn−ktpn

=
1

(q + 1)n

n
∑

k=0

(

n

k

)

qn−k 1

(p+ 1)k

k
∑

m=0

(

k

m

)

pk−mum

=
1

(q + 1)n

n
∑

m=0

um

n
∑

k=m

(

n

k

)(

k

m

)

qn−kpk−m 1

(p + 1)k

=
1

(q + 1)n

n
∑

m=0

(

n

m

)

um

(p + 1)m

n−m
∑

k=0

(

n−m

k

)(

p

p+ 1

)k

qn−m−k

=
1

(q + 1)n

n
∑

m=0

(

n

m

)(

1

p+ 1

)m(
pq + p+ q

p+ 1

)n−m

um

=
1

(pq + p+ q + 1)n

n
∑

m=0

(

n

m

)

(pq + p+ q)n−mum

= tpq+p+q
n

in view of Remark 2.4, which completes the proof.

Theorem 4.2. If sequence (un) of fuzzy numbers is Ep summable to a fuzzy number µ , and s > p > 0, then it is

Es summable to µ.

Proof. Let s > p > 0 and let sequence (un) of fuzzy numbers be Ep summable to a fuzzy number µ. Then

sequence (tpn) of Euler means of (un) converges to µ. Besides it follows from Theorem 4.1 that tsn = t
s−p

p+1

n (tpn). By
regularity of Euler summability method we conclude that (tsn) → µ and this completes the proof.

But Es summable sequences are not necessarily Ep summable for s > p > 0, which can be seen by following
example.

Example 4.3. Let (un) be a sequence of fuzzy number such that

un(t) =























2 n
√

t− (−p− s− 1)n, (−p− s− 1)n ≤ t ≤ (−p− s− 1)n + 1
2n

1, (−p− s− 1)n + 1
2n ≤ t ≤ (−p− s− 1)n + 1

(−p− s− 1)n + 2− t, (−p− s− 1)n + 1 ≤ t ≤ (−p− s− 1)n + 2

0, (otherwise)

7
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for n ≥ 1 and [u0]α = [2, 3 − α]. Then

[un]α =
[

(−p− s− 1)n +
(α

2

)n

, (−p − s− 1)n + 2− α
]

.

So α−level set of sequence tsn of s-th order Euler means is

[tsn]α =

[

1

(s+ 1)n

n
∑

k=0

(

n

k

)

sn−k

{

(−p− s− 1)k +
(α

2

)k
}

,
1

(s+ 1)n

n
∑

k=0

(

n

k

)

sn−k
{

(−p− s− 1)k + 2− α
}

]

=

[

(−1)n
(p+ 1)n

(s+ 1)n
+

(

2s+ α

2s+ 2

)n

, (−1)n
(p+ 1)n

(s+ 1)n
+ 2− α

]

.

Hence D (tsn, µ) =
(p+1)n

(s+1)n +
(

2s+1
2s+2

)n

→ 0 where

µ(t) =











t, 0 ≤ t ≤ 1

2− t, 1 ≤ t ≤ 2

0, (otherwise).

So we conclude that sequence (un) is Es summable to fuzzy number µ. Now let investigate the Ep summabiltiy of
(un). α−level set of sequence t

p
n of p-th order Euler means is

[tpn]α =

[

1

(p+ 1)n

n
∑

k=0

(

n

k

)

pn−k

{

(−p− s− 1)k +
(α

2

)k
}

,
1

(p+ 1)n

n
∑

k=0

(

n

k

)

pn−k
{

(−p− s− 1)k + 2− α
}

]

=

[

(−1)n
(s+ 1)n

(p+ 1)n
+

(

2p+ α

2p+ 2

)n

, (−1)n
(s+ 1)n

(p+ 1)n
+ 2− α

]

and then sequence (un) is not Ep summable to any number µ since sequence [tpn]α is not convergent.

Now we prove a lemma which is necessary to achieve the goal of this section.

Lemma 4.4. Let
∑∞

n=0 un be a convergent series of fuzzy numbers. If
∑∞

n=0 xn is a convergent series with non-

negative real terms, then

lim
n→∞

n
∑

k=0

uk

n
∑

v=k

xv =

∞
∑

k=0

uk

∞
∑

v=k

xv.

Proof. Let
∑∞

n=0 un be a convergent series of fuzzy numbers and
∑∞

n=0 xn be a convergent series with non-
negative real terms. Then we have

D

(

n
∑

k=0

uk

n
∑

v=k

xv,

∞
∑

k=0

uk

∞
∑

v=k

xv

)

= D

(

n
∑

k=0

uk

n
∑

v=k

xv,

n
∑

k=0

uk

n
∑

v=k

xv +

n
∑

k=0

uk

∞
∑

v=n+1

xv +

∞
∑

k=n+1

uk

∞
∑

v=k

xv

)

≤ D

(

n
∑

k=0

uk

∞
∑

v=n+1

xv, 0̄

)

+D

(

∞
∑

k=n+1

uk

∞
∑

v=k

xv, 0̄

)

≤
{

∞
∑

v=n+1

xv

}

D

(

n
∑

k=0

uk, 0̄

)

+

{

∞
∑

v=0

xv

}

D

(

∞
∑

k=n+1

uk, 0̄

)

.

Since series
∑∞

n=0 un and
∑∞

n=0 xn are convergent, both of series are bounded and corresponding remainder terms
converge to 0 as n → ∞. So by limiting both sides of the expression above we get

lim
n→∞

D

(

n
∑

k=0

uk

n
∑

v=k

xv,

∞
∑

k=0

uk

∞
∑

v=k

xv

)

= 0,

and the proof is completed.
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Theorem 4.5. If sequence (un) of fuzzy numbers is Ep summable to a fuzzy number µ , then it is Borel summable

to µ.

Proof. Let sequence (un) of fuzzy numbers be Ep summable to fuzzy number µ. Our aim is to show that
∑∞

n=0
xn

n! un converges for all x ∈ (0,∞) and

lim
x→∞

e−x

∞
∑

n=0

xn

n!
un = µ.

Since sequence (un) is Ep summable to µ, sequence a of Euler means converges to µ.Then we have [tpn]α → [µ]α
for 0 ≤ α ≤ 1, which, in special case, implies sequences (u−n (0)) and (u+n (0)) are Ep summable to µ−

n (0) and
µ+
n (0), respectively. Then we have u−n (0) = o((2p + 1)n) and u+n (0) = o((2p + 1)n). So we get

D(un, 0) = max{|u−(0)|, |u+(0)|} = o((2p + 1)n).

By using this fact, for all x ∈ (0,∞) we have
∞
∑

n=0

D

(

xn

n!
un, 0̄

)

≤
∞
∑

k=0

D (un, 0̄)
xn

n!
≤

∞
∑

n=0

((2p + 1)x)n

n!
= e(2p+1)x,

and so from Thereom 2.6 series
∞
∑

n=0

xn

n! un converges for all x ∈ (0,∞). Besides we have

m
∑

n=0

(p+ 1)ntpn
xn

n!
=

m
∑

n=0

xn

n!

n
∑

k=0

(

n

k

)

pn−kuk =
m
∑

k=0

uk

m
∑

n=k

(

n

k

)

xn

n!
pn−k =

m
∑

k=0

xk

k!
uk

m
∑

n=k

(px)n−k

(n− k)!

and by Lemma 4.4 we get
∞
∑

n=0

tpn
[(p+ 1)x]n

n!
= epx

∞
∑

k=0

xk

k!
uk.

Dividing both sides by e(p+1)x it follows that

1

e(p+1)x

∞
∑

n=0

tpn
[(p + 1)x]n

n!
= e−x

∞
∑

k=0

xk

k!
uk.

Finally, since (tpn) → µ and Borel summability method is regular, by limiting both sides as x → ∞ we conclude
that

lim
x→∞

e−x

∞
∑

n=0

xn

n!
un = µ.

Borel summability of a sequence of fuzzy numbers may not imply Ep summability. This can be seen by
sequence (un) of fuzzy numbers defined by

un(t) =



















t− (−1)nn!, (−1)nn! ≤ t ≤ (−1)nn! + 1

(−1)nn! + 2− t

t− (−1)nn!
, (−1)nn! + 1 ≤ t ≤ (−1)nn! + 2

0, (otherwise).
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Sequence (un) of fuzzy numbers is Borel summable to fuzzy number

µ(t) =



















t, 0 ≤ t ≤ 1

2− t

t
, 1 ≤ t ≤ 2

0, (otherwise),

but not Ep summable to any fuzzy number.

5 Conclusion

In this study we have proved comparison theorems for recently introduced summability methods of sequences of
fuzzy numbers. Besides, various results dealing with series of fuzzy numbers have been obtained. A comparison
theorem, in general, provides us with the facility of extending the results of one method to another one directly
without needing a separate proof. So it makes possible to utilize from the results in one method to achive the goals
related with the other method. In our case, in view of Theorem 3.3 and Theorem 4.5, we can extend the results
for Abel summability method of sequences of fuzzy numbers [24] and Borel summability method of sequences
of fuzzy numbers [25] to Cesàro and Euler summability methods, respectively. We mention some of these results
concerning the convergence of summable sequences of fuzzy numbers below.

Corollary 5.1. If sequence (un) of fuzzy numbers is Cesàro summable to fuzzy number µ and nD(un, un−1) =
o(1), then sequence (un) converges to µ.

Corollary 5.2. If series
∑

un of fuzzy numbers is Cesàro summable to fuzzy number ν and nD(un, 0̄) = o(1),
then

∑

un = ν.

Corollary 5.3. [26] If sequence (un) of fuzzy numbers is Ep summable to fuzzy number µ and
√
nD(un−1, un) =

o(1), then (un) converges to µ.

Corollary 5.4. [26] If series
∑

un of fuzzy numbers is Ep summable to fuzzy number ν and
√
nD(un, 0̄) = o(1),

then
∑

un = ν.
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