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Abstract

We shall prove a weak law of large numbers for the uncorrelated (see Definition 3.1) fuzzy
random variable sequence with respect to the uniform Hausdorff metric d∞H , which is an
extension of weak law of large numbers for independent fuzzy random variables.
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1. Introduction

Limit theory is an important topic since sometimes we need to consider the asymptotic
behavior or convergence property in applied fields such as stochastic control, mathematical
finance, statistics, operational research and optimization etc. The law of large numbers
(LLN) is the important limit theorem with wide application in solving practical problems.

Fuzzy random variable is the natural extension of random set (or set-valued random
variable). A usual way to study fuzzy random variable is to consider its α-level sets, which
is a set-valued random variable for each α. The law of large numbers for set-valued and
fuzzy random variables has received much attention since Artstein and Vitale [1] proved
the first LLN for compact random sets. For example, Hiai [7] in 1985 proved the SLLN
(strong law of large numbers) for set-valued random variables in the Mosco convergence.
Uemura [18] obtained a law of large numbers for random sets taking values in a class of
subsets larger than the class of compact subsets of a Banach space. Detail review con-
cerning LLN for set-valued random variables earlier than 2002 can be referred to the book
[14]. Guan et al. [5] obtained SLLN for weighted sums of set-valued random variables in
Rademacher type p Banach space. There are other references studied LLN for set-valued
random variables. By using α-level sets, some results for set-valued random variables were
extended to the fuzzy case. For instance, Klement et al. [11] (1986) obtained a SLLN
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for independent and identically distributed compact fuzzy random variables. Inoue [9]
(1991) studied SLLN for independent tight fuzzy random variables. Kim [10] proved a
SLLN for independent and identically distributed fuzzy random variables using a different
metric. Guan and Li [4] studied LLN for weighted sums of fuzzy random variables. Li
and Ogura [13] obtained the SLLN for independent (not necessarily identical distributed)
fuzzy random variables. Terán [17] studied SLLN for t-normed arithmetics.

In this paper, at first we propose the definition of uncorrelated fuzzy random variables
(see Definition 3.1) in the sense of level-wise by considering the α-level set. For two
fuzzy random variables, uncorrelation is weaker than independence. Under the weaker
condition, then we shall prove a weak law of large numbers for the sequence of fuzzy
random variables in the real line R with respect to the uniform Hausdorff metric d∞H ,
which is different from the existing literature.

The rest of the paper is organized as follows: Section 2 contributes to preliminaries
on set-valued and fuzzy random variables. In Section 3, we shall present the main result.

2. Preliminaries

Throughout this paper, (Ω,A , P ) denotes a nonatomic complete probability space. R
is the set of real numbers. K(R) denotes the family of all nonempty closed subsets of R.
Kk(R) is the family of all nonempty compact subsets of R, and Kkc(R) is the family of
all nonempty compact convex subsets of R.

For any A,B ∈ K(R) and λ ∈ R, the addition and scalar multiplication are defined
as follows:

A+B = {a + b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.

The Hausdorff metric on K(R) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|}

for A, B ∈ K(R). For A ∈ K(R), define ‖A‖K := dH({0}, A). It is known that the
metric space (Kk(R), dH) is complete and separable, and Kkc(R) is a closed subset of
(Kk(R), dH) (cf. [14], Theorems 1.1.2 and 1.1.3).

Now we give a property of Hausdorff metric needed later, which appeared in [13]
without given proof.

Proposition 2.1. Let A1 ⊂ A2 ⊂ A3 and B1 ⊂ B2 ⊂ B3. All of them belong to Kk(R).
Then we have

dH(A2, B2) ≤ dH(A1, B3) + dH(A3, B1),

where dH(x,A) = infa∈A |x− a| for A ⊂ R.

Proof. dH(A2, B2) < ∞ since both A2 and B2 are compact. By virtue of Theorem 1.1.14
in [14],

dH(A2, B2) = sup
x∈R

{|d(x,A2)− d(x,B2)|} .
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For x ∈ R, we have

d(x,A2)− dH(x,B2) ≤ d(x,A1)− d(x,B3)

and
d(x,A2)− dH(x,B2) ≥ d(x,A3)− d(x,B1).

Then

|d(x,A2)− d(x,B2)| ≤ max {|d(x,A1)− d(x,B3)|, |d(x,A3)− d(x,B1)|} .

Furthermore,

dH(A2, B2) = sup
x∈R

{|d(x,A2)− d(x,B2)|}

≤ sup
x∈R

max {|d(x,A1)− d(x,B3)|, |d(x,A3)− d(x,B1)|}

≤ sup
x∈R

{|d(x,A1)− d(x,B3)|}+ sup
x∈R

{|d(x,A3)− d(x,B1)|}

= dH(A1, B3) + dH(A3, B1).

(1)

Remark 1. In general Banach space, the result also holds and further, from (1) we can
get the stronger result

dH(A2, B2) ≤ max {dH(A1, B3), dH(A3, B1)} ,

which was stated in [15] without proof.
A set-valued mapping F : Ω → K(R) is called a set-valued random variable (or a

random set), if for each open subset O of X , the inverse image F−1(O) := {ω ∈ Ω :
F (ω) ∩ O 6= ∅} belongs to A .

The family of all integrable selections of F is denoted by

SF :=
{

f ∈ L1[Ω;R] : f(ω) ∈ F (ω)a.s.
}

,

where L1[Ω;R] is the family of all Lebesgue integrable (with respect to P ) R-valued
functions.

A set-valued random variable F is called integrable if SF is non-empty. It is called
integrably bounded if

∫

Ω
‖F (ω)‖KdP < ∞, which is equivalent to that SF is a bounded

subset of L1[Ω;R] (cf. [8] or [14]). L1[Ω,A , P ;K(R)] denotes the space of all integrably
bounded K(R)-valued random variables. Similarly, we have notations L1[Ω,A , P ;Kk(R)]
and L1[Ω,A , P ;Kkc(R)] respectively.

For F,G ∈ L1[Ω,A , P ;K (R)], F = G means in the sense of F (ω) = G(ω) a.s.
For an integrable set-valued random variable F , its expectation, denoted by E[F ], is

defined by Aumann in [2] as following

E[F ] :=
{

∫

Ω

fdP : f ∈ SF

}

,
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where
∫

Ω
fdP is the usual Lebesgue integral. E[F ] is also called the Aumann integral in

literatures. Since here the underlying space is R and (Ω,A , P ) has no atom, it is known
that the expectation E[F ] is a closed and convex subset of R.

Let Fk(R) be the family of all compact fuzzy sets: v : R → [0, 1], where v satisfies the
following conditions:
(1) The 1-level set v1 = {x ∈ R : v(x) = 1} 6= ∅.
(2) v is upper semicontinuous, i.e. for each α ∈ [0, 1], the α-level set vα := {x ∈ R :
v(x) ≥ α} is a closed subset of R.
(3) The support set cl{x ∈ R : v(x) > 0} is compact.

A fuzzy set v in Fk(R) is called convex if it satisfies

v(λx+ (1− λ)y) ≥ min{v(x), v(y)}, for any x, y ∈ R, λ ∈ [0, 1].

It is known that v is convex if and only if each α-level set vα (α ∈ (0, 1]) is a convex subset
of R. Fkc(R) denotes the class of all compact convex fuzzy sets.

The uniform metric d∞H (cf. [16]) in Fk(R) is defined as follows: for v1, v2 ∈ Fk(R),

d∞H (v1, v2) := sup
α∈(0,1]

dH(v
1
α, v

2
α).

Define the norm ‖v‖F := d∞H (v, I0) = supα>0 ‖vα‖K, where I0 is the indicator function of
{0}. The space (Fk(R), d

∞
H ) is a complete metric space (cf. [12]) but not separable in

general (cf. [14], Remark 5.1.7). Completeness was first proved by Puri and Ralescu [16]
in the case of the d-dimensional Euclidean space R

d.
It is well known that vα =

⋂

β<α vβ, for every α ∈ (0, 1]. We denote vα+ = cl(
⋃

β>α vβ),
for α ∈ [0, 1), which will be used later. Obviously, v0+ is the support set of v. Due to
the completeness of (Fk(R), d

∞
H ), every Cauchy sequence {vn : n ∈ N} converges in Fk(R)

with respect to the metric d∞H .
Now we present a result which will be used later.

Lemma 2.1. (cf. Lemma 2 of [13]) Suppose a sequence {vn : n ∈ N} in Fk(R) converges
to v in Fk(R) with respect to d∞H . Then for each α ∈ [0, 1), the sequence {vnα+ : n ∈ N}
converges to a set vα∗ in Kk(R) with respect to dH . Further, limβ↓α dH(vβ, vα∗) = 0, so
that vα∗ = vα+.

For any v ∈ Fkc(R), define the support function of v as follows

sv(x
∗, α) =

{

s(x∗, vα) if α > 0,
s(x∗, v0+) if α = 0,

for (x∗, α) ∈ S∗ × [0, 1], where S∗ is the unit sphere of R
∗( R

∗ = R in the sense of
isomorphism, but for the sake of clarity, we still use R∗ later) and s(x∗, A) = supa∈A x∗(a)
for x∗ ∈ S∗ and A ⊂ R.

A mapping X : Ω → F(R) is called a fuzzy set-valued random variable or a random
upper semicontinuous function , if, for every α ∈ (0, 1], Xα(ω) = {x ∈ R : X(ω)(x) ≥ α}
is a set-valued random variable.

A fuzzy random variable X is called integrably bounded if the real-valued random vari-
able ‖X0+(ω)‖K is integrable. Let L1[Ω,A , P ;Fk(R)] be the set of all integrably bounded
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fuzzy random variables and L1[Ω,A , P ;Fkc(R)] be the set of all integrably bounded
fuzzy random variables taking values in Fkc(R). Two fuzzy random variables X, Y ∈
L1[Ω,A , P ;Fk(R)] are considered to be identical if for any α ∈ [0, 1], Xα(ω) = Yα(ω) a.s.

The expectation of a fuzzy random variable X , denoted by E[X ], is an element in
Fk(R) such that, for every α ∈ (0, 1],

(E[X ])α = E[Xα],

where the expectation of right hand side is the Aumann integral. From the existence
theorem (cf. [12]), we can get an equivalent definition: for any x ∈ R,

E(X)(x) = sup{α ∈ [0, 1] : x ∈ E[Xα]}.

Note that E[X ] is always convex since (Ω,A , P ) is nonatomic.

3. Main Results

Definition 3.1. LetX1, X2 be fuzzy random variables. X1 andX2 are called uncorrelated
if for any α ∈ (0, 1], X1

α and X2
α are uncorrelated set-valued random variables. I.e. for

each x∗ ∈ R
∗, the real-valued random variables s(x∗, X1

α) and s(x∗, X2
α) are uncorrelated

in the usual sense.
Fuzzy random variables sequence X1, X2, · · · are called uncorrelated if the sequence

X1
α, X

2
α, · · · are pairwise uncorrelated for any α ∈ (0, 1].

Lemma 3.1. Let {Xn : n ∈ N} be a sequence of uncorrelated Fkc(R)-valued random
variables. Then for each α ∈ (0, 1], {Xn

α+ : n ∈ N} is a sequence of uncorrelated Kkc(R)-
valued random variables.

Proof. Take a decreasing sequence {αj} ⊂ (0, 1] such that it converges to α. Then Xn
α+ =

cl(
⋃

j X
n
αj
), Xm

α+ = cl(
⋃

j X
m
αj
) for m,n ∈ N. By Lemma 2.1, it holds that

lim
j

dH(X
n
αj
, Xn

α+) = 0, lim
j

dH(X
m
αj
, Xm

α+) = 0.

Furthermore, for each x∗ ∈ R
∗

lim
j

s(x∗, Xn
αj
) = s(x∗, Xn

α+), lim
j

s(x∗, Xm
αj
) = s(x∗, Xm

α+).

By Definition 3.1, we know that

Cov
(

s(x∗, Xn
α), s(x

∗, Xm
α )
)

= 0.

Therefore, by the monotone convergence theorem, we have

Cov
(

s(x∗, Xn
α+), s(x

∗, Xm
α+)
)

= Cov
(

lim
j

s(x∗, Xn
αj
), lim

j
s(x∗, Xm

αj
)
)

= lim
j

Cov
(

s(x∗, Xn
αj
), s(x∗, Xm

αj
)
)

= 0.

That shows the uncorrelation of the sequence {Xn
α+ : n ∈ N} for any α ∈ (0, 1].
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Theorem 3.1. Let {Xn : n ∈ N} be a sequence of uncorrelated Fkc(R)-valued random
variables such that for each n, V ar(s(x∗, Xn

α)) exists and for any x∗ ∈ R
∗ ,

1

n2

n
∑

k=1

V ar(s(x∗, Xk
α)) −→ 0 as n → ∞. (2)

Then

P
{

d∞H

( 1

n

n
∑

k=1

Xk,
1

n

n
∑

k=1

E[Xk]
)

> ε
}

−→ 0 as n → ∞. (3)

Proof. step 1:
Firstly we prove that for any α ∈ (0, 1],

1

n2

n
∑

k=1

V ar(s(x∗, Xk
α+)) −→ 0 as n → ∞.

Take a decreasing sequence {αj} ⊂ (0, 1], which converges to α. Xn
α+ = cl(

⋃

j X
n
αj
). By

Lemma 2.1, we have
lim
j

dH(X
n
αj
, Xn

α+) = 0.

and
lim
j

s(x∗, Xn
αj
) = s(x∗, Xn

α+).

Therefore, by the monotone convergence theorem and the condition (2), we have

1

n2

n
∑

k=1

lim
j

V ar(s(x∗, Xn
αj
)) =

1

n2

n
∑

k=1

V ar(s(x∗, Xn
α+))

−→ 0 as n → ∞.

By Lemma 3.1, we know that both {Xn
α : n ∈ N} and {Xn

α+ : n ∈ N} are sequences of
uncorrelated set-valued random variables. Then by theorem 3.2 of [6], we have

P
{

dH

(1

n

n
∑

k=1

Xk
α,

1

n

n
∑

k=1

E[Xk
α]
)

> ε
}

−→ 0 as n → ∞. (4)

and

P
{

dH

(1

n

n
∑

k=1

Xk
α+,

1

n

n
∑

k=1

E[Xk
α+]
)

> ε
}

−→ 0 as n → ∞. (5)

step 2:

Take ε > 0, and apply Lemma 2 for vn = 1
n

n
∑

i=1

E[X i]. Then we can find a sequence

0 = α0 < α1 < ... < αm = 1 such that

dH

(

(
1

n

n
∑

i=1

E[X i])αk
, (

1

n

n
∑

i=1

E[X i])αk−1+

)

< ε. (6)
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Hence, by virtue of monotone property of level sets and the above results, we have

(
1

n

n
∑

i=1

X i)α =
1

n

n
∑

i=1

X i
α, (

1

n

n
∑

i=1

E[X i])α =
1

n

n
∑

i=1

E[X i
α],

For αk−1 < α ≤ αk, we have

(
1

n

n
∑

i=1

X i)αk−1+ ⊇ (
1

n

n
∑

i=1

X i)α ⊇ (
1

n

n
∑

i=1

X i)αk

and

(
1

n

n
∑

i=1

E[X i])αk−1+ ⊇ (
1

n

n
∑

i=1

E[X i)]α ⊇ (
1

n

n
∑

i=1

E[X i])αk
.

Then by Proposition 2.1, we obtain

dH

(

(
1

n

n
∑

i=1

X i)α, (
1

n

n
∑

i=1

E[X i])α

)

≤ dH

(

(
1

n

n
∑

i=1

X i)αk
, (

1

n

n
∑

i=1

E[X i])αk−1+

)

+dH

(

(
1

n

n
∑

i=1

X i)αk−1+, (
1

n

n
∑

i=1

E[X i])αk

)

≤ dH

(1

n

n
∑

i=1

X i
αk
,
1

n

n
∑

i=1

E[X i]αk

)

+dH

(1

n

n
∑

i=1

X i
αk−1+

,
1

n

n
∑

i=1

E[X i]αk−1+

)

+2dH

(

(
1

n

n
∑

i=1

E[X i])αk
, (

1

n

n
∑

i=1

E[X i])αk−1+

)

.

Consequently,

d∞H

(

1

n

n
∑

i=1

X i,
1

n

n
∑

i=1

E[X i]

)

= sup
α∈(0,1]

dH

(

(
1

n

n
∑

i=1

X i)α, (
1

n

n
∑

i=1

E[X i])α

)

≤ max
1≤k≤m

dH

( 1

n

n
∑

i=1

X i
αk
,
1

n

n
∑

i=1

E[X i
αk
]
)

+ max
1≤k≤m

dH

(1

n

n
∑

i=1

X i
αk−1+

,
1

n

n
∑

i=1

E[X i
αk−1+

]
)

+2 max
1≤k≤m

dH

(

(
1

n

n
∑

i=1

E[X i])αk
, (

1

n

n
∑

i=1

E[X i])αk−1+

)

7



By using (4), (5) and (6), for any given positive number ε, we obtain

P
{

d∞H

(1

n

n
∑

k=1

Xk,
1

n

n
∑

k=1

E[Xk]
)

> ε
}

−→ 0 as n → ∞.

Concluding remark

As a manner similar to the uncorrelated set-valued random variables, we proposed
uncorrelated fuzzy random variables by considering the α-level sets. Uncorrelation is
weaker than independence. For the sequence of uncorrelated fuzzy random variables, we
proved a weak law of large numbers, which is an extension of weak law of large numbers
for independent fuzzy random variables. With the development of technology, complex
and big data are produced and obtained. Fuzzy statistics is a nice tool to deal with
complex data. We wish our result will be applicable in fuzzy statistics.
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