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Abstract Intent detection and slot filling are two fun-
damental tasks for building a spoken language under-

standing (SLU) system. Multiple deep learning-based

joint models have demonstrated excellent results on

the two tasks. In this paper, we propose a new joint

model with a wheel-graph attention network (Wheel-
GAT) which is able to model interrelated connections

directly for intent detection and slot filling. To con-

struct a graph structure for utterances, we create in-

tent nodes, slot nodes, and directed edges. Intent nodes
can provide utterance-level semantic information for

slot filling, while slot nodes can also provide local key-

word information for intent. Experiments show that

our model outperforms multiple baselines on two public

datasets. Besides, we also demonstrate that using Bidi-
rectional Encoder Representation from Transformer (BERT)

model further boosts the performance in the SLU task.

Keywords Spoken language understanding · Graph

neural network · Attention mechanism · Joint learning

1 Introduction

Spoken language understanding (SLU) plays a critical

role in the maintenance of goal-oriented dialog systems.
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Sentence play techno on lastfm
Slots O B-genre O B-service
Intent PlayMusic

Table 1: An example with intent and slot annotation
(BIO format), which indicates the slot of movie name

from an utterance with an intent PlayMusic.

The SLU module takes user utterance as input and per-

forms three tasks: domain determination, intent detec-

tion, and slot filling [11]. Among them, the first two

tasks are often framed as a classification problem, which
infers the domain or intent (from a predefined set of

candidates) based on the current user utterance [27].

For example, the sentence “play techno on lastfm” sam-

pled from the SNIPS corpus is shown in Table 1. It can
be seen that each word in the sentence corresponds to

one slot label, while a specific intent is assigned for the

whole sentence.

In early research, Intent detection and slot filling

are usually carried out separately, which is called tra-

ditional pipeline methods. Intent detection is regarded
as an utterance classification problem to predict an in-

tent label, which can be modeled using conventional

classifiers, including regression, support vector machine

(SVM) [9] or recurrent neural network (RNN) [19]. The

slot filling task can be formulated as a sequence labeling
problem, and the most popular approaches with good

performances are conditional random field (CRF) [26]

and long short-term memory (LSTM) networks [35].

Considering this strong correlation between the two

tasks, the tendency is to develop a joint model [8,21,

22,37]. However, all these models only applied a joint
loss function to link the two tasks implicitly. [11] intro-

duce an RNN-LSTM model where the explicit relation-

ships between the intent and slots are not established.

http://arxiv.org/abs/2102.04610v1
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Subsequently, [7], [1], and [20] proposed the gate/mask

mechanism to explore incorporating the intent infor-

mation for slot filling. [24] adopt the token-level intent

detection for the Stack-Propagation framework, which

can directly use the intent information as input for slot
filling. Recently, some work begins to model the bi-

directional interrelated connections for the two tasks.

[36] proposed a capsule-based neural network model

that accomplishes slot filling and intent detection via
a dynamic routing-by-agreement schema. [10] proposed

an SF-ID network to establish direct connections for the

two tasks to help them promote each other mutually.

We apply the proposed approach to ATIS and SNIPS

datasets from [4] and [7], separately. Our experiments

show that our approach outperforms multiple baselines.
We further demonstrate that using BERT representa-

tions [6] boosts the performance a lot. The contribu-

tions of this paper can be summarized as follows: (1)

Establishing the interrelated mechanism among intent
nodes and slot nodes in an utterance by a graph atten-

tion neural network (GAT) structure. (2) We establish

a novel wheel graph to incorporate better the seman-

tic knowledge and make our joint model more inter-

pretable. (3) Showing the effectiveness of our model on
two benchmark datasets. (4) We examine and analyze

the effect of incorporating BERT in SLU tasks.

2 Related Works

In this section, we will introduce the related works about

SLU and GNN in detail.

2.1 Spoken Language Understanding

Separate Model The intent detection is formulated
as a text classification problem. The traditional method

is to employ n-grams as features with generic entities,

such as locations and dates [37]. This type of approach

is restricted to the dimensionality of the input space.
Another line of popular approaches is to train machine

learning models on labeled training data, such as sup-

port vector machine (SVM) and Adaboost [9,29] . Ap-

proaches based on deep neural network technology have

shown excellent performance, such as Deep belief net-
works (DBNs) and RNNs [25,5]. Slot filling can be

treated as a sequence labeling task. The traditional

method based on conditional random fields (CRF) ar-

chitecture, which has a strong ability on sequence la-
beling tasks [26]. Another line of popular approaches

is CRF-free sequential labeling. [35] introduced LSTM

architecture for this task and obtained a marginal im-

provement over RNN. [30] and [31] introduce the self-

attention mechanism for slot filling.

Implicit Joint Model Recently, there have been some

joint models to overcome the error propagation caused
by the pipelined approaches, and all these models only

applied share parameters a joint loss function to link the

two tasks implicitly. [11] proposed an RNN-LSTM ar-

chitecture for joint modeling of intent detection and slot

filling. [37] first proposed the joint work using RNNs for
learning the correlation between intent and semantic

slots of a sentence. [21] proposed an attention-based

neural network model for joint intent detection and

slot filling, which further explores different strategies
in incorporating this alignment information into the

encoder-decoder framework. All these models outper-

form the pipeline models by mutual enhancement be-

tween two tasks. However, these joint models didn’t

model their correlation.

Unidirectional related Joint Model Recently, some

works have explored unidirectional related joint mod-

els. These models have exploited the intent information

for slot filling. [20] proposed a novel intent-augmented
gate mechanism to utilize the semantic correlation be-

tween intent and slots fully. [7] proposed a slot gate that

focuses on learning the relationship between intent and

slot attention vectors to obtain better semantic frame
results by global optimization. [2] utilize a mask gating

mechanism to model the relationship between intent

detection and slot filling. [24] perform the token-level

intent detection for the Stack-Propagation framework

to better incorporate the intent information.

Interrelated Joint Model Considering this strong

correlation between the two tasks, interrelated joint

models have been explored recently. [34] introduce their

cross-impact to each other using two correlated bidirec-
tional LSTMs (BLSTM) to perform the intent detection

and slot filling tasks jointly. [10] introduce an SF-ID

network to establish direct connections for two tasks to

help them promote each other mutually. [36] proposed a
capsule-based neural network that models hierarchical

relationships among word, slot, and intent in an utter-

ance via a dynamic routing-by-agreement schema.

2.2 Graph Neural Networks

Applying graph neural networks (GNN) to solve some
problems has been a popular approach recently in so-

cial network analysis [13], knowledge graphs [12], ur-

ban computing, and many other research areas [33,16].
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GNN can model non-Euclidean data, while traditional

neural networks can only model regular grid data.

Unlike previously discussed neural network-based

methods, our approach explicitly establishes direct con-

nections among intent nodes and slots nodes by GAT
[33], which uses weighted neighbor features with feature

dependent and structure-free normalization, in the style

of attention. Analogous to multiple channels in Con-

vNet [18], GAT introduces multi-head attention [32] to
enrich the model capacity and to stabilize the learning

process. Unlike other models [10,36], our model does

not need to set the number of iterations during train-

ing. We have also established a wheel graph structure to

learn context-aware information in an utterance better.

3 Proposed Approaches

In this section, we will introduce our wheel-graph graph

attention model for SLU tasks. The architecture of the

model is shown in Figure 1 . First, we show how to

uses a text encoder to represent an utterance, which
can grasp the shared knowledge between two tasks. Sec-

ond, we introduce the graph attention network (GAT)

user weighted neighbor features with feature dependent

and structure-free normalization, in the style of atten-
tion. Next, the wheel-graph attention network performs

an interrelation connection fusion learning of the intent

nodes and slot nodes. Finally, intent detection and slot

filling are optimized simultaneously via a joint learning

schema.

3.1 Text Encoder

Word Embedding: Given a sequence of words, we

first covert each word as embedding vector et, and the

sequence is represented as [e1, . . . , eT ], where T is the

number of words in the sentence.

Affine Transformation: We perform an affine trans-

formation on the embedding sequence, which is a data

standardization method.

xt = Wet + b (1)

where W and b are trainable weights and biases.

Two-Layer BiGRU: As an extension of conventional

feed-forward neural networks, it was difficult to train

Recurrent neural networks (RNNs) to capture long-
term dependencies because the gradients tend to either

vanish or explode. Therefore, some more sophisticated

activation functions with gating units were designed.

Two revolutionary methods are long short-term mem-

ory (LSTM) [15] and gated recurrent unit (GRU) [3].

Similarly to the LSTM unit, the GRU has gating units

that modulate the flow of information inside the unit;

however, without having a separate memory cells and
has less parameters. Based on this, we use GRU in this

work.

rt = σ(Wrxt +Urht−1) (2)

zt = σ(Wzxt +Uzht−1) (3)

h̃t = tanh(Wxt + rt ⊙ (Uht−1)) (4)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5)

where xt is the input at time t, rt and zt are reset gate

and update gate respectively, W and U are weight ma-

trices, σ is sigmoid function and ⊙ is an element-wise
multiplication. When the reset gate is off (rt close to

0), the reset gate effectively makes the unit act as if it

is reading the first symbol of an input sequence, allow-

ing it to forget the previously computed state. For sim-

plification, the above equations are abbreviated with
ht = GRU(xt,ht−1).

To consider both past and future information at the

same time. Consequently, we use a two-Layer bidirec-

tional GRU (BiGRU) to learn the utterance representa-
tions at each time step. The BiGRU, a modification of

the GRU, consists of a forward and a backward GRU.

The layer reads the affine transformed output vectors

[x1, . . . ,xT ] and generates T hidden states by concate-

nating the forward and backward hidden states of Bi-
GRU:

−→
h t =

−−−→
GRU(xt,

−→
h t−1) (6)

←−
h t =

←−−−
GRU(xt,

←−
h t+1) (7)

←→
h t = [

−→
h t,
←−
h t] (8)

where
−→
h t is the hidden state of forward pass in BiGRU,

←−
h t is the hidden state of backward pass in BiGRU and
←→
h t is the concatenation of the forward and backward

hidden states at time t.
In summary, to get more fine-grained sequence in-

formation, we use a two-layer BiGRU to encode input

information. The representation is defined as:

←→
h t = BiGRU(BiGRU(xt)) (9)
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Fig. 1: The overall architecture of the proposed model based on Wheel-Graph attention networks.

3.2 Graph Attention Network

A graph attention network (GAT) [33] is a variant of

graph neural network [28] and is an important element
in our proposed method. It propagates the intent or

slot information from a one-hop neighborhood. Given a

dependency graph with N nodes, where each node is as-

sociated with a local vector x, one GAT layer compute
node representations by aggregating neighborhood’s hid-

den states.

GAT exploits the attention mechanism as a sub-

stitute for the statically normalized convolution oper-

ation. Below are the equations to compute the node
embedding h

(l+1)
i of layer l+1 from the embeddings of

layer l.

z
(l)
i = W(l)h

(l)
i (10)

e
(l)
ij = f(−→a (l)T (z

(l)
i ‖ z

(l)
j )) (11)

α
(l)
ij =

exp(e
(l)
ij )

∑
k∈N(i) exp(e

(l)
ik )

(12)

h
(l+1)
i = σ(

∑

j∈N(i)

α
(l)
ij z

(l)
j ) (13)

where W(l) is a linear transformation matrix for in-
put states, ‖ represents vector concatenation, −→a (l) is

an attention context vector learned during training, and

·T represents transposition. f(·) is a LeakyReLU non-

linear function [23]. N(i) is the neighbor nodes of node
i. σ is the activation function such as tanh. For sim-

plification, the above equations are abbreviated with

h(l+1) = GAT (h(l)).

3.3 Wheel-Graph Attention Network

In the SLU task, there is a strong correlation between

intent detection and slot filling. To make full use of the
correlation between intent and slot, we constructed a

wheel-graph structure. In Figure 1 , this wheel-graph

structure contains an intent node and slot nodes.

For the node representation, we use the output of
the previous two-layer BiGRU, and the formula is ex-

pressed as:

hI
0 =

T
max
i=1

←→
h t (14)

where the max function is an element-wise function,

and T is the number of words in the utterance. We use

hI
0 as the representation of the intent node and

←→
h t as

the representation of the slot nodes.

For the edge, we created a bidirectional connection

between the intent node and the slot nodes. To make

better use of the context information of the utterance,

we created a bidirectional connection between the slot
nodes and connected the head and tail of the utterance

to form a loop.

In summary, the feed-forward process of our wheel-

graph neural network can be written as:

hm = [hI
0,
←→
h t] (15)

h(l+1)
m = GRU(GAT (h(l)

m ),h(l)
m ) (16)

hI ,hS
t = h

(l+1)
0 ,h

(l+1)
1:m (17)

where m ∈ 0, 1, . . . , t, hI is the hidden state output of

the intent, and hS
t is the hidden state output of the

slots.
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3.4 Joint Intent Detection and Slot Filling

The last layer is the output layer. We adopt a joint

learning method. The softmax function is applied to

representations with a linear transformation to give the

probability distribution yI over the intent labels and
the distribution yS

t over the t− th slot labels. Formally,

yI = softmax(WIhI + bI) (18)

yS
t = softmax(WShS

t + bS) (19)

oI = argmax(yI ) (20)

oSt = argmax(yS
t ) (21)

where WI and WS are trainable parameters of the

model, bI and bS are bias vectors. oI and oSt are the

predicted output labels for intent and slot task respec-
tively.

Then we define loss function for our model. We use

ŷI and ŷS to denote the ground truth label of intent
and slot.

The loss function for intent is a cross-entropy cost

function.

L1 = −

nI∑

i=1

ŷi,I log(yi,I) (22)

Similarly, the loss function of a slot label sequence
is formulated as:

L2 = −

T∑

t=1

nS∑

i=1

ŷ
i,S
t log(yi,St ) (23)

where nI is the number of intent label types, nS is the

number of slot label types and T is the number of words
in an utterance.

The training objective of the model is minimizing a

united loss function:

Lθ = αL1 + (1− α)L2 (24)

where α is a weight factor to adjust the attention paid

to two tasks.

4 Experiments

In this section, we describe our experimental setup and

report our experimental results.

Datasets ATIS SNIPS
# Train 4,478 13,084
# Validation 500 700
# Test 893 700
# Intents 21 7
# Slots 120 72
Vocab Size 722 11,241
Avg. Length 11.28 9.05

Table 2: Datasets overview.

4.1 Experimental Setup

For experiments, we utilize two datasets, including ATIS

[14] and SNIPS [4], which is collected by Snips personal
voice assistant in 2018. They are two public benchmark

single-intent datasets, which are widely used as bench-

mark in SLU research. Compared to the single-domain

ATIS dataset, SNIPS is more complicated, mainly due

to the intent diversity and large vocabulary. Both datasets
used in our paper follows the same format and partition

as in [24]. The overview of datasets is listed in Table 2.

To validate the effectiveness of our approach, we

compare it to the following baseline approaches. It is
noted that the results of some models are directly taken

from [24].

– Joint Seq applies an RNN-LSTM architecture for

slot filling, and the last hidden state of LSTM is

used to predict the intent of the utterance [11].

– Attention BiRNN adopts an attention-based RNN

model for joint intent detection and slot filling. Slot

label dependencies are modeled in the forward RNN.
A max-pooling over time on the hidden states is

used to perform the intent classification [22].

– Slot-Gated Full Atten. utilizes a slot-gated mech-

anism that focuses on learning the relationship be-
tween intent and slot attention vectors. The intent

attention context vector is used for the intent clas-

sification [7].

– Self-Attention Model first makes use of self-attention

to produce a context-aware representation of the

embedding. Then a bidirectional recurrent layer takes

as input the embeddings and context-aware vectors

to produce hidden states. Finally, it exploits the
intent-augmented gating mechanism to match the

slot label [20].

– Bi-Model is a new Bi-model based RNN semantic
frame parsing network structure which performs the

intent detection and slot filling tasks jointly by con-

sidering their cross-impact to each other using two
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correlated bidirectional LSTMs [34].

– SF-ID Network is a novel bi-directional interre-

lated model for joint intent detection and slot filling.

It contains an entirely new iteration mechanism in-
side the SF-ID network to enhance the bi-directional

interrelated connections [10].

– CAPSULE-NLU introduces a capsule-based neu-
ral network model with a dynamic routing-by-agreement

schema to accomplish intent detection and slot fill-

ing tasks. The output representations of IntentCaps

and SlotCaps are used to intent detection and slot

filling, respectively [36].

– Stack-Propagation adopts a Stack-Propagation,

which directly uses the intent information as input

for slot filling and performs the token-level intent
detection to further alleviate the error propagation

[24].

4.2 Implementation Details

In our experiments, the dimensionalities of the word
embedding are 1024 for the ATIS dataset and SNIPS

dataset. All model weights are initialized with uniform

distribution. The number of hidden units of the BiGRU

encoder is set as 512. The number of layers of the GAT

model is set to 1. Graph node representation is set to
1024. The weight factor α is set to 0.1. We use the Adam

optimizer [17] with an initial learning rate of 10−3, and

L2 weight decay is set to 10−6. The model is trained

on all the training data with a mini-batch size of 64.
In order to enhance our model to generalize well, the

maximum norm for gradient clipping is set to 1.0. We

also apply the dropout ratio is 0.2 for reducing overfit.

We implemented our model using PyTorch1 and DGL2

on a Linux machine with Quadro p5000 GPUs. For all

the experiments, we select the model which works the

best on the validation set and evaluate it on the test

set.

4.3 Experimental Results

As with Qin et al [24], we adopt three evaluation met-

rics in the experiments. For the intent detection task,

the accuracy is applied. For the slot filling task, the
F1-Score is utilized. Besides, the sentence accuracy is

used to indicate the general performance of both tasks,

1 https://github.com/pytorch/pytorch
2 https://github.com/dmlc/dgl

which refers to the proportion of the sentence whose in-

tent and slot are both correctly-predicted in the whole

corpus. Table 3 shows the experimental results of the

proposed models on ATIS and SNIPS datasets.

We note that the results of unidirectional related

joint models are better than implicit joint models like

Joint Seq [11] and Attention BiRNN [22], and the re-

sults of interrelated joint models are better than unidi-
rectional related joint models like Slot-Gated Full At-

ten. [7] and Self-Attentive Model [20]. That is likely due

to the strong correlation between the two tasks. The

intent representations apply slot information to intent

detection task while the slot representations use intent
information in slot filling task. The bi-directional in-

terrelated model helps the two tasks to promote each

other mutually.

We also find that our graph-basedWheel-GATmodel
performs better than the best prior joint model Stack-

Propagation Framework. In ATIS dataset, we achieve

0.6% improvement on Intent (Acc), 0.1% improvement

on Slot (F1-score) and 0.7% improvement on Sentence
(Acc). In the SNIPS dataset, we achieve 0.4% improve-

ment on Intent (Acc), 0.6% improvement on Slot (F1-

score), and 0.5% improvement on Sentence (Acc). This

indicates the effectiveness of our Wheel-GAT model.

In the previously proposed model, the iteration mech-
anism used to set the number of iterations is not flex-

ible on training, and the token-level intent detection

increases the output load when the utterance is very

long. While our model employed graph-based attention
network, which uses weighted neighbor features with

feature dependent and structure-free normalization, in

the style of attention, and directly takes the explicit in-

tent information and slot information further help grasp

the relationship between the two tasks and improve the
SLU performance.

4.4 Ablation Study

In this section, to further examine the level of benefit

that each component of Wheel-GAT brings to the per-
formance, an ablation study is performed on our model.

The ablation study is a more general method, which is

performed to evaluate whether and how each part of the

model contributes to the full model. We ablate four im-

portant components and conduct different approaches
in this experiment. Note that all the variants are based

on joint learning method with joint loss.

– Wheel-GAT w/o intent → slot, where no directed
edge connection is added from the intent node to

the slot node. The intent information is not explic-

itly applied to the slot filling task on the graph layer.

https://github.com/pytorch/pytorch
https://github.com/dmlc/dgl
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Model
ATIS Dataset SNIPS Dataset

Slot (F1) Intent (Acc) Sentence (Acc) Slot (F1) Intent (Acc) Sentence (Acc)
Joint Seq [11] 94.3 92.6 80.7 87.3 96.9 73.2
Attention BiRNN [22] 94.2 91.1 78.9 87.8 96.7 74.1
Slot-Gated Full Atten. [7] 94.8 93.6 82.2 88.8 97.0 75.5
Self-Attentive Model [20] 95.1 96.8 82.2 90.0 97.5 81.0
Bi-Model [34] 95.5 96.4 85.7 93.5 97.2 83.8
SF-ID Network [10] 95.6 96.6 86.0 90.5 97.0 78.4
CAPSULE-NLU [36] 95.2 95.0 83.4 91.8 97.3 80.9
Stack-Propagation [24] 95.9 96.9 86.5 94.2 98.0 86.9
Wheel-GAT 96.0* 97.5* 87.2* 94.8* 98.4* 87.4*

Table 3: Comparison results of different methods using Wheel-GAN on ATIS and SNIPS datasets. The numbers

with * indicate that the improvement of our model over all baselines is statistically significant with p < 0.05 under

t-test.

Model
ATIS Dataset SNIPS Dataset

Slot (F1) Intent (Acc) Sentence (Acc) Slot (F1) Intent (Acc) Sentence (Acc)
Wheel-GAT 96.0 97.5 87.2 94.8 98.4 87.4
Wheel-GAT w/o intent → slot 95.5 97.1 86.9 93.5 98.0 85.7
Wheel-GAT w/o slot → intent 95.4 96.8 86.6 93.9 97.9 85.8
Wheel-GAT w/o head ↔ tail 95.6 97.0 86.9 94.0 97.6 85.8
Wheel-GAT w/o GAT 95.0 96.2 84.3 90.8 96.7 77.6

Table 4: Ablation Study on ATIS and SNIPS datasets. → indicates that the intent node points to the edge of the

slot node. ← indicates that the slot node points to the edge of the intent node. ↔ indicates the edge where the

head and tail word nodes are connected in an utterance.

– Wheel-GAT w/o slot → intent, where no directed

edge connection is applied from the slot node to the
intent node. The slot information is not explicitly

utilized to the intent detection task on the graph

layer.

– Wheel-GAT w/o head↔ tail, where no bidirectional

edge connection is used between the intent node and

the slot node. We only use joint loss for joint model,

rather than explicitly establishing the transmission

of information between the two tasks.

– Wheel-GAT w/o GAT, where no graph attention

mechanism is performed in our model. The message

propagation is computed via GCN instead of GAT.
GCN introduces the statically normalized convo-

lution operation as a substitute for the attention

mechanism.

Table 4 shows the joint learning performance of the
ablated model on ATIS and SNIPS datasets. We find

that all variants of our much model perform well based

on our graph structure except Wheel-GAT w/o GAT.

As listed in the table, all features contribute to both
intent detection and slot filling tasks.

If we remove the intent → slot edge from the holis-

tic model, the slot performance drops 0.5% and 1.3%

respectively on two datasets. Similarly, we remove the

slot → intent edge from the holistic model, the intent

performance down a lot respectively on two datasets.

The result can be interpreted that intent information
and slot information are stimulative mutually with each

other. We can see that the added edge does improve per-

formance a lot to a certain extent, which is consistent

with the findings of previous work [7,24,10] .

If we remove the head ↔ tail edge from the holis-

tic model, we see 0.4% drop in terms of F1-score in

ATIS and 0.8% drop in terms of F1-score in SNIPS.
We attribute it to the fact that head ↔ tail structure

can better model context-aware information in an ut-

terance.

To verify the effectiveness of the attention mecha-

nism, we remove the GAT and use GCN instead. For

GCN, a graph convolution operation produces the nor-

malized sum of the node feature of neighbors. The re-
sult shows that the intent performance drops 1.3% and

1.7%, the slot performance drops 1.0% and 4.0%, and

the sentence accuracy drops 2.9% and 9.8% respectively

on ATIS and SNIPS datasets. We attribute it to the
fact that GAT uses weighting neighbor features with

feature dependent and structure-free normalization, in

the style of attention.
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(a) Visualization of the attention weights
of slot → intent.
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(b) Visualization of the attention weights
of each slot node (contains intent → slot edges).

Fig. 2: The central node is intent token and slot tokens are surrounded by *. For each edge, the darker the color,

it means that this corresponding of the two nodes is more relevant, so that it integrates more information from

this source node features.

4.5 Visualization of Wheel-Graph Attention Layer

In this section, with attempt to better understand what

the wheel-graph attention structure has learnt, we vi-

sualize the attention weights of slot → intent and each
slot node, which is shown in Figure 2.

Based on the utterance “play signe anderson chant

music that is newest”, the intent “PlayMusic” and the

slot “O B-artist I-artist B-music item O O O B-

-sort”, we can clearly see the attention weights suc-

cessfully focus on the correct slot, which means our

wheel-graph attention layer can learn to incorporate the

specific slot information on intent node in Figure 2a. In

addition, more specific intent token information is also
passed into the slot node in Figure 2b, which achieves a

fine-grained intent information integration for guiding

the token-level slot prediction. Therefore, the node in-

formation of intent and slots can be transmitted more
effectively through attention weights in our proposed

wheel-graph attention interaction layer, and promote

the performance of the two tasks at the same time.

4.6 Effect of BERT

In this section, we also experiment with a pre-trained

BERT-based [6] model instead of the Embedding layer,
and use the fine-tuning approach to boost SLU task

performance and keep other components the same as

with our model.

As can be seen from Table 5, Stack-Propagation

+ BERT [24] joint model achieves a new state-of-the-
art performance than another without a BERT-based

model, which indicates the effectiveness of a strong pre-

trained model in SLU tasks. We attribute this to the

fact that pre-trained models can provide rich semantic

features, which can help to improve the performance
on SLU tasks. Wheel-GAT + BERT outperforms the

Stack-Propagation + BERT. That is likely due to we

adopt explicit interaction between intent detection and

slot filling in two datasets. It demonstrates that our
proposed model is effective with BERT.

5 Conclusion and Future Work

In this paper, we first applied the graph network to the
SLU tasks. And we proposed a new wheel-graph at-

tention network (Wheel-GAT) model, which provides

a bidirectional interrelated mechanism for intent detec-

tion and slot filling tasks. The intent node and the slot

node construct a explicit two-way associated edge. This
graph interaction mechanism can provide fine-grained

information integration for token-level slot filling to pre-

dict the slot label correctly, and it can also provide spe-

cific slot information integration for sentence-level in-
tent detection to predict the intent label correctly. The

bidirectional interrelated model helps the two tasks pro-

mote performance each other mutually.
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Model
ATIS Dataset SNIPS Dataset

Slot (F1) Intent (Acc) Sentence (Acc) Slot (F1) Intent (Acc) Sentence (Acc)
Wheel-GAT 96.0 97.5 87.2 94.8 98.4 87.4
BERT SLU [2] 96.1 97.5 88.2 97.0 98.6 92.8
Stack-Propagation + BERT [24] 96.1 97.5 88.6 97.0 99.0 92.9
Wheel-GAT + BERT 96.5 98.0 90.2 97.4 99.3 93.6

Table 5: The SLU performance on BERT-based model on ATIS and SNIPS datasets.

We discuss the details of the prototype of the pro-

posed model and introduced some experimental studies
that can be used to explore the effectiveness of the pro-

posed method. We first conduct experiments on two

datasets ATIS and SNIPS. Experimental results show

that our approach outperforms the baselines and can be

generalized to different datasets. Then, to investigate
the effectiveness of each component of Wheel-GAT in

joint intent detection and slot filling, we also report ab-

lation test results in Table 4. In addition, We visualize

and analyze the attention weights of slot → intent and
each slot node. Besides, we also explore and analyze

the effect of incorporating a strong pre-trained BERT

model in SLU tasks. Our proposed model achieves the

state-of-the-art performance.

In future works, our plan can be summarized as fol-
lows: (1) We plan to increase the scale of our dataset

and explore the efficacy of combining external knowl-

edge with our proposed model. (2) Collecting multi-

intent datasets and expanding our proposed model to
multi-intent datasets to explore its adaptive capabili-

ties. (3) We plan to introduce reinforcement learning

on the basis of our proposed model, and use the re-

ward mechanism of reinforcement learning to improve

the performance of the model. (4) Intent detection and
slot filling are usually used together, and any task pre-

diction error will have a great impact on subsequent

dialog state tracking (DST). How to improve the ac-

curacy of the two tasks while ensuring the stable im-
provement of the overall evaluation metrics (Sentence

accuracy) still needs to be further explored.
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3. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio,
Y.: On the properties of neural machine translation:
Encoder–decoder approaches. In: Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, pp. 103–111 (2014)

4. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A.,
Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone,
F., Lavril, T., et al.: Snips voice platform: an embedded
spoken language understanding system for private-by-
design voice interfaces. arXiv preprint arXiv:1805.10190
(2018)

5. Deoras, A., Sarikaya, R.: Deep belief network based se-
mantic taggers for spoken language understanding. In:
Interspeech, pp. 2713–2717 (2013)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
4171–4186 (2019)

7. Goo, C.W., Gao, G., Hsu, Y.K., Huo, C.L., Chen, T.C.,
Hsu, K.W., Chen, Y.N.: Slot-gated modeling for joint
slot filling and intent prediction. In: Proceedings of the
2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pp. 753–
757 (2018)

8. Guo, D., Tur, G., Yih, W.t., Zweig, G.: Joint semantic ut-
terance classification and slot filling with recursive neural
networks. In: 2014 IEEE Spoken Language Technology
Workshop (SLT), pp. 554–559. IEEE (2014)

9. Haffner, P., Tur, G., Wright, J.H.: Optimizing svms for
complex call classification. In: 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing,
2003. Proceedings.(ICASSP’03)., vol. 1, pp. I–I. IEEE
(2003)

10. Haihong, E., Niu, P., Chen, Z., Song, M.: A novel bi-
directional interrelated model for joint intent detection
and slot filling. In: Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp.
5467–5471 (2019)

11. Hakkani-Tür, D., Tür, G., Celikyilmaz, A., Chen, Y.N.,
Gao, J., Deng, L., Wang, Y.Y.: Multi-domain joint se-
mantic frame parsing using bi-directional rnn-lstm. In:
Interspeech, pp. 715–719 (2016)

12. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.:
Knowledge transfer for out-of-knowledge-base entities: a
graph neural network approach. In: Proceedings of the
26th International Joint Conference on Artificial Intelli-
gence, pp. 1802–1808 (2017)

13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive represen-
tation learning on large graphs. In: Advances in neural
information processing systems, pp. 1024–1034 (2017)

14. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The
atis spoken language systems pilot corpus. In: Speech



10 Pengfei Wei et al.

and Natural Language: Proceedings of a Workshop Held
at Hidden Valley, Pennsylvania, June 24-27, 1990 (1990)

15. Hochreiter, S., Schmidhuber, J.: Long short-term mem-
ory. Neural computation 9(8), 1735–1780 (1997)

16. Huang, L., Ma, D., Li, S., Zhang, X., Houfeng, W.: Text
level graph neural network for text classification. In:
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3435–3441 (2019)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks.
In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

19. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional
neural networks for text classification. In: Twenty-ninth
AAAI conference on artificial intelligence (2015)

20. Li, C., Li, L., Qi, J.: A self-attentive model with gate
mechanism for spoken language understanding. In: Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 3824–3833 (2018)

21. Liu, B., Lane, I.: Attention-based recurrent neural net-
work models for joint intent detection and slot filling.
arXiv preprint arXiv:1609.01454 (2016)

22. Liu, B., Lane, I.: Joint online spoken language under-
standing and language modeling with recurrent neural
networks. arXiv preprint arXiv:1609.01462 (2016)

23. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinear-
ities improve neural network acoustic models. In: Proc.
icml, vol. 30, p. 3 (2013)

24. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-
propagation framework with token-level intent detection
for spoken language understanding. In: Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2078–2087 (2019)

25. Ravuri, S., Stolcke, A.: Recurrent neural network and
lstm models for lexical utterance classification. In: Six-
teenth Annual Conference of the International Speech
Communication Association (2015)

26. Raymond, C., Riccardi, G.: Generative and discrimina-
tive algorithms for spoken language understanding. In:
Eighth Annual Conference of the International Speech
Communication Association (2007)

27. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of
deep belief networks for natural language understanding.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing 22(4), 778–784 (2014)

28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M.,
Monfardini, G.: The graph neural network model. IEEE
Transactions on Neural Networks 20(1), 61–80 (2008)

29. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based
system for text categorization. Machine learning 39(2-3),
135–168 (2000)

30. Shen, T., Jiang, J., Zhou, T., Pan, S., Long, G., Zhang,
C.: Disan: Directional self-attention network for rnn/cnn-
free language understanding (2018)

31. Tan, Z., Wang, M., Xie, J., Chen, Y., Shi, X.: Deep se-
mantic role labeling with self-attention. In: AAAI (2018)

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser,  L., Polosukhin, I.: Atten-
tion is all you need. In: Advances in neural information
processing systems, pp. 5998–6008 (2017)
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