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Abstract. Efficient response to search queries is very crucial for data analysts to obtain timely results from big data spanned 

over heterogeneous machines. Currently, a number of big-data processing frameworks are available in which search operations 

are performed in distributed and parallel manner. However, implementation of indexing mechanism results in noticeable reduc-

tion of overall query processing time. There is an urge to assess the feasibility and impact of indexing towards query execution 

performance. This paper investigates the performance of state-of-the-art clustered indexing approaches over Hadoop frame-

work which is de facto standard for big data processing. Moreover, this study leverages a comparative analysis of non-

clustered indexing overhead in terms of time and space taken by indexing process for varying volume data sets with increasing 

Index Hit Ratio. Furthermore, the experiments evaluate performance of search operations in terms of data access and retrieval 

time for queries that use indexes. We then validated the obtained results using Petri net mathematical modeling. We used mul-

tiple data sets in our experiments to manifest the impact of growing volume of data on indexing and data search and retrieval 

performance. The results and highlighted challenges favorably lead researchers towards improved implication of indexing 

mechanism in perspective of data retrieval from big data. Additionally, this study advocates selection of a non-clustered index-

ing solution so that optimized search performance over big data is obtained. 
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1.  Introduction 

Big Data refers to collection of huge data sets with 

a great diversity in types so that it becomes difficult 

to process by state-of-the-art data processing ap-

proaches or platforms [21]. More generally, we can 

say that it is formidable to perform capture, prepara-

tion, analysis and visualization on big data by current 

technologies. Therefore, big data introduces new 

challenges for security[14, 23], processing and ana-

lytics such as quick and up-to-date responses of a 

search query and in-time availability of data [24]. For 

instance, data obtained from sensor networks like 

urban management, environment and industrial in-

stallation [17] introduces storing, cleansing, query 

execution and other challenges like security, visuali-

zation and analytics[15, 22]. Similarly in the field of 

body sensor networks, increasing costs of healthcare 

and ageing of population are major subjects for re-

searchers which have critical information retrieval 

requirements. For these time sensitive applications, 

efficiency in query execution and analyzing data is 

very important for faster decision making [5]. Need 

of fast data processing and timely responses derive to 

evaluate the performance of search process so that 

challenges revealed by the emergence of big data can 

be highlighted. 

Indexing is a significant activity even for distribut-

ed highly available big data sets to efficiently per-

form data retrieval operations [8]. It is impractical to 

apply full scan on millions of records to accomplish 

search of a specific result [9]. Therefore, efficient 

techniques are required to improve task execution for 



accessing big data. To improve the efficiency of 

search and data retrieval process for voluminous data 

records many solutions have been proposed by re-

searchers. For example, vertical partitioning [12], 

clustered attribute based indexing [6, 9] for distribut-

ed parallel processing systems and clustered adaptive 

indexing [18] for changing query workload. Likewise 

in medical research, large distributed image data sets 

face the problem of multi-query optimization and a 

batch processing based image retrieval system [25] 

contributes in scheduling multiple query requests and 

minimized response time is achieved. Consequently 

for distributed and replicated big data storage sys-

tems, an efficient indexing technique is needed to 

serve more number of queries for improved search 

performance. 

As described above, many indexing frameworks 

are available to perform fast search operations on big 

data residing on distributed parallel systems. Howev-

er, existing indexing frameworks still have un-

addressed challenges. For instance, multi-attribute 

indexing on single site, indexing without intervening 

physical organization of data and re-indexing are 

some of the major challenges. Any state-of-the-art 

solution for big data indexing does not deal with 

these challenges. Furthermore, visualization of bene-

fits obtained by indexing over high throughput big 

data processing technologies also lacks in literature. 

In this research, the achievements and unaddressed 

areas of indexing are presented to help researchers 

understand recent indexing advancements in the field 

of big text data. Significance of indexing is also visu-

alized via experiment on sample text data sets which 

highlights the to-date indexing challenges in clearer 

context. 

With research viewpoint, we theoretically evaluate 

clustered indexing mechanisms developed over Ha-

doop in static and dynamic categories. This investi-

gation shows that creating new replicas for increased 

number of index attributes† is the main storage effi-

ciency barrier. Meanwhile, our empirical analysis of 

non-clustered approach emphasizes on considering it 

for big text data indexing. Our main focus is to inves-

tigate the performance of big data indexing tech-

niques for growing volume of data. In addition, the 

impact of involving as much data attributes as possi-

ble for index creation in terms of search performance 

and indexing overhead is also observed in this study. 

Our evaluation results are twofold: We show that 

increasing either size of data or number of index at-

                                                           
† We refer attributes of a data set as its index at-

tributes based on which indexes are created 

tributes has very minor effect on index size, thereby 

improving overall search performance. The reasoning 

on differences in performance results will further 

help researchers to propose a better indexing solution. 

The results obtained from experiment are further ver-

ified with mathematical modeling. We model the 

analysis approach using CPN tools which leverage 

Petri nets mathematical modeling language. Based on 

evaluation, we highlight the significance of indexing 

and identify the weaknesses of existing solutions 

which provide guidelines to researchers to explore 

improved indexing architectures for big data. Con-

cisely, this paper contributes in following: 

 Provides an overview of clustered indexing ap-

proaches under static and adaptive categories 

 Investigates static and adaptive clustered index-

ing approaches and identifies their benefits and 

limitations on search throughput for big data 

 Implements an in memory indexing approach 

under non-clustered mechanism on varying size 

data sets and varying number of index attributes 

to examine their impact on search performance 

 Verifies the experiment results by designing 

mathematical model of analysis approach 

through Petri nets  

 Based on analysis, this paper highlights chal-

lenges in the field of indexing for big data as a 

motivation for future research 

 Finally the paper suggests the implementation of 

non-clustered approach for big data indexing to 

maximize Index Hit Ratio 

The rest of the paper is organized as follows: Sec-

tion 2 provides a study of existing clustered indexing 

approaches implemented over big data under static 

and adaptive category. Section 3 presents an experi-

mental investigation of non-clustered indexing over 

varying size data sets with varying number of index-

es. Section 4 discusses the results obtained and pro-

vides an illustration of clustered and non-clustered 

approaches. Section 5 highlights challenges and rec-

ommendations for future work in indexing imple-

mentation over big data. Finally, section 6 concludes 

the discussion. 

2.  Related Work  

Fast query processing and data retrieval are the 

main challenges for large volume of data distributed 

over clusters of heterogeneous machines. Research-

ers are interested to accept the challenge and they 

have devoted to exploit different methods to optimize 

search performance for such big data. Clustered in-



dexing approaches are developed over Hadoop which 

is a de facto framework for big data processing. 

These approaches fall in either static or adaptive cat-

egory according to invocation of index creation pro-

cess and ability of changing number of index attrib-

utes. More explicitly, static indexes are created at 

data upload time and they do not allow increasing the 

number of index attributes once created. On the other 

hand, adaptive indexes are the side effect of query 

execution with the flexibility of as much index at-

tributes as fed by incoming queries. 

Clustered static indexes which are developed for 

Hadoop framework, offer indexing on single attribute 

- Trojan index [9] or varying number of index attrib-

utes – HAIL [6]. Indexes are created on whole data 

set in parallel with data uploading. Therefore, query 

execution process can be carried out immediately 

when a query is submitted as it does not invoke index 

creation or updating. However selection of attributes 

to be indexed should be very wise as these are the 

only indexes available throughout the data search 

process and cannot be updated later. Based on antici-

pated query workload knowledge better indexes are 

created. Queries having same selection predicate can 

be executed using static indexes otherwise full scan 

will be performed. In case of Trojan index, only one 

particular index is selected to be indexed whereas 

HAIL can extend number of indexes up to available 

number of replicas. We elaborate this concept in Eqs 

1 and 2 for Trojan Index and HAIL respectively:  

 (1)  

 (2)  

In contrast to static indexes, adaptive indexes do 

not offer pre-created indexes to incoming new que-

ries. These indexes keep on updating with new que-

ries and are being utilized by repeated queries. Data 

blocks are replicated for each new index attribute. 

Lazy Indexing (LIAH) is proposed by Richter, 

Quiané-Ruiz [18] as adaptive indexing using clus-

tered approach. LIAH uses offer rate to minimize 

indexing I/O cost and creates as many indexes as 

suggested by incoming queries. However, future uti-

lization of those indexes is still unpredictable. Simi-

larly, from offer rate perspective, there exists a better 

tradeoff to minimize index creation overhead when 

offer rate value is set to low. Nevertheless to com-

pletely index all data blocks, low offer rate will re-

quire more MapReduce jobs. Due to this fact, LIAH 

has to compromise either indexing overhead or num-

ber of MapReduce jobs which provides motivation 

towards dynamically adapting offer rate [19]. Alt-

hough query workload prediction is not required and 

unlike static indexing there is no replication factor 

dependency to consider number of index attributes in 

both of these approaches yet performing full scan for 

each new query and replicating data block for each 

new index attribute are the performance bottlenecks 

of LIAH.  Therefore, the proposal by Schuh and 

Dittrich [20] is to drop the indexes from existing rep-

licas and utilize these replicas for creating new in-

dexes according to changing query workload. 

We elaborate static and adaptive clustered index-

ing approaches in Table 1. Their method, success 

points and weaknesses are detailed in this table. Fur-

thermore, Index Hit Ratio which is a significant effi-

ciency measure for attribute based indexing is also 

described for each approach. Problems of static and 

adaptive indexing lead researchers as challenges and 

provide insight to come up with an optimum index-

ing solution for big data. Discussed challenges are 

the milestones for researchers on the basis of which 

they can formulate new research objectives towards 

development of improved indexing mechanism. 

Hence, efficiency in search operations over big data 

can be achieved in terms of reduced storage con-

sumption and faster data retrieval from large distrib-

uted storage clusters. 

Table 1 Existing Clustered Indexing Approaches 

Approach Method Achievements Problems/Un-addressed Index Hit Ratio 

S
ta

ti
c 

Trojan 

Index 
[9] 

One particular 

attribute is 
indexed and 

stored on all 

replicas 

 Index is created at data uploading 
time, no indexing cost at each 

query 

 Full scan option is still valid for 
queries on non-indexed attributes 

 Same or improved query execu-

tion performance as shared-

nothing databases 

One particular index is not sufficient 

Indexing upfront cost is higher than running a 

full scan query 

Index Miss ratio is very high 

Index may be unused, increasing indexing 
overhead 

Anticipated query workload knowledge is 

required before index creation 

No mechanism for changing query workload 

Only one attrib-
ute is indexed 

that is why all 

queries having 
selection predi-

cates other than 

index attributes 
are missed 

Aggressive  
[6] 

Change physi-
cal data layout 

 Reduced Index Miss Ratio up to 
number of replicas 

High index upfront cost In order to 
improve Index 



on each replica 
based on index 

attributes 

 Upload cost is negligible by 
utilizing un-used CPU cycles 

 Full scan option is still valid for 
queries on non-indexed attributes 

No knowledge about query workload 

Index Miss Ratio is still high 

Indexes are replica dependent 

Indexes may be unused by queries 

Hit Ratio, more 
number of repli-

cas are required 

A
d

ap
ti

v
e 

Lazy Index-
ing (LIAH) 

[18] 

Indexing is the 
effect of query 

execution. 

Records in 
data block are 

reordered 

during. 

 Adaptive to query workload 

 Query can be executed right after 

data upload 

 No Indexing upfront cost 

 Reduced indexing overhead 
because of selective block index-

ing and no additional I/O cost 

 Quick convergence to complete 

index 

 Every first time query faces full scan 

 Each new index replicates the data block and 

increases space consumption 

 Data block replicas are continuously growing 

with index creation process 

 Not all data blocks are indexed during one 

time query execution 

 Constant offer rate either supports indexing 

overhead or number of MapReduce jobs to 

completely index all data blocks 

 Every first time 
query faces full 

scan (index hit 
ratio is NULL) 

 In order to 

improve Index 

Hit Ratio more 

number of block 

replicas are 
required 

Adaptive 

indexing - 

replace 
indexes [20] 

Adaptively 

create and 

delete un-used 
indexes 

 Query may not result in index 

creation and help in dropping 
index 

 Number of continuously growing 
index replicas is reduced 

Physical restructuring for each index is re-

quired to replace index 

Data blocks are still replicated for new index 

and consume disk space 

 Index Hit Ratio 

is same as Lazy 
Indexing Ap-

proach 

H
y

b
ri

d
 

Eager Adap-

tive Index-

ing [19] 

Introduce cost 

model for 

LIAH with 
varying offer 

rate. Missing 
indexes are 

created adap-

tively 

 Static HAIL adapts to new query 

workload 

 Indexing cost is not over bur-

dened 

 Adaptive indexing overhead is 

less than full scan 

 Quick convergence to complete 

index 

 Data block replicas are continuously growing 

with index creation process 

 Index Hit Ratio 

is improved from 
HAIL as new 

indexes are 

created runtime 

 

Table 1 summarizes the existing clustered index-

ing approaches for big data. This illustration will 

further be used in discussion to provide comparison 

between the performances of clustered and non-

clustered indexing. At present, we demonstrate a 

proportionate analysis of indexing overhead and im-

pact of indexing over search performance in terms of 

Index Hit Ratio and compare the performance of 

search operation in both cases when a query hits in-

dex or misses it. We elaborate our analysis approach 

in next section. We conduct experiments to signify 

the consideration of query workload for index crea-

tion when search queries are executed on big data 

pool. In order to do so, we implement indexing on 

selective attributes for big data stored on distributed 

file system and queries having one of these attributes 

as selection predicate are applied.  

3. Analysis Approach 

In this section we present the analysis approach for 

non-clustered indexing implementation on big data. 

We elaborate the test bed as an experimental setup to 

perform analysis. Data sets which are used as input to 

execute the experiment are also described in this sec-

tion. Furthermore, we present the mathematical mod-

el of analysis approach which is used to verify the 

results obtained from experiments. 

We utilize an in memory attribute based non-

clustered indexing to effectively analyze its impact 

on data retrieval performance from big data in com-

parison with those big data processing systems which 

do not provide indexing. To observe search perfor-

mance for queries which miss index we used Hive 

warehouse over Hadoop. While we implement index-

ing that first creates indexes in memory for specified 

attributes on whole data set and then stores the index 

on file system for later use. For this purpose, Lucene 

library is utilized. The detailed experimental envi-

ronment and our derivations are described as follows: 

3.1. Experimental Setup 

To evaluate the experiment results, we have estab-

lished a setup with well-known Hadoop multi-node 

framework with four commodity servers. Hadoop 

Distributed File System (HDFS) is utilized for stor-

age in our experiment where storage cluster can be 

built easily on local commodity hardware. Other re-

nowned files systems such as Amazon S3 and WASB 

are also available for big data storage. However, both 

Amazon S3 [1] and WSB [3] are cloud based storage 

systems which offer paid storage on their web servers. 

In our setup, we have deployed a four-node cluster 

on physical machines consisting four slave nodes 

where one of them acts as both master and slave. 

Apache Hive is plugged in with Hadoop cluster so 



that SQL-like queries can be performed on big data. 

In this way we will execute queries not having attrib-

utes as selection predicates which are used in index-

ing. Index Hit Ratio will be less in this scenario. 

Apache Lucene library is used to implement in 

memory indexing where we keep incrementing num-

ber of index attributes on each data set to see the per-

formance and overhead caused by indexing. After 

each increment, we observe that Index Hit Ratio is 

increased whereas the indexing overhead is also in-

creased. Fig 1 presents this experimental setup where 

each slave has TaskTracker and DataNode daemons 

respectively from MapReduce and HDFS compo-

nents of Hadoop whereas master node has 

NameNode and JobTracker daemons. 

MapReduce

HDFS

Hadoop

Hive Lucene

Master/Slave 1

NameNode
DataNode

JobTracker
TaskTracker

Slave 3

DataNode

TaskTracker

DataNode

TaskTracker

Slave 4Slave 3

DataNode

TaskTracker

 
Fig 1 Experimental Setup. 

We use Apache Lucene library  [16], which is a 

Java built indexing library widely adopted for full-

text search, to observe the impact of indexing on 

search operations. A java program is coded to create 

an index and to import Apache Lucene libraries. The 

code creates an attribute based index in HDFS 

memory for those data attributes which we specify to 

consider as index attributes. We consider varying 

number of attributes to create index to see the in-

creasing overhead of size and increasing Index Hit 

Ratio with respect to increased number of index at-

tributes. Once the index is created in memory, it is 

stored in HDFS so that query can utilize this index 

later for data retrieval requests. Fig 2 describes the 

work flow of our implementation. The steps involved 

in data processing are: 1) cleanse data 2) upload data 

into HDFS cluster, 3) create an index in HDFS 

memory on particular attributes and finally 4) apply 

search operation based upon search query initialized 

inside java code.  
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Fig 2 Experimental Workflow 

Fig 2 illustrates the process flow of data search 

operation using indexing. Preprocessing of data de-

pends upon the nature of data set on which we are 

going to apply search operations. We use  as a unit 

of measure for size of data and later for index. To 

observe search performance when utilizing index in 

query execution, we apply queries with same attrib-

utes as selection predicates which were used in index 

creation. The sample of executed queries is presented 

as below: 

 

 
(3)  

where  

Queries which do not hit indexes are executed us-

ing Hive. Following is the definition of Index Hit 

Ratio with the condition that selection predicates of 

incoming queries are normally distributed: 

 
(4)  

where  ,  

  

 
 

The data set we used in this experiment is in CSV 

(comma separated values) format. However, the in-

dexing method supports TSV (Tab Separated Values). 

Therefore we first cleanse the data to replace comma 

with tabs before uploading data to HDFS. During 

upload process HDFS splits data set into fixed size 

blocks and locates each block to available DataNodes. 

Data uploading time on HDFS increases with the size 

of data. Table 2 presents the number of blocks for 

each data set and total data upload time taken to up-

load these blocks. Once data is uploaded, we specify 

the attribute(s) for indexing and start index creation 

for data set. In main memory indexing, data is loaded 

from HDFS storage to main memory and index is 

created in memory. The index is later stored into 

HDFS so that incoming queries can access this index 

for data search operation. When a query is submitted 

having same attributes as selection predicates the 

index is loaded in main memory and traversed in 

search phase according to query. Index returns the 

location of queried record and the records are loaded 

in memory. 

3.2. Data Sets Used  

We used data sets with varying size from web re-

positories to analyze search performance on different 



size data. The data set comprises spatial information 

collected from US Census Bureau’s TIGER database 

[7]. The database has features like roads, railroads, 

rivers and other legal and statistical geographic areas. 

We unzip the downloaded data and perform prepro-

cessing as depicted in Fig 2 Experimental Workflow. 

We use Hadoop default configuration for block size 

(i.e. 64MB) and replication factor (i.e. 3) in our ex-

periment. By following the experimental workflow, 

data is then uploaded over HDFS cluster. Table 2 

provides a precise illustration of these data sets. Ta-

ble 2 shows that the size of data sets is gradually in-

creasing from ‘Primary Roads’ to ‘Road Network. 

During data upload process, HDFS divides data into 

fixed size blocks. Table 2 illustrates number of 

blocks created from each data set and recorded data 

upload time taken by these data sets.  
Table 2 Data sets 

Data Sets Data Size 
No. of 
Blocks  

Uploading 

Time (s) 

Primary Roads 77.1 2 7 

Area Landmark 406 7 127 

Tabulation Area 1,600 25 227 

Area Hydrography 6,460 104 814 

Linear Hydrography 18,270 293 1984 

3.3. Mathematical Model 

We model the experimental setup using CPN 

Tools [10] which is broadly used to design and inter-

pret Colored Petri nets. We implement all three steps 

i.e. preprocessing, indexing and searching as elabo-

rated in Fig 2 using CPN Tools. Preprocessing per-

forms ‘cleanse’ operation on data from ‘CSV’ place 

and ‘upload data’ operation on resulting data from 

‘TSV’ place. Indexing executes ‘create index’ transi-

tion based on data from ‘Idx Attr’ and ‘loaded data’ 

places. Searching starts with ‘load index’ transition 

and performs ‘search’ and ‘render data’ operations to 

retrieve data. We collect data for index creation time 

and query execution time. The obtained data is used 

to verify experimental results. Fig 3 presents the 

model which comprises places, transitions, and input 

and output arcs.  We implement timed transitions to 

calculate the effect of time on obtained results. All 

the places and transition of the model are explained 

in Table 3 and Table 4 respectively. 

Table 3 presents the description of each Place in-

volved in mathematical model. The table also elabo-

rates the initial marking for these places. Table 4 

defines the functions as transitions of the model. Ta-

ble 4 further shows that all the transitions except 

“discard” are timed transitions and time is defined for 

each operation. 

 
Fig 3 Mathematical Model for Experiment 

Table 3 Description of Places 

Places Description Initial Marking 

CSV Contains data set in CSV format No. of files 

TSV Contains data set in TSV format Empty 
Data Blocks Contains data set stored at HDFS in the form of blocks Empty 

Idx Attr Contains list of data attributes provided by user to create indexes One token 

Loaded Data Contains data set loaded from HDFS into memory Empty 
Index Contains created index residing in memory Empty 



Indexes Contains created index(es) stored at HDFS Empty 

Query Contains query string to perform search operation On token 

Loaded Index Contains index loaded from HDFS into memory Empty 
search results Contains HDFS locations where the required data is residing Empty 

Data Contains data returned for submitted query Empty 

 
Table 4 Description of Transitions 

Transitions Description Timed/ 
Untimed 

cleanse Converts CSV file into TSV Timed 

upload data Uploads data set into HDFS Timed 

load data Loads data from HDFS to memory Timed 

create index Creates index for data set Timed 
upload 

index 

Uploads created index into HDFS Timed 

load index Loads index from HDFS to memory Timed 
search Searches the locations of required data in an 

index 

Timed 

discard Discards empty index file Untimed 
render data Retrieves required data from HDFS file 

location 

Timed 

4. Results and Discussion 

In this section we present the results obtained from 

our experiments. We further verify the experimental 

results with mathematical modeling and provide a 

comparative discussion of clustered and non-

clustered approaches of indexing for big data. In re-

gard of inspecting search performance due to index-

ing, we have performed same search queries on both 

Apache Hive and indexing environment. As depicted 

in Fig 2, step by step activities such as create index, 

store index, load index, apply search and load data 

are performed to accomplish the indexing process. 

All these activities are also performed with mathe-

matical model and almost similar results are obtained 

for each data set. The representation of results is two-

fold: we first graphically present the overhead caused 

by these activities for increasing Data set Size 

whereas we consider maximum five data attributes 

from each data set as index attributes. Later we com-

pare the experiment results with mathematical model 

results which strengthen our claim.  

4.1. Experimental Results 

In this section we present the results for Indexing 

Overhead, Index Size Overhead and Search Perfor-

mance while executing experiment on Hadoop four-

node cluster. We also present the results for Index 

Hit Ratio in this section which highlights the signifi-

cance of considering more attributes in index creation.  

 Indexing Overhead 

Fig 4 shows Index Creation Time for each data set 

while considering up to five attributes for indexing. 

Index Creation Time is accumulative to Index Crea-

tion Time and Index Upload Time. When Data set 

Size is small the overhead to create index is also low. 

We also present indexing time comparison with data 

upload time in Fig 4 for up to five index attributes 

and show that index creation takes almost the same 

time as taken to upload a data set into HDFS. 

We can also conclude from indexing time compar-

ison presented in Fig 4 that with the increase of Data 

set Size, indexing becomes more time consuming. 

Furthermore, time overhead caused by index creation 

is very high. Referring to Fig 5, we can see that over-

all index creation overhead is 40 – 90 %. However, 

regardless of high One-Time Index Creation Time for 

larger size data sets index creation overhead is rela-

tively low. This outcome leads in declaration to im-

plement indexing for larger size data sets so that in-

dex creation overhead will not be very high. 

 Index Size Overhead: 

Index Size also increases when indexing is applied 

on larger size data sets. Like Index Creation Over-

head, Index Size is also an overhead on data set size. 

However despite of increasing Index Size, overall 

Index Size overhead with respect to Data set Size is 

very low and decreasing gradually for larger size data 

sets which is a significant improvement. Fig 6 pre-

sents Index Size results for each data set and the 

comparison of index size with data set size. It is clear 

from Fig 6 that index size is very smaller than data set 

size even when up to five attributes are considered in 

indexing. Therefore, index size overhead is also very 

low (see Fig 7). 

 Index Hit Ratio 

Another useful parameter in our experiment is In-

dex Hit Ratio. For an efficient attribute-based index-

ing mechanism, this ratio is supposed to be very high 

so that most of the incoming queries will be served 

using index. We have explained Index Hit Ratio in 

Section 3.1 as Definition 1. Fig 8 shows that Index 

Hit Ratio increases with number of index attributes. 

However, Index Size Overhead and Index Creation 

Overhead are also increased with number of index 

attributes. Therefore, we recommend to propose an 

indexing mechanism with which adding more index 

attributes to obtain increased Index Hit Ratio results 

in minimum increase in Index Size Overhead and 

Index Creation Overhead. 



 Search Performance 

Above observations highlight the importance of 

indexing for big data with growing volume. Although 

index creation cost becomes high for large size data 

sets yet indexing overhead with increased number of 

index attributes relative to data set properties i.e. Da-

ta set Size and Data Upload Time, is almost un-

changed. Thus increased Index Hi Ratio can be 

achieved. One-time index creation means that, index-

ing overhead has to be tolerated only once before 

starting query execution. Once the index is created 

and indexing overhead is withstood, the improvement 

in search performance for indexes search queries will 

be observed. Fig 9 presents the improved search time 

results of indexed search queries over full scan query 

execution. Search Time regardless of Data set Size is 

decreased when indexing is applied. Therefore, 

search performance is increased up to 98% when an 

indexes are available (see Fig 10). 

 
Fig 4 Indexing Time comparison with Data Upload Time and 
Number of Index Attributes 

 
Fig 5 Index Creation Overhead for varying number of Index Attrib-
utes  

 
Fig 6 Index Creation Overhead for varying number of Index At-
tributes 

 
Fig 7 Index Size Overhead for varying number of Index Attributes 

 
Fig 8 Index Hit Ratio w.r.t. Number of Index Attributes 

We provide a discussion of results while imple-

menting indexing on varying number of attributes. 

We discuss the overhead in terms of time and space 

taken by performing indexing on data. Furthermore, 

we present the effect of indexing on search perfor-

mance as the ultimate gain expected from an index-

ing mechanism. We illustrate overhead resulted by 

indexing in terms of index creation time, Index Size 

and Index Upload Overhead which did not exist in 

system prior to indexing. As far as selection of index 

attributes is concerned, we show that there exists 

tradeoff between Index Size and Index Hit Ratio. We 

conclude that, there will be an apparent impact on 

Index Size while considering large number of index-

ing attributes. Ultimately, more number of index at-

tributes increases Index Hit Ratio which will result in 

effective index utilization by incoming queries.  

Based upon these results, we have become able to 

claim that: 

 Indexing is a significant process to improve 

search performance for relatively large and 

growing data sets. 



 Overhead resulted by indexing process is one 

time and becomes negligible when clear im-

provement in search performance is obtained. 

 Overall indexing overhead is somehow inverse-

ly proportional to size of data set but directly 

proportional to number of index attributes. 

 The more the number of attributes considered in 

indexing, the more the overhead is faced, though 

Index Hit Ratio becomes high. 

 A wise selection of attributes for indexing gives 

a better tradeoff between Indexing Overhead 

and Hit Ratio 

 Adaptive index updating also supports prior 

claim. 

 
Fig 9 Indexed Search Query Execution Time Comparison with Full Scan 

 
Fig 10 Impact of Indexing on Search Performance 

4.2. Validation 

We use mathematical modeling results obtained 

from CPN model to verify experimental results for 

Index Creation Time and Query Execution Time. For 

CPN model, we use µ to define execution time of a 

transition. For instance,  denotes time 

taken in index creation for a data set which is defined 

as follows: 

 

 

 

(5)  

Indexing Time  is accumulative time 

taken in index creation  and index 

uploading  to HDFS. Index Creation 

Time depends upon number of index attributes  

and Data Set Size  whereas Index 

Upload Time depends upon Index 

Size . For CPN execution we set 

 as  and as .  

 

 
Fig 11 Index Creation Time Validation 

 
Fig 12 Query Execution Time Validation 

 

The results are almost similar to index creation 

time results obtained from experiment (see Fig 11). 

Furthermore, we denote Query Execution Time as 

and define it as follows: 

 

 

 

(6)  



Query Execution Time for indexed search 

is accumulative time taken in load-

ing index , searching required data 

and loading data into HDFS. 

We set values for , 

and to , and . 

The results in Fig 12 verify Query Execution Time 

for indexed search. 

4.3. Discussion 

In section 2 we reviewed state-of-the-art clustered 

indexing techniques for big data. We categorized 

clustered indexing techniques based on their index 

creation time as static indexing and adaptive indexing 

techniques. Static indexes are created at the time of 

data upload. Once the index attributes are defined at 

data upload time and indexes are created based on 

this set of index attributes, this set will never be 

changed during life time of data residing on file sys-

tem regardless of considering query workload that 

whether the queries are utilizing those indexes or not. 

The only condition to update index is when data is 

updated. On the other hand, adaptive indexes are the 

side effect of query execution. Adaptive indexes are 

created and updated after each new query execution. 

The main disadvantage of adaptive indexing is that 

each new query cannot be leveraged with indexes 

and the index will be created after query execution. 

This index is only useful when the same query is 

executed. 

Clustered approach except pros and cons of static 

and adaptive categories has its own limitations due to 

which clustered approach is not preferable to obtain 

increased Index Hit Ratio. However, referring to sec-

tion 3, implementation of in memory indexing which 

is a non-clustered indexing approach implies that 

selection of more index attributes to maximize Index 

Hit Ratio is just a matter of Index Size Overhead. 

Otherwise, non-clustered approach for indexing is 

favorable to clustered approach. Therefore, we sug-

gest implementation of non-clustered approaches for 

indexing big data so that maximum incoming queries 

will be served using indexing for better search per-

formance. We present our findings of section 2 and 

section 3 and provide a comparative analysis of clus-

tered and non-clustered indexing approaches in Table 

5 to strengthen our suggestion. This analysis serves 

as a basis to applaud non-clustered indexing proposal. 

Later we will assert for hybrid approach to exploit 

both static and adaptive mechanisms so that flexible 

to query workload indexes are created. 

Table 5 Comparison of Clustered and Non-clustered Indexing Approaches 

Process Clustered Approach Non-clustered Approach Recommended 

Index Creation Physically reorders data rows using Quick sort 

[2] and stores sorted rows as a block [6]. 

Complexity of Quick Sort:  

Separate index structure containing key-value 

pairs [11]. Key refers to index attribute and the 
value is pointer to the row. No physical reordering 

of data records is required. 

Complexity of B-Tree:  

Non-clustered 

No. of Indexes One replica can have only one index. One 
copy of data block cannot have more than one 

sort orders [20]. 

 

Single replica can have more than one index. As 
index is a separate structure [11], for one copy of 

data block as many indexes can be created as 

storage space allows. 

 

Non-clustered 

Index Size 
(single index) 

Less size than non-clustered [6]. However, for 
multiple indexes the size reaches storage 

capacity [20]. 

Separate structure [13] needs more space. Howev-
er, creating index is less space consuming than 

creating separate replica. 

Clustered 

Index Maintenance 
(query log) 

Index rebuilding needs to drop and create new 
data blocks [20]. 

Index rebuilding is easy [4]. It requires to perform 
delete operation on previous index and iterate 

create index operation. 

Non-clustered 

New Index Whole data set or specific block(s) should be 
replicated to create new index [20]. 

 

New index can be created on any of existing repli-
ca. There is no need to replicate data 

 

Non-clustered 

Data Update 

(insertion) 

All copies of last block are updated and record 

is inserted on its exact location [6]. 

 [4] 

Record is appended on all copies of last block. 

Each index is updated [13]. 

 

Non-clustered 

Data read Apply search algorithm in sorted list  

 

First traverse index then jump to record  

 

Same 
complexity 

Index Hit Ratio Depends upon number of replicas Depends upon number of indexes Non-clustered 
Memory Requirement Depends upon block size Depends upon size of index Clustered 

 



Table 5 presents the comparison between clustered 

and non-clustered approaches and due to complexity 

measures resulted by each operation we recommend 

non-clustered approach to be utilized for designing 

indexing framework for distributed replicated blocks 

of big data. Table 5 shows that all operations except 

single index size are more efficient than clustered 

approach. Although index size for single index of 

clustered approach is less than non-clustered ap-

proach, yet non-clustered approach is still better. The 

reason behind is clustered approach requires new 

copy of whole data or data block for each new index 

whereas in case of non-clustered indexing approach 

new index can be created with existing replication 

factor. 

Experiment on non-clustered indexing also shows 

that, projection of non-indexed attribute using queries 

is not possible as only index keys are stored. There-

fore, when only selective attributes are considered in 

index creation, queries cannot retrieve data for attrib-

utes other (non-indexed) attributes. Similarly, retriev-

al of whole data row is not possible in this case. Fur-

thermore, loading indexes into memory to search 

queried data incurs noticeable I/O cost which is only 

related to non-clustered indexing approaches. There-

fore, we suggest in proposing an indexing mechanism 

for big data where indexing on a limited number of 

index attributes deals with the problem of accessing 

non-indexed attributes as  well. I/O cost should also 

be negligible which deteriorates the performance of a 

non-clustered indexing approach. 

5. Our Recommendations 

Based upon above discussion we suggest imple-

mentation of non-clustered approach for indexing big 

data so that on existing number of replica improved 

Index Hit Ratio leading to improved search perfor-

mance can be achieved. Although replication of data 

is significant to increase fault-tolerance and availabil-

ity of data yet each new copy of data increases space 

requirements and consumes more storage resources. 

For continuously growing voluminous big data, in-

creasing the replication factor of data storage is not a 

feasible solution to consider more attributes in index-

ing. Therefore, improvement in Index Hit Ratio 

should not be subject to higher value of replication 

factor. Instead, replication should be utilized to bal-

ance the load of indexing via parallel index creation 

is performed on each replica. In addition, number of 

indexes can be divided among replicas using either 

equality-based or efficiency-based strategy. Replica-

tion can be also be utilized to increase fault-tolerance 

if index attributes are replicated. 

As far as selection of static or dynamic indexing is 

concerned, we suggest applying hybrid approach. 

According to Table 1 we can say that though static 

indexing is beneficial for each query having attributes 

as selection predicates similar to index attributes and 

index growth does not depend on new queries yet one 

time index creation may not predict future workload 

of queries. Index may need to be updated according 

to changing query workload. Therefore, relying sole-

ly on static approach is not advantageous. In the 

meantime, adaptive indexes which grow as side effect 

of query execution may result in many unused index-

es. Any incoming query does not state that whether 

the same query will be submitted again or not. There-

fore, creating indexes blindly for each query with 

new attribute as selection predicate may result in a 

large number of replicas. Consequently, indexing will 

become an overburdening rather than search facilitat-

ing activity. Thus, keeping in mind all these factors, 

we recommend an optimized indexing framework for 

big data must possess following features: 

 Wise selection of index attributes at static index-

ing stage so that maximum queries will be 

served by these indexes. User-defined list of in-

dex attributes may achieve maximum Hit Ratio 

for specific period of time. 

 Heuristic decision to update list of index attrib-

utes so that recent query trends are considered 

and indexes will not be obsolete. User may not 

be fully aware of query plan and data search 

preferences may change with the passage of 

time. Therefore, adaptive to changing query 

workload indexes are more efficient. 

 Number of indexes should be independent of 

replication factor. This is only possible if we use 

non-clustered approach for indexing. 

 Faster index rebuilding so that index update cost 

is not very high. Adaptive stage in indexing may 

add new indexes and delete unused or rarely 

used indexes according to changing query work-

load. Non-clustered approach does not change 

physical data storage and indexes rebuilding is 

easy. 

 Efficient index update as an effect of data update 

so that challenge of growing data is accepted. 

One such mechanism for non-clustered indexing 

which shows better insertion performance than 

quicksort mechanism of clustered approach is 

preferable. 



6. Conclusion 

Faster data retrieval from big data is the main con-

cern of data analysts and users. This motivation has 

led the research and development industry towards 

exploration of efficient data processing mechanisms. 

We present an experimental evaluation of non-

clustered indexing on varying size data sets with var-

ying Index Hit Ratio in this paper. We further vali-

date evaluation results using CPN mathematical 

modeling. The results suggest that existence of index 

considerably improves the search performance for 

particularly large data sets. Although indexing pro-

cess introduces some overhead, yet somehow this 

overhead is decreased for larger size data sets. The 

comparative discussion on clustered and non-

clustered approaches leads towards a clear recom-

mendation of implementing a hybrid approach of 

both static and adaptive non-clustered indexing. We 

further suggest to wisely selecting index attributes for 

better tradeoff between Indexing Overhead and Index 

Hit Ratio. Moreover, adaptive indexing where index 

is updated according to changing query workload 

also improves this tradeoff. Based on the recommen-

dations provided in this paper, we are moving to-

wards implementation of non-clustered multi-

attribute static indexing on user suggested list of in-

dex attributes and heuristic analysis of query work-

load to adaptively improve index hit ratio by creat-

ing/deleting indexes on frequently used/unused at-

tributes a as a subsequent future work.  
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