
Journal of Intelligent & Fuzzy Systems 44 (2023) 8219–8229
DOI:10.3233/JIFS-221551
IOS Press

8219

ECG-NETS – A novel integration of
capsule networks and extreme gated
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Abstract. Human Activity Recognition (HAR) has reached its new dimension with the support of Internet of Things (IoT) and
Artificial Intelligence (AI). To observe human activities, motion sensors like accelerometer or gyroscope can be integrated
with microcontrollers to collect all the inputs and send to the cloud with the help of IoT transceivers. These inputs give
the characteristics such as, angular velocity of movements, acceleration and apply them for an effective HAR. But reaching
high recognition rate with less complicated computational overhead still represents a problem in the research. To solve this
aforementioned issue, this work proposes a novel ensembling of Capsule Networks (CN) and modified Gated Recurrent
Units (MGRU) with Extreme Learning Machine (ELM) for an effective HAR classification based on data collected using IoT
systems called Ensemble Capsule Gated (ECG)-Networks (NETS). The proposed system uses Capsule networks for spatio-
feature extraction and modified (Gated Recurrent Unit) GRU for temporal feature extraction. The powerful feed forward
training networks are then employed to train these features for human activity recognition. The proposed model is validated
on real time IoT data and WISDM datasets. Experimental results demonstrates that proposed model achieves better results
comparatively higher than existing (Deep Learning) DL models.

Keywords: Artificial intelligence, capsule networks, human activity recognition, internet of things, gated recurrent units and
spatio-feature extraction

1. Introduction

In recent days, there is a huge advancement in
human activity recognition (HAR) systems using
interconnected sensing and intelligent technologies
such as artificial intelligence (AI), Internet of Things
(IoT), and sensors. Wearable IoT devices with sen-
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sors plays very vital role to observe the movements
of human body and also can be aided for its recogni-
tion. For this kind of research, Inertial Measurement
units (IMU) are integrated with wearable IoT devices
to identify human activities which enables develop-
ment of different cognitive applications in areas such
as healthcare [1], fitness application [2] and secu-
rity applications [3]. The integration of IoT in human
activity recognition has been used for an effective
human activity collection which are implemented for
an effective recognition system.
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Recently IoT merged with machine and DL algo-
rithms for an automatic human activity recognition.
Several previous studies investigated deployment
of HAR using traditional machine algorithms such
as Support Vector Machines (SVM) [4], Artificial
Neural Networks (ANN) [5], Random Forest (RF)
[6], Convolutional Neural Networks (CNN) [7],
Recurrent neural Networks (RNN) [8] and Long
Short-Term Memory (LSTM) [9]. Since the HAR
consists of simple and complex activities, employ-
ing the DL algorithms for task of classifying the
human activities are considered to be more suit-
able than the machine learning algorithms. In recent
times, hybrid DL algorithms such as CNN-LSTM
[10], CNN-GRU [11], and transfer learning tech-
niques are employed to handle the complex activities
[12]. But these algorithms requirement, its improvi-
sation to achieve better HAR with less computational
complexity.

The idea behind this research is to develop the cog-
nitive and automatic system with the high recognition
rate and low computational complexity. The research
integrates the Capsule Networks (CN) with the Modi-
fied Gated Recurrent Units (MGRU) to extract highly
efficient spatio-temporal features and trained with
powerful feed-forward networks. The research con-
tributions are listed as follows.

The paper discusses hybrid DL model which con-
sist of Convolutional Capsule Networks and Modified
Gated Recurrent Units (MGRU) for an effective
extraction of spatio-temporal features from the raw
IoT data.

• The paper leverages the Extreme Feed- Forward
Networks for a high-speed training with the less
complexity for deep-learned features.

• The real time IoT wearable test beds are pro-
posed for an effective data collection which
represents various human activities.

• The evaluation of performance measures are
achieved and compared with existing HAR sys-
tems based on DL.

The paper structure is presented as follows. Section
II presents the papers from the different authors. 2)
The working mechanism of the proposed framework,
dataset descriptions, data preprocessing and hybrid
DL model is explained in Section III. The implemen-
tation is described in section IV and the experimental
results, comparative analysis and discussions are pro-
vided in the Section V. The conclusive remarks and
future enhancement are summarized in Section-VI.

2. Related works

Abdullah et al. developed CNN for HAR utiliz-
ing their strolling styles which is recognized at lower
appendages. This framework adopted Butterworth
filter for NN training and Levenberg–Marquardt algo-
rithm is utilized for the extraction of real time
samples. This framework achieved better perfor-
mance in terms of performance. However, this
architecture has a drawback in that it is inappropriate
for dynamic walk patterns [13].

Aybuke et al. tested HuGaDB datasets using
Random Forest (RF), Naive Bayes (NB) and IB1 clas-
sifiers for the HAR system. This dataset comprises
the data of standing, sitting, running and walking.
These data are collected by utilizing inertial sen-
sors like accelerometers and gyroscopes. While doing
the comparative analysis, it was concluded that RF
outperformed NB and IB1 classifier in regards of clas-
sification accuracy and setup time [14]. Jucheol et al.
presented a multi-model walk ID classifier in view of
RNN joined with a SVM extractor [15].

Jiang and Yin created time frequency spectral
images form the time serial image by incorporat-
ing Short-time Discrete Fourier Transform (STDFT)
[16] for identifying basic activities such as waling
and standing using CNN method. Integration of CNN
and STDT made perfect HAR system. Main advan-
tage of this framework is it achieved classification
accuracy of 95.25 in 25 atomic hand activity clas-
sification with the help of 12 participants [17]. The
otherworldly properties can be utilized for wearable
sensor movement acknowledgment, yet in addition
for action acknowledgment without utilization of
a gadget. Ha and Choi [18] presented a learning
methodology explicit transient property for a new
version of CNN for HAR. This framework provided
better result in terms of classification accuracy for
HAR.

Shen et al. [19] utilized gated CNN to perceive
ordinary exercises from sound signals more precise
than CNN. Long et al. made a two-stream CNN
structure with the help of residual blocks that can
deal with a few time scales. Guan and Plötz [20]
developed deep LSTM network to test various HAR
benchmark datasets to outstand other frameworks.
Yao et al. [21] utilized RNN integrated GRU frame-
work instead of LSTM for HAR system. But in few
cases, LSTM framework outperformed other versions
of RNN based on accuracy classification. Wang et al.
[23] utilized sound features for the HAR system. In
this framework CNN is integrated with LSTM to cap-
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ture various gesture movements of human. Xu et al.
[24] utilized contemporary Inception CNN structure,
while GRUs are utilized for effective global temporal
portrayals.

Yuki et al. [25] utilized a double stream Con-
vLSTM organization responsible for different time
length. Alazrai et al. [26] suggested MLPs are uti-
lized to generate a base classifier for every physical
methodology, and selected at classifier level to con-
solidate all classifiers. Accordingly, the variety of
various modalities is held, which is significant for
defeating over-fitting hardships and upgrading by and
large speculation limit. Xia et al. [27], notwithstand-
ing the conventional classifier group, zeroed in on
the fall discovery issue and presented a troupe of the
remaking mistake from the auto encoder of sensor
methodology.

3. Proposed methodology

3.1. Overview of proposed system architecture

The proposed framework includes four major
steps, namely IoT based Data Collection Unit (DCU),
Data pre-processing, spatio-temporal feature extrac-
tion using Capsule and Modified GRU units and HAR
classification mechanism. Figure 1 shows proposed
architecture for ECG-NETS that are used for an effec-
tive human activity recognition system.

3.1.1. Data collection mechanism
Nearly 55 persons with body weight ranging from

30 kg to 65 kg are considered. The battery -operated
IoT devices are used for collecting the body activities.
Table 1 presents the hardware with its specifications
and applications for the experimentation. To collect
daily human activities, ADXL435 3-axis accelerom-
eters and BMG250 3 axis gyroscopes are interfaced
with MCP3008 (10-bit ADC) connected Node MCU.
In order to collect data, Micro-Python programming
is deployed in hardware and collected data is trans-
mitted to the cloud. 3.3 V Li-On batteries are utilized
to power up the board. Nearly 8,20,567 data are col-
lected from above subjects for 2 months conducting
the various human activities such as eating, folding
the clothes, clapping and even brushing the teeth.
Each subject is permitted to play out the 18 distinct
exercises for 2 minutes at 15 Hz which determines
that 25 information focuses are recorded for every
second of activity being performed. This sensor infor-
mation gathered from IoT gadgets are put away in

the Cloud by making the proper information outlines.
The properties data in the cloud is depicted in Table 2.
Once the data are stored in the cloud, these data are
downloaded for further process. Figures 2 and 3 show
sample data distribution for hand activities using IoT
test beds over the time period.

3.1.2. Data pre-processing
The next step is Data-preprocessing which is used

to organize data suitable for training and testing the
module. Since dataset is organized in flat databases,
these datasets are converted into suitable data frames
using the Pandas library in Python. The missing val-
ues and zero row values were removed from the
datasets. The noise values are removed from the
datasets by comparing the original values of sensors.
The datasets collected are evenly distributed to avoid
the class imbalance problem. The information is sec-
tioned utilizing a sliding window of 05 seconds and
half cross-over by utilizing a step size of 100. This
progression is essential with the goal that information
can be changed into a fitting configuration of time
steps and highlights for input into DL models. The
first dataset will be divided into training, testing, and
validation (70 : 20 : 10) as the objective is to generate
models that can manage data from clients. For train-
ing and testing, the DL models utilized in this work
are adjusting their hyper-boundaries. Finally, testing
is performed on test datasets to acquire results.

3.2. Proposed models

The gathered datasets embody the estimations of
the amount as pieces of information over the long run.
The collected data points over the time determines the
behavior of the data. These time series datasets are
incorporated to train the model and to achieve better
classification, hybrid DL algorithms ensemble with
machine learning algorithms to extract features and
applied for segmentation.

3.2.1. ECG-NETS- Hybrid models
Hybrid Models used in this research are an amal-

gamation of deep and machine learning models [28].
The proposed model integrates the combination of
Capsule networks and Modified GRU models to
extract the spatio-temporal features processed by
“Single Feed forward Extreme Learning Machines”
(ELM) [29] for the further classification. The prelim-
inary overview of each learning model is discussed
in the following section.



8222 S. Arokiaraj and N. Viswanathan / ECG-NETS – A novel integration of capsule networks

Fig. 1. Proposed architecture for ECG-NETS.

Table 1
Specification of the hardware used for an effective data collection unit

S. No Hardware Used Specifications Application

01 Node MCU 8-bit CPU with ESP8266 WIFI
transceivers

Considered as the main CPU for
interfacing with ADC and other sensors

02 MCP3008 10-bit ADC with 8-Input Channels Used for the interfacing the sensors with
Node MCU using Serial Peripheral
Interfaces (SPI)

03 ADXL435 Three Axis Accelerometers Measures the body activities of the
subjects.

04 BMG250 Three Axis Gyroscopes are used
05 Power Supply 3.3 V Li-ON batteries Power Supply Unit for the Wearable IoT

Boards.

3.2.2. Capsule networks
Recently, Capsule networks [30] are gaining the

edge of popularity over the Convolutional neural net-
works in extracting the spatial features from the group
of datasets. Conventional CNN has three layers such
as “Convolutional layers (CL), Pooling layers (PL)
and Fully Connected layers (FCL)”. The features are
extracted by the early two layers which aided by
the FCL for the further classification. In this pro-
cess, CNN extracts all the features but may leads

to non-consideration of spatial information as the
datasets increases due to the nature of pooling layers
in CNN.

For improved component spatial extraction, the
pooling layers of CNN are replaced with capsule
networks. Furthermore, Capsule Network is also pro-
posed as a solution to CNN problem. The clusters of
neurons known as capsules are responsible for encod-
ing both spatial information and the likelihood that an
item is always accessible based on factors including,
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Table 2
Attribute description of the data stored in the cloud

S. No Attributes obtained Description

01 Subject ID Represents the details of
Subjects

02 Sensors X1, Y1, Z1 Sensors obtained from the
accelerometers

03 Sensors X2, Y2, Z2 Sensors obtained from
Gyroscopes

04 Activity label -U U- values ranges from 0 to 17
which represents the 18
activities

• Instantiation boundaries of entities
• Probability of Existence

Three layers make up the capsule network: a low
capsule layer, a high container layer, and a classifica-
tion layer. Global boundary sharing is used to reduce
the occurrence of errors and an upgraded dynamic
steering computation is used to iteratively update the
boundaries.

The increase of the information vectors’ frame-
work with weighted lattice is determined in order
to encode fundamental spatial relationship between
low and substantial level convolutional highlights in
image is given by,

Y (i, j) = Wi, (i, j) ∗ Sj (1)

Where Y (i, j) is information vector with weight
lattice, Wi, (i, j) is the weighted coefficient matrix

that is learned in the backward process, Sj is par-
ent capsule. The current capsules are calculated by
adding input weight vectors and forwarded its output
to higher level capsule as expressed in Equation (2).

J =
∑

j(i, j) ∗ (j) (2)

where, i and j are input and output weight vectors
respectively.

From Equation (3), non-linearity applies the
squash function which reduces a vector’s length to
a maximum of one and a minimum of zero while
preserving its orientation.

j = squash[S(j)] (3)

where, S (is the squash function.

3.2.3. GRU model based feature extraction
The GRU model plays vital role in extraction

of temporal features, which gathers information
received from IoT cloud. Figure 4 illustrates GRU
structure utilized in this framework. GRU network
consists of two gates and which are faster than LSTM
[32] and RNN models [33]. Equations (4-7) are used
to describe the characteristics of GRU,

zt = σ
(
wz.

[
ht−1, xt

])
(4)

rt = σ
(
wr.

[
ht−1, xt

])
(5)

Fig. 2. Sample data collected for hand activities (accelerometers) using IoT test beds.

Fig. 3. Sample data collected for hand activities (gyroscopes) using IoT test beds.
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Fig. 4. GRU model for ECG-NETS architecture.

ht = tanh
(
rt ∗ [

ht−1, xt

])
(6)

(1 − zt) ⊗ ht−1 + zt ⊗ ht]) (7)

where zt means update gate, xt means current input
vector, ht−1, means value measured form previ-
ous adjacent layer, wz means update gate’s learning
weight matrix, rt means reset gate, tanh ranges from
(–1 to 1), ht means the present output of module.

3.3. MGRU: Capsule – GRU feature extraction

For the effective spatial information, capsule net-
works extract the different information and obtain the
relationship between the features. Figure 5 shows the
hybrid feature extractor using capsule GRU networks.

The result weights are determined utilizing equa-
tion (2) and it is transferred to high case region while
squash work holds the first course of the vector by
packing the length to (0, 1) utilizing equation (3).
In the following stage, proposed model consolidates
spot item between comparative cases and results,
utilizing advanced dynamic steering. This cycle iter-
atively refreshes the loads of the organizations to
frame the component maps. At long last the com-
ponent maps from the case network are gone through
the dropout layer to forestall the over-fitting and lev-
eled to a solitary layered highlights vectors. These
component vectors go about as the contribution to
the proposed Modified GRU. The decision of utiliz-
ing a GRU layer is that it has a lesser number of
gates when contrasted with LSTM and hence has
similarly less boundaries than LSTM and RNN. In
this exploration article, Modified GRU is utilized in
which each hidden node is figured utilizing just the
inclination, accordingly decreasing the absolute num-
ber of boundaries. The compositional system for the
proposed model is displayed in Fig. 4.

The proposed Hybrid Feature Extractor Structure
using Capsule -GRU networks is depicted in Fig. 5.
Now these feature vectors act as the input to the
Modified GRU to extract the further temporal fea-
tures followed by dropout and dense extreme learning
classifiers. The working mechanism of the proposed
Capsule-GRU feature extraction in the proposed net-
work is presented in Algorithm-1.

Step No. Algorithm-1 //Procedure for the
Capsule-GRU networks

1 Inputs : Preprocessed Data from the Cloud I={
X1,X2,X3 . . . . . . . . . . . . .Xn)

2 Outputs : feature maps F
3 while n = 1 to Max iteration
4 H=CNN(X1,X2,X3,X4 . . . . . . Xn)
5 Y=Capsule(H)
6 Z=flatten(Y)
7 F1 = ModifiedGRU(Z)
8 F=flatten(F1)
9 End

3.4. ECG-NETS- classification layers

The final feature maps are then feed to the Clas-
sification layers to categorize the 18 different human
activities. The proposed model uses the Extreme
learning machine based feed forward networks. A
type of neural network called an ELM uses a sin-
gle hidden layer and operates based on auto-tuning
properties.

When compared to other learning models includ-
ing ELM performs faster and more effective with
less computing overhead when compared to other
learning models like SVM, k-NN and RF. The input
features maps of the ELM are denoted using Equation
(8)

X = G(F, P) (8)

where, G refers to GRU function; P is GRU temporal
features; F is CNN spatial features and X is fused
spatio-temporal GRU features obtained from CNN
and GRU layers.

The output of ELM function is represented by
Equation (9)

Y (n) = X (n) β = X (n) XT

(
1

C
XXT

)−1

O (9)
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Fig. 5. Hybrid feature extractor structure using capsule GRU Networks.

The complete training of ELM is assumed as Equa-
tion (10)

S = α(
N∑

n=1

(Y (n) , B (n) , W (n)) (10)

Where B and W are weights and bias factors of
the network with activation function, β is temporal
matrix based on inverse theorem of Moore–Penrose
algorithm denoted by XT , X (n) is input feature maps
and C is constant.

4. Implementation description

For evaluation, experimental tests are performed
using Google Co-lab, Python 3.8, Keras 2.4.3,
Numpy 1.19, Pandas 1.12 and Tensor-Flow 2.3.0
with 14.76 GB RAM and Tesla T4 GPU. To eval-
uate the proposed model, two datasets such as IoT
based Datasets and WISDM datasets which consist
of the smart phone and smart watch datasets. Table 3
presents the datasets descriptions used for the evalu-
ation.

5. Model evaluation

Table 4 presents the performance metrics utilized
for preparing the proposed network. The performance

Table 3
Dataset descriptions used for the evaluation and experimentation

Dataset Details No of Datasets
Collected

Data Splitting
(Training:
testing:
Validation)

Real time Datasets 8,20,567 70 : 20 : 10
WISDM Datasets 8,51,386 70 : 20 : 10

Table 4
Mathematical expressions for the performance metrics’

calculation.

Performance Metrics Mathematical Expression

Accuracy TP+TN
TP+TN+FP+FN

.
Recall TP

TP+FN
.

Specificity TN
TN+FP

.
Precision TN

TP+FP

metrics including accuracy, precision, AUC (Area
under ROC), recall, specificity and F1-score uti-
lizing different datasets are determined. The early
stopping method is utilized in this work to address
over-fitting and speculation issues when approval
execution shows no improvement for N sequential
times [34].

“TP is True Positives, TN is True Negatives, FP
is False Positives and FN is False negatives”. The
performans measured by utilizing WISDM dataset
and ROC and disarray grid is calculated for proposed
network model utilizing real-time IoT datasets.

Figures 6 to 8 illustrate the proposed model’s Con-
fusion Matrix various datasets. The results cleared
that confusion matrix of proposed model has pro-
duced 98.45% detection of human activity under
different datasets. Figure 8 depicted as confusion
matrix for proposed system.

Figure 9 illustrates the proposed model’s ROC
curves for different HAR datasets. From the ROC
curve it is evident that proposed framework shows
0.98 of AUC for IoT data collected, 0.9793 AUC
for Smart watch and 0.9823 AUC for smartphone
datasets. Figures 10 and 11 illustrate the training
and validation curves of proposed ECG-NETS frame-
work in terms of accuracy under IoT datasets and
WISDM datasets respectively.

Figures 12 to 16 demonstrate performance com-
parison of different learning models with proposed
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Fig. 6. Proposed architecture’s confusion matrix using the real–
time IoT datasets.

Fig. 7. Confusion matrix for proposed architecture using the
WISDM dataset (smart phone).

Fig. 8. Confusion matrix for proposed architecture using the
WISDM dataset (smart watch).

model in detecting HAR under different datasets.
CNN+GRU [35], Deep CONVLSTM [36] networks
delivered the better order exhibitions. In these
two cases, LSTM [38] and inception model [37]

Fig. 9. ROC curves (a) Real-time datasets, (b) smart watch
datasets, (c) smart phone datasets (WISDM).

Fig. 10. Validation curves of proposed ECG-NETS model in han-
dling the IoT datasets.

Fig. 11. Validation curves of proposed ECG-NETS model in han-
dling the WISDM datasets.

has delivered minimal execution in identifying the
different human exercises. However, ECG-NETS
outperformed other existing learning models with
quantitative outcomes. The consideration of case net-
works with the GRU organizations and single feed
forward ELM in proposed model effectively affects
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Fig. 12. Performance metrics comparison for exiting methods in detecting ambulation activities (real time datasets).

Fig. 13. Performance metrics comparison for exiting methods in detecting hand related activities (real time datasets).

Fig. 14. Performance metrics comparison for exiting methods in detecting hand related eating activities (real time datasets).

Fig. 15. Performance metrics comparison for exiting methods in detecting leg related eating activities (real time datasets).
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Fig. 16. Performance metrics comparison for exiting methods in detecting various activities using WISDM smart watch and smart phones
datasets.

the grouping exhibitions than existing hybrid learn-
ing calculations. The similar fashion of performance
is observed for the WISDM datasets in which the pro-
posed model has achieved the better performances
than the other existing hybrid models.

6. Conclusion and future perspectives

In this work, a novel hybrid DL model ECG-NETS
for classification of HAR is proposed by integrat-
ing capsule network and GRU unit to accomplish
the better extraction of spatio-temporal features. Raw
sensor information from IoT test beds and WISDM
was utilized in the proposed methodology. Infor-
mation exchange during preprocessing is performed
by utilizing sliding window approach. The ablation
analysis is carried out for current models such as
Deep ConvLSTM and Inception Time, CNN+GRU
and LSTM and different execution measurements
are determined. From the results obtained using this
proposed framework trained on real-time datasets,
it is concluded that the proposed hybrid method
offers optimal accuracy over other current models in
perceiving complicated human exercises. Therefore,
the results demonstrated that hybrid DL models can
effectively extract the features. Future directions may
also use advanced transformer and models to order
the HAR’s time series from IoT datasets. The trans-
former integration will improve the functionality of
model so that it can handle number of IoT devices.
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