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Abstract 22 

Seismic data obtained from seismic stations are the major source of the information 23 

used to forecast earthquakes. With the growth in the number of seismic stations, the 24 

size of the dataset has also increased. Traditionally, STA/LTA and AIC method have 25 

been applied to process seismic data. However, the enormous size of the dataset reduces 26 

accuracy and increases the rate of missed detection of the P and S wave phase when 27 

using these traditional methods. To tackle these issues, we introduce the novel U-net-28 

Bidirectional Long-Term Memory Deep Network (UBDN) which can automatically 29 

and accurately identify the P and S wave phases from seismic data. The U-net based 30 

UBDN strongly maintains the U-net’s high accuracy in edge detection for extracting 31 

seismic phase features. Meanwhile, it also reduces the missed detection rate by applying 32 

the Bidirectional Long Short-Term Memory (Bi-LSTM) mode that processes timing 33 

signals to establish the relationship between seismic phase features. Experimental 34 

results using the Stanford University seismic dataset and data from the 2008 Wenchuan 35 

earthquake aftershock confirm that the proposed UBDN method is very accurate and 36 

has a lower rate of missed phase detection, outperforming solutions that adapt 37 

traditional methods by an order of magnitude in terms of error percentage. 38 

Keywords 39 

U-net; Bidirectional Long Short Term Memory; Phase identification; Wenchuan 40 

aftershocks 41 



1 Introduction 42 

Seismic phase identification is a solid foundation for earthquake prevention and 43 

disaster reduction work (e.g., earthquake early warning systems). Previously, manual 44 

identification and travel timetable-based calculations were the two main methods used 45 

to analyze various seismic phase data and identify seismic phases. In recent years, with 46 

the growth in the number of seismic stations, the amount of seismic data available has 47 

also increased significantly. The efficiency and accuracy of manual identification has 48 

therefore gradually decreased. At the same time, the noise pollution caused by 49 

urbanization leads to higher rates of missed detection of low-level earthquakes. Manual 50 

identification can no longer maintain the accuracy and efficiency of phase detection. 51 

Seismic phase automatic identification is thus becoming a more widely used approach 52 

(Wu et al. 2004). It improves efficiency and reduces cost through faster processing of 53 

seismic data and higher identification rates. 54 

Nowadays, seismic phase automatic detection is widely used to detect earthquakes. 55 

It utilizes characteristic equations, taking into account different parameters (e.g., 56 

amplitude and frequency). Thresholds are set based on these equations. Once a detected 57 

seismic phase reaches a preset threshold, the occurrence of an earthquake can be 58 

confirmed and its arrival time determined. Several methods are applied to seismic phase 59 

automatic identification. The Short-/Long-Term Average (STA/LTA) method uses the 60 

relationship between the average ratio of the short and the long time windows (Allen et 61 

al. 1978; Baer et al. 1987; Withers et al. 1998), and the threshold value. The Akaike 62 



information criterion (AIC) method is used to find the best division point (Akaike et al. 63 

1974; Sleeman et al. 1998; Akazawa et al. 2004; Liu et al. 2013), and the fractal 64 

dimension method then uses the fractal dimension value to determine the first arrival 65 

point (Boschetti et al. 1996; Chang et al. 2002; Han et al. 2002; Cao et al. 2004; Tang 66 

et al. 2017). These methods are affected by environmental noise and have poor stability, 67 

resulting in low accuracy of identification and high rates of missed detection. In 68 

addition, the recognition results of these methods are significantly affected by the 69 

selection of features, functions, and parameters. The results often differ greatly from 70 

expectation when the signal-to-noise ratio (SNR) is low. Therefore, these methods are 71 

not efficient in seismic phase automatic identification when dealing with very large 72 

datasets. 73 

Artificial intelligence and big data are now the most effective methods used to 74 

manage massive datasets (Dai et al. 1997). Artificial neural networks have been 75 

developed and widely applied to the automatic identification of seismic phases because 76 

of their strong learning ability. The size of the dataset caused by the increasing number 77 

of seismic stations can therefore be addressed by applying neural networks. When 78 

handling massive datasets, an artificial neural network requires both training and 79 

converging data and the determination of related parameters (e.g., neurons; layers) 80 

through continuous experiment (Zhang et al. 1998; Wang et al. 2006; Wang et al. 2008). 81 

To some extent, the application of neural networks to the automatic identification of 82 

seismic phases is limited due to the training processes required.  83 



To address these limitations, a deep learning method has been developed for 84 

solving the neural network’s training difficulties (Ross et al. 2018). In particular, the 85 

Convolutional Neural Network (CNN) approach to deep learning has been widely used 86 

in recent years. The CNN is classified according to multi-, shallow, and deep layers of 87 

convolutional structures. The multilayer convolution structure learns the features of the 88 

different levels, while the shallow layer learns the local features of the signal. 89 

Meanwhile, the deep convolutional layer is better at learning abstract features, which 90 

improves the classification and generalization capabilities of the CNN model compared 91 

to others. The deep convolutional layer structure of CNN is widely used in seismic 92 

signal noise reduction, seismic phase classification, and related matters (Zhao et al. 93 

2019). Perol applied CNN to seismic phase identification (Perol et al. 2018), designing 94 

an eight-layer CNN with high identification accuracy. Ross manually annotated the 95 

dataset and used CNN for training (Ross et al. 2018). Experimental results have shown 96 

that this trained CNN model has high identification accuracy. Meanwhile, the 97 

identification effect with low SNR and different regions is still within the ideal range. 98 

Yu Ziye input three-component seismic data into a 17-layer Inception model based on 99 

CNN after high-pass filtering (Yu Ziye et al. 2018). At the same time, 100 datasets with 100 

different degrees of noise were added and tested. Their results proved that the deep 101 

learning method has a high tolerance for noise and is more stable than the AR-102 

AIC+STA/LTA method. However, the above models based on CNN still have the 103 

problems of long training time and low computational efficiency. 104 



Zhao Ming demonstrated that application of the U-net based model to seismic 105 

phase autoidentification has greatly improved the training speed (Zhao Ming et al. 106 

2019), the accuracy of seismic phase identification, and the efficiency of dealing with 107 

the continuous waveform, all in comparison with STA/LTA. However, the U-net based 108 

training model still results in a 50% missed detection rate. The U-net is known for its 109 

efficient learning ability on two- or three-dimensional data. However, its high missed 110 

detection rate leads to poor learning ability for one-dimensional time series data (e.g., 111 

seismic data). In contrast, the use of Bidirectional Long Short-Term Memory (Bi-112 

LSTM) in deep learning has proven to be efficient at processing the context of 113 

sequences and is more suitable for one-dimensional time series data. The application of 114 

Bi-LSTM to the identification and classification of heart sound signals of congenital 115 

heart disease by Zhu Lili and the pattern identification of quality control graphs by Wu 116 

Changliang have proved its efficiency with such data (Zhu Lili. 2019; Wu et al. (2019)). 117 

To address the limitations in the application of U-net models to seismic phase 118 

autoidentification, we propose in this paper a novel U-net Bidirectional Long-Term 119 

Memory Deep Network (UBDN). This combines the advantages of U-net (e.g., fast 120 

training and accurate seismic phase identification) and Bi-LSTM (e.g., efficiency with 121 

one-dimensional time series data). The UBDN specifically maintains the accuracy of 122 

seismic phase identification. Based on that, a timing relationship can be established 123 

between seismic phase features. Seismic phase autodetection can therefore be achieved 124 

with high phase identification rates, low missed detection rates, and faster run times.  125 



 126 

2 Methods 127 

Taking the U-net as the framework, the structure of the UBDN model is shown in 128 

Fig.1. It can be seen that the input of the UBDN model is the original seismic waveform, 129 

and the output is marked with the P and S wave phases for the input. The blue dashed 130 

box contains the U-net component, and the red dashed box the Bi-LSTM network part. 131 

The UBDN model uses the U-net to extract and learn the P and S wave phase 132 

characteristics in the seismic waveform data, and then utilizes Bi-LSTM to identify the 133 

P and S wave phases in the new seismic waveform. 134 

 135 

Fig.1 The UBDN model structure 136 

The U-net realizes the extraction of the features in the seismic waveform by 137 

determining the location of the P and S phases and finding the corresponding seismic 138 

points. The U-net model structure is shown in Fig.2. The U-net consists of subsampling 139 

and upsampling layers. The subsampling layer comprises 2 one-dimensional 140 

convolutional layers and a pooling layer. In order to prevent overfitting, some dropout 141 

layers were randomly added. The upsampling layer consisted of a transposed 142 



convolutional, cropping, and convolutional layer. A dropout layer was again randomly 143 

added to prevent overfitting. Compared with the classic U-net, the network input was 144 

processed for dimensionality reduction. The input of the U-net defaults to two- or three-145 

dimensional image data, and the seismic waveform data were one-dimensional time 146 

series data. Therefore, all inputs and outputs inside the network needed to be reduced 147 

to one dimension. The four subsampling layers on the left side performed convolution 148 

and pooling operations to extract the abstract features of the seismic phase; whereas the 149 

four upsampling layers on the right side completed operations such as transposed 150 

convolution and connection between the left and right symmetric layers. Recovering 151 

the detailed features of the seismic phases based on the learned features on the left side 152 

was conducive to solving the problem of seismic phase classification. Finally, the 153 

probability value of P wave, S wave, or noise was calculated by the activation function, 154 

and the category of the sampling point determined by comparing with the set threshold. 155 

At the same time, a loss function was used to adjust the hyperparameters such as the 156 

weight and bias of each layer to minimize the difference between the current network’s 157 

predicted value and the target value. 158 



 159 

Fig.2 The U-net model structure 160 

The loss function used in this model is shown in formula (1): 161 

𝐿𝑜𝑠𝑠 = −∑∑𝑌𝑖𝑗′ ⋅ log(𝑌𝑖𝑗)𝑛
𝑗=1

3
𝑖=1 (1) 162 

In formula (1), 𝑌′  is a label using binary coding; 𝑖 = 1, 2, 3  respectively 163 

represent noise, P phase, and S phase; n is the number of waveform sampling points; 164 

and 𝑗 = 1,… , 𝑛 is the sampling point number. 𝑌′ is shown in formula (2): 165 

𝑌𝑖′ = {𝑌1′: [1,0,0]𝑌2′: [0,1,0]𝑌3′: [0,0,1] (2) 166 

𝑌 is the probability value calculated by the softmax function of the last layer, as 167 

shown in formula (3): 168 



𝑌𝑖 = 𝑒𝑧𝑖∑ 𝑒𝑧𝑘3𝑘=1 (3) 169 

In formula (3), 𝑧 is the output tensor ([m, n, 3]) of the last layer, and m is the 170 

number of input data. 171 

The Bi-LSTM network structure is shown in Fig. 3. The network structure includes 172 

both a forward and a reverse LSTM. The forward LSTM obtains a sequence ℎ𝑎 173 

according to normal input. The reverse LSTM reverses the input, and then passes it 174 

through a network with the same structure as the forward LSTM but with different 175 

weight parameters. Using this approach we eventually obtained a sequence which we 176 

then reversed to obtain ℎ𝑏. Finally, we added the two sequences to get H, which is the 177 

final result through the Bi-LSTM network, as shown in formula (4). 178 

𝐻 = ℎ𝑎⨁ℎ𝑏 (4) 179 

 180 

 181 

Fig. 3 The Bi-LSTM model structure 182 



The Bi-LSTM model can simultaneously utilize historical and future information 183 

in the sequence, divide the sequence information into two directions for input into the 184 

model, use two hidden layers to store the input information in both directions, and 185 

connect the corresponding outputs of the hidden layers to the same output layer. Both 186 

of them have the same structures and are independent of each other, and they only 187 

accept different sequence inputs. Therefore, the final hidden layer contains the positive 188 

and negative time series data for the dataset. Utilizing the advantages of Bi-LSTM in 189 

processing time series data, this establishes the timing relationship between seismic 190 

phase features, which solves the problem of missed detection caused by the use of the 191 

U-net in seismic phase identification. 192 

3 Data and evaluation indicators 193 

3.1 Data preprocessing 194 

The UBDN model requires a large number of preset samples for training. The 195 

sample data used here came from the Stanford Earthquake Dataset (STEAD), which is 196 

sourced mainly from the International Seismological Center, the National Earthquake 197 

Information Center, the Northern California Seismic Network, the Southern California 198 

Seismic Network, the Pacific Northwest Seismic Network, The New Madrid Seismic 199 

Network, the Incorporated Research Institutions for Seismology, the Advanced 200 

National Seismic System Composite Catalog, and the Global Seismograph Network. 201 

The STEAD comprises data recorded by seismic stations around the world from 202 

January 1984 to August 2018 (Mousavi et al. 2019). This article mainly selected seismic 203 



events of a magnitude between M0.5 and 2.5 with a SNR between 20 and 30 dB; the 204 

sampling rate was 100 Hz for sample data. 205 

The sample data were preprocessed and the waveforms from 3s before the arrival 206 

of the P wave to 10s after the arrival of the S wave selected. We then uniformly cut the 207 

sample data to a length of 30s (assigned a zero value if the length is insufficient), then 208 

normalized all the data as shown in formula (5), where 𝑣𝑖 represents the amplitude 209 

value of the seismic event signal, and data enhancement operations such as translation, 210 

noise addition, and filtering are adopted (Hayakawa et al.1995; Schroff et al. 2015). 211 𝑣𝑖 = 𝑣𝑖max|𝑣𝑖| (5) 212 

To ensure the quality of the dataset, it was manually cleaned and obvious labeling 213 

errors corrected. The final sample dataset consisted of 43,700 items, of which 80% were 214 

used as training data and 20% as testing data. 215 

3.2 Evaluation index 216 

In order to objectively evaluate the performance of the UBDN model in practical 217 

applications and ensure the reliability of the experimental results, we used the 218 

calculation of the root mean square error (RMSE), accuracy (A), and missed detection 219 

rate (M) of the different methods. The three formulas used to calculate these indicators 220 

were as follows: 221 

𝑅𝑀𝑆𝐸 = √1𝑛∑[(𝑇𝑖 − 𝑡𝑖)2]𝑛
𝑖=1 (6) 222 

𝐴 = 𝑇𝑒(𝑇𝑒 + 𝐹𝑒) (7) 223 



𝑀 = 𝐹𝑛(𝑇𝑒 + 𝐹𝑛) (8) 224 

RMSE denotes the root mean square error between the calculated time 𝑇𝑖 of the 225 

model and the reference mark time 𝑡𝑖. This was used to reflect the accuracy of the 226 

pickup time of the model. n is the number of seismic events in the dataset; i is the serial 227 

number; A represents accuracy; 𝑇𝑒 is the number of correct detections; and 𝐹𝑒 the 228 

number of incorrect detections. The threshold for determining correctness was set as 229 

P±0.5s, S±0.5s and automatically picked up. The accuracy (A) of phase detection is the 230 

ratio of the number of phases for which the phase type is correct and within the error 231 

range identified by the model to the total number of phases. M represents the missed 232 

detection rate and 𝐹𝑛 the number of missed seismic phases. M is computed as the ratio 233 

of the number of correct identifications to the number of manual identifications and 234 

used to check whether the model-identified seismic phase is complete relative to the 235 

reference phase, thus indicating the effectiveness of the model. 236 

4 Experiments 237 

Based on the UBDN model in Fig. 1, the experimental process framework design 238 

is shown in Fig. 4. It comprised three main steps: ① Data preprocessing, where the 239 

original data were cut to a uniform length, and normalization and other pretreatment 240 

procedures carried out. At the same time, data enhancement operations such as 241 

translation, noise addition, and filtering were used to enhance the generalization ability 242 

of the model, and the preprocessed dataset divided into the training and testing datasets 243 

according to the 80:20 ratio given above. ② Model training, where the relevant dataset 244 



was used to train the UBDN model, the U-net to learn the seismic phase features, and 245 

the Bi-LSTM then used the features to complete the phase identification of the time 246 

series signal and output the seismic waveform data of the marked phase. ③ Model 247 

evaluation and comparison, in which we used the output model to compare the pickup 248 

and reference times, and calculated the RMSE, accuracy (A) and missed detection rate 249 

(M) to evaluate the effectiveness of the model’s seismic phase identification. 250 

 251 

Fig. 4 Experimental flowchart 252 

4.1 UBDN model training and testing 253 



Firstly, the UBDN model was built and trained by Tensorflow and Keras before 254 

80% (34,960 pieces) of waveform were selected as the training data, and 20% (8,740 255 

pieces) as the testing dataset. The single training batch size was set to 32, the number 256 

of single training batches (n-input) to 100, and the number of earthquake events 257 

processed by a single training (n-step) set to 100. The UBDN model training used cross-258 

entropy as the loss function and adopted the Adam algorithm to optimize the loss 259 

function calculation process. The Adam algorithm can speed up the convergence speed 260 

of the model because it has the advantages of high computational efficiency and 261 

adaptive learning rate. L2 regularization was used to prevent overfitting (Kingma et al. 262 

2014). 263 

Fig. 5 shows the training and testing results of the UBDN model. Fig. 5(a) denotes 264 

the training accuracy of the model; Fig. 5(b) its loss function value; Fig. 5(c) the phase 265 

identification accuracy (A) of the P wave on the testing dataset; and Fig. 5(d) the phase 266 

identification accuracy (A) of the S wave on the testing dataset. It can be seen from 267 

Fig.s 5(a) and 5(b) that the UBDN model had an accuracy (A) of 98% after training the 268 

fourth cycle (about 20,000 time steps), and the loss value dropped to 0.03. The accuracy 269 

(A) and loss values of the following five cycles remained at this level, which shows that 270 

the UBDN model converged at this point after about 45,000 time steps. Fig.s 5(c) and 271 

5(d) show that the accuracy (A) of the P and S wave phase identification on the testing 272 

dataset increased over time. From time steps 10,000 to 45,000, the P and S waves 273 

increased from 65.1% and 43.7% to 90.1% and 89.5% respectively. This indicates that 274 



the model did not overfit; furthermore, the longer the training time, the higher the 275 

accuracy. The experimental results in Fig. 5 show that the accuracy (A) of phase 276 

identification of P and S waves by the model was 90.1% and 89.5%, respectively, which 277 

meets the accuracy requirements for seismic phase identification. This indicates the 278 

model can be used effectively for this purpose. 279 

 280 

Fig. 5 Training and testing process of the UBDN model 281 

4.2 Comparative Experiments 282 

In order to verify the seismic phase identification ability of the UBDN model, we 283 

compared it with the deep learning U-net [19], STA/LTA, and AIC seismic phase 284 

identification methods. In the comparative experiments, all models used a unified 285 

dataset of 2,000 pieces of waveform, and the SNR was concentrated between 20~30dB. 286 

We used formulas (6), (7), and (8) to calculate the RMSE, accuracy (A), and missed 287 



detection rate (M) so as to evaluate the detection results of the four models. The 288 

experimental results are shown in Table 1. 289 

Table 1 – Comparison of the UDBN model with the U-net, STA/LTA, and AIC 290 

methods 291 

Method RMSE A M 

UBDN 

P 0.26 87.99% 11.45% 

S 0.27 87.60% 14.58% 

U-net 

P 0.35 81.26% 30.74% 

S 0.41 83.49% 28.40% 

STA/LTA 

P 0.49 73.45% 37.52% 

S 0.62 76.23% 35.87% 

AIC 

P 0.43 75.13% 32.81% 

S 0.58 78.92% 30.72% 

As can be seen from Table 1, the RMSE of the UBDN model for the P and S waves 292 

was 0.26s and 0.27s, and the accuracy (A) was 87.99% and 87.61%. This represents a 293 

significant improvement over the traditional STA/LTA and AIC methods. The UBDN 294 

model also shows improvement in comparison with the U-net model. This indicates the 295 

UBDN model has obvious advantages compared with other methods in terms of 296 

accuracy. In terms of missed detection rates, the parameter M for the UBDN model was 297 

11.45% and 14.58%. Compared with other methods, this is a significant reduction and 298 



indicates that the combination of the U-net and Bi-LSTM network approaches has 299 

achieved an ideal result in reducing the missed detection rate. The three evaluation 300 

indicators were highest for the UBDN model among the four methods tested. 301 

Fig. 6 shows the various possible scenarios for the UBDN model in the phase 302 

identification process. In the Fig., the black line shows when the P wave is picked up 303 

manually, and the red line when the S wave is picked up manually. Fig. 6(a) shows the 304 

correct detection of the P and S wave phases; Fig. 6(b) the correct detection of the P-305 

wave phase and the incorrect detection of the S-wave phase; Fig. 6(c) shows the S-wave 306 

phase detected and the P-wave phase; Fig. 6(d) shows the reverse scenario. 307 

 308 

Fig. 6 Different phase identification scenarios for the UBDN model 309 

4.3 Application of the Model to the Wenchuan Earthquake Aftershocks 310 



In order to verify the phase identification effect of the UBDN model in an actual 311 

earthquake event, it was applied to the aftershock dataset of the Wenchuan earthquake 312 

from May to September 2008. This dataset contains both seismic events and phase data. 313 

A total of 2,026 phase data items were collected from 76 stations. The SNR of the data 314 

was concentrated between 2~5dB, the sampling rate was 200Hz, and the attribute fields 315 

included the earthquake time and longitude, latitude, depth, magnitude type, magnitude, 316 

reference location, event type, and so on (Data sharing infrastructure of national 317 

earthquake data center - http://data.earthquake.cn). An example event is shown in Fig. 318 

7. This depicts the seismic events taking place at 14:53 on May 12, 2008. The 319 

magnitude is Ms6.3; the focal depth 14km as recorded by the Maoxin Nanxin station 320 

(51MXN); the black line denotes the arrival of the manually picked P wave; and the red 321 

line the arrival of the manually picked S wave. Fig.s 7(a), 7(b), and 7(c) represent the 322 

vertical, north-south, and east-west seismic waveforms, respectively. The UBDN 323 

model was used to identify the phases of the Wenchuan earthquake aftershock dataset. 324 

The results are shown in Table 2. 325 

http://data.earthquake.cn/


 326 

Fig. 7 Examples of seismic event waveforms 327 

Table 2 Phase identification results for the UDBN model on the Wenchuan 328 

earthquake aftershock dataset 329 

Method RMSE A M 

UBDN 

P 0.31 80.69% 17.18% 

S 0.34 77.87% 20.56% 

It can be seen from Table 2 that the RMSE of the UBDN model on the Wenchuan 330 

earthquake aftershock dataset was 0.31s and 0.34s, the accuracy (A) 80.69% and 331 

77.87%, and the missed detection rate (M) 17.18% and 20.56%. Compared with the 332 

experimental results of the testing dataset, the effect of the UBDN model on the 333 



Wenchuan earthquake aftershock dataset is slightly poorer. This may be attributable to 334 

the different SNR of the datasets. To verify this hypothesis, the SNR of the aftershock 335 

dataset was concentrated in the range 2~5dB, and the SNR of the testing dataset in the 336 

range 20~30dB. Phase identification tests were then performed on five datasets with 337 

different SNR ranges of 0~10dB, 10~20 dB, 20~30 dB, 30~40 dB, and >40 dB, with 338 

the number of events in each dataset set as 1,000.  339 

The results of this experiment are shown in Fig. 8. It can be seen that the RMSE, 340 

accuracy (A), and missed detection rate (M) all have a linear relationship with SNR. As 341 

the SNR increases, RMSE and M gradually decrease, but A gradually rises. This 342 

indicates that the higher the SNR of the data, the better the seismic phase identification 343 

of the UBDN model. Although the effect for the actual Wenchuan earthquake 344 

aftershock dataset is slightly lower than that for the testing dataset, it can still meet the 345 

needs of practical applications. Therefore, the UBDN model has a certain degree of 346 

adaptability, and can still achieve a good seismic phase identification effect under the 347 

condition of low SNR. 348 



 349 

Fig. 8 Phase identification results for datasets with different SNR 350 

5 Conclusion 351 

Based on U-net and Bi-LSTM structures, we designed a UBDN seismic phase 352 

automatic identification model, used it to train a dataset, and established the relationship 353 

between the phase arrival time and the seismic waveform phase for real-time 354 

identification. By comparing the results of the trained model with those for other 355 

identification methods, and performing testing and experimental analysis using the 356 

2008 Wenchuan earthquake aftershock dataset, we can draw the following conclusions. 357 

Firstly, the UBDN model can achieve sufficient accuracy to meet the requirements of 358 

seismic phase identification; secondly, compared with other methods, it offers a 359 

significant improvement on accuracy and a significant reduction in the missed detection 360 



rate; and thirdly, using the UBDN model with a real-life dataset (i.e., the Wenchuan 361 

earthquake aftershock data) shows that there is still a strong phase identification effect 362 

and further indicates that the model has good adaptability. 363 

In practical applications, low-SNR data have an impact on the identification 364 

capabilities of the UBDN model. Future research may consider using seismic data 365 

collected by the same type of instrument and processed by the same noise reduction 366 

method as a dataset for model training, according to the noise level and sensitivity of 367 

seismic instruments and the difference in data noise reduction methods. This approach 368 

can greatly reduce the influence of SNR on the results of the UBDN model training and 369 

identification process and thus improve its stability. 370 
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Figures

Figure 1

The UBDN model structure



Figure 2

The U-net model structure



Figure 3

The Bi-LSTM model structure



Figure 4

Experimental �owchart



Figure 5

Training and testing process of the UBDN model



Figure 6

Different phase identi�cation scenarios for the UBDN model



Figure 7

Examples of seismic event waveforms



Figure 8

Phase identi�cation results for datasets with different SNR
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