
Northumbria Research Link

Citation: Sharma, Rupam Kumar, Kalita, Hemanta and Issac, Biju (2018) Are machine
learning based intrusion detection system always secure? An insight into tampered
learning. Journal of Intelligent and Fuzzy Systems, 35 (3). pp. 3635-3651. ISSN 1064-1246

Published by: IOS Press

URL: http://dx.doi.org/10.3233/JIFS-18202 <http://dx.doi.org/10.3233/JIFS-18202>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/36403/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Accepted Manuscript

Are Machine Learning Based Intrusion Detection

System Always Secure?

An Insight into Tampered Learning

Rupam Kumar Sharmaa, Hemanta Kr Kalitab and Biju Issacc

a,bDepartment of Information Technology, NEHU, Shillong, Meghalaya, India
cSchool of Computing, Media & the Arts, Teesside University, England, UK

Abstract. Machine learning is successful in many applications including securing a network from unseen attack. The application of learning

algorithm for detecting anomaly in a network has been fundamental since few years. With increasing use of machine learning techniques, it has

become important to study to what extent it is good to be dependent on them. Altogether a different discipline called ‘adversarial learning’ have

come up as a separate dimension of study. The work in this paper is to test the robustness of online machine learning based IDS to carefully

crafted packets by the attacker called poison packets. The objective is to observe how a remote attacker can deviate the normal behavior of

machine learning based classifier in the IDS by injecting the network with carefully crafted packets externally, that may seem normal by the

classification algorithm and the instance made part of its future training set. This behavior eventually can lead to a poisoned learning by the

classification algorithm in the long run, resulting in misclassification of true attack instances. This work explores one such approach with SOM

and SVM as the online learning-based classification algorithms.

Keywords: Adversarial learning; Machine learning; Poison learning; Intrusion Detection System; Artificial Intelligence, NSL-KDD Dataset,

SVM, support vectors.

1. INTRODUCTION

Intrusion Detection and Prevention systems (IDS/IPS) are
one of the critical components of the network of an
organization or an institution. Even though IDS involving
machine learning have not been of much practical
considerations in a real network but still they have proven
effective to withstand future unseen attacks. Much of the
research work have also been focused on detecting online
network attacks apart from detecting off line attacks by
analyzing the log data or offline data. Till date several IDS
systems are designed and developed based on many different
machine learning techniques. Most of these techniques are used
as a classifier to normal and attack packets. Literature study
also portrays that some IDS are based on single learning
techniques such as Genetic Algorithm, Artificial Neural
Network etc, while most others involve multiple learning
involving the process of ensemble techniques. However, the
accuracy of such learning algorithms depends on the type and
amount of training data considered. Bio inspired algorithms are
also coming up in recent times [48,49,53]. Recently online
statistical machine learning has also become an important and
useful approach to IDS. In such cases the learning is
periodically retrained on the online data for better classification
results i.e. every new incoming packet is initially classified by
the classifier either as normal or anomaly. If the packet turns
out to be normal than it becomes part of future training set.
This behavior of learning has been exploited by adversaries
very well. The adversaries with minimum knowledge of the
training data set used crafted data in such a way that the
classifier may treat it as normal but in the long run may lead to
a poison attack. In this paper the proposed model of online IDS
by Lee, Seungmin, Gisung Kim et.al [1] have been adopted as

a part of study due to high accuracy claim and is tested on
NSL KDD data set [2]. The model was later subjected to
poison learning and results were analyzed.

The outline of this paper is as follows. Section 2 outlines
different machine learning techniques used in IDS. Section 3
outlines challenges of using machine learning. Section 4
outlines the taxonomy of attacks against IDS. Section 5
outlines the referred model. Section 6 outlines the proposed
framework and algorithm. Section 7 discusses the
experimental setup, results and analysis. Section 8 proposes a
mathematical equation representation corresponding to the
number of crafted poison instances. Section 9 discuss the
class imbalance consideration followed by Section 10 that
discuss the proposed solution that addresses the presented
problem and finally followed by conclusion in Section 11.

2. Popular machine learning techniques used in IDS

2.1 Artificial Neural Network

Artificial Neural Network is information processing unit
which mimic the neurons of human brain [3]. An Artificial
Neural Network consists layer of neurons categorized into
input, hidden and output layer [4]. The neural network IDS
trained on KDD data set have following three phases [5].

a) Automated parsers to transform raw TCP/IP data into set of
vector values fed as input to the neural model.

b) Training: Neural Network model is trained on different
network ‘normal’ and ‘attack’ values. Input corresponding
to KDD data set have 41 features and the output
corresponds to either attack (22 different types) or normal.

Accepted Manuscript

c) Testing: Validation on the Test Data for further enhancing

the neural model for better classification. Different
validation technique such as k-cross validation is adopted at
different times.

Some of the recent work using Artificial Neural Network can
be found in the following papers [14,15,16].

2.2 Support Vector Machines

Developed by Cortes & Vapnik originally for learning two
class discriminant functions from a set of training examples.
SVM basically features the following [6,7].

a) Class separation: Seek for the optimal plane that separates
the points of the two planes also known as support vectors
by maximum distance.

b) Overlapping classes: The influence of data points falling on
the wrong side of the planes are weighted down.

c) Non-linearity: The data points that cannot be distinctly
separated linearly are transformed into a higher dimensional
plane where they become separable.

d) Problem Solution: Representing the entire task as quadratic
optimization problem that that becomes solvable by some
known techniques.

Some of the recent work using SVM in IDS can be found in the
following papers [17,18,19].

2.3 Self Organizing Map

 This learning is inspired from biological neural model
like that of ANN. However, it involves both competitive
and correlative learning [8]. Whenever an input is
presented to the network model, the neurons compete
among themselves and the neuron with closest similarity
claims the input and becomes the winner. The winner
strengthens his weight with the input. This mechanism
spreads to neighbors in Gaussian distribution. The core
objective is to reduce the dimension of data visualization.
Some of the recent work using SOM In IDS can be found
in the following papers [20,21,22].

2.4 Decision Trees

 Given a set of instances, Decision tree classify the
instances by sorting them down the tree starting from the
root and ending in a leaf of the tree. An attribute of an
instance is represented as a node of the tree and each
branch descending from the node corresponds to one of
the possible values of the attribute. This type of learning
is mostly used in cases where instances can be
represented by set of attribute and value pairs, the output
of the target function is not continuous and map to a
discrete set of values, considerations of possible errors in
the training set and missing values in the training
set[9].Some of the recent work using Decision Tree in
IDS can be found in the following papers [23,24,25].

2.5 Naive Bayes Classifier

Naïve Bayes Classifier is a probabilistic classifier. This
type of classifier outputs a value p(y|x) i.e probability of
y given x. The computation can be done in two ways.

Firstly, learning and applying the function that computes
the class posterior (y|x) and this is called a discriminative
process, because given set of instances it
discriminates between different classes. The other
alternative is to learn the class conditional density p(x|y)
for each value of y and to learn the class priors p(y), then
one can apply the Bayes rule to compute the posterior
[10]. The above is called generative model because for
each possible class y, the feature vector x is generated.
The advantage of using classifiers with probabilistic
output are “reject option”, where the classification is
refused if the prediction is uncertain , “changing utility
function” , where risk can be minimized by combining
the probability distribution with an utility function,
“compensating for class imbalance”, where one class is
rare than the other(scaled likelihood trick).Some of the
recent work using Naive Bayes in IDS can be found in
the following papers [26,27,28].

2.6 Fuzzy Logic

Fuzzy logic uses a membership function to indicate
degree of belonging of an attribute to a more than one
class. It is difficulty to draw a strict boundary between
normal and attack and hence instances can be assigned
varying degree of normal or attack and for this reason
fuzzy is a big choice for designing Intrusion Detection
System. With fuzzy it becomes possible to model small
deviations to keep false positives/negatives small. The
generic form of the fuzzy rule can be represented as
follows

 IF condition THEN conclusion [weight].

 Condition is fuzzy expression defined using fuzzy logic
operators fuzzy AND etc, conclusion is an atomic
expression and weight is a set of real number [0,1], that
portrays the confidence of the rule [11]. Some of the
recent work using Fuzzy systems in IDS can be found in
the following papers [29,30,31].

2.7 Radial Basis Function

Radial Function are altogether a different type of function
where the response decreases or increases monotonically
with distance from a point of reference or central point.

Fig 1: Each component in input vector feed to m basis functions and whose
outputs are linearly combined.

Accepted Manuscript

 One example of such function is Gaussian as shown below.

h(x) = exp (-(x-c)2/r2), where c is the center and r is the
radius.

 Radial basis function network (RBF) are associated with
radial functions as shown below in the figure 1 [12].
Some of the recent work using Radial Basis Function in
IDS can be found in the following papers [32,22,34].

2.8 K Means Clustering

 This algorithm is used to classify objects into ‘k’ number
of clusters, based on common features of the objects. The
similarity value is computed by considering and
minimizing the sum of squares of distances between data
points and the corresponding cluster centroid [13]. Some
of the recent work using k Means clustering in IDS can
be found in the following papers [35,36,37]

3. CHALLENGES IN USING MACHINE LEARNING

Machine Learning has proved to be result promising and
many companies such as Amazon uses machine learning for
meeting different objectives. However, the success of using
machine learning depends on lot of factors of which few are
listed below.

3.1 Training Data (Explicit and Implicit)

Training data used in a learning algorithm can be broadly
newly categorized into implicit feedback data and explicit
feedback data. In explicit feedback data, feature vector
corresponding to a message packet is explicitly confirmed as
an attack or normal without much difficulty, and
correspondingly used to train the learning algorithm. However,
in implicit feedback, data features might not be possible to
immediately be classified as normal or anomaly because more
attributes value might resemble a normal data but overall
feature vector or set of features vector might correspond to an
anomaly. Such “critical tag” need to be considered with utmost
care.

3.2 High Cost Errors

Running an IDS with even a very small rate of false
classification might come with high risk to the organization or
institution. Falsely classified as Negative might end up in a
remote machine gaining access to the internal network and
thereby rendering the entire network nonfunctional. The
objective would be to design learning algorithms that could
ideally make “False Positive” and “False Negative” parameters
approximately approach to zero value.

3.3 Rule Generation

For a message or for a given source whose feature vector is
classified as abnormal it is critical to judge whether the
abnormality corresponds to an attack or a behavior deviating
from normal but not an attack. More critical in such cases is
automatic rule generation corresponding the feature set of the
message or originating source.

3.4 Proper interpretation of traffic over time.

The variability in the network traffic parameters such as
volume of traffic, bandwidth consumption, duration of

connections, number of connections can make things more
critical in operational environment. Adding to the mentioned
facts diversity can also be on the application parameters of the
messages, nature of protocols and attribute values of different
headers fields. Question arises here is the duration for which a
given connection or the network should be monitored or how
long duration traffic should be aggregated for evaluation.
Application layer DoS attack occurs in slow rate and don’t
generate massive amount of traffic.

3.5 Data set Hindrance.

The data set that are publicly available such as KDD Cup
1999, NSL-KDD [38,39] are almost a decade old. Learning
algorithms are still trained on these existing old data sets which
fails to incorporate feature vector of recent attacks such as
RUDY[R-U-Dead-Yet]. The alternative could be repository of
self-monitored network. However, this could be a complicated
task due to non-accessibility to an appropriately sized network.

4. ATTACKS AGAINST MACHINE LEARNING BASED IDS

Even though Machine Learning algorithms have been
successful in proving better results, however they are never
always secure [59]. An adversary might always seek to explore
loopholes for rendering the learning by the algorithm futile.
The following outlines properties for analyzing attacks against
Machine Learning based IDS as discussed in [41,54].

A. Influence

(a) Causative

(b) Exploratory

B. Security Violation

(a) Integrity

(b) Availability

(c) Privacy

C. Specificity

(a) Targeted

(b) Indiscriminate

The entire model of securing learning algorithms can be

framed as a game between the attacker and the learning model.

The attacker can poison the learning by manipulating the

training instances.

Causative Attack: In this type of attack the adversary

influences the training instances [60]. The degree of influence

over the attributes of the data may vary based on the amount

of access an attacker might have. If the attacker is aware of the

truth that online instances are considered by the learning for

evolution, he can exploit this fact and frame instances

accordingly to gradually deviate the learning towards miss

classification. ‘Allergy’ attack, ‘Red herring’ attacks are few

to be mentioned.

Exploratory Attack: In this type of attack, the attacker crafts

intrusions to successfully evade the classifier. Here the direct

influence on the classifier is not performed. Here the attributes

Accepted Manuscript

of normal traffic are exploited to form attack vector

mimicking a normal vector. If the newly framed vector is

successful in evading the classifier, then therein lies the

consequences. It might so happen that the classifier considers

this new instance for future learning and as a result eventually,

the learning of the classifier can be deviated from the normal

value.

5. REFERRED MODEL

The literature survey demonstrates numerous contributions on

using machine learning techniques for successful intrusion

detection. Some of the latest work can be found in [42, 43, 44,

45]. In our first work, we have adopted a section of the model

proposed in [46]. The authors in the paper have proposed a

novel framework for fully unsupervised training and online

anomaly detection. Initially a model is constructed and

eventually the model evolves with the status of online data.

Fig. 2 shows the overview of the proposed model. The

framework consists of three phases. The first phase consists of

training the classification algorithm. In this phase the weight

vector of a synaptic connection is adjusted by injecting the

training set as input.

Fig 2: Proposed Framework by Lee et.al in [46].

 Once there is a wining neuron, the corresponding weight
of the neuron and its neighbors defined by a neighborhood
function is updated. In the second phase, the weight vector of
the matured SOM is clustered, and the centroid of an attack
cluster is updated resulting in change in the boundary of the
clusters. In the final phase, the normal is further split into a
new attack cluster. The three phases are described below.

Phase 1: Remodeling the Network Structure and Size

Whenever a new instance is fed as input, the Euclidean
distance of the input vector with the all the weight vectors is
computed. Whichever neuron has this minimum value,
becomes the winning neuron.

If | x - WBMU | < µ ,

 Where µ is the distance threshold.

If the above situation holds, the weights of the winning neuron
and its neighbors are updated as follows

Wj(t+1) = Wj(t) + ή {x- Wj(t)} (1)

Where ή is the learning rate and decreases monotonically with
time.

The wining neuron (BMU-Best Matching Unit) if it belongs to
a normal cluster, the data falls out to be normal and vice versa.

Phase 2: Updating the centroid of the attack cluster

In this phase the centroid of the attack cluster is updated if the
following condition is met.

i.e. the sum of the difference of the weight at a given time ‘t’
and the initial time t0 exceeds threshold value θ and ‘m’ is the
number of units belonging to the attack cluster.

Phase 3: Splitting the normal cluster

If nth vector is represented by xn and ‘B’ represent a Normal
cluster. Let B1 and B2 represent the split cluster from B. Let µi
be the centroid of the cluster ‘i’ and “N’ represent the recent
data points that are at a distance greater than distance λ from µB.
From the direction of attack clusters, if the direction of the
number of data located is different and covers a portion ‘y’ of
N, then k-means clustering with value of k=2 is executed on
the normal cluster ‘B’ when SS1/SS2 > β.

Here SS1 = ΣXn€ B | xn - µB|2 and

SS2 = Σxn€ B1| xn - µB1|2 + Σxn€ B2| xn - µB2|2

The results after implementation of the said model were

promising and is shown in the below figure.

Fig 3: Result of the offline model trained on SOM.

6. PROPOSED FRAMEWORK

Adopting as inspiration the model referred in section V, the
proposed model of implementation is shown below. The
proposed work is divided into the following phases: (i)
Preprocessing the dataset (ii) Developing the training model
and (iii) Poisoning the learned model.

(i) Preprocessing the dataset.

The dataset adopted for training and testing is NSL-KDD.
NSL-KDD have following advantage over KDD dataset

a) Due to absence of redundant item in the dataset, the
learning does not become biased.

b) The number of selected records of each type of attack is
proportional to the number of records in KDD’99.

Accepted Manuscript

In the first phase the dataset is preprocessed and made

ready for training the learning model namely SOM & SVM.
When the training set is ready, the learning model is adopted in
the second phase and is trained by using the training set. Once
the learning is matured, then it is tested with poison instances
in the third phase. The proposed work flow of training the
models is shown in the Figure 4. NSL-KDD dataset have
several non-numeric attribute values. Non-numeric data cannot
be adopted for training the adopted learning models. Therefore,
the non-numeric data is first transformed into numeric
representation and the dataset is made ready for training.
Random number of lines from the KDD dataset is adopted as
part of the training set. The column attributes are normalized
and mapped into the interval [0,1] using min-max
normalization approach. SOM is used in numerical value and
in the same range. The equation for min-max normalization
used is

Z = x-max(x)/{max(x) – min(x)}

(ii) Developing the Training Model

The proposed algorithm for training the model is shown in
Figure 6. The corresponding flow chart representation is shown
in Figure 4. As shown in Algorithm, the input is the training set
and the output is the learned model. Every instance from the
training set is retrieved, preprocessed and later becomes a part
of final training set. Once the training set is ready, either of the
learning model can be adopted for training. If the learning
model adopted is SOM, a grid of size 20x20 units is created
and the units are initialized with random weight values. For
every wining unit, the corresponding weight is updated as
shown in the Algorithm. The above process continuous until
the map is converged. Whereas, if the learning model is SVM,
a kernel function is selected for training the model. In Fig 6 the
linear kernel approach is shown. In such approach the objective
is to find the linear hyperplane such that the support vectors of
both the class are maximally separated out from each other.

(iii) Poisoning the learning model

The proposed algorithm for poisoning the learning model is
shown in Fig 7. The corresponding flow chart representation is
shown in Figure 5. Scapy is used to build custom packets and
these packets are injected into the real network traffic. The IDS
sensor running in the network captures these packets for further
processing. The feature vector of each packet is extracted and
fed to the classification algorithm. If the feature vector of the
extracted packet is classified as 'Normal', the feature is added
to the existing training set and becomes part of future training.
If it is classified as an attack it is discarded.

The attribute values of anomaly instances in NSL-KDD is
observed and packets are framed accordingly. Most of the other
attributes value resembles that of normal feature set. This is
done to observe the change in behavior of the classification
process and variance in the detection rate and other parameters.
In Fig 7, w is the set of instances. Every instance from w is
preprocessed and added to the training set T until T is ready.
Once T is ready, the learning algorithm is chosen in step 5. Tm
is the final trained model. The attacker crafts a packet Tp and
injects it into the network. If Tm is classified as normal, it
becomes part of future training set T.

Game theory formulation: To ensure a high secure

behavior in machine learning based IDS, the learning

algorithm and its classification behavior can be portrayed as a

game between the attacker and the defender. Let the attacker’s

interest of corrupted training and evaluated data be Atrain and

Aeval.

Fig 4: Training the learning model

Fig 5: Proposed flow chart for poison learning

The game can be formulated as follows:

1. Defender: Select a learning algorithm H that can be

observed as best against the observed data.

Accepted Manuscript

2. Attacker: Generate compromised Atrain and Aeval.

3. For learning:

a) Receive dataset Dtrain with contamination from Atrain.

b) Learn Hypothesis f <-- Dtrain

4. Evaluation:

a) Receive dataset Deval for evaluation of ‘f’ with

or without any contamination Aeval+.

b) If the classification error rate is less than

threshold accept Deval and may be considered for

future training.

Fig 6: Algorithm for training the learning model

7. EXPERIMENTAL RESULTS AND ANALYSIS

The different languages and packages used for
implementation are as follows: Python version 2 & 3, Scikit
python package and Ubuntu 14.

The experimental approach is divided into the following
phases:
(a) Train SOM and SVM and test the classification result.
(b) Poison SOM and SVM with crafted instances and observe

the variance in the result from the first phase

The experiment was carried out in a LAN framework as

shown in Figure 8. In Figure 8, the IDS sensor is the system
running machine learning based IDS software. The attacker is
assumed to get hold of host pc0 and pc1. The maliciously
crafted packets are injected from pc0 and pc1 into the real time
traffic of the network. In the first phase of the experiment, a
SOM grid of size 20x20 is initialized and trained on NSL-KDD
dataset until the SOM grid is converged. For every input unit
the BMU (Best Matching Unit) is recorded.

Fig 7: Proposed method for poisoning online learning

 These BMU’s are later clustered into 20 different clusters
which universally is mapped into either a normal or an attack
cluster. Fig 9 shows the visual plane of weight vectors after
being trained with NSL KDD Data set. Different colours of the
weight vectors indicate the different clusters to which they fall.
This output is on Normal Training data i.e. before subjecting to
poison learning. The proposed flow chart to fail the model is
portrayed in Fig 5. As seen in the proposed model poison
instances are crafted by exhibiting the property “camouflage”
i.e. normal instances vectors are picked up and their attributes
values are varied in accordance with the value set of attack
vectors.

Fig 8: Experimental set up

 The set of attributes that attacker picks up and can influence

externally are shown in Figure 10. Once the attacker crafts

packet instance that seemingly looks normal but eventually in

the long run may lead to a poison attack. These packets are

injected into the IDS sensor. It was observed that the IDS

sensor classified these instances as normal and therefore,

makes them part of future training set.

Accepted Manuscript

Fig. 9. 3D plane of the BMU falling in different clusters [Normal Data]

The attacker exploits this behavior and gradually mislead the

learning towards miss classification of true instances One

example of tampered attribute is such as Column 26 of NSL

KDD - serror_rate (% of connections that have ‘SYN’ errors

to the same host). Table 1 illustrates the result of a normal

SOM on NSL-KDD dataset. The accuracy of the detection is

85%. It is important to note here that our objective is not to

improve on the accuracy but to observe if this accuracy value

could be influenced by poison learning. Fig 9 shows the

orientation of the BMU in SOM grid. Initially, the SOM is

influenced by changing one random attribute from Fig 10.

Fig 10: Attribute list that attacker can influence externally

The attribute value is eventually changed to values that are

observed in attack instances of NSL-KDD dataset. The crafted

instance is initially injected into the IDS sensor. The IDS

classify the instance as normal as seen in Table 4. The set

attack cluster is empty indicating the instance is classified as

normal. This instance become part of future training set. Fig

10 demonstrated the fact of the re-orientation of the BMU

after poison learning. Here, one random attribute of the normal

instances is modified with the corresponding values of the

attack set vectors. Fig 11 demonstrates the orientation of the

BMU after four random attribute poison learning by the

normal vectors with attack set values.

Fig. 10. 3D plane of the BMU falling in different clusters [After poison

learning with one random manipulated normal attribute with attack set values.]

Table 1 shows the result of training the SOM in normal

circumstances. Normal circumstances here imply that the

training instances are non-tampered i.e. the feature vector set

used for training belongs to true normal and attack instances.

The size of the SOM grid is 20x20 units and as stated earlier

the weights are assigned randomly until the SOM grid is

converged with training instances. The testing instances are

than fed to the SOM grid. An output unit in the SOM grid

claims responsibility of the input instances and therefore

becomes the winning unit i.e. BMU (Best Matching Unit). In

our experiment the weight vectors connecting the input unit to

the output units of the SOM grid are clustered into twenty

numbers after the training phase. Each of these clusters either

falls into attack or normal cluster. The category of the cluster

is determined by the supervised label of the training instances.

A BMU corresponding a training instance marked attack is

part of the attack cluster.

Table 1: Implementation results of normal SOM

Number of training instances 3000

Execution time with mentioned

hardware and software details

35 hours

Total cluster into which weight

vectors of SOM is clustered

20

Cluster indices that are part of attack.

Each cluster consists a set of weight
vectors of the SOM grid.

[0,2,3,5,7,8,10,11,12,

13,14,15,16,17,18,19]

Cluster indices that are part of normal.

Each cluster consists a set of weight

vectors of the SOM grid.

[9,4,6,12]

Detection Rate (attack instances) 85%

Precision 77%

Sensitivity 85%

Specificity 67%

From Table 1 the total number of clusters that falls in generic

attack clusters is 16 and that falls in generic normal cluster is 4.

The converged SOM is than tested with the training instances.

With the standard testing test of NSL-KDD dataset, the

detection accuracy as shown in Table 1 is 85%. However, we

Accepted Manuscript

would like to restate that the objective of the work in not to

improve detection accuracy but to discover if a learning-based

IDS can be influenced externally. With this objective packet

were framed that seemed normal but eventually in the long run

may lead to an attack. Attributes whose value can be

influenced externally are already mentioned in Figure 10.

Table 2: Implementation results after one attribute poison

Number of training instances 3000 + 1500(poison)

Execution time with mentioned

hardware and software details

35 hours

Total cluster into which weight

vectors of SOM is clustered

20

Cluster indices that are part of attack.

Each cluster consists a set of weight
vectors of the SOM grid.

[1,2,4,7,10,12,14]

Cluster indices that are part of

normal. Each cluster consists a set of

weight vectors of the SOM grid.

[0,3,4,5,6,8,9,11,13]

Detection Rate (attack instances) 83%

False Positive Rate 28%

Precision 78%

Sensitivity 83%

Specificity 71%

Fig. 11. 3D plane of the BMU falling in different clusters [After poison

learning with four random manipulated normal attributes with attack set

values.]

Table 3: Implementation results after four attribute poison learning [attack

vector attributes with normal value set].

Number of training instances 3000 + 1500(poison)

Execution time with

mentioned hardware and
software details

34 hours

Total cluster into which

weight vectors of SOM is
clustered

20

Cluster indices that are part

of attack. Each cluster

consists a set of weight
vectors of the SOM grid.

[1,3,4,5,6,7,8,9,10,11,12,13,

15,18,19]

Cluster indices that are part

of normal. Each cluster
consists a set of weight

vectors of the SOM grid.

[2,18,15]

Detection Rate (attack

instances)

92%

False Positive Rate 83%

Precision 59%

Sensitivity 92%

Specificity 16%

Table 4: Crafted packets are classified as normal by the learned IDS as result
portrays no BMU falls in the Attack Cluster.

Number of training instances 1500

Total cluster into which
weight vectors of SOM is

clustered

20

Cluster indices that are part
of attack. Each cluster

consists a set of weight

vectors of the SOM grid.

[]

Cluster indices that are part
of normal. Each cluster

consists a set of weight

vectors of the SOM grid.

[0,2,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19]

Detection Rate (attack

instances)

100%

False Positive Rate 0%

Precision 100%

Sensitivity 100%

Specificity 100%

Table 2 demonstrates the result after injecting the IDS with

1500 poison instances, i.e. attributes values are modified in

such manner that the IDS classify them initially as normal and

eventually these instances become part of future training by

the learning algorithm. It is observed that there have been

altogether reorientation of the weight vectors falling into

normal and attack clusters. The accuracy results have dropped

from 85% to 83% as found from the experiment. This

indicates that an attacker can externally influence an online

learning and thereby bring the future classification result of an

online IDS down. Table 3 displays the result of similar

experiment repeated but with higher number of tampered

attributes values. Table 4 demonstrates the result of the

classification by the IDS of the instances that are

programmatically crafted that seemingly are normal but are

poison instances. When these instances are injected to the IDS

for classification, it is observed that the clusters of BMU

falling in the generic attack cluster is empty and therefore all

the instances are treated normal and therefore, becomes part of

future training. The detection rate is 100% indicating all the

crafted instances are very well recognized as normal by the

detection engine of the IDS. Citing as an example one attribute

value of crafted instances that was incrementally changed was

dst_host_host_count: Number of connections from the same

host to the destination in the past 2 seconds.

Table 5: Classification result of a normal SVM

Number of training instances 10000

Detection rate (attack instances) 100%

Precision 100%

Sensitivity 100%

We kept all other feature values (as per NSL-KDD) of a

packet same as that of a normal packet but kept slowly rising

in linear pattern the value of the above attribute. It is later

Accepted Manuscript

observed that the IDS eventually started to fail recognizing

DoS (Denial of Service) attack in form of SYN flood

performed from a single machine to a target destination. The

IDS started classifying all of them eventually as normal

packets. This signifies that an attacker can plan very carefully

to bypass detection of a specific attack by an online IDS.

Apart from testing this behavior with online based IDS using

SOM as the classification tool, we also tested it with SVM

(Support Vector Machine). Support Vector Machines have

proven effective in classification of high dimensional data

with significantly bigger training instances and attributes.

SVM is trained with training set from NSL-KDD Dataset. The

implementation of SVM on training samples exhibits high

accuracy i.e. the SVM perfectly classifies the training and the

testing instances. Ten thousand samples from NSL-KDD

dataset were adopted for training the SVM. Table 5

summarizes the result of the output of the SVM. The learned

SVM is tested on the NSL-KDD testing set. As seen from

Table 5, with zero false positive or false negative the detection

comes to 100%.

 Figure 7 shows the support vectors plotted in a normal

SVM trained on NSL-KDD dataset using linear kernel.

Fig 7: Support vectors in a normal SVM using linear kernel

It is observed from Figure 7 that none of the support vectors

are misclassified. Therefore, the detection rate is high.

Different colours of the panel represents instances falling to

different clusters. The support vectors are labeled in the figure.

Fig 7 shows the SVM plot with a linear kernel.

Fig 8: Support vectors in a normal SVM using polynomial kernel

Figure 8 shows the support vectors plotted using a polynomial

kernel and Figure 9 shows the support vectors plotted using a

radial basis function. It has been observed in all the SVM

plotted figures that none of the testing instances are

misclassified and the detection rate really goes well because of

large size in the feature set as can be seen from Table 5.

However, when the SVM is trained using poison instances as

discussed before, the support vector changes as shown in

Figure 10 from that of support vectors shown in Figure 7. The

accuracy of detection rate drops below 100%. This is vivid by

the number of misclassified support vectors as can be seen

from Figure 10. In normal SVM as seen in Figure 7, there

were no misclassified support vectors and therefore high

detection accuracy.

Fig 9: Support vectors in a normal SVM using radial basis function

Table 6: Support vector set in normal trained linear kernel based SVM

False Positive/False

Negative

('TP', 0, 'TN', 500, 'FP', 0, 'FN', 0)

Support vector in the

first class

[5 1]

Support vector in the

second class

[63 282 461 588 681 0]

Fig 10: Support vectors in SVM learned using poison (manually crafted)

instances using linear kernel

Similarly, the misclassification in SVM using polynomial

kernel can be seen in Figure 11 as that from Figure 8.

Likewise, misclassification error of support vector in SVM

using radial basis function can be observed in Figure 12 from

Accepted Manuscript

that of Figure 9. As can be seen from Table 6, the support

vectors either falls in one of the class i.e. in generic Attack or

Normal. As can be seen from the table two number of support

vectors falls in the first class and six number of support

vectors falls in the second class. As described earlier, the

framed instances are crafted keeping resemblance with the

attack set vectors of NSL KDD set. However, significant

changes in indices of support vector set compared to support

vectors in normal SOM is observed.

Fig 11: Support vectors in SVM learned using poison instances using

polynomial kernel

Fig 12: Support vectors in SVM learned using poison

instances using radial basis function

The plot of linear indices of support vectors can be seen in

Figure 13. The density of these linear indices changes in SVM

poisoned with single and multiple attributes as can be seen in

Figure 14 and 15 respectively.

Table 7: Support vector set in one attribute poisoned trained with linear kernel

based SVM

('TP', 0, 'TN', 500, 'FP', 0, 'FN', 0)

Support vector class - [8(first class), 1(second class)]

Support vector indices set --- [100 113 179 216 390 481 605 610 0]

Table 8: Support vector set in four attributes poisoned trained with linear
kernel based SVM

('TP', 0, 'TN', 500, 'FP', 0, 'FN', 0)

Support vector class -[7(first class), 1(second class)]

Support vector indices set --[128 177 292 356 419 787 885 0]

This indicates that the behavior of the learning can be

influenced by carefully crafting packets that may seem normal

but can be a potential attack in the long run. The number of

support vectors belonging to a given class also changes

significantly.

Fig 13: In scale of 1000 [x, y axis], indices of support vectors in normal
training instances.

Fig 14: In scale of 1000 [x, y axis], Indices of support vectors after poison

learning with one random manipulated normal attribute with attack set values

Fig 15: In scale of 1000 [x, y axis], Indices of support vectors after poison

learning with four random manipulated normal attributes with attack set

values

8. MATHEMATICAL FRAMEWORK

The mathematical formulation portraying the deviation in the

learning with newly injected normal and poison packets can be

derived as below:

Y - inclusion rate of learning instances for normal learning;

L - unaffected Learning, ɑ - infectivity rate on learning by

malicious instances; X - set of previous malicious instances (if

any) already part of the learning set; β - error rate in the non-

tampered learning; The rate of change in the learning (gradual

inclination towards poison learning) can be formulated as

Accepted Manuscript

follows: dL/dt = Y - ɑLX - βL. The following equation

indicates how much influence the instances that actually

“attack” mode but are classified as normal and became part of

future learning set that can further influence the learning:

dE/dt = ɑLX - (λ + θ)E

9. CLASS IMBALANCE IN TRAINING SET

Most of the machine learning algorithms are subjected to

imbalance problem [55,56]. There have been work to address

the imbalance problem by different researchers [57,58]. The

experiment and evaluation demonstrated in this paper is not in

relation to class imbalance problem during the training. The

training data generated in the experimental evaluation is free

of class imbalance problem. While generating the training set

almost an approximate equal number of labelled instances

from each of attack and normal set were considered. It was

also done in keeping in mind not to make the learning

algorithm victim of overfitting problem. To ensure the same

Tomek links [51] was considered. Therefore, no two examples

were considered that formed Tomek links.

10. PROPOSED SOLUTION TO OVERCOME THE

OBSERVED PROBLEM

Training data manipulation: From the experimental evaluation

it is observed that the anomaly in the true classification is due

to incorporation of instances in the future learning set that are

otherwise classified as normal but may lead to poison learning

in the long run. Whenever, an incoming instance is classified

as normal rather than embedding this instance immediately as

a part of future training set, these instances are made part of a

temporary set. When the size of this temporary set is large the

instances of the set are made part of the training set and the

learning is made to reoccur again on this training set. Once the

learning is converged, the learning algorithm is run on

randomly picked samples from testing set of NSL-KDD

dataset. If the detection rate drops below compared to the rate

recorded before the temporary set is made part of training set,

the instances of the temporary set are ignored. Therefore, the

new training set remains same as the old training set i.e.

If detection_ratenew < detection_rateold:

training_set_new = training_set_old;

Else:

training_set_new(future training set)=

training_set_old + temporary_set;

Certain methods such as RONI [52] have been proposed in

certain context such as spam classification of emails in

relevance to training data manipulation. However, in this

aspect RONI approach might fail or prove computationally

more intensive. The above proposed idea of temporary set

approach would prove effective and less computationally

intensive as the learning would not be invoked with every new

instance. However, the degree of such efficiency would be

considered in the future study and experimental evaluation.

11. CONCLUSION

The above experiments demonstrate that it is possible to

influence the classification behaviour of an online based IDS

by systematically changing certain attribute values of a packet

feature set. Experimental evaluation shows that the detection

accuracy of the online IDS declines after subjected to poison

packet attacks. The experimental evaluation is significant in

the sense that it gives an understanding of the necessary steps

to be adopted for online learning-based IDS for safe and

secure learning. It can be therefore concluded that machine

learning algorithms are never blindly secure and leave a scope

for analysis of such algorithms under different circumstances

[47]. If the attacker has some idea of the attributes used for

training purpose, he can play around with self-crafted

instances with different values for those attributes for

deviating the classification behavior of the learning algorithm.

This work further motivates to pick up the responsive behavior

of a Network subject to attack. One of such work undertaken

can be found in [48]. It is also observed that people have tried

to devise a different approach to achieve security at different

times [49, 50]. Therefore, there always exist an enthusiasm

among security researcher to design IDS/IPS or responsive

system that can ensure minimum casualty to the network and

organization. The experimental evaluation leaves another

scope of designing a bioinspired response system of a network

to withstand unseen attacks.

REFERENCES

[1] Lee, Seungmin, Gisung Kim, and Sehun Kim. "Self-
adaptive and dynamic clustering for online anomaly
detection." Expert Systems with Applications38.12 (2011):
14891-14898.

[2] Tavallaee, Mahbod, et al. "Nsl-kdd dataset." http://www.
iscx. ca/NSL-KDD (2012).

[3] Haykin, Simon. "Multilayer perceptrons." Neural
networks: a comprehensive foundation 2 (1999): 156-255.

[4] HaWang, Sun-Chong. "Artificial neural
network." Interdisciplinary Computing in Java
Programming. Springer US, 2003. 81-100.

[5] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew
Sung. "Intrusion detection using neural networks and
support vector machines." Neural Networks, 2002.
IJCNN'02. Proceedings of the 2002 International Joint
Conference on. Vol. 2. IEEE, 2002.

[6] Meyer, David, and FH Technikum Wien. "Support vector
machines." The Interface to libsvm in package
e1071 (2015).

[7] Mammone, Alessia, Marco Turchi, and Nello Cristianini.
"Support vector machines." Wiley Interdisciplinary
Reviews: Computational Statistics 1.3 (2009): 283-289.

[8] Yin, Hujun. "The self-organizing maps: background,
theories, extensions and applications." Computational
intelligence: A compendium. Springer Berlin Heidelberg,
2008. 715-762.

[9] Mitchell, Tom M. "Learning from Labeled and Unlabeled
Data." Machine learning 10 (2006): 701.

[10] Murphy, Kevin P. "Naive bayes classifiers." University of
British Columbia (2006).

[11] Zamani, Mahdi, and Mahnush Movahedi. "Machine
Learning Techniques for Intrusion Detection." arXiv
preprint arXiv:1312.2177 (2013).

Accepted Manuscript

[12] Orr, Mark JL. "Introduction to radial basis function

networks." (1996).

[13] Teknomo, Kardi. "K-means clustering
tutorial." Medicine 100.4 (2006): 3.

[14] Wang, Gang, et al. "A new approach to intrusion
detection using Artificial Neural Networks and fuzzy
clustering." Expert Systems with Applications37.9 (2010):
6225-6232.

[15] Ahmad, Iftikhar, Azween B. Abdullah, and Abdullah S.
Alghamdi. "Application of artificial neural network in
detection of DOS attacks." Proceedings of the 2nd
international conference on Security of information and
networks. ACM, 2009.

[16] Norouzian, Mohammad Reza, and Sobhan Merati.
"Classifying attacks in a network intrusion detection
system based on artificial neural networks."Advanced
Communication Technology (ICACT), 2011 13th
International Conference on. IEEE, 2011.

[17] Horng, Shi-Jinn, et al. "A novel intrusion detection
system based on hierarchical clustering and support
vector machines." Expert systems with Applications 38.1
(2011): 306-313.

[18] Li, Yinhui, et al. "An efficient intrusion detection system
based on support vector machines and gradually feature
removal method." Expert Systems with Applications 39.1
(2012): 424-430.

[19] Chen, Rung-Ching, et al. "Using rough set and support
vector machine for network intrusion detection
system." Intelligent Information and Database Systems,
2009. ACIIDS 2009. First Asian Conference on. IEEE,
2009.

[20] Huang, Shin-Ying, and Yen-Nun Huang. "Network traffic
anomaly detection based on growing hierarchical
SOM." 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).
IEEE, 2013.

[21] Ippoliti, Dennis, and Xiaobo Zhou. "A-GHSOM: An
adaptive growing hierarchical self-organizing map for
network anomaly detection." Journal of Parallel and
Distributed Computing 72.12 (2012): 1576-1590.

[22] Sheikhan, Mansour, Zahra Jadidi, and Ali Farrokhi.
"Intrusion detection using reduced-size RNN based on
feature grouping." Neural Computing and
Applications 21.6 (2012): 1185-1190.

[23] Sindhu, Siva S. Sivatha, S. Geetha, and A. Kannan.
"Decision tree based light weight intrusion detection
using a wrapper approach." Expert Systems with
applications 39.1 (2012): 129-141.

[24] Lin, Shih-Wei, et al. "An intelligent algorithm with
feature selection and decision rules applied to anomaly
intrusion detection." Applied Soft Computing 12.10
(2012): 3285-3290.

[25] Muniyandi, Amuthan Prabakar, R. Rajeswari, and R.
Rajaram. "Network anomaly detection by cascading k-
Means clustering and C4. 5 decision tree
algorithms." Procedia Engineering 30 (2012): 174-182.

[26] Koc, Levent, Thomas A. Mazzuchi, and Shahram Sarkani.
"A network intrusion detection system based on a Hidden
Naïve Bayes multiclass classifier." Expert Systems with
Applications 39.18 (2012): 13492-13500.

[27] Altwaijry, Hesham, and Saeed Algarny. "Bayesian based
intrusion detection system." Journal of King Saud
University-Computer and Information Sciences 24.1
(2012): 1-6.

[28] Mukherjee, Saurabh, and Neelam Sharma. "Intrusion
detection using naive Bayes classifier with feature
reduction." Procedia Technology 4 (2012): 119-128.

[29] Alsubhi, Khalid, Issam Aib, and Raouf Boutaba. "FuzMet:
A fuzzy‐logic based alert prioritization engine for
intrusion detection systems." International Journal of
Network Management 22.4 (2012): 263-284.

[30] Kavitha, B., S. Karthikeyan, and P. Sheeba Maybell. "An
ensemble design of intrusion detection system for
handling uncertainty using Neutrosophic Logic
Classifier." Knowledge-Based Systems 28 (2012): 88-96.

[31] Liu, Siyuan, et al. "A fuzzy logic-based reputation model
against unfair ratings." Proceedings of the 2013
international conference on Autonomous agents and
multi-agent systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[32] Govindarajan, M., and R. M. Chandrasekaran. "Intrusion
detection using an ensemble of classification
methods." World Congress on Engineering and Computer
Science. Vol. 1. 2012.

[33] Cheng, Chi, Wee Peng Tay, and Guang-Bin Huang.
"Extreme learning machines for intrusion detection." The
2012 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2012.

[34] Hongqiang, Jiao, Jia Limin, and Jin Yanhua. "A New
Network Intrusion Detection Algorithm based on Radial
Basis Function Neural Networks Classifier." Advances in
Information Sciences & Service Sciences 4.1 (2012).

[35] Li, Yinhui, et al. "An efficient intrusion detection system
based on support vector machines and gradually feature
removal method." Expert Systems with Applications 39.1
(2012): 424-430.

[36] Lin, Wei-Chao, Shih-Wen Ke, and Chih-Fong Tsai.
"CANN: An intrusion detection system based on
combining cluster centers and nearest
neighbors." Knowledge-based systems 78 (2015): 13-21.

[37] Sharma, Sanjay Kumar, et al. "An improved network
intrusion detection technique based on k-means clustering
via Naïve bayes classification."Advances in Engineering,
Science and Management (ICAESM), 2012 International
Conference on. IEEE, 2012.

[38] Hettich, S. and Bay, S. D. (1999). The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of
California, Department of Information and Computer
Science

[39] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A
Detailed Analysis of the KDD CUP 99 Data
Set,” Submitted to Second IEEE Symposium on
Computational Intelligence for Security and Defense
Applications (CISDA), 2009.

[40] Huang, Ling, et al. "Adversarial machine
learning." Proceedings of the 4th ACM workshop on
Security and artificial intelligence. ACM, 2011.

[41] Barreno, Marco, et al. "Can machine learning be
secure?." Proceedings of the 2006 ACM Symposium on
Information, computer and communications security.
ACM, 2006.

[42] Damopoulos, Dimitrios, et al. "Evaluation of
anomaly‐based IDS for mobile devices using machine
learning classifiers." Security and Communication
Networks 5.1 (2012): 3-14.

[43] Ranjan, Supranamaya, and Feilong Chen. "Machine
learning based botnet detection with dynamic adaptation."
U.S. Patent No. 8,402,543. 19 Mar. 2013.

[44] Lin, Wei-Chao, Shih-Wen Ke, and Chih-Fong Tsai.
"CANN: An intrusion detection system based on
combining cluster centers and nearest
neighbors." Knowledge-based systems 78 (2015): 13-21.

[45] Xiao, Liyuan, Yetian Chen, and Carl K. Chang. "Bayesian
model averaging of bayesian network classifiers for
intrusion detection." Computer Software and Applications

Accepted Manuscript

Conference Workshops (COMPSACW), 2014 IEEE 38th
International. IEEE, 2014.

[46] Lee, Seungmin, Gisung Kim, and Sehun Kim. "Self-
adaptive and dynamic clustering for online anomaly
detection." Expert Systems with Applications38.12 (2011):
14891-14898.

[47] Sharma, Rupam Kr, Hemanta Kumar Kalita, and
Parashjyoti Borah. "Analysis of Machine Learning
Techniques Based Intrusion Detection
Systems."Proceedings of 3rd International Conference on
Advanced Computing, Networking and Informatics.
Springer India, 2016.

[48] Sharma, Rupam Kumar, Hemanta Kr Kalita, and Biju
Issac. "Plant based Biologically Inspired Intrusion
Response Mechanism: An insight into the proposed
model PIRIDS." Journal of Information Assurance and
Security (2016).

[49] Sharma, Rupam Kumar, Hemanta Kumar Kalita, and Biju
Issac. "Different firewall techniques: A
survey." Computing, Communication and Networking
Technologies (ICCCNT), 2014 International Conference
on. IEEE, 2014.

[50] Sharma, Rupam Kumar. "Generation of Biometric Key
for use in DES."International Journal of Computer
Science Isseues 9.6 (2012)

[51] Kubat, Miroslav, and Stan Matwin. "Addressing the curse
of imbalanced training sets: one-sided selection." ICML.
Vol. 97. 1997.

[52] Witten, Ian H., et al. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[53] Dua, Sumeet, and Xian Du. Data mining and machine
learning in cybersecurity. CRC press, 2016.

[54] Huang, Ruitong, et al. "Learning with a strong
adversary." arXiv preprint arXiv:1511.03034 (2015).

[55] Shokri, Reza, et al. "Membership inference attacks
against machine learning models." Security and Privacy
(SP), 2017 IEEE Symposium on. IEEE, 2017.

[56] Lemaître, Guillaume, Fernando Nogueira, and Christos K.
Aridas. "Imbalanced-learn: A python toolbox to tackle the
curse of imbalanced datasets in machine
learning." Journal of Machine Learning Research 18.17
(2017): 1-5.

[57] Junhai Zhai, Sufang Zhang, Chenxi Wang. The
Classification of Imbalanced Large Data Sets Based on
MapReduce and Ensemble of ELM Classifiers. Journal of
Machine Learning and Cybernetics, 2017, 8(3):1009-1017

[58] Junhai Zhai, Sufang Zhang, Mingyang Zhang, et al.
Fuzzy integral-based ELM ensemble for imbalanced big
data classification. Soft Computing (2018).

[59] Papernot, Nicolas. "Adversarial Examples in Machine
Learning." (2017).

[60] Zheng, Juan, Zhimin He, and Zhe Lin. "Hybrid
adversarial sample crafting for black-box evasion
attack." Wavelet Analysis and Pattern Recognition
(ICWAPR), 2017 International Conference on. IEEE,
2017.

