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Abstract. Accurate activity recognition plays a major role in smart homes to provide assistance and support for users,

especially elderly and cognitively impaired people. To realize this task, knowledge-driven approaches are one of the emerging

research areas that have shown interesting advantages and features. However, several limitations have been associated with

these approaches. The produced models are usually incomplete to capture all types of human activities. This resulted in the

limited ability to accurately infer users’ activities. This paper presents an alternative approach by combining knowledge-driven

with data-driven reasoning to allow activity models to evolve and adapt automatically based on users’ particularities. Firstly,

a knowledge-driven reasoning is presented for inferring an initial activity model. The model is then trained using data-driven

techniques to produce a dynamic activity model that learns users’ varying action. This approach has been evaluated using a

publicly available dataset and the experimental results show the learned activity model yields significantly higher recognition

rates compared to the initial activity model.

Keywords: A ctivity recognition, knowledge-driven approaches, data-driven approaches, activity model, hybrid reasoning

1. Introduction

Activity recognition is considered an important

area of research, particularly in the field of healthcare

services [1]. The significance of this area is mainly

due to the provision of support and assistance for

elderly, disabled and cognitively impaired people [2].

Furthermore, activity recognition has become a pri-

mary indicator to measure physical and mental health

of elderly individuals based on their ability to perform
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ammarzakaria@unimap.edu.my (A. Zakaria).

basic activities such as bathing, eating and cooking

[3].

Smart homes have been used to provide monitoring

technologies that can identify activities and patterns

of daily routines [3]. They can also be used to monitor

environmental changes using sensors installed in dif-

ferent locations and deployed on various objects [4].

Recent advancement in sensing and networking tech-

nologies have allowed smart homes to be integrated

with other applications such as activity recognition

[5], predicting human behaviour [6] and detecting

early diseases [7, 8].

However, several issues have been associated with

activity recognition. Firstly, there are different types

of activities. Existing scales to evaluate individuals’

functional ability show that activities can be broken

ISSN 1064-1246/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved
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down into multiple levels of actions [9, 10]. For exam-

ple, Preparing Food can be composed of different

actions such as turning on the cooker, opening the

refrigerator and finding a plate [11]. These actions

result in the varying levels of granularities and they

can contribute to the complexity of reasoning process.

Secondly, there is no strict constraint on the sequence

of actions to perform the activities. They are depend-

ing on the individuals’ preferences and particularities.

Thirdly, the actions in which the activity is performed

can be dynamically evolved, such as the change of

activity duration and object used. As the patterns

are different, it can lead to various types of activity

models. Therefore, these issues have made activity

recognition worthwhile and a well-researched prob-

lem [12]. In order for activity recognition to work, the

inferred models should to be able to adapt to dynamic

environments and different users’ behaviour.

With this respect, two main approaches have

been used in activity recognition: data-driven and

knowledge-driven reasoning [13]. The former is asso-

ciated with machine learning techniques, where they

are mainly used to extract patterns and generate activ-

ity models through training process. Meanwhile, the

latter utilizes priori knowledge about the world to

build activity models using knowledge representation

techniques.

Both approaches their own disadvantages, result-

ing in the limited potential to recognize activities.

For example, a widely recognized drawback for

knowledge-driven approaches is that the inferred

models are usually static, i.e., the models cannot be

automatically adapted to users’ preferences [14]. As

it is difficult to define complete activity models, this

can become a problem to recognise every type of

human activities in home settings. Thus, this can be

properly dealt by integrating data-driven approaches

with knowledge-driven models. The combination can

produce activity models that are both complete and

generic to capture all types of human activities. The

models can also evolve continuously and learn to

adapt to users’ varying behaviour.

This paper presents a hybrid approach by combin-

ing knowledge-driven with data-driven approaches.

The aim is to build a learned activity model that

can automatically adapt and evolve based on the

action generated data. The proposed system is

designed for identifying activities performed from

the human-object interaction in a single-resident

environment. This combinational approach helps

knowledge-driven models to enrich their knowledge

and produce a learned and specialized activity model.

The paper presents two contributions. The first

is the architecture of the hybrid approach. The

novelty of this architecture is that it integrates

knowledge-driven reasoning with machine learn-

ing tools to compensate for insufficient information

in the knowledge-based activity model. Secondly,

a knowledge base that integrates common-sense

and domain-specific information is introduced to

represent knowledge of the environment and sup-

port activity modelling for the knowledge-driven

approach.

The paper is structured as follows: Section 2

presents the related work in activity recognition

approaches. Section 3 introduces the architecture of

the proposed system and Section 4 discusses evalua-

tion procedures to validate the proposed approach.

Finally, Section 5 concludes the paper along with

future work.

2. Related work

Activity recognition can be comprised of different

tasks such as environmental sensing, activity mod-

elling, data processing and pattern recognition [15].

Each of these tasks has their own purposes. For exam-

ple, environmental sensing captures existing context

in the environment. Context here refers to informa-

tion such as users’ location, time and object used

[16]. Meanwhile, activity modelling is merely a rep-

resentation of computational activity models in a

computer interpretable format [17]. Data process-

ing usually involves data segmentation and feature

extraction while pattern recognition builds activity

models based on generated smart home data [18].

Generally speaking, there are three main approaches

used in the activity recognition, known as data-driven,

knowledge-driven and hybrid approaches.

Data-driven approaches use machine learning and

data mining techniques to produce activity models

from existing datasets [19]. Often, the reasoning sys-

tem is performed using probabilistic and statistical

approaches [20]. Machine learning algorithms are

usually provided with a large representative of dataset

in order to generate activity models. The learning

is performed by comparing data input from sensor

observations to a set of template models in the train-

ing dataset. Then, testing is performed by closely

matching the sensor dataset with the models pro-

duced by the algorithms. However, these approaches

suffer from the cold-start problem as they require

a significant number of sensor data for the training
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process [21]. Furthermore, they are also difficult to

adapt in different environments as the models pro-

duced are only specific to the trained subject in the

same environment [22].

The knowledge-driven approaches present knowl-

edge representation tools to model activities and

exploits logical reasoning for activity inference [23].

The reasoning process uses Artificial Intelligence

(AI) techniques such as rule-based systems, case-

based reasoning and ontological reasoning to produce

activity models [24]. Knowledge-driven approaches

can represent context of the environments at mul-

tiple levels of abstraction to create generalized and

personalized activity modelling [21]. In particular,

ontologies have been widely used to represent seman-

tic concepts and their relationships in a structural

manner [25]. Advantages of ontologies include the

ability to express knowledge in a clearly organized

and structured manner, machine-readable represen-

tation and the expressive power to support the

reasoning process [26]. Their main disadvantage

is that knowledge-driven approaches usually suffer

from adaptation problems since representation tools

are usually being perceived as being generic and in

static condition [27]. Furthermore, it also suffers from

scalability in which it is usually difficult to generate

a complete model of the environment [13].

Finally, hybrid activity reasoning combines tech-

niques from data-driven and knowledge-driven

methods in order to tackle the limitations imposed

by both approaches and deal with the challenges in

real-world environments [28]. This benefits the rea-

soning system as it can provide mechanisms to handle

uncertainty and at the same time, works in dynamic

environments through this combination. Moreover,

the hybrid approach can represent semantic knowl-

edge of the environment using knowledge-driven

tools and as a result, the knowledge can be shared

and reused across many applications.

Several studies have used hybrid approaches and

fuse them into a single approach [15, 29], [30].

More recently, Ihianle (2018) combines the use

of data-driven approaches using Latent Dirichlet

Allocation (LDA) and knowledge-driven approaches

represented by ontology to identify activities that

have human-object interaction [12]. Although it

has successfully addressed the limitations from the

data-driven and knowledge-driven approaches, the

learning process is still limited as it is only based on

users’ concrete order of actions. If the user changes

the order, the system may have a problem to identify

the activities.

This study, on the other hand, focusses on the users’

non-sequence actions monitored from a smart home.

To date, there is limited published work on learn-

ing activity models based on users’ non-sequence

actions.

In particular, the proposed approach incorporates a

knowledge-based reasoning with a data-driven tech-

nique to accurately infer users’ activities. Ontology

is used to represent context of the environment and

description logic reasoning technique is used to query

and infer the initial activity model. Then, data-driven

techniques are used to enhance the produced model,

where the performance of several machine learning

algorithms are investigated and compared in training

users’ action and classifying them accordingly.

3. Architecture of hybrid activity recognition

The architecture of the proposed system is shown

in Fig. 1. It contains two main inference processes:

knowledge-driven and data-driven reasoning.

Firstly, the user’s presence and interaction with

objects in the home are monitored. This interaction

and its duration are indicated using state-change sen-

sors that are installed on objects in various locations

around the home. It is then recorded in a time-stamped

activity dataset, which contains labeled sensor acti-

vation data formatted in a Comma Separated Value

(CSV) file.

Then, the activity data are processed for further

analysis. This includes storing the collected data in

sensor logs with annotation attributes such as start

time, end time, sensor ID, and activity label. Further-

more, some important features are extracted from the

raw annotated data for activity classification. These

features are selected based on their supportive func-

tions in the reasoning system to infer activities.

The dataset is then fed into the first process, which

is the knowledge-driven reasoning. It infers activi-

ties by reasoning with the information contained in

the context knowledge base. In this paper, the word

‘context knowledge base’ represents the collection of

semantic concepts about context of the environment

and their relationships with each other stored in a

library database. It is represented using ontology and

used to produce an initial activity model. However,

the model contains incomplete number of activities

and partially labelled activity types. In this stage,

the produced model is incomplete as it only depends

on the knowledge represented by the context knowl-

edge base. Furthermore, the knowledge base only
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Fig. 1. Architecture of hybrid reasoning system.

represents a minimum number of necessary informa-

tion to perform the activity and cannot be regarded as

a complete model of the environment.

The second process uses data-driven reasoning to

improve the initial activity model. It trains the initial

model and generates a learned activity model that

can classify the remaining unlabelled sensor data in

performing the user’s corresponding activity. This is

important as activities can be executed in many ways

and they may vary based on the person’s particulari-

ties. Therefore, the data-driven reasoning will help

to learn users’ action and produce a dynamic and

personalized activity modelling.

3.1. Data processing

Data processing is an important step toward iden-

tifying users’ activities [31]. In this paper, sensor

activation data are stored in the time-stamped activ-

ity dataset. It contains several attributes such as start

times, end times, sensor ID, object used and activity

label. The data are then pre-processed to be rep-

resented in an explicit format for further analysis.

Furthermore, the excessive information such as mul-

tiple header lines is also removed from the activity

dataset. Table 1 shows the representation of this con-

verted data.

Then, useful features are extracted from the sensor

data using a feature extraction module. Within the

scope of this work, these features represent a few

Table 1

Sensor data representation

Start time End time Sensor ID Object Activity

05:05:15 05:05:49 1 Microwave Prepare Food

05:05:30 05:06:57 5 Toilet Door Toileting

05:08:50 05:09:04 12 Front Door Going Out

05:10:10 05:11:30 17 Freezer Prepare Food

context attributes such as where the activity happens,

when it is happened, using what type of objects and

how long the activity is performed. Below is the list

of features used to infer the activities:

�

Location of the activated sensor
�

Time when the sensor is activated
�

Object used
�

Duration from the start-time to the end-time

3.2. Knowledge-driven reasoning

Knowledge-driven reasoning is used to infer an ini-

tial activity model through the use of several installed

sensors in the home environment. This approach is

based on the dense-sensing paradigm [28], where it

focusses on inferring activities by monitoring human-

object interactions. The knowledge driven reasoning

process is divided into two sub-elements: context

modelling and activity inference.

The former uses the context knowledge base rep-

resented by the ontology representation tool. It basi-

cally encodes information about smart home, type of
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Fig. 2. An excerpt of context knowledge base.

Fig. 3. Detailed representation of the context knowledge base.

activities, time of a day, object and its location as well

as other associated context information. Specifically,

the context knowledge base contains activity model

that specifies semantic information about activities

based on the user’s context of the environment. The

ontology contains two upper classes and approxi-

mately 245 descendants of class instances. Figure 2

shows an excerpt of the ontology, where it is designed

based on Web Ontology Language (OWL) and imple-

mented using Protégè 4.0 [32].

A detailed representation is shown in Fig. 3. From

the figure, it can be seen that the context knowledge

base is comprised of two sub-components, namely

the common-sense and domain-specific knowledge

bases. The common-sense knowledge base contains

a collection of semantic concepts and their relation-

ships that are related to the basic understanding of the

environment. This knowledge base specifies general

concepts that are defined independently from specific

domains or applications. In other words, it consists

of simple facts and information that ordinary people

normally possess in their daily lives. This includes

concepts such as Object, Location, and Time. These

concepts are represented in a hierarchical structure

based on the structure from OpenCyc Knowledge

Base [33]. In the figure, the solid lines represent a
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subclass relationship (e.g., Fridge is a Device or

Kitchen is an Indoor Location) while the dashed

lines represent an object property. An object prop-

erty is regarded as the binary relations between two

classes. For example, concepts of Object and Loca-

tion are connected together using the object property

isLocated, and vice-versa with the inverse property

of hasObject. Both properties are used to show the

general information about the location and objects

contained within the location of the house.

Secondly, the domain-specific knowledge base

is used to represent concepts that are specifically

described with respect to a certain domain in order to

improve the principal understanding of the environ-

ment [34]. This knowledge base contains concepts

which are based on the knowledge of experts in a

particular domain. It provides a description of con-

cepts that have been explicitly defined in a structured

way to support the common-sense knowledge. Such

concepts include Smart Home, Daily Activity and

User Profile. Some of these concepts are based on the

common-sense knowledge base, but they have been

specifically defined in a more structured representa-

tion. For example, Smart Home is used to show the

information about multiple sensors and the contexts

that the sensors represent while Daily Activity con-

tains types of activities divided into context-related

and motion-related classes. Finally, User Profile con-

tains the information about residents and their health

historical status.

To make it more understandable, this knowledge

base can also be described in the Description Logics

(DL) language [35], which is considered as a first-

order formalism that formally represents knowledge

in a structured and reliable way. In the DL language,

three types of entities are used, namely concepts,

roles and individuals. These can be represented in the

ontology as classes, relations and instances respec-

tively. For example, in a scenario where the user

is preparing a breakfast, he or she usually prepares

the food in the kitchen, in the morning and interact

with several objects such as a freezer, microwave and

cooker. Figure 4 presents a snap-shot of the ontology

created in the Protégé using the example of the sce-

nario. The scenario can also be expressed in the DL

language as follows:

CookingBreakfast ⊑ Cooking ⊓ ∃ hasper-

son..Elderly ⊓ ∃ canTakePlaceIn.Kitchen ⊓ ∃

canTakePlaceDuring.Morning ⊓ ∃ usingObject.

(Fridge ⊔ Microwave ⊔ Cooker)

The second step is to infer users’ activities through

a description logic rule-based inference system.

These rules are generated from the designer’s knowl-

edge and they are used to classify activities based

on the concepts represented by the ontology of

Fig. 4. A snap-shot of CookingBreakfast in ontology.
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the context knowledge base. The aim is to support

the knowledge-driven decision-making process to

infer the user’s activities. This provides higher-level

context reasoning through the knowledge-driven

approach. The rules can be expressed in the seman-

tic web rule language (SWRL), which is based on the

ABox and TBox concepts in the ontology. Specifically,

36 rules have been constructed to identify activi-

ties. Examples of these description logic rules can

be expressed as follows:

Person(?p) ∧ Kitchen(?l) ∧ Morning(?t) ∧

Fridge(?o) ∧ Cooker(?o) ∧ Microwave(?o)
∧ canTakePlaceIn(?p,?l) ∧ canTakePlaceDur-

ing(?p,?t) ∧ usingObject(?p,?o) → hasActivi-

tyPreparingBreakfast

Person(?p) ∧ Bathroom(?l) ∧ Morning(?t) ∧

Afternoon(?t) ∧ Evening(?t) ∧ Night(?t) ∧

ToiletFlush(?o) ∧ ToiletDoor(?o) ∧ canTake-

PlaceIn(?p,?l) ∧ canTakePlaceDuring(?p,?t) ∧

usingObject(?p,?o) → hasActivityToileting

where p, l, t, and o are the instances of person, loca-

tion, time, and object respectively. This inference

process is conducted using Protégè open-source soft-

ware. Pellet reasoner is used to check the consistency

of the ontology and SPARQL query is used to imple-

ment the rules in the query process of the testing

stage. Among the information contained within a con-

text are, person, location, time and object used. For

example, in a situation in which an elderly person

uses a microwave in the morning and the loca-

tion is identified to be in the kitchen, the ontology

reasoner can infer that the person is preparing break-

fast. Figure 5 shows the example of SPARQL query

codes for inferring the process given in the above

scenario.

3.3. Data-driven Reasoning

The main problem in the knowledge-driven rea-

soning is that it is difficult to infer activities which

are not specified in the context knowledge base.

It is worth noting that the activity model pro-

duced by the knowledge-driven reasoning is difficult

to be completed due to the various ways these

activities are performed which may depend on the

user’s specificities. Furthermore, the static nature of

knowledge-driven models adds to the complexity as

there are no mechanisms that can make the models

evolve autonomously. Often, the activity models pro-

duced by the knowledge-driven reasoning need to be

Fig. 5. SPARQL query process.

updated manually, and this can become a problem

especially when smart home systems are expected to

deliver their services autonomously. This issue can

be properly addressed by feeding the output from

the knowledge-driven reasoning, i.e., the incomplete

activity model to the machine learning classifiers for

further classification task.

Three well-established classifiers have been cho-

sen for the data-driven classification process. These

include naïve Bayes (NB), Support Vector Machine

(SVM) and Multi-Layer Perceptron Neural Network

(MLP). These are selected as they have been proven

to have strong robustness in the activity recognition

task. Although these methods differ fundamentally

in their approach to classify data, in this study, all

of them use the supervised training approach for the

activity classification process.

Firstly, NB is regarded as a generative classifica-

tion model, where it assumes that the features are

independent and operates on a probabilistic model. It

was chosen since NB is easy to implement and useful

particularly for a large dataset. This classifier is based

on the Bayes’ theorem. The conditional probability

model is combined with a decision rule and used to

infer the most probable hypothesis. Then, it assigns an

activity class label by maximizing the posterior prob-

ability based on the given input vectors, i.e., sensor

IDs and start time.

Meanwhile, SVM is a well-known and established

way to classify data in a non-probabilistic manner.

The advantages of SVM are that it is good at handling

large feature spaces and employs overfitting protec-

tion which does not necessarily depend on the number
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of features. SVM has been widely used and con-

sidered as one of the fundamental non-probabilistic

classifiers. SVM can be comprised of several kernel

functions such as Polynomial, Gaussian and Radial

Basis Function (RBF). In this study, RBF kernel

is applied as it has better performance when deal-

ing with multi-temporal features and it is the most

frequently used kernel in remote sensing data appli-

cations [36].

Finally, MLP is one of the classifiers that is inspired

by the architecture of the human brain. It is com-

posed of inter-connected nodes called neurons and

weighted links. In this study, MLP is chosen as it

is commonly used for pattern recognition process. It

consists of three layers of nodes known as input, hid-

den and output layers in a directed graph. Mappings

between input and output features are represented in

the composition of activation functions f at hidden

and output layers. It maps the features values from

the input layer and duplicates the value to multiple

outputs without modifying the data. The nodes in the

hidden and output layer are then used to modify the

data for the training and classifying process. MLP is

considered a suitable classifier since it has the capa-

bility to perform efficiently with a large volume of

sensor dataset [22].

4. Evaluation and results

4.1. Experimental data

The experiments are performed based on a publicly

available smart home dataset obtained from the study

of activity recognition in a home setting by [37]. The

dataset contains fourteen digital state-change sensors

that monitor the user’s presence and interaction with

objects. These sensors provide a change of binary

state from 0 to 1. For example, when the person opens

and closes the refrigerator door, the state of sensor

changes from 0-1-0. This indicates a single interac-

tion of the person with the object. Furthermore, these

sensors are installed on objects at various locations

such as doors, cupboard, and toilet flush. Data of the

human-object interactions were collected for 28 days

in a house of a 26-year-old man, who lives alone in a

three-room apartment.

The smart home dataset also contains the activity

labelling task by the author during data recording.

This data annotation was performed using a Blue-

tooth headset combined with a speech recognition

software. It is used to record the performed activities

Fig. 6. Distribution of sensor events.

in the form of starting and end times. Overall, the

smart home data contains 1217 sensor events and

245 activity instances. Seven types of activities are

annotated in this dataset, which includes: Preparing

Dinner, Preparing Beverage, Preparing Breakfast,

Going Out, Showering, Toileting and Sleeping. Fig-

ure 6 presents the distribution of sensor events based

on these activities in the dataset.

4.2. Performance measurement

The labelled activity class from the smart home

dataset is served as the ground truth for compari-

son with the classifier’s output. The performance is

measured by comparing the output from the learned

activity model with the output from the initial activity

model by means of true positive (TP), false positive

(FP) and false negative (FN). TP shows values from

correctly classified activities, FP is the values from

wrongly classified activities and FN is the activity that

cannot be classified at all. These values are then used

to calculate performance metrics, which are com-

posed of accuracy, precision, recall/sensitivity and

F-measure [38]. The performance measurement is

based on the class average accuracy, where it cal-

culates the average percentage of correctly classified

class [37].

The activity recognition performance is evaluated

using 10-fold cross validation. It utilises leave-one-

out cross validation on the ten datasets. During each

step of cross-validation, the system is trained with

nine datasets. Then, the remaining dataset (tenth) is

used to cross-check the result and measure the per-

formance with the ground truth.

4.3. Experimental results

Table 2 depicts the results generated by the first

process, which is the knowledge-driven reasoning in
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producing the initial activity model. It is obtained

based on the comparison between the output of the

initial activity model and the ground truth provided

by the smart home dataset. The initial activity model

is represented by a partially annotated dataset, where

it contains some incomplete labelled sensor data with

their corresponding sensor IDs and the sensor’s acti-

vation and ending time. This comparison process uses

TP, FP and FN values to calculate the percentage of

true inferred activity (accuracy). From the table, it can

be seen that only 663 out of 1217 activity instances

can be detected as true positive while 413 and 141

activity instances are detected as false positive and

false negative respectively.

The highest recognized activity class belongs to

the Sleeping activity with the accuracy of 100%

while Showering has the lowest rate of recognized

activity (2.7%). This is because Sleeping contains

inference rules that can detect the sensor’s activa-

tion of bedroom door without regard of the time

when the sleeping activity is performed. This gives

a direct classification to easily infer that the activity

is Sleeping. Meanwhile, Showering is concurrently

associated with Toileting activity and thus, it is diffi-

cult to recognize this activity as both of them trigger

the same types of sensors.

Meanwhile, Table 3 shows the overall performance

result indicating the accuracy, precision, recall and

Table 2

Result from the initial activity model

Activity Type TP FP FN Accuracy (%)

Sleeping 114 0 0 100.0

Toileting 252 83 33 68.5

Preparing Breakfast 66 2 33 65.3

Showering 6 220 0 2.7

Going Out 87 1 6 92.6

Preparing Beverage 14 49 49 12.5

Preparing Dinner 124 58 20 61.4

Total 663 413 141 57.6

F-measure. From this table, it can be seen that the ini-

tial activity model only achieves 57.6% of accuracy.

Meanwhile, the precision, recall and F-measure are

calculated at 66.3%, 79.6% and 72.3% respectively.

Additionally, another experiment is performed to

determine the system’s performance when the initial

activity model is further learned to produce a spe-

cialized activity model using three different machine

learning classifiers.

Table 4 presents the classification rates for each

of the activity in the learned activity model. Simi-

lar to the first experiment, the result is obtained by

comparing the output of the learned activity model

from these three different classifiers with the ground

truth provided by the smart home dataset. From the

table, it can be seen that in some classifiers, the num-

ber of true positives has increased compared to the

output of the initial activity model. For example, NB

shows notable increase of true positives while SVM

does not improve significantly. The highest perfor-

mance belongs to the NB algorithm with 1093 activity

instances detected as true positive while the lowest

belongs to SVM, in which it only detects 972 activ-

ity instances as true positive. For NB classifier, it

can also be observed that Sleeping has the highest

true inferred activity rate while Preparing Beverage

gives the lowest inferred rate. The low inferred rate of

Preparing Beverage can be explained by the fact that

it is performed concurrently with other activities in

the kitchen such as Preparing Breakfast and Prepar-

ing Dinner, thus, making it difficult to distinguish

from other activities. In this approach, it is worth

Table 3

Performance measure based on the initial activity model

Classifier Accuracy Precision Recall F-measure

(%) (%) (%) (%)

Knowledge-driven 57.6 66.3 79.6 72.3

reasoning

Table 4

Result from the learned activity model based on three classifiers

Activity SVM MLP NB

TP FP FN Accuracy TP FP FN Accuracy TP FP FN Accuracy

(%) (%) (%)

Sleeping 97 17 0 85.1 114 0 0 100.0 114 0 0 100.0

Toileting 330 38 0 89.7 348 20 0 94.6 364 4 0 98.9

Preparing Breakfast 222 4 0 98.2 226 0 0 100.0 225 1 0 99.6

Showering 34 78 0 30.4 46 66 0 41.1 71 41 0 63.4

Going Out 92 9 0 91.1 91 10 0 90.1 90 11 0 89.1

Preparing Beverage 0 94 0 0.0 16 78 0 17.0 32 62 0 34.0

Preparing Dinner 197 5 0 97.5 188 14 0 93.1 197 5 0 97.5

Total 972 245 0 79.9 1029 188 0 84.6 1093 124 0 90.0
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Table 5

Performance measure for the learned activity model based on

average class accuracy

Classifier Accuracy Precision Recall F-measure

(%) (%) (%) (%)

SVM 79.9 70.4 70.3 70.3

MLP 84.6 85.0 76.5 80.6

NB 90.0 90.4 83.2 86.7

to note that the false negative values have become

zero as there are no activity instances that cannot be

classified by the machine learning algorithms.

Table 5 depicts the overall performance result

of the learned activity model based on these three

machine learning classifiers. The measurement is

based on the average class accuracy. It can be seen

that the performance of the learned model achieves

higher accuracies with values range from 79% to 90%

compared to the initial activity model. NB gives the

highest accuracy results (90.0%) with 56.3% increase

of accuracy rate from the initial activity model. SVM

shows relatively the worst result (79.9%) compared

with the two classifiers. However, the accuracy is still

higher compared to the initial activity model with the

increase of 38.7%.

This also shows that the performance of the learned

activity model has outperformed the results obtained

by Kasteren (2008) in terms of average class accu-

racy, where the proposed approach achieves 90.0%

compared to the existing ones, where it only achieves

79.4% [37]. Moreover, based on this results, the use

of generative models such as Naïve Bayes and Hidden

Markov Model (HMM) can outperform the discrim-

inative classification model such as SVM, MLP and

Conditional Random Field (CRF) for this smart home

dataset.

Furthermore, NB also shows significantly higher

rates in terms of precision, recall and F-measure. This

can be explained as NB is highly scalable to be used

with this dataset since it is considered as an efficient

and reliable probabilistic classifier over multi-class

dataset. Furthermore, the sensor sequences in the

dataset are independent of each other and they are

identically distributed along the day. Therefore, NB

classifier is a good choice since it does not take into

account any temporal relations between data points

and thus, making it a high variance classifier.

4.4. Discussion

Firstly, the performance of the initial activity

model is evaluated. It can be seen that the result in

Table 3 shows the initial activity model only achieves

an overall accuracy of 57.6% due to the high false

positive rates. Although activities such as Sleeping

and Going Out achieve higher true positive rates,

others obtain lower rates, in which Showering has

only achieved 2.7% true positive rate. There are

some activities that cannot be recognized in the ini-

tial activity model such as Preparing Beverage, with

the highest false negative rate (43.8%). This low-

performance results can be explained by two factors:

(i) the information in the context knowledge base is

not sufficient to represent all types of user’s activ-

ities and (ii) the description logic reasoner fails to

infer some activities due to the insufficient DL rules

introduced to the inference system.

Meanwhile, the obtained result in Table 5 shows

that the performance has increased when the ini-

tial activity model is trained using machine learning

classifiers. In particular, NB gives the highest clas-

sification results compared to SVM and MLP. In the

data-driven reasoning, the number of inferred activ-

ities depend on the number of occurrence events in

the dataset. The highest occurrence activity will pro-

vide more training data for the machine learning to

learn and classify the data accurately. This can be

seen in the inferring result of Toileting activity in

Table 4, where the accuracy from the learned model

has increased from 68.5% to 98.9%. In addition, the

increase of precision and recall values show that the

inferred activities are generally correct and that activ-

ities can be inferred although the information in the

initial activity model is incomplete.

In any case, in this second step, the learning process

allows the rise of true positive numbers and con-

versely, the false negative numbers become low. This

achieves the goal of this study where human experts

only need to supply minimal information and the rest

will be trained using the machine learning algorithms

to increase the recognition performance. For instance,

if the initial activity model contains an activity A that

has two different actions while the second activity

B does not have any action that can be detected by

the rules reasoner, the machine learning algorithms

will learn these actions and classify the activity

accordingly based on those two actions from the

activity A.

5. Conclusions and future work

This paper proposes an approach to acquire a

complete and specialized activity model through
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non-sequences actions based on the publicly avail-

able smart home dataset. The model is obtained

by integrating the knowledge-driven activity model

with data-driven reasoning techniques. This makes

possible for incomplete activity models from the

knowledge-driven reasoning to learn and further

improve the activity model. Central to this approach

is the knowledge representation method using context

knowledge base, which is used as the initial source of

information to infer the activities. It is comprised of

two subcomponents: the common-sense and domain-

specific knowledge base and these are represented

using ontologies.

This approach has several advantages compared to

the existing hybrid approaches. Firstly, it eliminates

the cold-start problem, where large representative

of sensor data can be avoided to model the activ-

ities. This is because the proposed approach first

incorporates knowledge-driven technique to model

the activities without the use of large dataset. Then,

the model is passed to the data-driven reasoning for

further activity learning.

Secondly, this approach has a higher scalability

as it can be used in different environments without

undergoing any specialized training process before

beginning to work. It is applicable to any user as the

knowledge models are built generically.

Thirdly, using the data-driven reasoning, the activ-

ity models are then trained to evolve according to

the user’s specificities. Thus, this approach allows

incomplete and general activity models to properly

learn and adapt automatically based on minimal pre-

vious context knowledge.

However, the limitation of this approach is that it

only investigates a consecutive and single activity.

This may not work in real-world environments, where

people usually perform their activities concurrently.

For example, toileting can be performed while the

user is preparing the food. The reasoning process is

much more difficult as it needs a complex pattern

recognition process. Moreover, this approach can-

not differentiate the usage of real and meaningless

object. This is important as some objects do not have

any interactions with the user in regard to the activity

and therefore, they can be eliminated to increase the

system’s performance and reduce its computational

time.

As for the future work, the activity models can be

extended to include concurrent activity scenarios. A

possible approach to deal with this problem could be

to add a sensor-time mapping system, where time-

start and time-end of sensor activation are mapped to

the specific activity. This data will be used to train

and build the activity models separately according to

each of the activities. This implies that each activity

has their own models in term of time mapping and

applying the same machine learning algorithms might

yield better results.

Furthermore, a feature selection method can also

be applied to differentiate between real object usage

and meaningless object interactions. Existing feature

selection approaches such as Principal Component

Analysis (PCA) and Linear Discriminant Analysis

(LDA) can be used to select which important fea-

tures that can contribute effectively to the pattern

recognition process.
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