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Abstract. This paper aims at improving the operation of the water distribution networks (WDN) by developing a leak
monitoring framework. To do that, an online statistical hypothesis test based on leak detection is proposed. The developed
technique, the so-called exponentially weighted online reduced kernel generalized likelihood ratio test (EW-ORKGLRT), is
addressed so that the modeling phase is performed using the reduced kernel principal component analysis (KPCA) model,
which is capable of dealing with the higher computational cost. Then the computed model is fed to EW-ORKGLRT chart
for leak detection purposes. The proposed approach extends the ORKGLRT method to the one that uses exponential weights
for the residuals in the moving window. It might be able to further enhance leak detection performance by detecting small
and moderate leaks. The developed method’s main advantages are first dealing with the higher required computational time
for detecting leaks and then updating the KPCA model according to the dynamic change of the process. The developed
method’s performance is evaluated and compared to the conventional techniques using simulated WDN data. The selected
performance criteria are the excellent detection rate, false alarm rate, and CPU time.

Keywords: Leak detection, water distribution networks, kernel principal component analysis, online reduced kernel general-
ized likelihood ratio test, exponentially weighted moving average

1. Introduction

Health, safety, and environmental issues have
gained significant importance world-wide. These
issues are closely related to the availability and
quality of water in many industrial and domes-
tic applications. Water is considered as a unique
commodity because nothing else can substitute for
it, especially in areas exposed to drought weather
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conditions, such as in Qatar. Also, in most water
distribution networks (WDN), it is estimated that
between 10% to 30% of the water is lost in trans-
portation from treatment plants to consumers. Water
loss can be due to excessive physical activity, meter-
ing errors, leakage, pipe flushing, etc. The water
losses can be categorised as “real losses” and “appar-
ent losses.” The apparent losses are constructed
by errors in the measurements and measurements
under-registration (e.g., consumption made by ille-
gal connections). On the other hand, the real losses
are the leakage in the WDN. Monitoring of leaks
in WDN is, therefore, an important way to enhance
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the water management. Therefore, this paper eval-
uates the state of the network, i.e., to determine
whether a leak exists or not. The idea behind leak
detection in water distribution systems is to main-
tain disinfection levels, pressure and reduce water
loss.

To address the fault detection purposes, several
approaches have been developed, including prin-
cipal component analysis (PCA) [1–3], nonlinear
PCA (NPCA) [4], Multi-Regional PCA (MRPCA)
[5], probabilistic PCA (PPCA) [6], attribute PCA
(APCA) [7] and interval PCA (IPCA) [8]. Other
detection indices, including the Hotelling T 2 statistic
[9], the sum of squared residuals SPE and the gener-
alized likelihood ratio test (GLRT) have been used.
The GLRT has been proposed first in [10] for model
identification and it has shown to be more favorable
than the classical χ2 test. Then, in [11], the GLRT
chart has been used for fault detection (FD) based
model. FD-based model [12] is performed into two
steps: residual generation and residual evaluation.
The GLRT chart is based on determining analytical
relationships between measured variables to extract
information about anomalies that may be caused
by faults. However, it is difficult and even nearly
impossible to determine an accurate and complete
mathematical process model for complex and large-
scale industrial processes. For instance, PCA based
GLRT chart is used for fault detection when a process
model is not available [13–15]. PCA-based GLRT
aims to construct PCA model and then the GLRT
chart is used for fault detection. The PCA-based
GLRT technique depends on using linear PCA which
is an input-space. However, most real processes are
described by input-output models. To solve the issue,
partial least squares (PLS) based GLRT technique is
developed [15, 16]. This technique’s main idea is to
extract the covariation in both process and quality
variables and model the relationship between them.
Then, the process is monitored using the GLRT chart.
However, PCA and PLS-based GLRT techniques
assume that the process data are linear which makes
them inappropriate for nonlinear industrial processes.
To solve this problem, kernel scheme has been inte-
grated to extend linear PCA and PLS techniques to
their nonlinear versions (kernel PCA (KPCA) and
kernel PLS (KPLS)) [17–19]. For the data to be lin-
ear, the kernel based technique consists of mapping
the data into a higher-dimensional space. The choice
of KPCA is supported by its distribution capabilities
and its flexibility with a large variety of kernel func-
tions. However, the classical KPCA technique is not

appropriate for dealing with dynamic systems since it
is a non-adaptive procedure. This technique requires
to store the training data set and then use the KPCA
model for detection purposes. For a large number of
samples, the detection using KPCA method imposes
a high computational cost. Then, KPCA is not ade-
quate for real processes that are prone to drifting off
due to various phenomena since the system may be
subject to significant changes. This drift can change
the relationship between process variables and can
lead to poor detection results. To deal with chang-
ing process conditions and high computational cost,
we propose to update the KPCA model and reduce
the amount of training data. Thus, a reduced KPCA
method is developed. This method aims to extract a
new reduced data set, so-called dictionary, to build
the reduced KPCA model. The resulting dictionary
is formed by linearly independent kernel functions.
The reduced method is applied in an online phase to
construct the reduced model and it takes into account
the dynamic behavior of the process by changing the
model structure. Then, it uses the new KPCA model
for detection purposes. Thus, the first objective of this
paper is to develop an online reduced KPCA model
that reduces the computation time and enhances the
modeling accuracy of the classical KPCA model. The
second objective is to enhance the detection accuracy
of the classical GLRT. To do that, a new statistical leak
detection chart based on merging the benefits of the
exponentially weighted moving average (EWMA) fil-
ter with those of the GLRT is proposed. The proposed
strategy, the so-called EW-GLRT, provides effec-
tive properties, such as smaller detection speed and
smaller false alarm and missed detection rates. The
main idea behind the proposed EW-GLRT is comput-
ing a new detection solution that considers the current
and previous data information in a decreasing expo-
nential fashion giving more importance to the more
recent data.

Hence, in the paper, we develop a novel leak detec-
tion approach that uses online reduced KPCA to
identify the model and then introduce the built model
to EW-GLRT for detection purposes. The developed
leak detection approach is the so-called exponentially
weighted online reduced Kernel generalized likeli-
hood ratio test (EW-ORKGLRT).

To summarize, this paper’s main contribution is
the improvement of the leak detection capability in
water distribution systems by developing an effective
online monitoring strategy called EW-ORKGLRT
technique. The developed leak detection method will
be able to detect different kinds and sizes of leaks.



This technique captures the normal, leak-free behav-
ior and contrasts it with the new measurements to
evaluate the network’s state. The results demonstrate
the effectiveness of the developed EW-ORKGLRT
method over the ORKGLRT and the KGLRT meth-
ods for detecting leaks in different nodes. The leak
monitoring efficiencies are assessed using false alarm
rate (FAR), good detection rate (GDR), and CPU-
time (CT).

The rest of the paper is organized as follows. In
Section 2, a related work that surveys previous efforts
in leak detection and monitoring is presented. Section
3 presents KPCA model-based detection technique.
In Section 4, the improved leak detection approach
using EW-ORKGLRT is developed. In Section 5, the
leak detection performance is evaluated using sim-
ulated WDN data. In the end, the conclusions are
presented in Section 6.

2. Related works

The main goal of this paper is to improve the oper-
ation of water distribution systems by developing a
leak detection framework. Different solutions to ana-
lyze and model the state of the water distribution
networks have been studied, where the analysis tool
is usually trained (not necessary for all techniques)
with data (real or artificial). Then, the state of the net-
work is compared with the trained data and analyzed
using these techniques.

Several techniques have been developed for leak
detection and localization in WDN. In [20, 21], flow
measurements or pressure are applied for classifica-
tion in leak location problem. In [22], the evidence
theory is used to locate the leak through Pipe Burst
Model Prediction (PBMP). In [23], the authors pro-
posed to detect and locate leaks in a benchmark
network using Bayesian reasoning (BR). In [24], the
authors developed a leak detection approach based
on Support Vector Regressions (SVRs). The authors
in [25], proposed a leak detection and localization
methodology using model falsification. An ensemble
of Change Detection Tests (CDTs) is implemented in
[26] to detect the time the leak appears by consider-
ing that in healthy conditions, the flow measurements
at the inlet of the WDN follow an unknown distri-
bution. However, the distribution gets changes when
the leak occurs. This approach uses an ensemble of
CDTs to be robust against false alarms. In [27], a
similar approach is applied but a hierarchy of CDTs
is used instead of an ensemble. In [28], the peri-

odicity of water consumption (the measurement of
the flow at the inlet) is used to apply Self-Similarity
(SS) between the recent measurements and a set of
stored recorded data, which represents the current
behavior of the WDN in a healthy state. In [29],
an Artificial Immune System (AIS) network is used
to detect and locate the leak. In [30], the leaks are
considered to occur in the pipes, and the number of
potential leaks is reduced using flow and pressure
measurements (obtained from a hydraulic simula-
tor) and spectral clustering. Then, SVM trained
with the clustered data are used to classify the cur-
rent measurements and perform the leak localization
task.

In [31], all the measurements (flow and pressure)
are used to develop a data model-based on the multi-
case Evolutionary Polynomial Regression (EPR) to
predict the measurements and match them to the
current measurements. The residuals are then com-
pared with the thresholds to detect leaks. In [32],
a database of normalized inlet flow patterns from
different networks is used to retrieve the most simi-
lar pattern using k-Nearest Neighbors (k-NN) and to
compare the degree of similarity with a threshold for
detecting abnormal consumption. This approach is
extended in [33] to exploit measurements from AMRs
using Big Data and Cloud computing technologies.
In [34], a leak detection and localization technique
is considered in this article. The detection technique
uses the inlet flow measurements at a high sampling
rate and a Kalman Filter (KF) is applied to remove
noise.

In [35], the repetitive flow pattern consumption is
exploited to create a cyclic PCA technique (differ-
ent PCA models are built depending on the different
hourly water consumption pattern) using the pres-
sure sensors inside the network, where the statistics
T 2 and SPE are used and compared to detect leaks.
In [36, 37], neuro-fuzzy classifiers are used to detect
and locate leaks in a discretized network (i.e., the
networks are reduced to discrete zones) using flow
measurements. A similar approach is considered in
[38] using pressure measurements instead. In [39],
a fuzzy recognition system is applied to detect and
locate the leak in the area that mismatched the
expected behavior. In [40], the leak is detected using
the information extracted from acoustic measure-
ments and wavelets. Then PCA is applied to reduce
the dimensionality. Finally, measurements are classi-
fied as a leak or not, using a Multi-Layer Perception
(MLP) ANN (the ANN is trained beforehand with
representative data measurements). In [41], an ANN



with feed-forward MLP is used to build Gaussian
Mixture Models (GMMs), which results in a net-
work that provides the conditional probability density
of the output data and is called a Mixture Density
Network (MDN).

In [42], an MLP back propagation ANN is used
hierarchically. First, the leak is detected, then the leak
is located, and its size is estimated.

3. Kernel GLRT based on KPCA model

3.1. Description of KPCA model

The main idea of KPCA is to map the original
data into a feature space using a nonlinear map-
ping function φ. Then a linear PCA is performed
in feature space. For a given training data matrix
X = [

x(1) · · · x(N)
]T ∈ R

N×m, where N is the num-
ber of samples and m is the number of measured
variables. The mapped data matrix is defined as, X =[
φ(x(1)) · · · φ(x(N))

]T ∈ R
N×h, where h is a large

value representing the dimension in feature space and
the columns ofX are assumed to be centered.

The covariance matrix is determined in the higher-
dimensional space F by

Q = 1
N−1X T X

= 1
N−1

∑N
i=1 φ(x(i))φT (x(i)).

(1)

The eigenvector problem for Q is expressed as,

Qv = μv. (2)

where v and μ are the eigenvalue and eigenvector of
Q, respectively.

To resolve Equation 2, it is required to compute the
inner product of two kernel functions by introducing
a kernel function of the form,

k(x(i), x(j)) = φT (x(i))φ(x(j)). (3)

The commonly used kernel function is the radial
basis kernel such that,

k(x, y) = exp(− (x−y)T (x−y)
c

), (4)

where c is the kernel parameter.
Denoting K = XX T for the kernel matrix.

According to Equation 1, Equation 2 can be expressed
as,

(N − 1)μv = X T X v. (5)

Hence, multiplying both sides of Equation 5 by X
from the left, we get

λX v = XX T X v, (6)

where λ = (N − 1)μ.
By using K = XX T , the eigenvector problem is

defined as,

λX v = KX v. (7)

Hence, if we define

α = X v, (8)

then Equation 7 can be written in the form

λα = Kα. (9)

According to Equation 9, α and λ are the eigen-
vector and eigenvalue of the kernel matrix K,
respectively. Then, the eigenvector v is determined
by multiplying with X T from the left of both sides in
Equation 8 and then use Equation 5

X T α = X T X v = λv. (10)

Thus, v is given by,

v = λ−1X T α. (11)

Define Pf = [
v1 · · · v�

]
to be the matrix of � prin-

cipal eigenvectors. From Equation 11, Pf can be
expressed as,

Pf =
[

1
λ1

X T α1
1
λ2

X T α2 · · · 1
λ�

X T α�

]

= X T P�−1,
(12)

where � = diag(λ1 . . . λ�) and P = [
α1 · · · α�

]
are

the � largest eigenvalues and principal eigenvectors
of the matrix K, respectively.

The number of kernel principal components
(KPCs) � that constitute the optimal KPCA model
is determined using the cumulative percent variance
(CPV) criterion. The CPV criterion is a measure of
the percent variance captured by the first � KPCs as
per the following :

CPV (�) = 100

∑�
j=1 λj∑N
j=1 λj

. (13)

The CPV is considered to select the KPCs for
which, say, over 95% of the cumulative variance is



captured. The number � satisfies the CPV criterion is
defined as,

� = arg(CPV (≥ 95)). (14)

For the test sample x and its mapped vector φ(x), its
projections on the eigenvectors, also called the kernel
components, are determined as,

t = PT
f φ(x). (15)

According to Equation 12, the vector t can be writ-
ten as

t = �−1PXφ(x) = �−1Pk(x), (16)

where k(x) = [
k(x1, x) k(x2, x) . . . k(xN, x)

]T .

3.2. Description of kernel GLRT based detection
chart

The exponentially weighted kernel GLRT (EW-
KGLRT) detection chart combines the advantages
of the exponentially weighted moving average
(EWMA) and kernel GLRT charts. The EW-KGLRT
chart aims to determine a new KGLRT statistic that
integrates current and previous data information in
a decreasing exponential mode by providing more
weight to the more recent data. The KGLRT chart is
one of the most used techniques for solving compos-
ite hypotheses testing problems by maximizing the
likelihood ratio function overall faults [43]. The main
idea begins with one N-dimensional vector φ(x), the
hypothesis testing problem can be expressed as, [18]:

H0 : φ(x) = ω (null hypothesis)

H1 : φ(x) = Pθ + ω (alternative hypothesis),
(17)

where ω represents a white noise following a nor-
mal distribution N(0, σ2I), P is an orthogonal matrix,
PT P = I, with I is an identity matrix, and θ is the
mean vector (which is also the value of the fault).

For a new data x, the likelihood ratio test method
chooses between H0 and H1 [18] as

ρ = f1(φ(x)|H1)
f0(φ(x)|H0) ≶ γ, (18)

where γ is the threshold value of KGLRT
statistic. f1(φ(x) | H0) and f1(φ(x) | H1) are con-
ditional probability densities which obey Gaussian

distributions [16]:

H0 : f0(φ(x) | H0) ∼ N(0, σ2
0I)

= 1

(2πσ2
0 )

N
2

exp(− 1
2σ2

0
‖ω0‖2), (19)

H1 : f1(φ(x) | H1) ∼ N(Pθ, σ2
1I)

= 1

(2πσ2
1 )

N
2

exp(− 1
2σ2

1
‖ω1‖2), (20)

where w0 = φ(x) and w1 = φ(x) − Pθ. Here, the
KGLRT chart changes the unknown parameter θ, σ0
and σ1 by its maximum likelihood estimate θ̂, σ̂0 and
σ̂1. The maximum likelihood estimate of θ is identical
to the least square estimate of ω1 [44].

ω̂0 = φ(x)

ω̂1 = φ(x) − Pf θ̂ = (I − Cf )φ(x),
(21)

where Cf = Pf PT
f .

The estimate of σ̂0 and σ̂1 are given by,

σ̂0 = 1
N

‖ω̂0‖2

σ̂1 = 1
N

‖ω̂1‖2.
(22)

Substituting the maximum likelihood estimates of
the parameters (Equation 22) into Equation 18 and
taking N/2 root, KGLRT is defined as,

KG = ‖ω̂0‖2

‖ω̂1‖2 = φT (x)Iφ(x)
φT (x)(I−Cf )φ(x)

= φT (x)φ(x)
φT (x)φ(x)−φT (x)Pf PT

f
φ(x)

.
(23)

Then, from Equation 12, the KGLRT statistic can
be computed as,

KG = 1
1−φT (x)X T P�−1PT X T φ(x)

= 1
1−kT (x)P�−2PT k(x)

.
(24)

To improve the performance of the classical
KGLRT test, a new statistic that combines the
advantages of the exponentially weighted filter with
the KGLRT chart is proposed. The exponentially
weighted-KGLRT statistic provides an effective and
fast detection while conserving a low false alarm
rate and higher good detection rate. The EW-KGLRT
chart EKG can be computed as :

EKG = �KG + (1 − �)EKG, (25)

where � define the smoothing parameter of the
EWMA filter. To determine the threshold for the



filtered KGLRT, its distribution should be deter-
mined. The new filtered KGLRT statistic follows a
Chi-square distribution χ2 since KGLRT distributed
according to a Chi-square distribution [16]. Thus, the
control limit for EKG statistic is obtained using the
χ2-distribution and it is given by [44]:

EKGα = gEKGχ2
hEKG,α, (26)

where gEKG = bEKG
2aEKG

and hEKG = 2a2
EKG

bEKG
, a and b are

the mean and variance of the KG.
The EKG statistic suggests the existence of an

abnormal situation in the data when

EKG(x) > EKGα. (27)

4. Description of the developed leak detection
technique

The developed leak detection approach is a method
based on statistics and linear algebra techniques,
used for data dimensionality reduction required in
order to speed up and increase the performance of
leak detection algorithms. The idea behind the devel-
oped technique is to evaluate the residuals obtained
from the reduced KPCA model at each instant.
Then, to make the decision if a leak is present or
not, the EW-ORKGLRT statistic is compared to a
threshold from the chi-square distribution. This tech-
nique aims to use a reduced KPCA to model the
WDN system and at the same time to extract a
reduced data set for online leak detection using EW-
ORKGLRT statistic. Firstly, two dimension reduction
(DR) metrics are used to extract only relevant sam-
ples in the feature space that are useful for analysis
while eliminating redundant and unnecessary sam-
ples. An approximation criterion and the evaluation
of the EW-ORKGLRT statistic are used as DR
metrics to reduce the time and effort required to
extract valuable information and enhance the pro-
cessing speed. The two metrics transform the initial
data set having high dimensionality and transform
it into a new data set representing low dimen-
sionality while preserving as much as possible the
original meanings of the data. The low-dimensional
representation of the initial data overcomes the
dimensionality curse problem. Then, the low dimen-
sional data can be easily, analyzed, processed, and
visualized. Thus, by eliminating irrelevant and redun-
dant features, EW-ORKGLRT statistic can become
helpful for online leak detection. Secondly, an
online leak detection scheme is adopted by using

the EW-ORKGLRT statistic to enhance the per-
formance of KPCA-based KGLRT. The evaluation
of the EW-KGLRT statistic and the approxima-
tion criterion, determines whether the dictionary
should be updated or remains unchanged for a new
sample.

4.1. Dimension reduction (DR) metrics

The selection of a suitable dimension reduc-
tion metric according to the type of data is a big
issue that needs to be considered in this paper.
It is essential to extract the relevant and impor-
tant samples from the initial data without affecting
low-dimensional mapping performance. Another
essential aspect to consider is to remove the leaky
samples. The minor changes in the samples can affect
the leak detection performance. In an online set-
ting, determining the appropriate dictionary Dk =[
φ(x(w1)) · · · φ(x(wr))

]T , where φ(x(wi)) are the r

selected kernel functions from the k kernel functions
available so far, namely, {w1, ..., wr} ⊂ {1, ..., k}, at
each instant is an important step before applying
leak detection. Thus, in this paper, we evaluate first
EW-ORKGLRT statistic at each instant to eliminate
the leaky samples. Then, we use the linear approx-
imation metric to remove irrelevant and redundant
samples. The approximation criterion is based on
building a dictionary with a high approximation mea-
sure. For online kernel principal component analysis,
the approximation criterion operates as follows: the
current kernel function is not added in the dictionary,
if it can be sufficiently represented by a linear com-
bination of kernel functions already belonging to the
dictionary; otherwise, it is added in the dictionary.
The norm of the residual approximation of the kernel
function φ(xk) by the r kernel functions is determined
as,

εk = ‖φ(xk) − Prφ(xk)‖2, (28)

where Pr is the projection operator onto the subspace
spanned by

[
φ(x(w1)) · · · φ(x(wr))

]T .
Then, εk can be computed by minimising the resid-

ual approximation as,

εk = minβ‖φ(xk) − ∑r
j=1 βjφ(x(wj)). (29)

The optimal value of each coefficient βj is deter-
mined by the minimization Equation 29, which leads
to



εk = minβ

∑r

j,i=1 βjβik(x(wj), x(wi))

−2
∑r

j=1 βjk(x(wj), x(k)) + k(x(k), x(k))

= minββT Kr
k
β − 2βT kr(x(k)) + k(x(k), x(k)),

(30)

where kr(x(k)) = [k(x(w1), x(k)) · · · (x(wr), x(k))]T .
By solving Equation 30, the vector β =[

β1 · · · βr

]T is given by,

β = (Kr
k)−1kr(x(k)), (31)

where Kr
k ∈ Rr×r is the reduced Gram matrix with

elements k(wj), wi)). By inserting Equation 31 into
Equation 30, we get the following expression of εk

εk = k(x(k), x(k)) − kr(x(k))T β, (32)

Our approximation linear metric rule consists of
including, at each time instant k, the kernel function
φ(x(k)) into dictionary Dk if

εk > ν, (33)

where ν is a positive threshold parameter that controls
the level of sparseness. Thus, Equation 33 ensures
the linear independence of the elements of the dictio-
nary. The resulting dictionary, called ν-approximate,
verifies the following relation

min
i=1···r

min
β1···βN

‖φ(x(wi)) −
∑r

j=1
i /= j

βjφ(x(wj))‖ ≥ √
ν.

(34)

Consequently, dimensionality reduction metrics
offer an efficient way to reduce the number of samples
before applying online leak detection.

4.2. Online leak detection based EW-ORKGLRT
statistic

In this study, an online leak detection based
EW-ORKGLRT statistic algorithm is derived. There
are two possible cases in this algorithm: keep the
dictionary unchanged or expand it with the new
kernel function. A different dictionary will yield
a different Gram matrix, eigenvector, and detec-
tion EW-ORKGLRT statistic. These parameters are
updated only due to the dictionary change. Now, we
consider the case when the sample x(k + 1) is leaky.
It implies that EW-ORKGLRT statistic verifies this
relation; EKG(k + 1) ≤ EKGα,k and the sample is
not included in the dictionary. Thus, the dictionary
remains unchanged. For leaky data (EKG(x(k +
1)) ≤ EKGα), the dictionary remains unchanged.

However, for normal process change (EKG(x(k +
1)) > EKGα), two cases may arise :

In the first case, the dictionary is unchanged and
the kernel function is discarded from the dictionary
φ(x(k + 1)).

Dk+1 = {Dk}. (35)

The kernel function is not included to the dictionary
if

εk+1 = k(x(k + 1), x(k + 1)) − kr(x(k + 1))T β < ν.
(36)

This means that the kernel function φ(x(k + 1))
can be approximated by a linear combination of the
model kernel functions. The vector kr(x(k + 1)) is
updated as,

kr(x(k + 1)) =
[

k(x(w1), x(k + 1)) · · · (x(wr), x(k + 1))
]T

.
(37)

The vector β = [
β1 · · · βr

]T with the dictionary
unchanged can be updated as

β = (Kr
k+1)−1kr(x(k + 1)), (38)

where Kr
k+1 ∈ Rr×r is the reduced Gram matrix

obtained from the dictionary Dk+1 which is defined
as

Kr
k+1 =

⎡
⎢⎣

k(x(w1), x(w1)) · · · k(x(wr), x(w1))

...
. . .

...

k(x(w1), x(wr)) · · · k(x(wr)), x(wr))

⎤
⎥⎦ . (39)

According to Equation 11, the eigenvector Vr
k+1

corresponding to the dictionary Dk+1 , can be updated
as,

vr
k+1 = λ−1

k+1
∑r

i=1 αr
k+1,iφ(x(wi)). (40)

For the second case when the new kernel function
φ(x(k + 1)) is added into the dictionary and the size
of the dictionary is increased by one to become r + 1.
The new dictionary Dk+1 becomes,

Dk+1 = {Dk, φ(x(k + 1))}. (41)

This case arises when the kernel function is signifi-
cantly different from the previously selected elements
of the dictionary. The dimensionality of the Gram
matrix increases. Thus, the new Gram matrix Kr

k+1 ∈



Rr+1×r+1is updated as

Kr
k+1 =

⎡
⎣

Kr
k

kr(x(k + 1))

kr(x(k + 1))T k(x(k + 1), x(k + 1))

⎤
⎦ . (42)

where
kr(x(k + 1)) = [ k(x(w1), x(k + 1)) · · · k(x(wr+1), x(k + 1)) ]T .

The inverse of the kernel matrix (Kr
k+1)−1 is calcu-

lated iteratively from the Woodbury matrix identity
to avoid the problem of the higher computational
complexity [45]:

Kr
k+1

−1 =
[

(Kr
k
)−1 0

0 0

]

+ 1
εk+1

[−(Kr
k
)−1kr(x(k + 1))

1

][−kr(x(k))T (Kr
k
)−1 1

]

=
[

(Kr
k
)−1 0

0 0

]
+ 1

εk+1

[−βk

1

][−βT
k+1 1

]
.

(43)

The updating of the eigenvector Vr
k+1 becomes

Vr
k+1 = λ−1

k+1
∑r+1

i=1 αr
k+1,iφ(x(wi)), (44)

where wr+1 = k + 1.
According the matrix updating rule in Equation 43,

we have

βk+1 = (Kr
k+1)−1kr(x(k + 1)). (45)

The parameters of the reduced KPCA model are
updated and introduced to the ORKGLRT (KG)
statistic for online leak detection purpose,

KG(x(k + 1))

= 1
1−φT (x(k+1))(X r )T Pr (�r )−1(Pr )T (X r )T φ(x(k+1))

= 1
1−(kr )T (x(k+1))Pr (�r )−2(Pr )T kr (x(k+1))

,

(46)

where X r = Dk+1, �r = diag(λ�1 ...λ�r+1 ), Pr =[
αr

�1 αr
�2 · · · αr

�r+1

]
and �r+1 is the number of

retained kernel principal components using the dic-
tionary Dk+1, and EW-ORKGLRT statistic (EKG) is
defined as

EKG(k + 1) = �KG(k + 1) + (1 − �)EKG(k), (47)

where, � is the smoothing parameter between 0 and
1. � the weight that defines the trade-off between
the KG and EKG(k) indices. The control limit for
EW-ORKGLRT statistic is updated as,

EKGα,k+1 = gEKGk+1χ
2
hEKGk+1 ,α, (48)

where gEKGk+1 = bEKGk+1
2aEKGk+1

and hEKGk+1 =
2a2

EKGk+1
bEKGk+1

, b and a are the variance and the mean of

the EW-ORKGLRT index.
The computational complexity issue is extremely

important for online leak detection. The proposed
technique consists of three main parts : the dictionary
selection, the update of the parameters of the model
and the determination of leak detection statistic. As
we can see from Equation 48 , the computational cost
of evaluating EW-ORKGLRT depends on the update
of the kernel vector. In this case, the update of the
kernel vector depends only on the data in the dictio-
nary whose size is less than the initial training data
set (r < N), where N is the size of the initial training
data set. As a result, using a reduced date set to update
the EW-ORKGLRT statistic improves the computa-
tional speed. The proposed method not only reduces
the computation time and memory usage as the data-
size increases, but also enhances online leak detection
by combining the benefits of ORKGLRT statistic and
the EWMA chart. The use of the EW-ORKGLRT
statistic can improve the online leak detection by
reducing the false alarm rate and increasing the good
detection by using EWMA filter. Indeed, the EW-
ORKGLRT computes a new ORKGLRT detection
statistic by taking into account the current and the pre-
vious data information by giving more weight to the
more recent sample. This gives a more accurate esti-
mation of the EW-ORKGLRT statistic and provides
a stronger memory which will allow better decision
making with respect to leak detection.

The online leak detection algorithm is illustrated
schematically in Fig. 1.

5. Leak detection in water distribution
networks

The EW-ORKGLRT is developed in order to
improve the leak detection capabilities. The effec-
tiveness of the proposed leak detection technique
is assessed and compared to the ORKGLRT and
KGLRT techniques in terms of three detection cri-
teria:

1. False alarm rate (FAR) (%): percentage of
wrong leak declared in leak free region,

2. Good detection rate (GDR) (%): percentage of
leaky observations undetected,



Fig. 1. Diagram of the online leak detection algorithm.

3. CPU-time (CT): The time required for leak
detection.

5.1. Water distribution system description

WDN is a complex process consisting of hydraulic
elements that are connected (including reservoirs or
tanks and consumption nodes), linked by intercon-
necting links (including pipes, pumps, and valves).
In this study, the leak detection is validated using
Hanoi benchmark [46]. The diagram of the network
is depicted on Fig. 2. The network is built using
34 pipes and 32 nodes arranged in two branches and
three loops. The process is gravity fed by a single
reservoir. Figures 3 and 4 show the time evolution
of demands and pressures of nodes 3, 13 and 25,
respectively.

At this stage, the goal is to detect the leaks in
the network using the developed technique. Here,
we consider a simulation of 24 hours with a sam-
pling time of 15 minutes. The network has 31 demand
nodes with index from 2 to 32 (see Fig. 2).

Assume that we have a set of sensors in the net-
work, placed in the nodes 3, 10, 16, 23 and 25, (as
depicted on Fig. 2). Then the KPCA model that we

Fig. 2. Hanoi network with sensors placement.

can build concerns only those nodes. The X data is
obtained using the five measured pressures in nodes
3, 10, 16, 23, and 25, and is split into training and
testing data sets of 97 observations each to carry out
leak detection. These data were scaled to zero mean
and unit variance.

For KPCA modeling, a radial basis kernel function

k(x, y) = exp(− (xi−xj)T (xi−xj)
σ

) is selected as the ker-
nel function. The width of the Gaussian function σ

is selected beforehand. The value of this parameter
can affect the performance of the leak detection. A
small value of σ would make the exponential really
large argument, making the value of the kernel func-
tion very small or near 0. However, a huge value of
σ would yield kernel function values very close to
1. To obtain an optimal parameter, a cross-validation
methodology is used. Fig. 5 shows the time evolution
of pressures of nodes 3, 10, 16, 23 and 25.

Once the KPCA model is identified, we can
proceed with leak detection. Statistical confidence
limits are set as 95%. The performance of the
developed EW-ORKGLRT leak detection method is
illustrated and compared to KGLRT and ORKGLRT.
The comparison is assessed through different leaks.

Case 1: A leak in node 4
In this case, a leak is simulated in node 4 between

the samples 30 and 97. The time evolution of process
variables with a leak in node 4 is illustrated in Fig. 6.

The leak detection results using KGLRT,
ORKGLRT and EW-ORKGLRT are presented in
Figures 7, 8 and 9, respectively. If the statistic values
are higher than confidence limit values then there
are leaks in the process. We can show from Fig. 7
that there is no leak in the system as expected when



Fig. 3. Time evolution of demand in nodes 3, 13 and 25, respectively.

Fig. 4. Time evolution of pressure in nodes 3, 13 and 25, respectively.



Fig. 5. Time evolution of process variables.

Fig. 6. Time evolution of process variables with a leak in node 4.



Fig. 7. Time evolution of KGLRT method with a leak in node 4.

Fig. 8. Time evolution of ORKGLRT method with a leak in node
4.

using the KGLRT chart. However, the ORKGLRT
and EW-ORKGLRT methods detect clearly the
leak between 30 and 97, this might be due to the
adaptation of the threshold for both of them.

The results of the leak detection are illustrated
in Table 1 in terms of FAR, GDR, and CPU-time
values with a leak in node 4. The results show
that both ORKGLRT and EW-ORKGLRT provide
better leak detection performance than the KGLRT
and they are able to detect the leak in node 4. The
control chart obtained using the KPCA model is not
adapted according to process changes. However, as
shown in Table 1, applying reduced KPCA based
adaptive control chart to the same samples, provides
better capabilities of adaptation to real behaviour

Fig. 9. Time evolution of EW-ORKGLRT method with a leak in
node 4.

Table 1
Summary of FAR, GDR and CPU-Time with a leak in node 4

FAR GDR(%) CPU-Time(s)

KGLRT 0 2.9412 0.8125
ORKGLRT 3.4483 82.3529 3.488610−4

EW-ORKGLRT 0 97.0588 2.455210−4

changes of the process. These results show also
that the CPU-Time needed for leak detection using
ORKGLRT and EW-ORKGLRT is approximately
3300 and 2320 times faster than using KGLRT
technique, respectively. This fact is useful in many
industrial applications where the updating procedure
requires to be processed with other steps in a short
time.

Case 2: A leak in node 5
A leak in node 5 is simulated from sample time 30

to 97. Fig. 10 shows time evolution of the process
variables with a leak in node 5.

Figures 11, 12 and 13 show the leak detection
results using the KGLRT, ORKGLRT and EW-
ORKGLRT, respectively. We can show that the
considered leak is not detected using the KGLRT
technique ( Fig. 11). Using the ORKGLRT (Fig. 12),
the leak is detected but with higher missed detection
rate and some false alarm rate. While, the developed
technique presents a good detection abilities when
compared to KGLRT, ORKGLRT. EW-ORKGLRT
is able to detect the leak between the samples 30 and
96 as illustrated in Fig. 13 which is due the fact that
the EW-ORKGLRT is able to take into consideration
the information provided by the current and previous



Fig. 10. Time evolution of process variables with a leak in node 5.

Fig. 11. KGLRT with a leak in node 5.

sample by giving significant importance to the newest
data. Thus, the use of EW filter improves the leak
detection performances by reducing the false alarm
and missed detection rates. Also, we should note that
the control limits of ORKGLRT and EW-ORKGLRT
obtained using the reduced KPCA model are variable
over time due to the fact that they are updated when
a new sample is available. This fact also provides a
good adaptation to the condition in which the system
is operating.

Fig. 12. ORKGLRT with a leak in node 5.

Table 2 shows the performances using KGLRT,
ORKGLRT and EW-ORKGLRT techniques. As
demonstrated in Table 2, the developed EW-
ORKGLRT technique is able to detect the leak
with higher GDR rate, lower FAR rate, and lower
CPU-time.

Case 3: A leak in node 25
In this case, a leak in node 25 is simulated from

sample time 30 to 97. Figures 14, 15 and 16, and



Fig. 13. EW-ORKGLRT with a leak in node 5.

Table 2
Summary of FAR, GDR and CPU-Time with a leak in node 5

FAR GDR(%) CPU-Time(s)

KGLRT 0 4.4118 0.8750
ORKGLRT 3.4483 85.2941 3.532010−4

EW-ORKGLRT 0 97.0588 2.629910−4

Fig. 14. Time evolution of KGLRT with a leak in node 25.

Table 3 show the leak detection results of the KGLRT,
ORKGLRT and EW-ORKGLRT techniques. We can
show from Fig. 14, that KGLRT is not able to detect
the leak between 30 and 97. While, the leak in node
25 is detected using the ORKGLRT method with
false alarms and high missed detection rates. The
leak detection results show also that the proposed
method provides good improvement in terms of FAR

Fig. 15. Time evolution of ORKGLRT with a leak in node 25.

Fig. 16. Time evolution of EW-ORKGLRT with a leak in node 25.

Table 3
Summary of FAR, GDR and CPU-Time with a leak in node 25

FAR GDR(%) CPU-Time(s)

KGLRT 0 4.4118 0.9688
ORKGLRT 3.4483 88.2353 4.588110−4

EW-ORKGLRT 0 94.1176 2.89910−4

and GDR, due to the advantages of the filter and the
adaptability control limit according to the dynamic
process change.

The leak detection performance in different nodes
are illustrated in Table 4. These results show that
the new method is able to detect the leaks with
higher GDR, lower FAR and faster CPU-time. These
enhanced results may be awarded to the fact that the



Table 4
Summary of false alarm rate, good detection rate and time computation

KGLRT ORKGLRT EW-ORKGLRT
leaks FAR (%) GDR(%) CPU-time(s) FAR (%) GDR (%) CPU-time(s) FAR (%) GDR (%) CPU-time(s)

Leak in node 1 0 0 1.09 0 98.52 4.29−4 0 97.05 3.24−4

Leak in node 2 0 0 0.95 3.44 80.88 3.49−4 0 89.70 2.80−4

Leak in node 3 0 0 0.89 3.44 88.23 3.76−4 0 88.23 2.99−4

Leak in node 4 0 2.94 0.81 3.44 82.3 3.48−4 0 97.05 2.45−4

Leak in node 5 0 4.41 0.87 3.4483 85.29 3.53−4 0 97.05 2.62−4

Leak in node 6 0 5.84 1.01 3.44 86.76 3.45−4 0 97.05 2.63−4

Leak in node 15 0 16.17 1.03 3.44 88.23 4.50−4 0 89.70 3.39−4

Leak in node 19 0 2.94 0.95 3.44 85.29 4.17−4 0 86.76 2.86−4

Leak in node 25 0 4.48 0.96 3.44 88.23 4.58−4 0 94.11 2.89−4

Leak in node 26 0 14.70 0.76 0 88.23 3.46−4 0 89.70 3.11−4

Leak in node 28 0 14.70 1.07 3.44 88.23 3.92−4 0 91.17 3.14−4

Leak in node 29 0 14.70 0.95 3.44 88.23 3.51−4 0 97.05 2.77−4

Average 0 6.74 0.94 2.87 80.02 3.53−4 0 92.89 2.91−4



proposed method can capture the dynamic variation
in the water distribution networks and also due to
the fact that it is able to detect small leak with faster
detection time.

6. Conclusion

In this paper, a novel technique for detecting leaks
in the water distribution network is developed. In
the proposed approach, the modeling phase was
addressed using the reduced kernel PCA method, and
the leaks were detected using a statistical hypothe-
sis test. The results demonstrated the effectiveness
of the proposed framework over the conventional
techniques. The detection abilities were evaluated in
terms of false alarm rate, good detection rate and
CPU-time.

When it has been determined that there are leaks in
the network, they should be identified. Therefore, as
future work, the EW-ORKGLRT framework merged
with the sensitivity analysis that characterizes the the-
oretical leak signatures developed and applied to leak
identification.

References

[1] M. Swiercz and H. Mroczkowska, Multiway pca for
early leak detection in a pipeline system of a steam
boiler—selected case studies, Sensors 20(6) (2020), 1561.

[2] J. Gertler, J. Romera, V. Puig and J. Quevedo, Leak detection
and isolation in water distribution networks using princi-
pal component analysis and structured residuals, in: Control
and Fault-Tolerant Systems (SysTol), 2010 Conference on,
IEEE, (2010), 191–196.

[3] I.d.l. Santos-Ruiz, F.R. López-Estrada, V. Puig, E. Pérez-
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