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Abstract. Online social networks (OSNs) portray a multi-layer of interactions through which users become a friend, 

information is propagated, ideas are shared, and interaction is constructed within an OSN. Identifying the most influ-

ential spreaders in a network is a significant step towards improving the use of existing resources to speed up the 

spread of information for application such as viral marketing or hindering the spread of information for application 

like virus blocking and rumor restraint. Users communications facilitated by OSNs could confront the temporal and 

spatial limitations of traditional communications in an exceptional way, thereby presenting new layers of social inter-

actions, which coincides and collaborates with current interaction layers to redefine the multiplex OSN. In this paper, 

the effects of different topological network structure on influential spreaders identification are investigated. The re-

sults analysis concluded that improving the accuracy of influential spreaders identification in OSNs is not only by im-

proving identification algorithms but also by developing a network topology that represents the information diffusion 

well. Moreover, in this paper a topological representation for an OSN is proposed which takes into accounts both mul-

tilayers interactions as well as overlaying links as weight.  The measurement results are found to be more reliable 

when the identification algorithms are applied to proposed topological representation compared when these algorithms 

are applied to single layer representations.  
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1. Introduction 

Online social networks (OSNs) have billions of 

users and they have been a dynamic source for vari-

ous research disciplines. OSNs’ lens provide re-

searchers and scientists with exceptional prospects to 

understand individuals at scale and to analyze human 

behavioral patterns, otherwise impossible [1]. The 

data generated by OSNs users have been utilized in 

various applications [2-4]. The huge rise of OSNs 

driven by communication technology revolution has 

intensely renovated the platform of human interac-

tions. Human communications facilitated by OSNs 

could confront the temporal and spatial limitations of 

traditional communications in an exceptional way, 

thereby presenting a qualitatively new layers of so-

cial interactions [5], which coincides and collaborates 

with current interaction layers to redefine the multi-

plex social networks [5-7]. These several network 

layers or communication channels in a multiplex 

network do not act completely separately nor de-

pendently[5]. Although each layer can provide roles 

within its purpose, it is the interaction and interplay 

between these layers that can accomplish the full 

functionality of the network and might provide an 

increase in significant and unexpected collective out-

comes, which can better explain the diffusion process 

within the network. 

Spreading of information influentially is a perva-

sive process; it refers to variety of applications [8-13]. 

Targeting these influential spreaders in information 

propagation is significant for the development of  the 

approaches  for either quickening the speed of propa-

gation  such as  the application of  viral marketing [8-

10] or  blocking the diffusion of undesirable infor-

mation, such as rumors and viruses [11-13].Therefore, 

several algorithms have been proposed to identify the 

most influential spreaders in OSNs. The output of 

recent researches in identifying influential spreaders 

in OSNs has triggered an extensive debate. For ex-

ample, in an OSN (for example Twitter), OSNs struc-

ture contains links that are obviously known by users 

and links that are implicitly detected by network in-

teraction. These links form multi-interactions layer 

(social friendship layer, retweet interaction layer, 

mention interaction layer) as shown Figure1. These 

processes induce connection diversity and multi-layer 

interaction networks within a single OSN. In network 

theory, nodes are commonly assumed to be linked to 

a single type of static link that describes the relation-

ship between them, although, in numerous circum-

stances, this hypothesis simplifies the complexity of 

the network. Ignoring the reality of multiple relation-

ships between users [14, 15], as well as the im-

portance of the nodes with respect to the entire struc-

ture [16, 17]. Consequently, this idea induces the 

wrong identification of the most influential nodes 

(users) with a network [15]. Similarly, identifying 

influential spreaders in an OSN by modeling a single 

layer interaction network and ignoring the other in-

teraction will generate a partial relationship infor-

mation representation, and consequently, uncertain 

identification results. Therefore, multiple types of 

interaction between users should be considered for 

better understanding the information diffusion pro-

cess and precise influential spreaders identification. 



 

Figure 1 Schematic illustration of the connections in multi interaction layers in an OSN (Twitter network)

In this paper, the topological representation of  

OSNs of the network structure are argued to have a 

vital role such that there are possible circumstances 

under which the top ranked nodes identified by a 

prominent algorithm applied on single interaction 

network which poorly correlates with the real dynam-

ic of information diffusion may have a small role in 

information spreading process. Whereas top ranked 

nodes identified by a prominent algorithm applied to 

rich topological network representation, which highly 

correlates with the real dynamic of information diffu-

sion will have a substantial result that leads to diffu-

sion through a large fraction of the network. There-

fore improving the effectiveness of influential 

spreaders identification is not only depending on the 

improvement of identification algorithm but also on 

how the topology of the network is represented. 

Questions like “how the performance of influential 

spreaders identification algorithms in an OSN gets 

influenced by applying them on different topological 

network representation. “What is best topological 

network representation to precisely identify the influ-

ential spreaders in OSNs context? ” are not yet fully 

investigated and need to be answered. Using real two 

datasets from Twitter (these two datasets contain 

large-scale interdependent/interconnected multi-

plex/multilayer networks; where one-layer represents 

the social structure and two layers encode different 

types of user interactions dynamics), the performance 

of most prominent influential spreaders identification 

algorithms (degree centrality, PageRank, and k-core 

algorithms) is investigated. These influential spread-

ers identification algorithms are applied on different 

topological network representation. Then  the effec-

tiveness of different identification algorithms on dif-

ferent topological network representations are evalu-

ated by comparing ranking list obtained generated by 

each identification algorithm with ranking list ob-

tained by tracking diffusion links in real spreading 

dynamics of information [18]. The findings of this 

paper (presented in result section) are significant in 

understanding information spread with the real OSNs 

and on selecting the most efficient algorithms for 

identifying influential spreaders.  

The rest of the paper is organized as follows. Sec-

tion 2 presents related works. Section 3 discusses 

proposed method. Section 4 presents experimental 

analysis. In Section 5, the performance evaluations 

are discussed. Section 6 provides detailed results and 

discussion. The paper is concluded in section 7. 

2.  Related work  

Several researchers have developed many algo-

rithms to identify influential spreaders. Classical cen-

trality measures, such as degree, closeness centrality, 

betweenness centrality and eigenvector centrality, are 

direct methods for recognizing the influential spread-

ers.  However,   closeness centrality and betweenness 

centrality  have very high computational complexity, 

hence,  it is not suitable to be applied into very large-

scale OSNs [18, 19]. This limitation has made im-

practical for large OSNs. In other hand eigenvector 

centrality  is not inefficient, especially in scale-free 

networks, due to the weight will be assigned to few 

number of nodes (hub), whereas  the remaining ma-

jority the others have considerably small weights,  

therefore, they will not be ranked accurately [20].  

However, the degree distribution for OSNs such as  

Facebook network [21]  is proved to be the scale-free 

network. As consequence eigenvector, centrality may 

lead to improper ranking if applied to such networks. 

Various studies have used PageRank and its 

extensions to identify the influential spreaders in 

OSNs   [22-27]. Kitsak et al found, in contrast to 

common belief, there are plausible circumstances 

where the best spreaders do not correspond to the 

most highly connected or the most central people 

[28]. The research [28] showed that the most efficient 

spreaders are those located within the core of the 

network as identified by the k-shell decomposition 

analysis.  Recently Pei et al have conducted a re-

search [18]  with large OSNs datasets and reported  

that the  most influential spreaders are placed in the 

k-core. The k-core algorithm performs better than 

degree centrality and PageRank. The performance of 

aforementioned algorithms have been tested on sin-

gle layer OSN such as followers network on Twitter  

[22, 29] ,  retweet network [25, 26]  or  mention net-

work [18].  

However, even though many researchers devel-

oped effective algorithms to identify influential 

spreaders but investigation of how different  

representations of OSNs network effects the result of 

these algorithms has poorly understood. These effects 

specifically in OSNs where multi social interactions 



play a diverse role in information spreading should 

be carefully investigated. For example, applying a 

proposed algorithm on single layers interaction (such 

as social network, retweet network or mention net-

work) yielded different results[30]. Consequently, 

claiming any improvement in result may not be due 

to the effectiveness of proposed algorithm but it 

could be due to variation of the network representa-

tion, which has a higher correlation with information 

spreading. Moreover, in OSNs, the lack of 

knowledge about connection strength between the 

users can lead to networks with heterogeneous rela-

tionship strengths (e.g., acquaintances and best 

friends mixed together) [31] . Therefore, the binary 

relationship (the relationship that describes only if 

the connection exists or not without considering the 

strength of it) will lead to unreliable connection rep-

resentation, consequently, variable identification re-

sults and the effectiveness and efficiency of the algo-

rithms will be varied with different network represen-

tations. The connection strength can be better under-

stood by considering different interaction layers ra-

ther than considering a single network [15], for ex-

ample in twitter the followers  network layers explain 

the social network relations between the users while 

retweet and mention can give more understanding  of 

connection strength between the users [31-34].  

3. Methods 

In this section, firstly comprehensive methods to 

represent single and multilayer of complex OSNs 

which consist of 𝑁 nodes and 𝑀 layers are described, 

each layer presents a different interaction type be-

tween the users within the same OSN. Secondly, the 

most prominent algorithms used to find the most in-

fluential spreaders in OSNs are applied to these net-

works. Thirdly, how the different multilayer network 

topological representations influence the accuracy of 

these algorithms is discussed.  

3.1 Network topological representation  

Consider a multi-layers network involving several 

types of links between its nodes. When it is plausible 

to differentiate the nature of the ties, a successful 

approach to describe the network comprises in em-

bedding the links in diverse layers based on their 

category. In this section, the topological representa-

tions of the network layers are mathematically de-

scribed. 

 3.1.1 Definition 1: Single layer network 

A complex social network can be represented as 

single-layer graphs in which the nodes are connected 

by links. Nodes represent the users and the links rep-

resent the relationship among the users throughout 

the networks. It is assume that a network can be 

viewed as graph G= (N, E), where N denotes nodes 

(users), and E denotes edges or links (relationship). 

In network theory, it is common to suppose that 

nodes are linked by a single type of static edge that 

summarizes their relations, although in a many of 

situations this assumption generalizes the complexity 

of the network. However, various types of connec-

tions between nodes can be nowadays appropriately 

examined on the basis of multilayer networks.  

3.1.2 Definition 2: Aggregating into multi-layer 

network 

Let us consider network consists of N nodes and  

M layers.  It is considered all the links at all layers to 

be unweighted layers [17, 35-37].  Each layer α  

, 𝛼 =  1, 2, . . . , 𝑀  is associated an adjacency matrix 

𝐴𝛼  =  {𝑎𝑖𝑗
𝛼 }. Such a network can be represented by 

the set layer 𝑨 = [A[1], A[2], A[3] … … … . . A[M]]  
whose elements are N × N  adjacency matrices of the  

M layers [17, 37]. The degree of a node 𝑖 on a given 

layer 𝛼 is denoted by 𝑘𝑖
𝛼 = ∑ 𝑎𝑖𝑗

[𝛼]
   𝑗 . Therefore, the 

degree of node 𝑖 in a multiplex network is the vector.

   

 𝒌𝒊 = [𝑘𝑖
[1]

, 𝑘𝑖
[2]

, … … … 𝑘𝑖
[𝑀]

]      𝑖 = 1,2,3 … … … … 𝑁.       

Vector variables  𝑨 and  𝒌𝒊  are essential to cor-

rectly present multiplex networks. 

Aggregating all relationships to a single aggregat-

ed network can be presented by aggregated adjacency 

matrices.  In aggregated network, the fact that the 

links belong to different layers are ignored [17]. The 

aggregated topological adjacency matrix  𝐴 =  [𝑎𝑖𝑗] 

of a multiplex network is described similar to Ref 

[17], where 

 

𝑎𝑖𝑗 = {
1         𝑖𝑓 ∃ 𝛼 𝜖𝑎𝑖𝑗

[𝛼]

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                        

 

This is the adjacency matrix of the unweighted 

network achieved from the multi-layer network by 

combining all pairs of nodes 𝑖 and 𝑗, which are con-

nected by a link in at least one layer of the multiplex 

network, and ignoring the probability of multi-link 

existence between a pair of nodes and the nature of 

each link as well. For the degree of node  𝑖  on the 

aggregated topological network,  



𝑘𝑖 = ∑ 𝑎𝑖𝑗    𝑗                                                                 

Summing 𝑘𝑖  over all elements of the network is 

obtained 

∑ 𝑘𝑖 = 2𝐾                                                                     

 

Where K is links counts (also called the size) of 

the aggregated topological network. Hence, such 

aggregated topological network can be studied using 

the widely used measures defined for single layer 

networks. An essential characteristic, which is lost in 

the topological aggregated representation, is that in 

the multiplex network the same pair of nodes can be 

connected by a link of different kinds of relations. 

3.1.3 Definition 3: Aggregating into multi-layer 

network considers the overlaying links as weight  

To eliminate the limitation of aggregating all links 

to a single aggregated network such as a network in 

Figure 2 that same pair of nodes in multiplex network 

can be linked by links of different relations. There-

fore, here the links describing the different relation 

between users are taken into account.  

Similar as  presented in  [17], the overlapping of 

links due to multi-link relations between  𝑖 and 𝑗  of 

two layers  𝛼 and 𝛽   

𝑂𝑖𝑗
𝛼,𝛽

=  𝑎𝑖𝑗
[𝛼]

+  𝑎𝑖𝑗
[𝛽]

                                                        

This can be represented in all layers as: 

𝑂𝑖𝑗 = ∑ 𝑎𝑖𝑗
[𝛼]

𝛼                                                                    

From which follows that 0 ≤ 𝑂𝑖𝑗 ≤ 𝑀, ∀𝑖 𝑗. 

Therefore, the aggregated overlapping adjacency 

set will be constructed by: 

𝑜𝑣𝑒𝑙𝑎𝑝 𝑎𝑑𝑗𝑎𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 = {𝑂𝑖𝑗}                                  

In a multiplex network, the essential questions to 

be investigated are the following: How can one take 

into account all the interactions between the different 

multi-layer networks considering that not all of them 

hold the equal significance? It is important, to state 

that in order to calculate the centrality of a node, it is 

essential to take into account how the centrality (im-

portance, influence) of a node is disseminated within 

the entire network through a different layer that is not 

necessarily additives [38]. For example, OSNs such 

as Twitter is  characterized by very heterogeneous 

interactions [38]. Here the aggregated multi-layer 

network, which considers the overlaying links as 

weight, has richer structure compared to the purely 

topological network.  

3.2 Influential Spreaders Identification Algorithms in 

Complex Networks   

 A number of different measures aimed at identify-

ing influential spreaders were suggested over the 

years [39]. The most prominent ones include  classi-

cal centrality measures in complex networks such as 

degree centrality [40-42], betweenness centrality [43], 

closeness centrality [44], and eigenvector centrality 

[45-47] , PageRank [22-24, 48]  and it extensions  

and k-core algorithm [28, 49, 50] . Classical centrali-

ty measurements rely on network topology.  

Closeness centrality [43] emphasizes on the exten-

siveness of influence measurement on whole network. 

In the succeeding equation,  𝑐𝑐 (𝑛𝑖) is the closeness 

centrality, and  𝑑(𝑛𝑖, 𝑛𝑗 )    is the distance between 

two vertices in the network. Calculated as following  

 

𝑐𝑐 (𝑛𝑖) = ∑
1

𝑑(𝑛𝑖, 𝑛𝑗 ) 

𝑁
𝑖=1                                                       

 

Betweenness centrality  𝑐𝐵(𝑛𝑖)  [43, 51] is con-

structed on the number of shortest paths passing over 

a node. It is assumed that the node with a high be-

tweenness have the significance position of linking 

different communities. In the succeeding formula, 

𝑔𝑗𝑖𝑘   is all geodesics connecting node  𝑗  and node 

𝑘 which pass through node 𝑖;  𝑔𝑗𝑖𝑘   is the geodesic 

distance between the nodes of 𝑗 and 𝑘. 

 

𝑐𝐵(𝑛𝑖) = ∑
𝑔𝑗𝑖𝑘

𝑔𝑗𝑘
𝑗,𝑘≠𝑖                                                      

 

 

However closeness centrality has high computa-

tional complexity; hence, it is unsuitable to be ap-

plied into significantly large-scale OSNs.  Similarly, 

the best algorithm for betweenness centrality requires 

a computational time equal to 𝑂(𝑁𝑀)  for un-

weighted networks with 𝑁 nodes and 𝑀 edges.   Also 

eigenvector centrality  is inefficient, particularly in 

scale-free networks, [20, 21]. Consequently, because 

betweenness centrality, closeness centrality, and ei-

genvector centrality are infeasible to calculate for 

large-scale social networks, therefore in this paper 

degree centrality, PageRank, k-core  are applied to 

different network presentation. These algorithms are 

defined as follow  

Degree centrality is a direct and widely used topo-

logical measure of user influence. Commonly in a 

network, a high-degree node is assumed to be in au-

thority for the largest spread processes [52, 53]. Us-



ers with high connectedness have the opportunity to 

influence the behavior of others [54]. 

PageRank is a network-based diffusion algorithm. 

It is the famous Google algorithm for ranking web-

sites that was initially proposed by Brin et al. [48]. 

PageRank is a global ranking of all web pages, re-

gardless of their contents, based solely on their con-

nected links and locations on the web graph. Pag-

eRank scores recursively and two key metrics are 

considered, namely, incoming links counts and the 

PageRank value of all incoming links. PageRank was 

initially used in ranking the pages on the World Wide 

Web. 

PageRank is expressed as follows. 

𝑃 𝑅(𝑢)  =  (1 −  𝑑)/𝑁 +  𝑑 ∑ 𝑃𝑅(𝑣)/𝐿(𝑣)

𝑣∈𝑀(𝑢)

 

where N is the total number of web pages in the 

network; L (v) is the number of outgoing links from 

page v; M (u) refers to the set of web pages pointing 

to web page u; and d (with 0 ≤ d ≤ 1) is a damping 

factor that is usually set to 0.85. 

K-core ranking is based on the k-shell decomposi-

tion of the network. Each node is assigned the k-shell 

number, 𝑘𝑠, that is, the order of the shell to which it 

belongs. In k-shell decomposition, all of the nodes 

with degree 𝑘 = 1 are initially removed, and pruning 

processes will continue until no node with 𝑘 = 1 

exists. Similarly, the pruning processes will be ap-

plied to the next k-shells. This process will continue 

until the k-core of the network is found [49].  

4. Experimental analysis 

In this section, datasets used are deliberated, and 

how the different network topological interaction 

discussed in the previous section are constructed 

from these datasets, finally discussed how the algo-

rithms performances are evaluated and compared on 

network topological representations. 

4.1 Dataset  

Two real online social network datasets are used to 

investigate and evaluate the performance of influen-

tial spreaders algorithms on different network struc-

ture in order to compare different topological net-

work representation. These two datasets have been 

anonymized, in such way the same user ID is used 

for all networks (Social network, Retweet network 

and Mention network). More importantly is that these 

two datasets are large-scale interdepend-

ent/interconnected multiplex/multilayer networks; 

where one-layer represents the social structure and 

two layers encode different types of user interactions 

dynamics. 

4.1.1 Dataset 1 

Dataset 1  contains directed twitter network used in 

research [7]. This dataset is Higgs dataset, which has 

been constructed after observing the spreading pro-

cesses on Twitter before, during and after the decla-

ration of the discovery of a new particle with the fea-

tures of the elusive Higgs boson on 4th July 2012. 

The messages posted on Twitter about this discovery 

between 1st and 7th July 2012 are considered. Social 

network dataset contain 456626 nodes, 14,855,842 

edges.  Retweet network contains 256491nodes, 

328132 edges and Mention network contains 116408 

nodes and 150818 edges.  

4.1.2 Dataset 2   

This dataset comprises of 121,807,378 tweets gener-

ated by 14,599,240 unique users [55]. Then, they 

constructed an undirected, unweighted social net-

work based on reciprocal following relationships 

between 595,460 randomly selected users, as bi-

directional links that reflect more stable and reliable 

social connections. Two other types of networks con-

structed based on Retweets and mentions were built. .  

Hence based on these datasets, the social network 

nodes is used to construct the network and the num-

ber of Retweets, Mention corresponding of each user  

are extracted from Retweet network, Mention net-

work, and they are use to build the weight for this 

social network. 

4.2 Real Network Topological Representation  

In this section different networks representation of 

real network from dataset 1 and 2 are described based 

on mathematical representation of the network topol-

ogy introduced in section 3.1   

4.2.1 Single layer networks  

Using the above mention datasets, following net-

works are constructed: 

Social network (SN): it is assumed that a network 

can be constructed as graph G= (N, S), where N de-

notes nodes (users), and S denotes links (following 

relationships).  

 

𝑆𝑖𝑗  = {
1         𝑖𝑓 𝑖 ↔  𝑗  𝑖𝑛 𝑆𝑁
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          



 

 

Retweet network (RN): it is assumed that a net-

work can be constructed as graph G= (N, R), where 

N denotes nodes (users), and R denotes links (Re-

tweet relationships). 

𝑅𝑖𝑗  = {
1         𝑖𝑓 𝑖 ↔  𝑗  𝑖𝑛 𝑅𝑁
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       

 

Mention network (MN): it is assumed that a net-

work can be constructed as graph G= (N, T), where N 

denotes nodes (users), and T denotes links (mention 

relationships). 

𝑇𝑖𝑗  = {
1         𝑖𝑓 𝑖 ↔  𝑗  𝑖𝑛 𝑀𝑁
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                        

 

 

 

Figure 2 Single layer networks 

 

4.2.2 Aggregated multilayer network  

Here the network is constructed by aggregating 

different relationships (following, retweet, mention) 

into a single network. 

Let us consider a network consists of N nodes and  

M layers where in our case M = 3 .  All the links at 

all layers to be unweighted layers.  each layer α  

, 𝛼 =  1, 2, . . . , 𝑀   are associated an adjacency ma-

trix 𝐴𝛼  =  {𝑎𝑖𝑗
𝛼 }. Such a network can be represented 

by the  set layer for example in our case it could be 

represented as  𝑨 = [A[SN], A[RT], A[MN]]  whose ele-

ments are N × N  adjacency matrices of the  3 layers 

[17, 37]. Aggregating all relationships to a single 

aggregated network can be presented by aggregated 

adjacency matrices.  In aggregated network the fact 

that the links belongs to different layers is neglected 

[17]. The aggregated topological adjacency matrix is 

defined as  𝐴 =  [𝑎𝑖𝑗] of a multiplex network, where  

 

𝑎𝑖𝑗 = {
1         𝑖𝑓 ∃ 𝛼 𝜖𝑎𝑖𝑗

[𝛼]

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                    



 

Figure 3 Aggregated multilayer network 

 

4.2.3 Aggregated multilayer network with 

overlapping links consideration  

 

 The overlap of links  𝑖 and 𝑗  between three layers  

𝑆𝑁  , 𝑅𝑁  and 𝑀𝑁 are presented as 

𝑂𝑖𝑗
𝑆𝑁,𝑅𝑁,𝑀𝑁 =  𝑎𝑖𝑗

[𝑆𝑁]
+  𝑎𝑖𝑗

[𝑅𝑁]
 + 𝑎𝑖𝑗

[𝑀𝑁]
 

This can be represented in all layers as: 

𝑂𝑖𝑗 = ∑ 𝑎𝑖𝑗
[𝛼]

𝛼                                                           

From which follows that 0 ≤ 𝑂𝑖𝑗 ≤ 𝑀, ∀𝑖 𝑗. 

Consequently, the aggregated overlapping adja-

cency will be constructed by: 

𝑜𝑣𝑒𝑙𝑎𝑝 𝑎𝑑𝑗𝑎𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 = {𝑂𝑖𝑗}   

 

 

Figure 4 Aggregated multilayer network with overlapping links consideration



4.3 Evaluation and Comparison of Algorithms 

Performance on Network Topological Representation  

In this subsection, the evaluation model and effec-

tiveness of influential spreaders algorithm applied to 

different topological network representations is pre-

sented. 

4.3.1 Evaluation models  

Information spread can be modeled in probabilistic 

frameworks [56]. Several research works have Inten-

sive implemented  of classical disease models like 

susceptible-infectious-recovered (SIR) model and 

susceptible-infectious- susceptible (SIS) to model  in 

information diffusion  and information spread [57]. 

Unfortunately, these models [58] are developed 

based on  basic belief of human behavior which 

might  not be representative and illustrative of real 

dynamics  information diffusion [18, 57]. Therefore 

studies have  reported that  the measurement which is 

based on artificial models are not suitable in practice 

[59, 60]. Moreover,  the spread of diseases and 

spread of information are  found to be different [59, 

61]. Based on these observations this study is vali-

dated using real dynamics of information diffusion in 

real-world social network similarly to study [18]. In 

order to construct real dynamics of information diffu-

sion for the datasets used in this study, the retweet 

network is used related to all the users in the social 

network.  The retweet network is best representative 

network which can explain how the information is 

diffused in Twitter [7]. In Retweet network, if user 𝑖 

retweets a tweet of user 𝑗, the information propagates 

from 𝑗 to 𝑖, thus creating diffusion link from 𝑗 to 𝑖. 

In this way, diffusion graph of the networks are built. 

Overall spreading efficiency of each user is calculat-

ed and ranking list of the users is generated. 

4.3.2 Effectiveness of spreaders identification 

algorithms  

The spreading efficiency of an individual origin 𝑖 
through the number of the users in the region of in-

fluence is calculated and denoted as 𝑀𝑖.  In order to 

evaluate which algorithm are more accurate to meas-

ure the spreading capability of nodes, degree, 

PageRank, and k-core are compared by calculating 

the imprecision function   𝜖𝑘  𝜖𝑃𝑅  𝜖𝑘𝑠
  for degree, a a 

PageRank , and k-core respectively,  proposed in ref 

[28]. Where imprecision function of  𝜖𝑘  is calculated 

as following: 

 

𝜖𝑘(𝑝) = 1 −
𝑀𝑘 (𝑝)

𝑀𝑒𝑓𝑓(𝑝)
                       

Similarly, imprecision function of  𝜖𝑃𝑅  𝜖𝑘𝑠
  are 

calculated  

 

𝜖𝑃𝑅(𝑝) = 1 −
𝑀𝑃𝑅 (𝑝)

𝑀𝑒𝑓𝑓(𝑝)
                                                          

 

𝜖𝑘𝑠
(𝑝) = 1 −

𝑀𝑘𝑠 (𝑝)

𝑀𝑒𝑓𝑓(𝑝)
                                                           

Where 𝑝  is the fraction of network size  𝑁(𝑝 ∈
[1,0]), 𝑀(𝑘)(𝑝𝑟)(𝑘𝑠)(𝑝)  is the average spreading effi-

ciencies of 𝑝𝑁 nodes with highest (degree, PageRank, 

and k-core, values and  𝑀𝑒𝑓𝑓(𝑝)  is average spread-

ing efficiencies of 𝑝𝑁 nodes with largest spreading 

efficiency. The smaller imprecision function (𝜖) val-

ue, the more accurate the algorithm is to identify the 

most influential spreaders. A value for (𝜖)  close to 0 

denotes a very efficient process, since the nodes that 

are chosen are practically those that contribute most 

to information diffusion.  imprecision function of 

(1%, 5%, 10%, 15%, and 20%) top influential 

spreaders in network identified by degree, PageRank, 

and k-core  are compared as shown in figure 5 and 7 

for dataset one and two respectively. 

Even though imprecision function can quantify the 

spreading efficiency well, it is unclear which algo-

rithm can better locate individual influential spread-

ers. Therefore, recognition rate 𝑟(𝑓)   proposed in 

[18] is used to verify the performance of each algo-

rithms in recognizing influential spreaders.  Is recog-

nition rate 𝑟(𝑓):  

 𝑟(𝑓) =  
|𝐼𝑓  ∩ 𝑃𝑓|

|𝐼𝑓 |
                                                              

Where  𝐼𝑓  and 𝑃𝑓   ranking lists in the top 𝑓 frac-

tion obtained by   tracking diffusion links in real 

spreading dynamics (node influence) and obtained by 

algorithms (degree, PageRank, and K-core) respec-

tively the higher recognition rate indicate that algo-

rithm identify the influential spreaders more accurate . 

Top network fraction (1%, 5%, 10%, 15%, and 20%) 

recognition rate of degree, PageRank, and k-core is 

compared as shown in Figure 6 and 8 for dataset one 

and two respectively. 

5. Results and discussions  

First the imprecision function and recognition rate 

for a degree, PageRank and k-core applied to on dif-

ferent topological representation of network (single 

layer :social network , retweet network , and mention 



network ; aggregated multilayer network and; aggre-

gated multilayer network with overlapping links as 

weight) are calculated. The imprecision functions and 

recognition rate of ten real topological representation 

networks extracted from two datasets are shown in 

fig. 5, 7 and fig 6, 8 respectively. Contrary to com-

mon belief, there is no any algorithm, which always 

performs well in all topological representation of the 

different networks.  How the dataset is extracted as 

well as, how the network is represented is an 

important factor for determining the ranking accura-

cy. However, in dataset 1, the k-core has performed 

well in all networks as shown in figure 5 and 6. in 

dataset 2 as shown in figure 7 and 8 the degree per-

formed well in three networks ( retweet network and 

weighted aggregated network) while k-core perform 

well  in one network (social network) and all algo-

rithms have approximately similar accuracy  in men-

tioned network. With respect to network representa-

tion, both retweet network and proposed weighted 

aggregated network has given comparably a well 

representation of information diffusion. In dataset 1, 

the k-core applied to retweet network achieved best-

ranking result (lowest imprecision and highest recog-

nition rates) compared other algorithms.  In dataset 2, 

the degree provided best result lowest imprecision 

and highest recognition rates) compared other algo-

rithms. Initially, this indicates the retweet is consid-

ered as a good topological network representation as 

it provides the ranking algorithms, informative net-

work data, which result in lowest imprecision func-

tion and highest recognition rates. But deep analysis 

of the results showed   that even though k-core and 

degree algorithms perform well in retweet network in 

dataset 1 and dataset 2 respectively the remaining 

ranking algorithms (degree and PageRank in dataset 

1 and PageRank and k-core in dataset 2) failed to 

perform well in retweet networks. This is due to the 

topology perturbations of the retweet network, which 

affect the ranking values provided by the ranking 

algorithms. This effect has been observed by the di-

verse imprecision functions values and recognition 

rates of the ranking algorithms applied to retweet 

network [62]. In contrary to the proposed weighted 

aggregated topological network representation, this 

has provided informative network data, which result 

in comparable low imprecision function and high 

recognition rate for all algorithms in both datasets. 

This indicates the weighted aggregated topological 

network representation is more reliable to represent 

diffusion process as ranking algorithm are not much 

varied when applied to this network representation  

compared to when ranking algorithms applied to  

retweet network. 



 

Figure 5 Imprecision function of identification algorithms applied to different topological network representations of dataset 1

.  



 

Figure 6 Recognition rate of identification algorithms applied to different topological network representations of dataset 1. 

In order to find out the reason for the poor perfor-

mances of ranking algorithms under different net-

work representation, the topological characteristics of 

the studied real networks are explored. In dataset 1, 

the results are quite consistent: k-core performs better 

than degree and PageRank. This result shows that k-

core catches the common properties of the diffusion 

process, which let the k-core powerful influential 

spreaders identification algorithm across different 

network representation. In dataset 2 the degree cer-

tainly performs well in three network representation 

which indicates that the reciprocal properties of the 

diffusion process can be captured by local structural 

of the users and degree can provide efficient ranking 

results compared to the other two algorithms. It is 

important to note here, the dataset 2 were constructed 

in such way, the following relationships between 

randomly selected users presented as bidirectional 

links, which can reflect stronger social connections. 

However, this has led to biasing the diffusion process 

to bidirectional links, which is not always true. In a 

Twitter network, most  of  the users pairs with any 

link between them are connected in the one-way di-

rection[30] and OSNs have  circumstances where 

information spreads between two users even if they 

are not connected by a social link. Hence, the dataset 

2 construction has affected the topological represen-

tation of the most networks in this dataset. The top 

spreaders were limited to those who have a 

bidirectional relationship. 



 

Figure 7 Imprecision function of identification algorithms applied to different topological network representations of dataset 2. 



 
Figure 8 Recognition rate of identification algorithms applied to different topological network representations of dataset 2. 

 

From the result Figures 5, 6,7, and 8, it is observed 

that the PageRank has failed to detect influential 

spreaders in most of the studied network, as both 

datasets represent  incomplete network data of OSNs  

and  the measurements given by PageRank are re-

sponsive to perturbations in network topology, ren-

dering it unreliable for incomplete or noisy networks 

[62]. However, the complete OSN structure is una-

vailable due to the inherent limitations of OSNs 

caused by API restrictions and user privacy. Conse-

quently, the PageRank algorithm is an unreliable 

measurement for OSNs. Moreover, the finding of this 

paper reconfirmed that the accomplishment of Pag-

eRank in web network, while it failed in OSNs, was 

due to the unintentional result of the scale-free nature 

of the web graph [62].  If the web graph was an ex-

ponential network, the ranking generated by Pag-

eRank would have been unreliable given the incom-

pleteness of the web graph [62]. 

Generally in complex networks, the most connect-

ed nodes are usually considered to authoritative for 

the largest information dissemination and are viewed 

as the most influential nodes [52]. An inadequacy of 

this method is that hubs may form tightly-knit groups 

called “rich-clubs” [63]. Approaches based on degree 

measures will highly rank these rich-club hubs [20]. 

However, reasonable situations exist in which the 

influential spreaders do not correspond to the most 

highly connected users [28]. In this study, the success 

of degree in identifying the influential spreaders in 

the three-network representation of dataset 2 indi-

cates that the properties of the diffusion process can 

be apprehended by local structural of the users. This 

can be inferred as the  reciprocal properties of this 

dataset has produced highly connected users in the 



network  and tracking the information in propagation 

network is limited to reciprocal links which lead to a 

highly correlation between the outcomes of degree 

method and  real dynamic of information diffusion. 

However, in dataset 1 and social network of dataset 2, 

the degree method does not perform well. The failure 

of degree method due to the local features of nodes 

(number of links) are not always represented the 

spreading efficiency of nodes in the network. The 

position of users within the network as well as the 

spreading efficiency of their connected users plays a 

major role in the diffusion of information   within in 

OSNs. These factors cannot be captured by the de-

gree method, which simply represent the local con-

nection features of the users. 

The k-core measures the spreading efficiency of 

the users more effectively than other algorithms in all 

network of dataset 1 as well as in a social network of 

dataset 2 but it fails to identify the influential spread-

ers in a retweet, and aggregated network of dataset 2. 

This can be explained as influential spreaders in 

these networks were identified more accurate by a 

direct number of connections. The k-core defines the 

most influential nodes as those that are located within 

the core of the network, and they can be successfully 

identified by the k-core decomposition method [28]. 

The limitations related to the k-shell decomposition 

such as considering only the links between the re-

maining nodes and entirely ignoring the links con-

nected to the removed nodes has led to failure k-core 

in theses network. This can be explained as most 

influential spreaders in this network were connected 

to many users that have low  𝑘𝑠  values and were 

removed in beginning stage. Therefore, k-core was 

not able to detect these users. These influential 

spreaders were detected by direct number of their 

links regardless to their position in the network or to 

whom they are connected.  this finding  leads need 

more investigation on   roles of  low-degree users in 

information diffusion specifically those who have 

significant broker role in the network [20].  

The conclusion based on our preliminary analysis 

exposed that the improvement, of influential spread-

ers identification accuracy is not only based on the 

improvement of ranking algorithms but also develop-

ing a network topology that represents the infor-

mation diffusion well. In addition, it should consider 

the multi-layers interaction between users for better 

understanding the social influence and spreading 

processes. Therefore, the network multiplexity needs 

to noticeably be considered to understand and predict 

spreading dynamics accurately in OSNs.  Our result 

has shown there is not a single influential spreaders 

identification algorithm, which always performs well 

in any topological networks. It is required to under-

stand how the network dataset is extracted and how 

the users within the network are connected and inter-

acted in order to identify the best possible algorithms.  

6. Conclusion  

The huge rise of OSNs has intensely renovated the 

platform of human interactions. Several network lay-

ers or communication channels in such multiplex 

network do not act completely separately nor de-

pendently [5]. Although each layer can provide roles 

within its purpose, it is the interaction and interplay 

between these layers that can accomplish the full 

functionality of the network and might provide an 

increase in nontrivial and unexpected collective out-

comes, which can better explain the diffusion process 

within the network. 

This study has concluded that based on our prelim-

inary analysis, improving the accuracy of influential 

spreaders identification is not only based on the im-

provement of identification algorithms but also on 

developing a network topology that represents the 

information diffusion as well. In addition, multi-

layers interaction between users and spreading pro-

cesses need to be looked into more carefully. There-

fore, the network multiplexity needs noticeably be 

considered to understand and predict the spreading 

dynamics accurately in OSNs.  Our result has shown 

that there is not a single influential spreader identifi-

cation algorithm which always performs well in any 

topological networks. It is required to understand 

how the network dataset is extracted and how the 

users within the network are interacting in order to 

identify the best possible algorithms. The results ob-

tained have shown that topological representation of 

the OSNs which takes into account both multilayers 

interactions as well as the weight of the interaction 

has given results that are more reliable. 

However, the future of OSNs platform will repre-

sents multilayers of network that allows not only the 

users within the same online network to be connected 

but also people and smart devices within the commu-

nity will be connected in multi and different layers 

[64-66]. Consequently this may introduce networks 

with different interaction creating intersecting re-

searches fields as future directions of different multi-

layer OSNs and their role in developing smart cities 

[67].  
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