
On the analysis of big data indexing

execution strategies

Aisha Siddiqaa,*, Ahmad Karimb , Tanzila Sabac and Victor Changd

aDepartment of Computer System & Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
bDepartment of Information Technology, Bahauddin Zakariya University, 60000, Multan, Pakistan
cCollege of Computer and Information Sciences, Prince Sultan University, 11586, Riyadh, King Saudi Arabia
dIBSS, Xi'an Jiaotong Liverpool University,100044, Suzhou, China

Abstract. Efficient response to search queries is very crucial for data analysts to obtain timely results from big data spanned

over heterogeneous machines. Currently, a number of big-data processing frameworks are available in which search operations

are performed in distributed and parallel manner. However, implementation of indexing mechanism results in noticeable reduc-

tion of overall query processing time. There is an urge to assess the feasibility and impact of indexing towards query execution

performance. This paper investigates the performance of state-of-the-art clustered indexing approaches over Hadoop frame-

work which is de facto standard for big data processing. Moreover, this study leverages a comparative analysis of non-

clustered indexing overhead in terms of time and space taken by indexing process for varying volume data sets with increasing

Index Hit Ratio. Furthermore, the experiments evaluate performance of search operations in terms of data access and retrieval

time for queries that use indexes. We then validated the obtained results using Petri net mathematical modeling. We used mul-

tiple data sets in our experiments to manifest the impact of growing volume of data on indexing and data search and retrieval

performance. The results and highlighted challenges favorably lead researchers towards improved implication of indexing

mechanism in perspective of data retrieval from big data. Additionally, this study advocates selection of a non-clustered index-

ing solution so that optimized search performance over big data is obtained.

Keywords: Big Data, Indexing, Big Data processing, Data retrieval

* Corresponding author, Aisha Siddiqa, Department of Computer System & Technology, University of Malaya,

50603, Kuala Lumpur, Malaysia; Email: aasiddiqa@gmail.com

1. Introduction

Big Data refers to collection of huge data sets with

a great diversity in types so that it becomes difficult

to process by state-of-the-art data processing ap-

proaches or platforms [21]. More generally, we can

say that it is formidable to perform capture, prepara-

tion, analysis and visualization on big data by current

technologies. Therefore, big data introduces new

challenges for security[14, 23], processing and ana-

lytics such as quick and up-to-date responses of a

search query and in-time availability of data [24]. For

instance, data obtained from sensor networks like

urban management, environment and industrial in-

stallation [17] introduces storing, cleansing, query

execution and other challenges like security, visuali-

zation and analytics[15, 22]. Similarly in the field of

body sensor networks, increasing costs of healthcare

and ageing of population are major subjects for re-

searchers which have critical information retrieval

requirements. For these time sensitive applications,

efficiency in query execution and analyzing data is

very important for faster decision making [5]. Need

of fast data processing and timely responses derive to

evaluate the performance of search process so that

challenges revealed by the emergence of big data can

be highlighted.

Indexing is a significant activity even for distribut-

ed highly available big data sets to efficiently per-

form data retrieval operations [8]. It is impractical to

apply full scan on millions of records to accomplish

search of a specific result [9]. Therefore, efficient

techniques are required to improve task execution for

accessing big data. To improve the efficiency of

search and data retrieval process for voluminous data

records many solutions have been proposed by re-

searchers. For example, vertical partitioning [12],

clustered attribute based indexing [6, 9] for distribut-

ed parallel processing systems and clustered adaptive

indexing [18] for changing query workload. Likewise

in medical research, large distributed image data sets

face the problem of multi-query optimization and a

batch processing based image retrieval system [25]

contributes in scheduling multiple query requests and

minimized response time is achieved. Consequently

for distributed and replicated big data storage sys-

tems, an efficient indexing technique is needed to

serve more number of queries for improved search

performance.

As described above, many indexing frameworks

are available to perform fast search operations on big

data residing on distributed parallel systems. Howev-

er, existing indexing frameworks still have un-

addressed challenges. For instance, multi-attribute

indexing on single site, indexing without intervening

physical organization of data and re-indexing are

some of the major challenges. Any state-of-the-art

solution for big data indexing does not deal with

these challenges. Furthermore, visualization of bene-

fits obtained by indexing over high throughput big

data processing technologies also lacks in literature.

In this research, the achievements and unaddressed

areas of indexing are presented to help researchers

understand recent indexing advancements in the field

of big text data. Significance of indexing is also visu-

alized via experiment on sample text data sets which

highlights the to-date indexing challenges in clearer

context.

With research viewpoint, we theoretically evaluate

clustered indexing mechanisms developed over Ha-

doop in static and dynamic categories. This investi-

gation shows that creating new replicas for increased

number of index attributes† is the main storage effi-

ciency barrier. Meanwhile, our empirical analysis of

non-clustered approach emphasizes on considering it

for big text data indexing. Our main focus is to inves-

tigate the performance of big data indexing tech-

niques for growing volume of data. In addition, the

impact of involving as much data attributes as possi-

ble for index creation in terms of search performance

and indexing overhead is also observed in this study.

Our evaluation results are twofold: We show that

increasing either size of data or number of index at-

† We refer attributes of a data set as its index at-

tributes based on which indexes are created

tributes has very minor effect on index size, thereby

improving overall search performance. The reasoning

on differences in performance results will further

help researchers to propose a better indexing solution.

The results obtained from experiment are further ver-

ified with mathematical modeling. We model the

analysis approach using CPN tools which leverage

Petri nets mathematical modeling language. Based on

evaluation, we highlight the significance of indexing

and identify the weaknesses of existing solutions

which provide guidelines to researchers to explore

improved indexing architectures for big data. Con-

cisely, this paper contributes in following:

 Provides an overview of clustered indexing ap-

proaches under static and adaptive categories

 Investigates static and adaptive clustered index-

ing approaches and identifies their benefits and

limitations on search throughput for big data

 Implements an in memory indexing approach

under non-clustered mechanism on varying size

data sets and varying number of index attributes

to examine their impact on search performance

 Verifies the experiment results by designing

mathematical model of analysis approach

through Petri nets

 Based on analysis, this paper highlights chal-

lenges in the field of indexing for big data as a

motivation for future research

 Finally the paper suggests the implementation of

non-clustered approach for big data indexing to

maximize Index Hit Ratio

The rest of the paper is organized as follows: Sec-

tion 2 provides a study of existing clustered indexing

approaches implemented over big data under static

and adaptive category. Section 3 presents an experi-

mental investigation of non-clustered indexing over

varying size data sets with varying number of index-

es. Section 4 discusses the results obtained and pro-

vides an illustration of clustered and non-clustered

approaches. Section 5 highlights challenges and rec-

ommendations for future work in indexing imple-

mentation over big data. Finally, section 6 concludes

the discussion.

2. Related Work

Fast query processing and data retrieval are the

main challenges for large volume of data distributed

over clusters of heterogeneous machines. Research-

ers are interested to accept the challenge and they

have devoted to exploit different methods to optimize

search performance for such big data. Clustered in-

dexing approaches are developed over Hadoop which

is a de facto framework for big data processing.

These approaches fall in either static or adaptive cat-

egory according to invocation of index creation pro-

cess and ability of changing number of index attrib-

utes. More explicitly, static indexes are created at

data upload time and they do not allow increasing the

number of index attributes once created. On the other

hand, adaptive indexes are the side effect of query

execution with the flexibility of as much index at-

tributes as fed by incoming queries.

Clustered static indexes which are developed for

Hadoop framework, offer indexing on single attribute

- Trojan index [9] or varying number of index attrib-

utes – HAIL [6]. Indexes are created on whole data

set in parallel with data uploading. Therefore, query

execution process can be carried out immediately

when a query is submitted as it does not invoke index

creation or updating. However selection of attributes

to be indexed should be very wise as these are the

only indexes available throughout the data search

process and cannot be updated later. Based on antici-

pated query workload knowledge better indexes are

created. Queries having same selection predicate can

be executed using static indexes otherwise full scan

will be performed. In case of Trojan index, only one

particular index is selected to be indexed whereas

HAIL can extend number of indexes up to available

number of replicas. We elaborate this concept in Eqs

1 and 2 for Trojan Index and HAIL respectively:

 (1)

 (2)

In contrast to static indexes, adaptive indexes do

not offer pre-created indexes to incoming new que-

ries. These indexes keep on updating with new que-

ries and are being utilized by repeated queries. Data

blocks are replicated for each new index attribute.

Lazy Indexing (LIAH) is proposed by Richter,

Quiané-Ruiz [18] as adaptive indexing using clus-

tered approach. LIAH uses offer rate to minimize

indexing I/O cost and creates as many indexes as

suggested by incoming queries. However, future uti-

lization of those indexes is still unpredictable. Simi-

larly, from offer rate perspective, there exists a better

tradeoff to minimize index creation overhead when

offer rate value is set to low. Nevertheless to com-

pletely index all data blocks, low offer rate will re-

quire more MapReduce jobs. Due to this fact, LIAH

has to compromise either indexing overhead or num-

ber of MapReduce jobs which provides motivation

towards dynamically adapting offer rate [19]. Alt-

hough query workload prediction is not required and

unlike static indexing there is no replication factor

dependency to consider number of index attributes in

both of these approaches yet performing full scan for

each new query and replicating data block for each

new index attribute are the performance bottlenecks

of LIAH. Therefore, the proposal by Schuh and

Dittrich [20] is to drop the indexes from existing rep-

licas and utilize these replicas for creating new in-

dexes according to changing query workload.

We elaborate static and adaptive clustered index-

ing approaches in Table 1. Their method, success

points and weaknesses are detailed in this table. Fur-

thermore, Index Hit Ratio which is a significant effi-

ciency measure for attribute based indexing is also

described for each approach. Problems of static and

adaptive indexing lead researchers as challenges and

provide insight to come up with an optimum index-

ing solution for big data. Discussed challenges are

the milestones for researchers on the basis of which

they can formulate new research objectives towards

development of improved indexing mechanism.

Hence, efficiency in search operations over big data

can be achieved in terms of reduced storage con-

sumption and faster data retrieval from large distrib-

uted storage clusters.

Table 1 Existing Clustered Indexing Approaches

Approach Method Achievements Problems/Un-addressed Index Hit Ratio

S
ta

ti
c

Trojan

Index
[9]

One particular

attribute is
indexed and

stored on all

replicas

 Index is created at data uploading
time, no indexing cost at each

query

 Full scan option is still valid for
queries on non-indexed attributes

 Same or improved query execu-

tion performance as shared-

nothing databases

One particular index is not sufficient

Indexing upfront cost is higher than running a

full scan query

Index Miss ratio is very high

Index may be unused, increasing indexing
overhead

Anticipated query workload knowledge is

required before index creation

No mechanism for changing query workload

Only one attrib-
ute is indexed

that is why all

queries having
selection predi-

cates other than

index attributes
are missed

Aggressive
[6]

Change physi-
cal data layout

 Reduced Index Miss Ratio up to
number of replicas

High index upfront cost In order to
improve Index

on each replica
based on index

attributes

 Upload cost is negligible by
utilizing un-used CPU cycles

 Full scan option is still valid for
queries on non-indexed attributes

No knowledge about query workload

Index Miss Ratio is still high

Indexes are replica dependent

Indexes may be unused by queries

Hit Ratio, more
number of repli-

cas are required

A
d

ap
ti

v
e

Lazy Index-
ing (LIAH)

[18]

Indexing is the
effect of query

execution.

Records in
data block are

reordered

during.

 Adaptive to query workload

 Query can be executed right after

data upload

 No Indexing upfront cost

 Reduced indexing overhead
because of selective block index-

ing and no additional I/O cost

 Quick convergence to complete

index

 Every first time query faces full scan

 Each new index replicates the data block and

increases space consumption

 Data block replicas are continuously growing

with index creation process

 Not all data blocks are indexed during one

time query execution

 Constant offer rate either supports indexing

overhead or number of MapReduce jobs to

completely index all data blocks

 Every first time
query faces full

scan (index hit
ratio is NULL)

 In order to

improve Index

Hit Ratio more

number of block

replicas are
required

Adaptive

indexing -

replace
indexes [20]

Adaptively

create and

delete un-used
indexes

 Query may not result in index

creation and help in dropping
index

 Number of continuously growing
index replicas is reduced

Physical restructuring for each index is re-

quired to replace index

Data blocks are still replicated for new index

and consume disk space

 Index Hit Ratio

is same as Lazy
Indexing Ap-

proach

H
y

b
ri

d

Eager Adap-

tive Index-

ing [19]

Introduce cost

model for

LIAH with
varying offer

rate. Missing
indexes are

created adap-

tively

 Static HAIL adapts to new query

workload

 Indexing cost is not over bur-

dened

 Adaptive indexing overhead is

less than full scan

 Quick convergence to complete

index

 Data block replicas are continuously growing

with index creation process

 Index Hit Ratio

is improved from
HAIL as new

indexes are

created runtime

Table 1 summarizes the existing clustered index-

ing approaches for big data. This illustration will

further be used in discussion to provide comparison

between the performances of clustered and non-

clustered indexing. At present, we demonstrate a

proportionate analysis of indexing overhead and im-

pact of indexing over search performance in terms of

Index Hit Ratio and compare the performance of

search operation in both cases when a query hits in-

dex or misses it. We elaborate our analysis approach

in next section. We conduct experiments to signify

the consideration of query workload for index crea-

tion when search queries are executed on big data

pool. In order to do so, we implement indexing on

selective attributes for big data stored on distributed

file system and queries having one of these attributes

as selection predicate are applied.

3. Analysis Approach

In this section we present the analysis approach for

non-clustered indexing implementation on big data.

We elaborate the test bed as an experimental setup to

perform analysis. Data sets which are used as input to

execute the experiment are also described in this sec-

tion. Furthermore, we present the mathematical mod-

el of analysis approach which is used to verify the

results obtained from experiments.

We utilize an in memory attribute based non-

clustered indexing to effectively analyze its impact

on data retrieval performance from big data in com-

parison with those big data processing systems which

do not provide indexing. To observe search perfor-

mance for queries which miss index we used Hive

warehouse over Hadoop. While we implement index-

ing that first creates indexes in memory for specified

attributes on whole data set and then stores the index

on file system for later use. For this purpose, Lucene

library is utilized. The detailed experimental envi-

ronment and our derivations are described as follows:

3.1. Experimental Setup

To evaluate the experiment results, we have estab-

lished a setup with well-known Hadoop multi-node

framework with four commodity servers. Hadoop

Distributed File System (HDFS) is utilized for stor-

age in our experiment where storage cluster can be

built easily on local commodity hardware. Other re-

nowned files systems such as Amazon S3 and WASB

are also available for big data storage. However, both

Amazon S3 [1] and WSB [3] are cloud based storage

systems which offer paid storage on their web servers.

In our setup, we have deployed a four-node cluster

on physical machines consisting four slave nodes

where one of them acts as both master and slave.

Apache Hive is plugged in with Hadoop cluster so

that SQL-like queries can be performed on big data.

In this way we will execute queries not having attrib-

utes as selection predicates which are used in index-

ing. Index Hit Ratio will be less in this scenario.

Apache Lucene library is used to implement in

memory indexing where we keep incrementing num-

ber of index attributes on each data set to see the per-

formance and overhead caused by indexing. After

each increment, we observe that Index Hit Ratio is

increased whereas the indexing overhead is also in-

creased. Fig 1 presents this experimental setup where

each slave has TaskTracker and DataNode daemons

respectively from MapReduce and HDFS compo-

nents of Hadoop whereas master node has

NameNode and JobTracker daemons.

MapReduce

HDFS

Hadoop

Hive Lucene

Master/Slave 1

NameNode
DataNode

JobTracker
TaskTracker

Slave 3

DataNode

TaskTracker

DataNode

TaskTracker

Slave 4Slave 3

DataNode

TaskTracker

Fig 1 Experimental Setup.

We use Apache Lucene library [16], which is a

Java built indexing library widely adopted for full-

text search, to observe the impact of indexing on

search operations. A java program is coded to create

an index and to import Apache Lucene libraries. The

code creates an attribute based index in HDFS

memory for those data attributes which we specify to

consider as index attributes. We consider varying

number of attributes to create index to see the in-

creasing overhead of size and increasing Index Hit

Ratio with respect to increased number of index at-

tributes. Once the index is created in memory, it is

stored in HDFS so that query can utilize this index

later for data retrieval requests. Fig 2 describes the

work flow of our implementation. The steps involved

in data processing are: 1) cleanse data 2) upload data

into HDFS cluster, 3) create an index in HDFS

memory on particular attributes and finally 4) apply

search operation based upon search query initialized

inside java code.

S
e

a
rc

h
in

g

Query

Load Index

Search

Render Data

P
re

p
ro

c
e

s
s

in
g

Upload

TSV

CSV

Cleanse

Data

In
d

e
x

in
g

Index Attributes

Read Lines

Create Index

Store Index

HDFS

Fig 2 Experimental Workflow

Fig 2 illustrates the process flow of data search

operation using indexing. Preprocessing of data de-

pends upon the nature of data set on which we are

going to apply search operations. We use as a unit

of measure for size of data and later for index. To

observe search performance when utilizing index in

query execution, we apply queries with same attrib-

utes as selection predicates which were used in index

creation. The sample of executed queries is presented

as below:

(3)

where

Queries which do not hit indexes are executed us-

ing Hive. Following is the definition of Index Hit

Ratio with the condition that selection predicates of

incoming queries are normally distributed:

(4)

where ,

The data set we used in this experiment is in CSV

(comma separated values) format. However, the in-

dexing method supports TSV (Tab Separated Values).

Therefore we first cleanse the data to replace comma

with tabs before uploading data to HDFS. During

upload process HDFS splits data set into fixed size

blocks and locates each block to available DataNodes.

Data uploading time on HDFS increases with the size

of data. Table 2 presents the number of blocks for

each data set and total data upload time taken to up-

load these blocks. Once data is uploaded, we specify

the attribute(s) for indexing and start index creation

for data set. In main memory indexing, data is loaded

from HDFS storage to main memory and index is

created in memory. The index is later stored into

HDFS so that incoming queries can access this index

for data search operation. When a query is submitted

having same attributes as selection predicates the

index is loaded in main memory and traversed in

search phase according to query. Index returns the

location of queried record and the records are loaded

in memory.

3.2. Data Sets Used

We used data sets with varying size from web re-

positories to analyze search performance on different

size data. The data set comprises spatial information

collected from US Census Bureau’s TIGER database

[7]. The database has features like roads, railroads,

rivers and other legal and statistical geographic areas.

We unzip the downloaded data and perform prepro-

cessing as depicted in Fig 2 Experimental Workflow.

We use Hadoop default configuration for block size

(i.e. 64MB) and replication factor (i.e. 3) in our ex-

periment. By following the experimental workflow,

data is then uploaded over HDFS cluster. Table 2

provides a precise illustration of these data sets. Ta-

ble 2 shows that the size of data sets is gradually in-

creasing from ‘Primary Roads’ to ‘Road Network.

During data upload process, HDFS divides data into

fixed size blocks. Table 2 illustrates number of

blocks created from each data set and recorded data

upload time taken by these data sets.
Table 2 Data sets

Data Sets Data Size
No. of
Blocks

Uploading

Time (s)

Primary Roads 77.1 2 7

Area Landmark 406 7 127

Tabulation Area 1,600 25 227

Area Hydrography 6,460 104 814

Linear Hydrography 18,270 293 1984

3.3. Mathematical Model

We model the experimental setup using CPN

Tools [10] which is broadly used to design and inter-

pret Colored Petri nets. We implement all three steps

i.e. preprocessing, indexing and searching as elabo-

rated in Fig 2 using CPN Tools. Preprocessing per-

forms ‘cleanse’ operation on data from ‘CSV’ place

and ‘upload data’ operation on resulting data from

‘TSV’ place. Indexing executes ‘create index’ transi-

tion based on data from ‘Idx Attr’ and ‘loaded data’

places. Searching starts with ‘load index’ transition

and performs ‘search’ and ‘render data’ operations to

retrieve data. We collect data for index creation time

and query execution time. The obtained data is used

to verify experimental results. Fig 3 presents the

model which comprises places, transitions, and input

and output arcs. We implement timed transitions to

calculate the effect of time on obtained results. All

the places and transition of the model are explained

in Table 3 and Table 4 respectively.

Table 3 presents the description of each Place in-

volved in mathematical model. The table also elabo-

rates the initial marking for these places. Table 4

defines the functions as transitions of the model. Ta-

ble 4 further shows that all the transitions except

“discard” are timed transitions and time is defined for

each operation.

Fig 3 Mathematical Model for Experiment

Table 3 Description of Places

Places Description Initial Marking

CSV Contains data set in CSV format No. of files

TSV Contains data set in TSV format Empty
Data Blocks Contains data set stored at HDFS in the form of blocks Empty

Idx Attr Contains list of data attributes provided by user to create indexes One token

Loaded Data Contains data set loaded from HDFS into memory Empty
Index Contains created index residing in memory Empty

Indexes Contains created index(es) stored at HDFS Empty

Query Contains query string to perform search operation On token

Loaded Index Contains index loaded from HDFS into memory Empty
search results Contains HDFS locations where the required data is residing Empty

Data Contains data returned for submitted query Empty

Table 4 Description of Transitions

Transitions Description Timed/
Untimed

cleanse Converts CSV file into TSV Timed

upload data Uploads data set into HDFS Timed

load data Loads data from HDFS to memory Timed

create index Creates index for data set Timed
upload

index

Uploads created index into HDFS Timed

load index Loads index from HDFS to memory Timed
search Searches the locations of required data in an

index

Timed

discard Discards empty index file Untimed
render data Retrieves required data from HDFS file

location

Timed

4. Results and Discussion

In this section we present the results obtained from

our experiments. We further verify the experimental

results with mathematical modeling and provide a

comparative discussion of clustered and non-

clustered approaches of indexing for big data. In re-

gard of inspecting search performance due to index-

ing, we have performed same search queries on both

Apache Hive and indexing environment. As depicted

in Fig 2, step by step activities such as create index,

store index, load index, apply search and load data

are performed to accomplish the indexing process.

All these activities are also performed with mathe-

matical model and almost similar results are obtained

for each data set. The representation of results is two-

fold: we first graphically present the overhead caused

by these activities for increasing Data set Size

whereas we consider maximum five data attributes

from each data set as index attributes. Later we com-

pare the experiment results with mathematical model

results which strengthen our claim.

4.1. Experimental Results

In this section we present the results for Indexing

Overhead, Index Size Overhead and Search Perfor-

mance while executing experiment on Hadoop four-

node cluster. We also present the results for Index

Hit Ratio in this section which highlights the signifi-

cance of considering more attributes in index creation.

 Indexing Overhead

Fig 4 shows Index Creation Time for each data set

while considering up to five attributes for indexing.

Index Creation Time is accumulative to Index Crea-

tion Time and Index Upload Time. When Data set

Size is small the overhead to create index is also low.

We also present indexing time comparison with data

upload time in Fig 4 for up to five index attributes

and show that index creation takes almost the same

time as taken to upload a data set into HDFS.

We can also conclude from indexing time compar-

ison presented in Fig 4 that with the increase of Data

set Size, indexing becomes more time consuming.

Furthermore, time overhead caused by index creation

is very high. Referring to Fig 5, we can see that over-

all index creation overhead is 40 – 90 %. However,

regardless of high One-Time Index Creation Time for

larger size data sets index creation overhead is rela-

tively low. This outcome leads in declaration to im-

plement indexing for larger size data sets so that in-

dex creation overhead will not be very high.

 Index Size Overhead:

Index Size also increases when indexing is applied

on larger size data sets. Like Index Creation Over-

head, Index Size is also an overhead on data set size.

However despite of increasing Index Size, overall

Index Size overhead with respect to Data set Size is

very low and decreasing gradually for larger size data

sets which is a significant improvement. Fig 6 pre-

sents Index Size results for each data set and the

comparison of index size with data set size. It is clear

from Fig 6 that index size is very smaller than data set

size even when up to five attributes are considered in

indexing. Therefore, index size overhead is also very

low (see Fig 7).

 Index Hit Ratio

Another useful parameter in our experiment is In-

dex Hit Ratio. For an efficient attribute-based index-

ing mechanism, this ratio is supposed to be very high

so that most of the incoming queries will be served

using index. We have explained Index Hit Ratio in

Section 3.1 as Definition 1. Fig 8 shows that Index

Hit Ratio increases with number of index attributes.

However, Index Size Overhead and Index Creation

Overhead are also increased with number of index

attributes. Therefore, we recommend to propose an

indexing mechanism with which adding more index

attributes to obtain increased Index Hit Ratio results

in minimum increase in Index Size Overhead and

Index Creation Overhead.

 Search Performance

Above observations highlight the importance of

indexing for big data with growing volume. Although

index creation cost becomes high for large size data

sets yet indexing overhead with increased number of

index attributes relative to data set properties i.e. Da-

ta set Size and Data Upload Time, is almost un-

changed. Thus increased Index Hi Ratio can be

achieved. One-time index creation means that, index-

ing overhead has to be tolerated only once before

starting query execution. Once the index is created

and indexing overhead is withstood, the improvement

in search performance for indexes search queries will

be observed. Fig 9 presents the improved search time

results of indexed search queries over full scan query

execution. Search Time regardless of Data set Size is

decreased when indexing is applied. Therefore,

search performance is increased up to 98% when an

indexes are available (see Fig 10).

Fig 4 Indexing Time comparison with Data Upload Time and
Number of Index Attributes

Fig 5 Index Creation Overhead for varying number of Index Attrib-
utes

Fig 6 Index Creation Overhead for varying number of Index At-
tributes

Fig 7 Index Size Overhead for varying number of Index Attributes

Fig 8 Index Hit Ratio w.r.t. Number of Index Attributes

We provide a discussion of results while imple-

menting indexing on varying number of attributes.

We discuss the overhead in terms of time and space

taken by performing indexing on data. Furthermore,

we present the effect of indexing on search perfor-

mance as the ultimate gain expected from an index-

ing mechanism. We illustrate overhead resulted by

indexing in terms of index creation time, Index Size

and Index Upload Overhead which did not exist in

system prior to indexing. As far as selection of index

attributes is concerned, we show that there exists

tradeoff between Index Size and Index Hit Ratio. We

conclude that, there will be an apparent impact on

Index Size while considering large number of index-

ing attributes. Ultimately, more number of index at-

tributes increases Index Hit Ratio which will result in

effective index utilization by incoming queries.

Based upon these results, we have become able to

claim that:

 Indexing is a significant process to improve

search performance for relatively large and

growing data sets.

 Overhead resulted by indexing process is one

time and becomes negligible when clear im-

provement in search performance is obtained.

 Overall indexing overhead is somehow inverse-

ly proportional to size of data set but directly

proportional to number of index attributes.

 The more the number of attributes considered in

indexing, the more the overhead is faced, though

Index Hit Ratio becomes high.

 A wise selection of attributes for indexing gives

a better tradeoff between Indexing Overhead

and Hit Ratio

 Adaptive index updating also supports prior

claim.

Fig 9 Indexed Search Query Execution Time Comparison with Full Scan

Fig 10 Impact of Indexing on Search Performance

4.2. Validation

We use mathematical modeling results obtained

from CPN model to verify experimental results for

Index Creation Time and Query Execution Time. For

CPN model, we use µ to define execution time of a

transition. For instance, denotes time

taken in index creation for a data set which is defined

as follows:

(5)

Indexing Time is accumulative time

taken in index creation and index

uploading to HDFS. Index Creation

Time depends upon number of index attributes

and Data Set Size whereas Index

Upload Time depends upon Index

Size . For CPN execution we set

 as and as .

Fig 11 Index Creation Time Validation

Fig 12 Query Execution Time Validation

The results are almost similar to index creation

time results obtained from experiment (see Fig 11).

Furthermore, we denote Query Execution Time as

and define it as follows:

(6)

Query Execution Time for indexed search

is accumulative time taken in load-

ing index , searching required data

and loading data into HDFS.

We set values for ,

and to , and .

The results in Fig 12 verify Query Execution Time

for indexed search.

4.3. Discussion

In section 2 we reviewed state-of-the-art clustered

indexing techniques for big data. We categorized

clustered indexing techniques based on their index

creation time as static indexing and adaptive indexing

techniques. Static indexes are created at the time of

data upload. Once the index attributes are defined at

data upload time and indexes are created based on

this set of index attributes, this set will never be

changed during life time of data residing on file sys-

tem regardless of considering query workload that

whether the queries are utilizing those indexes or not.

The only condition to update index is when data is

updated. On the other hand, adaptive indexes are the

side effect of query execution. Adaptive indexes are

created and updated after each new query execution.

The main disadvantage of adaptive indexing is that

each new query cannot be leveraged with indexes

and the index will be created after query execution.

This index is only useful when the same query is

executed.

Clustered approach except pros and cons of static

and adaptive categories has its own limitations due to

which clustered approach is not preferable to obtain

increased Index Hit Ratio. However, referring to sec-

tion 3, implementation of in memory indexing which

is a non-clustered indexing approach implies that

selection of more index attributes to maximize Index

Hit Ratio is just a matter of Index Size Overhead.

Otherwise, non-clustered approach for indexing is

favorable to clustered approach. Therefore, we sug-

gest implementation of non-clustered approaches for

indexing big data so that maximum incoming queries

will be served using indexing for better search per-

formance. We present our findings of section 2 and

section 3 and provide a comparative analysis of clus-

tered and non-clustered indexing approaches in Table

5 to strengthen our suggestion. This analysis serves

as a basis to applaud non-clustered indexing proposal.

Later we will assert for hybrid approach to exploit

both static and adaptive mechanisms so that flexible

to query workload indexes are created.

Table 5 Comparison of Clustered and Non-clustered Indexing Approaches

Process Clustered Approach Non-clustered Approach Recommended

Index Creation Physically reorders data rows using Quick sort

[2] and stores sorted rows as a block [6].

Complexity of Quick Sort:

Separate index structure containing key-value

pairs [11]. Key refers to index attribute and the
value is pointer to the row. No physical reordering

of data records is required.

Complexity of B-Tree:

Non-clustered

No. of Indexes One replica can have only one index. One
copy of data block cannot have more than one

sort orders [20].

Single replica can have more than one index. As
index is a separate structure [11], for one copy of

data block as many indexes can be created as

storage space allows.

Non-clustered

Index Size
(single index)

Less size than non-clustered [6]. However, for
multiple indexes the size reaches storage

capacity [20].

Separate structure [13] needs more space. Howev-
er, creating index is less space consuming than

creating separate replica.

Clustered

Index Maintenance
(query log)

Index rebuilding needs to drop and create new
data blocks [20].

Index rebuilding is easy [4]. It requires to perform
delete operation on previous index and iterate

create index operation.

Non-clustered

New Index Whole data set or specific block(s) should be
replicated to create new index [20].

New index can be created on any of existing repli-
ca. There is no need to replicate data

Non-clustered

Data Update

(insertion)

All copies of last block are updated and record

is inserted on its exact location [6].

 [4]

Record is appended on all copies of last block.

Each index is updated [13].

Non-clustered

Data read Apply search algorithm in sorted list

First traverse index then jump to record

Same
complexity

Index Hit Ratio Depends upon number of replicas Depends upon number of indexes Non-clustered
Memory Requirement Depends upon block size Depends upon size of index Clustered

Table 5 presents the comparison between clustered

and non-clustered approaches and due to complexity

measures resulted by each operation we recommend

non-clustered approach to be utilized for designing

indexing framework for distributed replicated blocks

of big data. Table 5 shows that all operations except

single index size are more efficient than clustered

approach. Although index size for single index of

clustered approach is less than non-clustered ap-

proach, yet non-clustered approach is still better. The

reason behind is clustered approach requires new

copy of whole data or data block for each new index

whereas in case of non-clustered indexing approach

new index can be created with existing replication

factor.

Experiment on non-clustered indexing also shows

that, projection of non-indexed attribute using queries

is not possible as only index keys are stored. There-

fore, when only selective attributes are considered in

index creation, queries cannot retrieve data for attrib-

utes other (non-indexed) attributes. Similarly, retriev-

al of whole data row is not possible in this case. Fur-

thermore, loading indexes into memory to search

queried data incurs noticeable I/O cost which is only

related to non-clustered indexing approaches. There-

fore, we suggest in proposing an indexing mechanism

for big data where indexing on a limited number of

index attributes deals with the problem of accessing

non-indexed attributes as well. I/O cost should also

be negligible which deteriorates the performance of a

non-clustered indexing approach.

5. Our Recommendations

Based upon above discussion we suggest imple-

mentation of non-clustered approach for indexing big

data so that on existing number of replica improved

Index Hit Ratio leading to improved search perfor-

mance can be achieved. Although replication of data

is significant to increase fault-tolerance and availabil-

ity of data yet each new copy of data increases space

requirements and consumes more storage resources.

For continuously growing voluminous big data, in-

creasing the replication factor of data storage is not a

feasible solution to consider more attributes in index-

ing. Therefore, improvement in Index Hit Ratio

should not be subject to higher value of replication

factor. Instead, replication should be utilized to bal-

ance the load of indexing via parallel index creation

is performed on each replica. In addition, number of

indexes can be divided among replicas using either

equality-based or efficiency-based strategy. Replica-

tion can be also be utilized to increase fault-tolerance

if index attributes are replicated.

As far as selection of static or dynamic indexing is

concerned, we suggest applying hybrid approach.

According to Table 1 we can say that though static

indexing is beneficial for each query having attributes

as selection predicates similar to index attributes and

index growth does not depend on new queries yet one

time index creation may not predict future workload

of queries. Index may need to be updated according

to changing query workload. Therefore, relying sole-

ly on static approach is not advantageous. In the

meantime, adaptive indexes which grow as side effect

of query execution may result in many unused index-

es. Any incoming query does not state that whether

the same query will be submitted again or not. There-

fore, creating indexes blindly for each query with

new attribute as selection predicate may result in a

large number of replicas. Consequently, indexing will

become an overburdening rather than search facilitat-

ing activity. Thus, keeping in mind all these factors,

we recommend an optimized indexing framework for

big data must possess following features:

 Wise selection of index attributes at static index-

ing stage so that maximum queries will be

served by these indexes. User-defined list of in-

dex attributes may achieve maximum Hit Ratio

for specific period of time.

 Heuristic decision to update list of index attrib-

utes so that recent query trends are considered

and indexes will not be obsolete. User may not

be fully aware of query plan and data search

preferences may change with the passage of

time. Therefore, adaptive to changing query

workload indexes are more efficient.

 Number of indexes should be independent of

replication factor. This is only possible if we use

non-clustered approach for indexing.

 Faster index rebuilding so that index update cost

is not very high. Adaptive stage in indexing may

add new indexes and delete unused or rarely

used indexes according to changing query work-

load. Non-clustered approach does not change

physical data storage and indexes rebuilding is

easy.

 Efficient index update as an effect of data update

so that challenge of growing data is accepted.

One such mechanism for non-clustered indexing

which shows better insertion performance than

quicksort mechanism of clustered approach is

preferable.

6. Conclusion

Faster data retrieval from big data is the main con-

cern of data analysts and users. This motivation has

led the research and development industry towards

exploration of efficient data processing mechanisms.

We present an experimental evaluation of non-

clustered indexing on varying size data sets with var-

ying Index Hit Ratio in this paper. We further vali-

date evaluation results using CPN mathematical

modeling. The results suggest that existence of index

considerably improves the search performance for

particularly large data sets. Although indexing pro-

cess introduces some overhead, yet somehow this

overhead is decreased for larger size data sets. The

comparative discussion on clustered and non-

clustered approaches leads towards a clear recom-

mendation of implementing a hybrid approach of

both static and adaptive non-clustered indexing. We

further suggest to wisely selecting index attributes for

better tradeoff between Indexing Overhead and Index

Hit Ratio. Moreover, adaptive indexing where index

is updated according to changing query workload

also improves this tradeoff. Based on the recommen-

dations provided in this paper, we are moving to-

wards implementation of non-clustered multi-

attribute static indexing on user suggested list of in-

dex attributes and heuristic analysis of query work-

load to adaptively improve index hit ratio by creat-

ing/deleting indexes on frequently used/unused at-

tributes a as a subsequent future work.

References

[1] 'Amazon'. Amazon S3. 2016 14-8-2016]; Available from:

http:/s3.amazonaws.com.

[2] Alvarez, V., F.M. Schuhknecht, J. Dittrich, et al., Main

memory adaptive indexing for multi-core systems, in

Proceedings of the Tenth International Workshop on Data
Management on New Hardware2014, ACM: Snowbird, Utah.

p. 1-10.

[3] Calder, B., J. Wang, A. Ogus, et al. Windows Azure Storage:
a highly available cloud storage service with strong

consistency. in Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles. 2011. ACM.
[4] Chi, P., W.-C. Lee, and Y. Xie, Making B⁺-

tree efficient in PCM-based main memory, in Proceedings of
the 2014 international symposium on Low power electronics

and design2014, ACM: La Jolla, California, USA. p. 69-74.

[5] Diallo, O., J.J.P.C. Rodrigues, M. Sene, et al., Real-time
query processing optimization for cloud-based wireless body

area networks. Information Sciences, 2014(0).

[6] Dittrich, J., J.-A. Quian, Quiané-Ruiz, et al., Only aggressive
elephants are fast elephants. Proc. VLDB Endow., 2012.

5(11): p. 1591-1602.

[7] Eldawy, A. and M.F. Mokbel. Spatial Hadoop: A
MapReduce Framework for Spatial Data. in 2015 IEEE 31st

International Conference on Data Engineering. 2015.

IEEE:1352-1363.

[8] Gani, A., A. Siddiqa, S. Shamshirband, et al., A survey on
indexing techniques for big data: taxonomy and performance

evaluation. Knowledge and Information Systems, 2015.

46(2): p. 1-44.
[9] Jens, D., Q.-r. Jorge-Arnulfo, and J. Alekh. Hadoop++:

Making a Yellow Elephant Run Like a Cheetah. 2010. VLDB.

[10] Jensen, K., L.M. Kristensen, and L. Wells, Coloured Petri
Nets and CPN Tools for modelling and validation of

concurrent systems. Int. J. Softw. Tools Technol. Transf.,

2007. 9(3): p. 213-254.
[11] Jin, R., H.-J. Cho, and T.-S. Chung, A group round robin

based b-tree index storage scheme for flash memory devices,

in Proceedings of the 8th International Conference on
Ubiquitous Information Management and

Communication2014, ACM: Siem Reap, Cambodia. p. 1-6.

[12] Jindal, A., J.-A. Quiané-Ruiz, and J. Dittrich. Trojan data
layouts: right shoes for a running elephant. in Proceedings of

the 2nd ACM Symposium on Cloud Computing. 2011.

ACM:1-14.
[13] Kaplanis, A., M. Kendea, S. Sioutas, et al., HB+tree: use

hadoop and HBase even your data isn't that big, in

Proceedings of the 30th Annual ACM Symposium on Applied
Computing2015, ACM: Salamanca, Spain. p. 973-980.

[14] Karim, A., R. Salleh, and M.K. Khan, SMARTbot: A
Behavioral Analysis Framework Augmented with Machine

Learning to Identify Mobile Botnet Applications. PloS one,

2016. 11(3): p. e0150077.
[15] Karim, A., R. Salleh, M.K. Khan, et al., On the Analysis and

Detection of Mobile Botnet Applications. Journal of

Universal Computer Science, 2016. 22(4): p. 567-588.
[16] McCandless, M., E. Hatcher, and O. Gospodnetic, Lucene in

Action: Covers Apache Lucene 3.0. 2010: Manning

Publications Co.
[17] Qin, Y., Q.Z. Sheng, N.J. Falkner, et al., When things matter:

A survey on data-centric internet of things. Journal of

Network and Computer Applications, 2016. 64: p. 137-153.
[18] Richter, S., J.-A. Quiané-Ruiz, S. Schuh, et al., Towards

zero-overhead adaptive indexing in Hadoop. arXiv preprint

arXiv:1212.3480, 2012.
[19] Richter, S., J.-A. Quiané-Ruiz, S. Schuh, et al., Towards

zero-overhead static and adaptive indexing in Hadoop. The

VLDB Journal, 2014. 23(3): p. 469-494.

[20] Schuh, S. and J. Dittrich. AIR: Adaptive Index Replacement

in Hadoop. in Data Engineering Workshops (ICDEW), 2015

31st IEEE International Conference on: 22-29. 2015.
[21] SIDDIQA, A., A. KARIM, and G. Abdullah, Big data

storage technologies: a survey. Frontiers, 2016. 1.

[22] Siddiqa, A., I.A. TargioHashem, I. Yaqoob, et al., A Survey
of Big Data Management: Taxonomy and State-of-the-Art.

Journal of Network and Computer Applications, 2016.

[23] Sookhak, M., A. Gani, M.K. Khan, et al., Dynamic remote
data auditing for securing big data storage in cloud

computing. Information Sciences.

[24] Strohbach, M., H. Ziekow, V. Gazis, et al., Towards a big
data analytics framework for IoT and smart city applications,

in Modeling and Processing for Next-Generation Big-Data

Technologies. 2015, Springer. p. 257-282.
[25] Zhuang, Y., N. Jiang, Q. Li, et al., Progressive Batch

Medical Image Retrieval Processing in Mobile Wireless

Networks. ACM Trans. Internet Technol., 2015. 15(3): p. 1-
27.

